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Work fluctuations due to partial thermalizations in two-level systems
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We study work extraction processes mediated by finite-time interactions with an ambient bath—partial
thermalizations—as continuous-time Markov processes for two-level systems. Such a stochastic process results
in fluctuations in the amount of work that can be extracted and is characterized by the rate at which the system
parameters are driven in addition to the rate of thermalization with the bath. We analyze the distribution of
work for the case in which the energy gap of a two-level system is driven at a constant rate. We derive analytic
expressions for average work and a lower bound for the variance of work showing that such processes cannot
be fluctuation-free in general. We also observe that an upper bound for the Monte Carlo estimate of the variance
of work can be obtained using Jarzynski’s fluctuation-dissipation relation for systems initially in equilibrium.
Finally, we analyze work extraction cycles by modifying the Carnot cycle, incorporating processes involving
partial thermalizations, and we obtain efficiency at maximum power for such finite-time work extraction cycles
under different sets of constraints.
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I. INTRODUCTION

A standard thermodynamic setting is comprised of large
systems with relatively short relaxation times wherein fluc-
tuations in values of extensive quantities such as work, that
follow the law of large numbers, are negligible and one only
cares about averages [1,2]. Work is essentially a deterministic
quantity in such scenarios. Nonequilibrium thermodynamics,
on the other hand, is the study of fluctuations in work as
one departs from the standard thermodynamic setting. Small
systems with long relaxation times make the study of fluc-
tuations inevitable since these are no longer just statistical
noise. Within the framework of nonequilibrium statistical me-
chanics, fluctuations have been characterized using fluctuation
theorems [3,4] that play a key role in the control and study
of biomolecular processes such as the folding of proteins [5].
In fact, single molecule experiments involving stretching of
biomolecules under external forces are a ripe avenue for the
study of nonequilibrium phenomena [6–9].

A complementary approach to nonequilibrium thermody-
namics is the incipient field of one-shot statistical mechanics
[10–14], which draws techniques from one-shot informa-
tion theory [15–18] to characterize processes that are far
from equilibrium. And, within this nonequilibrium frame-
work, work is analyzed as a random variable. In the one-shot
regime one considers single instances of the task at hand
instead of looking at ensemble averages. Fluctuations in work
have been studied in this regime in Ref. [11] for a discrete
classical model. The main question in consideration was what
constituted truly worklike work extraction. The basic idea was
that in order to define work for small systems in contrast to

heat, one should be able to extract a fixed amount of work
from a fixed system configuration. The author showed that for
a system that is initially not in equilibrium with the ambient
bath, even the optimal process (that achieves maximum aver-
age work output) results in fluctuations as large as the average
work itself. Such an optimal process is comprised of (a) en-
ergy level transformations (quenches) rendering the system
effectively thermal, and (b) reversible isothermal processes
[11]. The latter is manifestly fluctuation-free because the
system equilibrates at each infinitesimal step of a reversible
process, and equilibration washes away the fluctuations. Of
course this is only possible since the timescale over which
one performs the energy level transformations (during the
isothermal process) is much larger than the relaxation time
of the system. The question is what happens to these fluctu-
ations when the system only partially thermalizes, i.e., when
the system is driven externally over shorter time periods in
comparison to its relaxation timescale.

The relaxation toward equilibrium can be studied within
the framework of collision models, which have been used
to study open quantum system dynamics [19–21]. Within
these models, the bath is treated as a composition of smaller
noninteracting particles that are copies of the system in the
thermal Gibbs state. Such a process of thermalization has
been studied in Ref. [20] for a qubit in contact with a bath
composed of noninteracting qubits. For a qubit in a general
quantum state interacting with an ambient bath, thermaliza-
tion was shown to be a two-component process comprised of
decoherence and dissipation. And, a functional dependence on
time was obtained for both of these processes. In the present
work, we are interested in fluctuations in processes involving
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partial thermalizations for classical two-level systems, and we
will limit ourselves to states that are diagonal in the energy
eigenbasis. With this we come to the question we posed earlier
regarding fluctuations in work for processes involving partial
thermalizations.

While work along these lines has been done in Ref. [22]
in the low-dissipation regime (where the system is driven
for large but finite time), a more closely related numerical
study on this question was undertaken in Ref. [23], where
the authors studied a single Ising spin driven by an exter-
nal magnetic field. They obtained work distributions using
Monte Carlo simulations of the processes for different driving
rates. The authors found that such processes have broad work
distributions with significant probability for processes with
negative dissipated work in general. They also verified work
fluctuation theorems [3,4] and derived analytic expressions
for the distribution of work when the spin’s energy gap was
driven by the external field in the slow and fast limits. Another
recent work [24] looked into the same problem but again in
the low-dissipation regime. We will discuss this further in
Sec. II.

In this paper, we investigate similar work extraction pro-
cesses involving partial thermalizations for a single classical
two-level system driven by an external magnetic field chang-
ing linearly in time. We derive an analytic expression for the
average work yield of such a process as a function of the
total time, τ . This expression reduces to the average work
outputs of the corresponding adiabatic and isothermal pro-
cesses in the τ → 0 and τ → ∞ limits, respectively. Next,
in an attempt to characterize fluctuations in the average work
yield, we provide a lower bound for the variance of work as a
function of the total time duration of the process. This lower
bound is saturated in the adiabatic and the isothermal lim-
its, thereby reproducing the result that isothermal processes
are deterministic, as was shown in Ref. [11]. Even though
an analytical expression for the variance of work seems
intractable, we employ Jarzynski’s fluctuation-dissipation re-
lation [3] to compare the dissipation in work (τ < ∞) with
our estimate of variance obtained by performing Monte Carlo
simulations. We find that for a two-level system initially in
equilibrium with the bath, the fluctuation-dissipation rela-
tion provides a good approximation that becomes exact as
τ becomes large, as was also noted in Ref. [23]. Finally,
we investigate finite-time work extraction cycles inspired by
the Carnot cycle, replacing the ideal isothermal reversible
processes with the realistic ones involving partial thermal-
izations. We then numerically optimize the power output of
such finite-time work extraction cycles over different sets
of constraints and parameters, keeping the time period of
the cycles fixed, and we provide comparisons between those
scenarios.

