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Statistical properties of the heat flux between two nonequilibrium steady-state thermostats
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We address the question of transport of heat in out-of-equilibrium systems. The experimental setup consists
in two coupled granular gas nonequilibrium steady-state (NESS) heat baths, in which Brownian-like rotors are
imbedded. These rotors are electromechanically coupled, thanks to DC micromotors, through a resistor R such
that energy flows between them. The average flux depends linearly in the difference in the baths’ temperature.
Varying R allows extrapolation in the nondissipative coupling limit (R → 0). We show that in this limit the heat
flux obeys the fluctuation theorem in a form proposed by Jarzynski and Wójcik in 2004 [C. Jarzynski and D. K.
Wójcik, Phys. Rev. Lett. 92, 230602 (2004)] for the fluctuations of the flux between finite size equilibrium heat
baths.
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I. INTRODUCTION

In dissipative systems, nonequilibrium steady states
(NESS) result from the balance, in the average, between the
work supplied and the heat dissipated per time unit. (See,
for instance, turbulent flows, granular gases, etc.) In many
physical systems of interest, work is injected from the bound-
aries as dissipation occurs in the bulk. One of the simplest
experimental setups one can think of to investigate the energy
transport in NESS systems is two granular gas thermostats, at
distinct effective temperatures, weakly coupled to one another.
Both are designed completely alike but kept in steady states
by separate external forcings (periodic vertical acceleration).
In such granular gas heat baths, the stationary random motion
of the beads resulting from the external power supply mimics
thermal agitation, characterized by an effective temperature.
The mean kinetic energy of the beads is sometimes called
“granular temperature” [1]. It is our working hypothesis that
the effective temperatures, measured by different means, play
the same role as equilibrium temperatures [2,3], in a sense to
be discussed below.

Let us briefly focus on the granular gas itself. (For reviews,
see Refs. [4,5], for example.) The random motion of the
inelastic beads is the result of a complex process in which
mechanical power is injected at the bottom and dissipated into
heat by collisions and viscous drag. The “effective tempera-
ture” differs from the “equilibrium temperature” in the sense
that the former takes into account only a very reduced number
of degrees of freedom, at macroscopic scale, averaging out
small scales degrees of freedom. As a result, the values of the
effective temperature are definitely distinct. The energy per
time unit needed to sustain motion is ultimately completely
dissipated into heat. It is the so-called “housekeeping heat”
[6] for the granular gas. However, the system of interest here
is not the granular gas but a rotor immersed into it, the former
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being merely used as a heat bath, causing random forcing on
the rotor.

This model experiment is implemented to investigate
specifically the fluctuations of the energy flux φ(t ) between
two NESS thermostats kept at distinct effective temperatures
kTi (i = 1; 2). Working on a macroscopic scale setup allows
one to measure conveniently φ(t ) between the baths and the
temperature in each at the same time. We write the tempera-
ture kTi in energy units (J), as usual in statistical physics. The
Boltzmann constant kB might be used to make a conversion
into the Kelvin temperature scale, a conversion not necessary
in general. We opt for writing kTi without specifying sepa-
rately k and T . First, we have a linear dependance of the mean
heat flux in the temperature difference: φ ∝ kT1 − kT2. That is
the Fourier law for heat conduction [7]. Second, the statistics
of φ(t ) are examined in terms of the fluctuation theorem.
Indeed, as the flux is an irreversible transport process between
the baths when kT1 �= kT2, it causes an asymmetry that can be
regarded in these terms.