This paper is divided into six sections. In Sec. II we de-
fine finite-time work extraction processes involving partial
thermalizations as a Markov process, and we describe the
microscopic model for a two-level system. In Sec. III we
derive the analytical results, and in Sec. IV we discuss the
results from Monte Carlo simulations. We then analyze finite-
time heat engines in Sec. V, and we summarize our work in
Sec. VI.

II. MODEL

Given an ambient bath at temperature Th and a two-level
system such that its energy gap δ can only be driven within a
fixed range between δmin and δmax (for example by an external
magnetic field), let us assume that the time period of the
external driving is much shorter compared to the relaxation
time of the system interacting with the bath, and that the
spectral density of the bath is constant over the given range of
values for δ. Without loss of generality, let us further assume
that the ground-state energy is zero. For a two-level system
with an energy gap δ, one can always define a temperature
such that the occupation probability of the excited state is
given by the corresponding Gibbs distribution at that tem-
perature. We choose time as the independent quantity under
these settings, and we denote it by the continuous variable
t . This brings us to the question of how one could extract
work under these settings. To this end, we study finite-time
work extraction processes involving partial thermalizations.
Partial thermalization encapsulates a finite-time restriction for
the system’s equilibration with the bath, and it can be studied
by considering a randomized model of interaction between the
two—a collision model [19–21]. Such models are based on
the assumption that the bath is composed of smaller noninter-
acting particles that are copies of the system in the thermal
Gibbs state. The system-bath interaction is then modeled as a
sequence of collisions between the system and bath particles
where each collision itself is considered to be a joint unitary
on the system and the bath particle in question. The additional
assumptions of the bath being initially uncorrelated and the
system colliding with exactly one bath particle at a time result
in a Markovian dynamics for the system, which in turn can
be translated to a Lindblad master equation in the continuous-
time limit [19,25]. The process of partial thermalization was
studied in Ref. [20] within the framework of a collision model,
and it was shown to be composed of dissipation and decoher-
ence for a general quantum state. For states that are diagonal
in the energy eigenbasis, thermalization simply amounts to
dissipation, and the state of a two-level system can be de-
scribed by the occupation probabilities p(t ) for the excited
state and 1 − p(t ) for the ground state. Denoting the thermal
Gibbs occupation probability for the excited state by γ (t ), the
thermalization process is given by the following equation as
per Ref. [20]:

p(t ) = e−κt p(0) + (1 − e−κt )γ (t ), (1)

where κ is the thermalization rate (dissipation), the inverse of
the relaxation time T1 [20]. One can interpret 1 − e−κt as the
probability of collision between the qubit and a bath particle,
denoting it by λ. The case λ = 1 corresponds to exact ther-
malization, and λ = 0 corresponds to no thermalization. Thus,
for sufficiently short interaction times �t , the probability λ

with which the system interacts with the bath particles (and
thermalizes) is linear in �t , i.e., λ = κ�t . Microscopically,
partial thermalization is a time-dependent Markov process
on a finite state space—the ground and excited states of our
two-level system. The system with energy gap δ(t ) at time t
interacts with the bath for a time �t , and with probability κ�t
it collides with a bath particle. If the system thermalizes, then
it can change its state such that the occupation probability for
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FIG. 1. Markov chain representing partial thermalization during
a finite-time work extraction process when the energy gap changes
from δ(t ) to δ(t + �t ). The states 0 and 1 denote the ground and
excited states of the two-level system, respectively. Each arrow is
labeled by the corresponding transition probability.

the excited state is γh(δ(t + �t )), the thermal Gibbs weight
associated with the excited state δ(t + �t ) for the bath tem-
perature Th. Work is done when the system is in the excited
state and its energy gap is changed from δ(t ) to δ(t + �t ).

We can thus build a finite-time work extraction process
that involves a series of infinitesimal level transformations and
partial thermalizations, along the lines of Ref. [11]. A discrete
version of such a process at a given time t is, therefore,
composed of a series of two steps:

(i) Level transformation: changing the energy gap δ(t ) by
an infinitesimal amount to δ(t + �t ) keeping the occupation
probabilities fixed.

(ii) Partial thermalization: changing the state of the system
such that with probability 1 − κ�t it stays in the same state,
while with probability κ�t it thermalizes with respect to the
bath.

The above defines a time-dependent Markov process and
corresponds to the following Markov diagram:

A continuous version of the above can then be simply
obtained as per the following lemma.

Lemma 1. Given a two-level system undergoing partial
thermalization with a hot bath at temperature Th (characterized
by short system-bath interaction times), the occupation proba-
bility p for its excited state evolves according to the following
equation:

d p(t )

dt
= κ (γh(δ(t )) − p(t )), (2)

where γh(δ(t )) = 1
1+eδ(t )/Th

, the Gibbs weight associated with
the instantaneous excited-state energy δ(t ).

Proof. According to Fig. 1, the total probability of being in
the excited state p(t + �t ) at time step t + �t can be obtained
using the law of total probability:

p(t + �t ) = p01(t + �t )(1 − p(t ))

+ p11(t + �t )p(t ), (3)

where p01(t + �t ) is the conditional probability for the sys-
tem to be in the excited state at time t + �t when it was in
the ground state at time t , and p11(t + �t ) is the conditional
probability for the system to be in the excited state at time
t + �t when it was in the excited state at time t . Plugging in
the corresponding expressions using Fig. 1, we have

p(t + �t ) = (1 − κ�t )p(t ) + κ�tγh(δ(t + �t )). (4)

Rearranging the terms, we obtain

p(t + �t ) − p(t ) = κ�t (γh(δ(t + �t )) − p(t )), (5)

which after dividing by �t reduces to (2) in the limit �t → 0.

As an aside, we would like to make a comment on the
model of partial thermalization as in Ref. [24]. The authors
consider a situation in which the probability of interaction
between the system and the bath is fixed. If we were to do
the same, then we would have to replace κ�t by a constant,
let us say λ. Then (5) would yield

p(t + �t ) − p(t ) = λ(γh(δ(t + �t )) − p(t )), (6)

which in the limit �t → 0 would simply give

p(t ) = γh(δ(t + �t )). (7)

This implies that the system would be in the thermal Gibbs
state at each infinitesimal step of the process. Naturally,
one would obtain an isothermal reversible process with no
fluctuations.

So, given that we have a general work extraction process
involving partial thermalizations, let us make the following
assumption in order to completely specify the model:

Assumption 1. The energy gap δ(t ) is driven at a constant
rate.

We are now ready to derive the results. But before we move
on, let us first look at an example of a discrete version of
this problem for an intuitive understanding of the underlying
Markov process, which would also inform our derivations in
Sec. III B.

Example 1. Let ε = δmax − δmin be the range over which
we can vary δ as a function of time t , and let us choose δ(0) =
δmax. Let p(0) to be a constant p0, and let the total time of
the process be τ . Then, δ(τ ) = δmin and p(τ ) would be deter-
mined by Lemma 1. Now, a work extraction process involving
partial thermalization corresponds to a curve on the δ-p plane.
The discretization of this process is a discretization of that
curve. So, let us divide the range ε for δ into L = 2 equal
steps. Then, the change in δ at each step would be �δ = −ε/2
and the extracted work during each step would be wex = ε/2.
Moreover, Assumption 1 under the above boundary conditions
gives dδ/dt = −ε/τ , which implies that �t = τ/2 for each
step. Each of these discrete steps itself is composed of two
steps: a level transformation and then a partial thermalization.
Let us say that the system is in the ground state at time t = 0;
see the Markov chain in Fig. 2. Clearly, since the system starts
in the ground state, the work done in the first step during
the level transformation denoted by wt=τ/2 is zero; see the
first row in the second column of the table. Next, the system
thermalizes with respect to the hot bath with probability κτ/2.
The work done during this partial thermalization is dissipated
as heat and thus its contribution is zero. Upon partial ther-
malization, we might transition to the excited state or remain
in the ground state. The two possible paths are shown in the
Markov chain in Fig. 2. If we transition to the excited state,
then the work done during the level transformation in the
second step denoted by wt=τ would be ε/2; see the second
row in the fourth column. In the end, partial thermalization
in the second step would again lead to two different paths
with zero work contributions. A complete distribution can be
obtained by going through all such paths, which are listed in
the table in Fig. 2.
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FIG. 2. The Markov chain above shows two specific paths corresponding to the work extraction process given in Example 1, where the
ground and excited states of the two-level system are denoted by 0 and 1, respectively. Each arrow is labeled by the corresponding transition
probability. The table lists all possible paths for such a process, with each row corresponding to a specific path. The first and third columns
denote the state of the system at the beginning of each step, which determines the work done during that step, namely wt=τ/2 and wt=τ in the
second and the fourth columns, respectively. Wex is the random variable for extracted work and takes values wex, which is the sum of work
done at each step along a given path. Pr(Wex = wex) is the probability that Wex takes the value wex and can be obtained using the transition
probabilities for each step, as shown in Fig. 1.

III. ANALYTICAL RESULTS

In this section, we derive an expression for average work
done during work extraction processes involving partial ther-
malizations (Sec. III A), and we prove that they are not
fluctuation-free in general (Sec. III B).

A. Average work

Let us denote the work done during a general thermo-
dynamic process by the random variable W . Work is done
when a two-level system is in the excited state during a level
transformation. Depending upon whether this transformation
decreases or increases the energy gap, one obtains negative or
positive values of W corresponding to a net work gain or a
net work cost. We shall denote a net work gain by the random
variable W , and we refer to it as just work done unless stated
otherwise. Thus, the average work done during a process in
which the energy gap of the system is driven from δmax to δmin

as it partially thermalizes with an ambient bath for a time τ is
given by

μW (τ ) = −

∫
δmin

δmax

p(δ)dδ, (8)

where p(δ) is the probability of the system to be in the excited
state when the energy gap is δ. Let us first list a few ingredients
that would come in handy in deriving the main result, i.e., an
expression for average work, Theorem 1.

Definition 1. Given the energy gap δ(t ) of a two-level
system at time t � τ , we define the function

G : t �→ −
∞∑

n=1

( − e− δ(t )
Th

)n(
nε

κτTh
+ 1

) , (9)

where ε = δmax − δmin, κ is the thermalization rate, and Th is
the temperature of the ambient bath.

The function G is a monotone function in t . For δ monoton-
ically decreasing in t , G monotonically increases. This follows
by noting that −e−δ(t ) is also monotonically decreasing in t .
We also make use of a few standard functions in the proofs
that have been redefined in Appendix B for completeness.