Let us briefly introduce the fluctuation theorem (FT),
which is a cornerstone of the so-called stochastic thermody-
namics. The FT refers to a set of theoretical results obtained in
several steps in the 1990s [8–11]. It compares the probability
of seeing the entropy of a dynamical or stochastic system
increase or decrease, when forced off equilibrium by an ex-
ternal perturbation, with respect to a heat reservoir. It explains
in a very primal expression the irreversibility of a dynamical
process:

P(στ )

P(−στ )
= exp (στ ), for τ → ∞. (1)

P is the probability of στ , the entropy rate σ = dS/dt aver-
aged over a (large) time window τ . The FT is often referred
to as the most general expression of the second principle.
Detailed reviews on these important theoretical advances can
be found in Refs. [12,13]. Experimental access to observables
related to entropy fluctuations often requires systems at the
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micrometer scale so that molecular thermal fluctuations do not
average out. Due to technical difficulties, experimental contri-
butions mostly appeared later. (See a review in [14,15].) We
note, however, that some early experiments were performed at
macroscopic scale [16].

The entropy being generally unmeasurable, the relation
dS = βdE is used to express the FT for observables such
as energy, and the bath’s inverse temperature is β = 1

kT . It
is worth noting that although the FT holds for the system as
far as desired from equilibrium, the heat reservoir mentioned
above is always implicitly at equilibrium and in the ther-
modynamic limit, as traditionally assumed in the canonical
formalism of statistical mechanics [17].

Now, consider that the system, instead of being subject
to a deterministic forcing, is perturbed by the coupling with
another thermostat. The result is then a net transfer of en-
ergy from one thermostat to the other, and the FT should
still apply. Indeed, one intuitively expects the back-and-forth
fluxes (negative and positive realizations of φ) to obey the FT.
Indeed, each system i in contact with a heat bath at kTi ex-
changes energy with the other one at a different temperature.
We measure φ(t ), the instant resulting energy flux from one
to the other, and vice versa. The time coarse-grained flux is

φτ (t ) = 1
τ

∫ t+ τ
2

t− τ
2

φ(t − t ′)dt ′. The FT is then, for large τ ,

P(φτ )

P(−φτ )
= exp (μτφτ ). (2)

The exponent μ is the only free parameter. Jarzynski and Wój-
cik proposed in 2004 the exchange fluctuation theorem (XFT)
for heat flux between two equilibrium heat baths [18]. Accord-
ing to these authors, the prefactor μ in Eq. (2) is nothing but
the inverse temperature difference: μ = β1 − β2 = 1

kT1
− 1

kT2
.

The heat transport has been investigated in terms of the
XFT in the past, numerically and experimentally for different
kinds of coupling [19–21], and theoretically for non-Gaussian
baths [22]. In a previous experimental study, we made use
of a similar granular gas experiment to investigate the en-
ergy transport between NESS heat baths, weakly coupled by
electromechanical devices. Equation (2) was shown to hold
precisely; however, a quantitative departure from the XFD
was observed, as the exponent μ was significantly distinct
from �β [7]. No explanation was provided at the time. One
could invoke the out-of-equilibrium character of the heat
baths themselves, but the dissipative nature of the coupling
could also be at play (an Ohmic resistance in the electric
circuit).

In the present study we investigate experimentally the bias
due to the dissipative coupling. We show that the XFT is
recovered quantitatively in the nondissipative limit, i.e., μ →
�β, for vanishing resistance. We stress the specific feature
that the heat baths are in NESS and not in equilibrium states,
as implicitly assumed in [18].

The experimental setup is presented in the next section.
In Sec. III the measurement principle of the energy flux and
temperatures is explained. In Sec. IV the test of the XFT is
presented in the nondissipative coupling limit, followed by a
short discussion of the results in Sec. V.

FIG. 1. The granular gas is excited in a cylindrical vessel by the
vertical acceleration from an electromagnetic shaker. A small blade
is fixed on the vertical shaft of a DC micromotor set on the immobile
cover of the cell. Its rotation is caused by the random collisions with
the gas.