Lemma 2 (Time evolution of occupation probabilities under
partial thermalization). Given a two-level system undergoing
a work extraction process along with partial thermalizations
with a bath at temperature Th as per Assumption 1 such that
its energy gap changes from δmax to δmin over a time τ , the
occupation probability for the excited state at any time 0 <

t < τ is given by

p(t ) = p0e−κt + G(t ) − e−κtG(0), (10)

where ε = δmax − δmin, p0 = p(0), and δ(t ) = δmax − εt/τ .
Proof. Rewriting the differential equation for a general

work extraction with partial thermalizations, (2), we have

d p

dt
+ κ p(t ) = κγh(δ(t )), (11)

which can be integrated along with the initial condition
p(0) = p0 to obtain

p(t ) = p0e−κt + κe−κt
∫ t

0
eκt ′

γh(δ(t ′)) dt ′. (12)

Given Assumption 1 and the boundary conditions δ(0) = δmax

and δ(τ ) = δmin, we have

δ(t ) = δmax − ε

τ
t, (13)
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where ε = δmax − δmin. Plugging γh(δ(t )) = 1
1+eδ(t )/Th

and (13)
in (12), we obtain

p(t ) = p0e−κt + κe−κt
∫ t

0

eκt ′

1 + e
(δmax−εt ′/τ )

Th

dt ′. (14)

The integral above is given in terms of the hypergeometric
function as in (B1). Thus,

p(t ) = p0e−κt + κe−κt

{
e(κ+ ε

τTh
)t ′− δmax

Th

κ + ε
τTh

× 2F1

(
1,

κτTh

ε
+ 1,

κτTh

ε
+ 2; −e− (δmax−εt ′/τ )

Th

)∣∣∣∣∣
t

0

}

= p0e−κt + κτTh

ε

{
e− (δmax−εt/τ )

Th

κτTh
ε

+ 1

× 2F1

(
1,

κτTh

ε
+ 1,

κτTh

ε
+ 2; −e− (δmax−εt/τ )

Th

)

−e−κt e− δmax
Th

κτTh
ε

+ 1

× 2F1

(
1,

κτTh

ε
+ 1,

κτTh

ε
+ 2; −e− δmax

Th

)}
. (15)

Next, using (B2), we can write(
az

a + 1

)
2F1(1, 1 + a, 2 + a; −z)

=
(

az

a + 1

) ∞∑
n=0

n!(1 + a)n

(2 + a)n

(−z)n

n!

= −
∞∑

n′=1

(−z)n′(
n′
a + 1

) . (16)

Using (16) we can write (15) in terms of the function G,
Definition 1, to obtain (10).

We are now ready to derive the expression for average
work.

Theorem 1 (Average work). The average work done by a
two-level system during a work extraction process involving
partial thermalizations with respect to a bath at temperature
Th, wherein its energy gap is driven from δmax to δmin as per
Assumption 1 over a time τ , is given by

μW (τ ) = W Th
iso + Wad

κτ
(1 − e−κτ )

− ε

κτ
{G(τ ) − e−κτG(0)}, (17)

where W Th
iso is the work done during the corresponding isother-

mal process, i.e., W Th
iso = Th ln (Z (δmin)/Z (δmax)), with Z being

the partition function Z : δ �→ 1 + e−δ/Th , Wad is the work
done during the corresponding adiabatic process, i.e., Wad =
εp0, where p0 = p(0), and ε = δmax − δmin.

Proof. We start by noting that

d p

dδ
= d p

dt

dt

dδ
= −κτ

ε
(γh(δ) − p), (18)

where the last line follows from (2) and (13) and suppressing
the dependence on t . Integrating (18) with respect to δ from
δmax to δmin, we have∫ δmin

δmax

p dδ =
∫ δmin

δmax

γh(δ)dδ + ε

κτ

∫ δmin

δmax

d p

dδ
dδ. (19)

Then, plugging (19) in (8) implies

μW (τ ) = −
∫ δmin

δmax

γh(δ)dδ − ε

κτ

∫ δmin

δmax

d p

dδ
dδ. (20)

Substituting the expression for γh(δ) and evaluating the inte-
gral gives us the first term of (20) as∫ δmin

δmax

γh(δ)dδ = −Th ln
Z (δmin)

Z (δmax)
, (21)

where Z is the partition function. The expression above is
simply the negative of the work done during the corresponding
isothermal reversible process,

W Th
iso = Th ln

Z (δmin)

Z (δmax)
. (22)

Next, we evaluate the integral in the second term in (20) using
Lemma 2 together with the boundary conditions p(δmax) = p0

and p(δmin) = p(τ ). Thus, we have∫ δmin

δmax

d p

dδ
dδ = p(δmin) − p(δmax)

= p0(e−κτ − 1) + G(τ ) − e−κtG(0). (23)

Now, if one changes the energy gap from δmax to δmin adi-
abatically, the distribution of work is simply a two-point
distribution, where W = 0 occurs with probability 1 − p0, and
W = ε occurs with probability p0. Thus, the average work
done would be

Wad = εp0. (24)

Plugging (21) and (23) in (20) together with (22) and (24)
gives us the following result.

Corollary 1. The expression for average work in Theorem
1 reduces to the adiabatic case in the limit τ → 0, i.e.,

lim
τ→0

μW (τ ) = Wad, (25)

and the isothermal case in the limit τ → ∞,

lim
τ→∞ μW (τ ) = W Th

iso. (26)

Proof. Let us first derive the adiabatic limit, τ → 0:

lim
τ→0

μW (τ ) = W Th
iso + lim

τ→0

{
Wad

κτ
(1 − e−κτ )

+ ε

κτ
(G(τ ) − e−κτG(0))

}
. (27)
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Let us first look at the second term in the limit

lim
τ→0

1

τ
(1 − e−κτ ) = lim

τ→0

1

τ

(
1 −

(
1 − κτ + κ2τ 2

2
− · · ·

))

= lim
τ→0

(
κ − κ2τ

2
+ · · ·

)
= κ. (28)

So, we have

lim
τ→0

μW (τ ) = W Th
iso + Wad + lim

τ→0

ε

κτ
{G(τ ) − e−κτG(0)}

= W Th
iso + Wad + Th

{ − e− δmin
Th 	L

( − e− δmin
Th , 1, 1

)
+ e− δmax

Th 	L
( − e− δmax

Th , 1, 1
)}

, (29)

where we have used Definition B.2 in the second step. Since
z	L(z, 1, 1) = − ln(1 − z), we have

lim
τ→0

μW (τ ) = W Th
iso + Wad + Th

{
ln

(
1 + e− δmin

Th

)
− ln

(
1 + e− δmax

Th

)}
, (30)

where the first term cancels the third term due to (21), and thus
we obtain (25). The isothermal limit, τ → ∞, can be similarly
obtained since

lim
τ→∞ μW (τ ) = W Th

iso − lim
τ→∞

{
−Wad

κτ
(1 − e−κτ )

+ ε

κτ
(G(τ ) − e−κτG(0))

}
, (31)

and it is clear that the second term in the equation above would
vanish in the limit τ → ∞. Furthermore, using Definition 1,
we find that the third term would also vanish in the limit, and
so we recover (26).

B. Lower bound on variance

We will now establish, by means of the following theorem,
that fluctuations in work during processes involving partial
thermalizations are nonzero, independent of Assumption 1.

Theorem 2 (Fluctuations in work). Consider a two-level
system undergoing a work extraction process where the en-
ergy gap is driven from δmax to δmin in L discrete steps along
with partial thermalizations over a finite time τ . Then, the fol-
lowing are true in general for the random variable WL denoting
the total work done during such a process:

lim
L→∞

Pr(WL = 0) = (1 − p0)e−κ
∫ τ

0 dtγh (δ(t )) (32)

and

lim
L→∞

Pr(WL = ε) = p0e−κ
∫ τ

0 dt[1−γh (δ(t ))], (33)

where ε = δmax − δmin, L → ∞ is the continuous time limit,
and p0 is the initial excited-state probability of the two-level
system.

Proof. From Fig. 2, it is easy to see that the following
expression holds for a discrete partial thermalization process

composed of L steps such that each step takes time �t :

Pr(WL = 0) = (1 − p0
) L−1∏

l=1

(1 − κ�tγh(δ(l�t ))). (34)

Taking log on both sides of the above equation, we have

ln(Pr(WL = 0)) = ln(1 − p0)

+
L−1∑
l=1

ln(1 − κ�tγh(δ(l�t )))

�t�1� ln(1 − p0)

− κ

L−1∑
l=1

�tγh(δ(l�t )). (35)

Taking the limit �t → 0 (L → ∞) and observing that the
second term above would thus be a Riemann sum, we obtain
(32) by exponentiating the resulting expression (and noting
that limit commutes with continuous functions). Similarly, the
last row in Fig. 2 implies that

Pr(WL = ε) = p0

L−1∏
l=1

(1 − κ�t[1 − γh(δ(l�t ))]). (36)

Again, taking log on both sides, we have

ln(Pr(WL = ε))

= ln p0 +
L−1∑
l=1

ln[1 − κ�t (1 − γh(δ(l�t )))]

�t�1� ln p0 − κ

L−1∑
l=1

�t (1 − γh(δ(l�t ))). (37)

Again, taking the limit �t → 0 (L → ∞) results in an expres-
sion that gives (33) upon exponentiation.

This result analytically establishes that the distribution of
work is typically broad, as was also found numerically in
Ref. [23]. While the theorem above holds in general, a lower
bound on the variance of work done by systems driven linearly
in time (Assumption 1) can be obtained as a corollary to it.

Corollary 2 (Lower bound on variance of work). For
a finite-time process as per Assumption 1 along with par-
tial thermalizations, the variance of work is bounded from
below as

σ 2
W (τ ) � (1 − p0)

(
Z (δmin)

Z (δmax)

)− κτTh
ε

μ2
W (τ )

+ p0 e−κτ

(
Z (δmin)

Z (δmax)

) κτTh
ε

(ε + μW (τ ))2, (38)

where Z is the partition function Z : δ �→ 1 + e−δ/Th , and
μW (τ ) is the average work output of the process as given
by Theorem 1. Moreover, the lower bound is saturated in the
adiabatic limit,

lim
τ→0

σ 2
W (τ ) = p0(1 − p0)ε2, (39)
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as well as in the isothermal limit,

lim
τ→∞ σ 2

W (τ ) = 0. (40)

Proof. We will first derive expressions for the probabili-
ties of work values W = 0 and W = ε when undergoing a
finite-time process per Assumption 1 along with partial ther-
malizations using Theorem 2. Using the expression for δ(t )
as given by (13), we change the variable of integration to δ in
(32) and obtain the following after taking log on both sides:

lim
L→∞

ln(Pr(WL = 0))

= ln(1 − p0) + κτ

ε

∫ δmin

δmax

dδ

1 + eδ/Th
. (41)

Evaluating the integral and exponentiating the above, we have

lim
L→∞

Pr(WL = 0) = (1 − p0)

(
Z (δmin)

Z (δmax)

)− κτTh
ε

, (42)

where Z is the partition function. Similarly, (33) gives

lim
L→∞

ln(Pr(WL = ε))

= ln p0 + κτ

ε

∫ δmin

δmax

dδ

1 + e−δ/Th
. (43)

Again, evaluating the integral and exponentiating the above,
we obtain

lim
L→∞

Pr(WL = ε) = p0 e−κτ

(
Z (δmin)

Z (δmax)

) κT Th
ε

. (44)

Now that we have the expressions for Pr(WL = 0) and
Pr(WL = ε), it is straightforward to obtain a lower bound for
the variance of work as the sum of these two contributions.
Thus,

σ 2
WL

(τ ) � Pr(WL = 0)(μWL (τ ))2

+ Pr(WL = ε)(ε − μWL (τ ))2. (45)

Taking the limit L → ∞ and assuming that WL converges
in probability to the random variable W for the continuous
process, we have

σ 2
W (τ ) � lim

L→∞
{Pr(WL = 0)(μW (τ ))2

+ Pr(WL = ε)(ε − μW (τ ))2}. (46)

Plugging (42) and (44) in the equation above gives (38). Let
us now look at the lower bound in the following two limiting
cases.