II. EXPERIMENT

The experimental setup is composed of two identical gran-
ular gas systems. They play the role of two heat reservoirs,
coupled to one another. Each consists of about 400 stainless
steel beads (3 mm in diameter, 0.1 mg mass), steadily shaken
vertically at a few grams and frequency 40 Hz, by an electro-
magnetic shaker. The beads are contained in 5-cm-diameter
cylindrical cells (see Fig. 1). The probes are 2 cm × 2 cm ×
0.2 mm steel blades, fixed on the vertical shafts of DC micro-
motors (Maxon, RE 10 118 386).

In this configuration, which respects the axial symmetry,
the collisions with the gas particles make the blade rotate ran-
domly like a one-dimensional (1D) Brownian object [2,23]. A
key feature is that a DC motor can also operate symmetrically
as a generator (dynamo). The voltage induced at the termi-
nals, called electromotive force (EMF), is proportional to the
angular velocity: e(t ) = αθ̇ (t ) (Faraday’s law of induction).
The constant α � 4.27 × 10−3 V s/rad is a characteristic of
the device. Conversely, it turns a current I into a torque,
	(t ) = αI (t ) (Lorentz force), and therefore exchanges work
with the gas. Note that the constant α is the same in both
uses. Thanks to this dual function, the DC motor can impose
a torque on the rotor imbedded in the gas and measure the
velocity at the same time. It is the only probe used here,
which performs measurements on the granular gas. The two
probing motors are connected one another by a resistor R (see
electrical diagram in Fig. 2).

The two NESS heat baths are therefore weakly coupled
one another. The voltages u1(t ) and u2(t ) are recorded at the
terminals of R by a NI-PXI 24-bit synchronous A/D converter.

Note that no external power is supplied to the motors: the
collisions of the beads on blade 1 causing its rotation induces
a voltage e1. This voltage generates a current I through R into
motor 2, causing rotation of blade 2. As a net result, some
momentum is transferred from bath 1 to bath 2, and reversely.

We therefore have at hand an original setup to investi-
gate the heat transport between two heat baths at different
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FIG. 2. The two motors, coupled to baths 1 and 2, are represented
in dashed rectangles by ideal voltage sources of EMF, e1 and e2 (the
instantaneous values of which are linked to the velocity of the rotors),
and their internal resistances r1 and r2. The coupling resistor is R.

temperatures. One major specificity is that heat baths are in
NESS instead of equilibrium states. In the last decade, many
have worked to verify that the analogy holds, at least as far
as stochastic thermodynamics features are concerned. More-
over, the design of the electromechanical coupling allows
simple and reliable measurements of energy flux as well as
temperatures.

III. HEAT FLUX AND TEMPERATURE MEASUREMENT

The voltages induced in each motor separately are simply

e1 = u1 + r1I,

e2 = u2 − r2I. (3)

The internal resistances of the motors are r1 and r2, and
the inductances are negligible. The current, constant over the
loop, is

I = 1

Rtot
(e1 − e2) = 1

R
(u1 − u2). (4)

The total resistance of the circuit is Rtot = R + r1 + r2. The
energy flux between 1 and 2 is the difference between the
back-and-forth fluxes:

φ(t ) ≡ (θ̇1(t ) − θ̇2(t ))	(t )

= (e1(t ) − e2(t ))I (t ). (5)

Noting that at any given moment, each device is virtually
either generator or motor but never both at the same time,
conservation of energy implies that the flow is

φ(t ) = 1

Rtot

(
e2

1(t ) − e2
2(t )

)
. (6)

In addition, the voltages u1 and u2 are sufficient to express
temperatures in both baths. Two approaches have been pro-
posed to define and measure the effective temperature kT .
Both rely on comparing the torque performed [current I (t )]
and the velocity [EMF e(t )]. One is making use of the fluc-
tuation theorem and the other of the fluctuation dissipation
theorem (FDT), both theorems being invoked in a heuristic
way. The relative distance between these two temperature

FIG. 3. Histograms of the coarse-grained heat flux φτ for several
values of τ . (From the widest to the narrowest histograms: τ �
50 ms, 100 ms, 300 ms, 1.2 s.) Here, the average flux is φ � 113 nW,
for �β � 9.37 × 104 J−1.

measurements is less than 10%. The temperature kT is linked
to the kinetic energy of the rotor [3]:

kTi = a + 1
2 bJ θ̇2

i . (7)

J is the moment of inertia (J � 3.33 × 10−8 kg m2). The
constants a � 4 × 10−7 J and b � 2.5 must be measured. The
relation between the kinetic energy of a 1D free rotor in
equilibrium with a thermostat, itself at equilibrium at tempera-
ture kT , would be 1

2 J θ̇2 = 1
2 kT . Obviously, such equipartition

cannot be assumed in a NESS thermostat. The value of the
slope b � 2.5 (� 2) reflects the dissipative nature of the gran-
ular gas and the collisions between the beads and the blade.
The constant a is the temperature that the gas must reach for
the beads to get to the probe. The value a �= 0 reflects the fact
that the gas is stratified. The coefficients a and b depend on the
properties of the granular gas itself, which is not the purpose
of the present study. Finally, the temperature difference is
simply, in electrical variables,

kT1 − kT2 = bJ

2α2

(
e2

1 − e2
2

)
. (8)

The Fourier law for heat conduction is recovered:

φ = 1

Rtot

(
e2

1 − e2
2

)
(9)

= 2α2

bJRtot
(kT1 − kT2). (10)

Note that this expression of the linear response is not exact in
the sense that the coefficient b, reflecting the phenomenology
of the granular gas, is to be measured.

Let us, from now on, focus on the instantaneous flux φ(t ).
It is directly calculated from the EMF ei(t ) obtained from
voltages at the terminals of R, as expressed by Eq. (6). This
flux represents the difference between the heat flux given by
bath 1 and that given by bath 2.

An example of a histogram, in Fig. 3, shows that the fluctu-
ations of φ are indeed asymmetric and intermittent. The time
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coarse grained φτ (t ) tends to be Gaussian for increasing τ ,
thanks to the central limit theorem. Note that the magnitude
of the fluctuations can be of the same order but also much
larger than the average energy flow, because, among the huge
number of degrees of freedom of such macroscopic systems,
only a very few are involved in this transport process. Note
also that the mean flux can be of the order of 10−7 W, or even
much smaller. In any case, it is very very little if compared
to the power injected into the granular gas by the shakers
(∼10 W), attesting that the coupling is indeed very weak.

IV. TEST OF THE XFT IN THE NONDISSIPATIVE LIMIT

We have already shown that the heat flux satisfies Eq. (2),
with a setup similar to this one [7]. However, the baths being
dissipative, the hypothesis for the XFT proposed by Jarzynski
and Wójcik are not fulfilled. Indeed, the slope μ of Eq. (2)
was found to be quantitatively distinct from �β, although
of the same order. We explore here the following idea: vary
the resistance R and compare the subsequent values of μ. Ex-
trapolating μ

�β
versus Rtot gives the “nondissipative coupling

limit” when Rtot → 0.
Previously, μ was measured thanks to the slope of the

asymmetry function δ(φτ ) = 1
τ

log P(φτ )
P(−φτ ) versus φτ . The

asymptotic values of the slope μ, in the large time limit
τ → ∞, were compared to �β. This protocol is difficult to
implement in a stable manner. For instance, it is sensitive to
the large range of conditions we address here (various R and
�kT ) and to the sample size. In the end, the uncertainties are
difficult to control.

Here we have used another method to measure the same
quantity. This method was found fruitful in another context
[24], in the sense that it is more practical. It is strictly equiv-
alent in the limit of large τ . It is based on the ratio of the two
first moments of the flux:

μ = τ

2

�φ2
τ

φτ

, for τ → ∞, (11)

where φτ is the mean, and �φ2
τ is the variance of the flux.