(i) Adiabatic limit, τ → 0:

lim
τ→0

{
(1 − p0)

(
Z (δmin)

Z (δmax)

)− κτTh
ε

μ2
W (τ )

+ p0 e−κτ

(
Z (δmin)

Z (δmax)

) κτTh
ε

(ε − μW (τ ))2

}

= lim
τ→0

{
(1 − p0)μ2

W (τ ) + p0(ε − μW (τ ))2

}

= p0(1 − p0)ε2, (47)

where the last line follows from (25). Recall that the average
work done when changing the energy gap from δmax to δmin

adiabatically is given by (24). Moreover, the variance of work
for an adiabatic process can be obtained by noting that the
distribution of Wad ∈ {0, ε} is simply {1 − p0, p0}, i.e.,

σ 2
W (τ = 0) = p0(ε − Wad)2 + (1 − p0)W 2

ad

= p0(1 − p0)ε2. (48)

Therefore, (47) and (48) together imply that the lower bound
is saturated in said limit.

(ii) Isothermal limit, τ → ∞:

lim
τ→∞

{(
1 − p0

)( Z (δmin)

Z (δmax)

)− κτTh
ε

μ2
W (τ )

+ p0 e−κτ

(
Z (δmin)

Z (δmax)

) κτTh
ε

(ε − μW (τ ))2

}
. (49)

Now, let us look at the relevant part in the first term of (49).
Plugging in the definition for the partition function Z , we have

lim
τ→∞

(
Z (δmin)

Z (δmax)

)− κτTh
ε

= lim
τ→∞

(
1 + e−δmin/Th

1 + e−δmax/Th

)− κτTh
ε

= 0

(50)

as 1 + e−δmin/Th > 1 + e−δmax/Th . Similarly, we look at the rele-
vant part of the second term in (49) to obtain

lim
τ→∞ e−κτ

(
Z (δmin)

Z (δmax)

) κτTh
ε

= lim
τ→∞

[
e−ε/Th

(
1 + e−δmin/Th

1 + e−δmax/Th

)] κτTh
ε

= lim
τ→∞

(
1 + eδmin/Th

1 + eδmax/Th

) κτTh
ε

= 0, (51)

where we have used the fact that ε = δmax − δmin along with
1 + eδmin/Th < 1 + eδmax/Th . Thus, we obtain

lim
τ→∞ σ 2

W (τ ) � 0. (52)

Moreover, from Ref. [11] we know that isothermal work ex-
traction is fluctuation-free, i.e.,

σ 2
W (τ = ∞) = 0. (53)

Again, (52) and (53) together imply that the lower bound is
saturated in this limit.
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FIG. 3. On the x-axis we have the total time of the work extrac-
tion process, τ . The solid green (gray) curve interpolates between
the adiabatic Wad = 0.134 and the isothermal W Th

iso = 0.204 limits.
The dashed blue (black) curve also interpolates between the adiabatic
σ 2

W (τ = 0) = 0.049 and the isothermal σ 2
W (τ = ∞) = 0 limits. The

Monte Carlo simulations were done with L = 1000 steps, where L
is the discretization (see Example 1) and for integer values of τ ∈
[1, 30]. The parameter values used are δmax = 1, δmin = 0.5, Th = 2,
p0 = 1

1+e , and κ = 1.

IV. NUMERICAL RESULTS

In this section, we present the results of the Monte Carlo
simulation for the Markov process, Fig. 1, to obtain estimates
of the variance as a function of the time period of the process.
Furthermore, for a two-level system that is initially in equilib-
rium with the bath, we find that the variance can be estimated
using Jarzynski’s fluctuation-dissipation relation.

A. Monte Carlo for variance of work

To compare the gap between the analytical lower bound
obtained in Corollary 2 with the actual variance, we perform
Monte Carlo simulations since an analytical derivation seems
to be intractable due to the time-dependent nature of the
Markov process, Fig. 1. The Monte Carlo basically simulates
a discrete version of the Markov process under Assumption
1; see Example 1. We plot the results of the same in Fig. 3.
As a test of credibility, we find that the error bars on our
numerically obtained values of average work successfully
envelop the analytical form as a function of τ (Theorem 1).
The error bars were obtained using 104 independent runs. The
independent runs were parallelized using GNU parallel [26].