This alternative method, efficient and obviously much easier
in practice, is valid even for variables like φτ , which are
Gaussian only for the largest τ . Convergence is easier because
it involves low order moments only, which counts at large
τ (see Fig. 4). Also, the ratio 11 can be calculated even
though negative values of φτ are absent. It is known that
the relaxation at finite time is not universal [25,26]. Now, as
we are only interested in the τ → ∞ asymptotic value of μ,
what is the most precise and reliable way to evaluate it? A
robust protocol must be defined, unique to all conditions of
interest here: all temperature gradients �kT , at various R. In
the large τ limit, we found it convenient to use an exponential
fitting to obtain the value of the asymptote in a stable and

reproducible way. The ratio given in Eq. (11), τ
2

�φ2
τ

φτ
, is cal-

culated for various times τ for a large number of samples and
plotted versus τ in Fig. 5, together with an exponential best
fit: μ + c exp(−τ/τ ∗).

The agreement, although not perfect, is acceptable for any
configuration of interest here. Averaging the limit value ob-
tained from this fitting over dozens of time series gives a

FIG. 4. The slope of the asymmetry function for a 1-h-time sam-
ple, obtained from Eq. (11), is plotted for various times τ (◦) during
relaxation. The red curve (+) shows the analysis of the same sample
by the best linear fit of the asymmetry function. Here R = 100.23 �,
and �β � 9.37 × 104 J−1.

measure of the slope μ. The rms gives an estimate of the
uncertainties.

Effective temperatures kTi in both thermostats are calcu-
lated thanks to the variances of the EMF, ei(t ), and Eq. (7),
that is to say, using the coefficient b obtained in [3]. As
mentioned in Lecomte and Naert [7], the relation between μ

and �β is linear for the value R = 22 �. For self-consistency
of the paper, the main figure from Lecomte and Naert is repro-
duced in Fig. 6. It was noted at the time that the slope was not
1, in contrast to the XFT. Acknowledging this proportionality,
we performed new measurements for different resistances R,

FIG. 5. The slope of the asymmetry function for a few time
series, calculated thanks to Eq. (11), is plotted for various time lags
τ (+). The red curves show best exponential fits. The dashed black
line represents the average of these limits at large τ over dozens
of time series. The rms of μ is in black. Here R = 23.28 �, while
�β � 1.5 × 105 J−1.

042143-4



STATISTICAL PROPERTIES OF THE HEAT FLUX … PHYSICAL REVIEW E 103, 042143 (2021)

FIG. 6. The relation between μ and �β is linear for R = 22 �,
and the slope is μ

�β
� 5.69. This figure is taken from Ref. [7].

only for a few values of temperature difference to ascertain
the variation of the slope.

Several measurements of μ are plotted against �β, super-
imposed in Fig. 7. These results show that the proportionality
coefficient between μ and �β decreases monotonously
with R.

To be fair, one must consider the total resistance in the loop
in order to account for the total dissipation in the coupling,
Rtot = R + r1 + r2. The dependance of μ

�β
in Rtot is presented

in Fig. 8. In order to extrapolate to Rtot = 0, a polynomial
fitting is performed (second order is sufficient). It leads to
the slope μ

�β
� 0.85 in the nondissipative limit. This value

is compatible with unity, as expected by the XFT. Here is the
main result of this study.

At this point, a discussion of the uncertainties is pivotal.
Some of the errors in μ are due to the exponential fitting pro-
cess presented above to determine the asymptote, and some to
statistic limitations. Additional uncertainty arises with regard
to �β because of the 10% error in the coefficient b, a conse-

FIG. 7. The slope μ is plotted against �β for a few values of
the coupling resistance R = 23.27 � (solid), 100.23 � (dash-dot),
242.6 � (dash), and 617.4 � (dot). The red lines represent in each
case the best linear fits through zero.

FIG. 8. The ratio μ

�β
is plotted against the resistance Rtot . A

second-order polynomial fitting is performed y = p1 x2 + p2 x +
p3 (in red). The coefficients obtained are p1 � 5.63 × 10−5, p2 �
0.30, p3 � 0.85. In the zero-resistance limit, γ

�β
→ p3 � 0.85.

quence of the relative uncertainty of the same order regarding
kT , as mentioned above. Minor errors come from the drift
in room temperature, like night and day variations (inducing
variations of ∼1% at most on ri). The error bars on Rtot are
imperceptible, see Fig. 8. Note that the increase of the error
bars with R is due to the current decrease, deteriorating the
signal-to-noise ratio. All this leads to an uncertainty on the
ratio μ

�β
, overall estimated to be about 1 at most. In the end, it

is a fraction of a percent in relative value, which is satisfactory.

V. DISCUSSION AND CONCLUSION

We have presented a continuation, until concluding, of the
preceding work of Lecomte and Naert in 2014 on the transport
of heat between two NESS thermostats maintained at differ-
ent effective temperatures kTi. Two identical centimeter-size
1D-Brownian mobiles, fastened on electric micromotors, are
immersed in granular gas heat baths. The motors are electri-
cally linked to one another by a resistance R, insuring a weak
coupling between the baths. Electrical measurements at the
terminals of R give access to the flux φ(t ) and the temperature
in each bath, kTi. In the present study, the coupling is varied
by changing R. For each value the ratios of the variance over
the mean flux are calculated. This is equivalent to the slope of
the asymmetry function for several temperature differences.
We show experimentally that, extrapolating to the nondissi-
pative coupling limit (R → 0), the fluctuations of the flux
are compatible with the exchange fluctuation theorem (XFT)
proposed by Jarzynski and Wójcik (2004) in the large time
limit. It is written like Eq. (2), the free parameter μ being
here nothing but the inverse temperature difference: �β =

1
kT1

− 1
kT2

. Whereas the Fourier law for heat transfer links the
mean flux and temperature gradient, the XFT expresses the
asymmetry of the fluctuations, among nonequilibrium as well
as equilibrium finite size subsets.

There are several interesting aspects to the experimental
observation of the XFT in such a context, where it is un-
expected. A first question that requires careful reflection is
where nonequilibrium actually stands. The XFT, like other
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FT, applies to such an out-of-equilibrium situation where heat
flows between two systems. It is intrinsically a nonequilibrium
feature. Consequently, having the flux between two baths cou-
pled verifying XFT as well as Fourier law looks unsurprising
in the end. The concern is more acute about the dissipative
nature of the granular gas itself. (See a questioning of the FT
in this context in [27].) The NESS of the granular gas results
from the balance between work injection and heat dissipation.
Once in a steady state of fluctuations, the Brownian rotor
experiences kicks, but one cannot know whether this random
forcing results from an equilibrium state or merely a NESS.
Mathematically, the coupling with the bath is represented by
a random forcing term in the equation of motion of the rotor.
It has no signature of the irreversibility of the underlying
work-to-heat conversion process. Another question concerns
the effective temperature kT that characterizes the agitation
of the beads. The verification of the laws of heat transport in
a temperature gradient, for the average as well as fluctuations,
confirms once more that kT behaves the same way as an
equilibrium temperature. This second observation looks even
more striking, but it is just another aspect of the previous one:
NESS or equilibrium state heat baths are not the same. Indeed,

they just behave the same from the point of view of applying
stochastic thermodynamics on the rotor. This is obviously not
true for the motion of the beads in the granular gas!

Intriguing deductions are starting to emerge from these
results. First of all, the field of application of stochastic ther-
modynamics appears not to be limited to the molecular scale.
Some open questions on macroscopic-scale phenomena are
not addressed by statistical physics because they are out of
equilibrium, that is, dissipative and spatially extended sys-
tems, such as those of interest in nonlinear physics. Yet it
seems possible to invoke the theoretical arsenal of stochastic
thermodynamics as a wedge in long-lasting problems such as
hydrodynamic turbulence, wave turbulence, rapid fracture in
solids, granular matter, etc.
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