B. Fluctuation-dissipation relation

A fluctuation-dissipation relation governing an irreversible
thermodynamic process is a statement about the relation be-
tween the dissipated work (on average) when a system is
driven away from equilibrium and the corresponding fluctu-
ations of work during such a process. Jarzynski’s [3] much
touted result gave such a relation in the weak system-bath
interaction limit. Basically, once the system is in equilib-
rium with the ambient bath, it is disconnected from the bath
and then the work extraction process is performed, which
essentially amounts to changing the value of some relevant

0 5 10 15 20 25 30
τ

0.2

0.4

0.6

0.8

1.0

β 2
σ

2 W
(τ

)

×10−2

β
2σ

2
W (τ), Monte Carlo

Wd, dissipated work

FIG. 4. Fluctuation-dissipation relation for finite-time processes.
On the x-axis we have the total time of the work extraction process, τ .
Wd is the dissipated work. The Monte Carlo simulations were done
for L = 1000 steps, where L is the discretization (see Example 1)
and for integer values of τ ∈ [1, 30]. The parameter values used are
δmax = 1, δmin = 0.5, Th = 2, p0 = 1

1+e1/2 , and κ = 1.

parameter (that governs the Hamiltonian) over a finite amount
of time. When the time over which the process is carried
out—the switching time—is large enough, it renders the dis-
tribution of work Gaussian, and the fluctuation-dissipation
relation follows. Denoting the random variable for the work
done during such an irreversible process by W and its mean
and variance by μW and σ 2

W , respectively, the dissipated work
is Wdiss = μW − �F , the difference between the average work
done during the process, μW , and the average work done dur-
ing the corresponding reversible process, i.e., the free-energy
difference, �F . The fluctuation-dissipation relation can then
be expressed as

Wdiss = β

2
σ 2

W , (54)

where β = 1/kBTh, with Th being the temperature of the am-
bient bath. This relation has been generalized [27,28] to the
case in which the system continues to be in contact with
the bath during the work extraction process. Using Theorem
1 with p0 = 1/(1 + eδmax/Th ), we plot the dissipated work,
μW (τ ) − �F , and the estimate of the variance from the Monte
Carlo simulation as a function of the total time period of
the process τ in Fig. 4. We observe that the dissipated work
provides an upper bound for the variance of work in general.
This bound is saturated in the limit of large τ , in agreement
with the aforementioned result of Refs. [27,28].

V. APPLICATION TO FINITE-TIME HEAT ENGINES

Finite-time heat engines are characterized by their nonzero
power output in contrast to the ideal Carnot engine. In this
section, we discuss finite-time heat engines operating in cycles
that are composed of work extraction processes involving par-
tial thermalizations and instantaneous adiabatic energy-level
transformations. First, we review the Carnot engine for a
classical two-level system in Sec. V A, and then we study one
such engine that incorporates work extraction processes medi-
ated by partial thermalizations replacing the ideal isothermal
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FIG. 5. Carnot cycle for a two-level system with energy gap δ

and excited-state occupation probability p.

processes of the Carnot cycle in Sec. V B. We then optimize
the power output of such cycles for fixed time periods over
different sets of parameters and constraints in Sec. V B 1 and
V B 2. Finally, we compare the two in Sec. V C.

A. Carnot engine: Review

Let us assume that we have access to a hot bath at tem-
perature Th, a cold bath at temperature Tc, and a two-level
system whose energy gap δ can be varied over a fixed range
between δmin and δmax. And, let the occupation probability for
the excited state be denoted by p. As done earlier, let us set
the ground-state energy of the system to be zero. We use the
formalism of Ref. [29], where a Carnot engine was studied in
the quantum context, but it also applies to our case. Thus, a
Carnot cycle is composed of four stages that can be defined
using points a, b, c, d on the p-δ plot for a two-level system,
Fig. 5. First, we have the following:

(i) a �→ b, an isothermal expansion: at point a, the system
is in a Gibbs-thermal state at temperature Th with an energy
gap δa. The occupation probability for the excited state is pa =

1
1+eδa/Th

. During an isothermal expansion in a two-level system,
the energy levels must change such that they are scaled by
the same factor k1 < 1; see Appendix A for proof. The state
of the system at point b is a Gibbs state at temperature Th

with an energy gap δb = k1δa. As has been shown in Ref. [11],
the work done during such a reversible isothermal process is
essentially deterministic, and it is given by

Wab = Th ln
Z (δb)

Z (δa)
, (55)

where Z is the partition function.
(ii) Then, b �→ c, an adiabatic process: during an adiabatic

process, the energy levels of the system change without any
accompanying change in occupation probabilities. In particu-
lar, at this stage the energy levels are changed by a factor such
that the system is in the Gibbs state with respect to the cold
bath at temperature Tc, implying

δb

Th
= δc

Tc
. (56)

Thus, the energy gap of the system at point c is δc =
Th/Tc k1δa. The work done in this process, Wbc, is a ran-

dom variable as it depends on the state of the system at
point b [30]. The average value of the work done during this
process is

W bc = 1

1 + eδc/Tc
(δb − δc). (57)

(iii) Next, the compression stage with c �→ d , an isother-
mal compression: again, during this process the energy levels
are scaled by a factor k2 > 1. So, the system is still in a Gibbs-
thermal state with respect to the cold bath at temperature Tc at
point d but with an energy gap δd = Th/Tc k1k2δa. The work
cost of this process is deterministic and is given by

Wcd = −Tc ln
Z (δd )

Z (δc)
. (58)

(iv) Finally, we have d �→ a, an adiabatic process where
the energy gap is changed such that we go back to the starting
point a with energy gap δa and pd = pa. Therefore,

δd

Tc
= δa

Th
. (59)

But, δd = Th/Tc k1k2δa. This implies that the constant k2 is not
independent but must satisfy the relation k2 = 1

k1
. The average

work cost of this process is

W da = 1

1 + eδa/Th
(δa − δd ). (60)

The total work done during the Carnot cycle, denoted by
the random variable WC , is just the sum of work done at each
stage, and it is given by

WC = Wab + Wbc − Wcd − Wda. (61)

The distribution of work and expected efficiency of the Carnot
engine can then be obtained as stated in the following lemma,
whose proof can be found in Appendix C:

Lemma 3. The total work done during a microscopic im-
plementation of the Carnot cycle is a random variable WC

distributed according to a four-point distribution listed in the
table below.

wC Pr (WC = wC )

(Th − Tc ) ln Z (δb)/Z (δa)+0 (1 − pa)(1 − pb)
(Th − Tc ) ln Z (δb)/Z (δa) − (δa − δd ) (1 − pb)pa

(Th − Tc ) ln Z (δb)/Z (δa) + δb − δc (1 − pa )pb

(Th − Tc ) ln Z (δb)/Z (δa) + δb − δc − δa + δd pb pa

The expected efficiency of the Carnot cycle is

η
avg
C =

(
1 − Tc

Th

)
. (62)

Now, for the given pair of temperatures Tc and Th, the
Carnot efficiency is the maximum attainable efficiency. It is
independent of the points a, b, c, and d on the p-δ plot, Fig. 5,
that define a work extraction cycle for the engine connecting
the two isotherms. However, there is another quantity that
becomes relevant under the constraint of being able to vary
the energy gap δ only between δmin and δmax, the average work
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output. In fact, the cycle that maximizes the average work
output is the Carnot cycle that encloses the largest area on
the p-δ plot—it maximizes both efficiency and average work.
We state this intuition in the lemma below, deferring a formal
proof to Appendix D for completeness.

Lemma 4 (Optimal Carnot cycle for average work). Given
a Carnot engine formed by a classical two-level system oper-
ating between a hot bath at temperature Th and a cold bath at
temperature Tc such that the energy gap of the system δ can
only be varied over a fixed range between δmin and δmax, the
cycle (defined by the points a, b, c, and d on the p-δ plot)
that maximizes the average work output of the Carnot engine
is the one for which δa = δmax and δc = δmin.

The power output of such a cycle is zero due to the isother-
mal processes that require infinitely long equilibration times.
But, finite-time work extraction cycles have nonzero power
output, and for such cycles one is generally interested in the
efficiency at maximum power [31]. We analyze such engines
in the next section.

B. Finite-time heat engines

For constant time periods, maximizing power amounts to
maximizing the average work output. We define a modifi-
cation of the Carnot cycle that incorporates the finite-time
element—replacing isothermal processes in a Carnot cycle by
work extraction processes with partial thermalizations. So, a
finite-time cycle denoted by a �→ b �→ c �→ d �→ a on the p-δ
plot constitutes a sequence of four processes. First we have
the following:

(i) a �→ b, work extraction with partial thermalizations
with respect to the hot bath. The coordinates of point a on
the p-δ plot are (δa, pa). The system is driven under Assump-
tion 1 by an amount δa − δb1 for a time τ1. The occupation
probability for the excited state pb(τ1) can then be obtained
using Lemma 2. Furthermore, the average work done during
this process would be given by Theorem 1.

(ii) Then, b �→ c, an adiabatic process. The energy gap is
changed from δb to δc keeping the occupation probabilities
fixed, i.e., pc = pb(τ1). The average work done during this
process would be

W bc = pb(τ1)(δc − δb). (63)

(iii) Next, we have c �→ d, work extraction with partial
thermalizations with respect to the cold bath. Starting from
the point c with coordinates (δc, pb(τ1)), the system is again
driven under Assumption 1 for a time τ2 such that the energy
gap increases from δc to δd. To ensure that we complete the
cycle and reach point a in the end, δd must be such that

pd(τ2) = pa. (64)

An expression for pd1 (τ2) and the average work cost of this
process can be derived along the lines of Lemma 2 and Theo-
rem 1, as done in Appendix E.

(iv) Finally, we close the loop with d �→ a adiabatically.
Having reached δd in accordance with (64), we complete the
cycle by changing the energy gap keeping the occupation
probabilities fixed. The average work cost of this process is
simply

W da = pa(δa − δd). (65)

The time period of the cycle as described above would thus
be T = τ1 + τ2. Since we are interested in the efficiency at
maximum power, we want to maximize the average work out-
put of a finite-time cycle with a fixed time period T = τ1 + τ2,
which would simply be the sum of the average work done
at each of the four steps described above. The parameters
characterizing a finite-time cycle as described above are given
by the set {δa, pa, δb, δc, τ1}. As T = τ1 + τ2, only one
of them can be chosen freely—let it be τ1. The fact that for
every value of τ2 one has to solve (64) for δd leaves no room
for analytical analysis. We perform numerical optimizations
instead, setting the thermalization rates for both the processes
a �→ b and c �→ d to be unity without loss of generality. The
numerical optimizations were performed on MATHEMATICA

[32] using the Nelder-Mead method [33]. First, we perform
optimizations for the special case in which one can recover
the Carnot cycle, Lemma 4, in the limit of large T .

1. Optimal finite-time cycles limiting to the Carnot cycle

To recover the Carnot cycle in the limit of a large time
period of a finite-time cycle, we need to fix the values of the
parameters accordingly. For the first process to approach the
hot isotherm, it is clear that δa and δb should be the same as
in the case of the optimal Carnot cycle, Lemma 4. However,
δc must be chosen to lie on the cold isotherm, i.e., it should
satisfy the relation

pb(τ1) = 1

1 + eδc/Tc
, (66)

since only then would the third leg, i.e., c �→ d, approach
the cold isotherm in the limit of large T . This implies that
we are left with only one free parameter, namely τ1. Thus,
maximizing the average work output for different values of
T results in different optimal cycles, which we plot on the
left in Fig. 6. We also plot the cumulative distribution for the
different optimal cycles along with that of the Carnot cycle
to study the fluctuations as we approach equilibrium in Fig. 7
(left). Note that the Carnot cycle has a four-point work distri-
bution; see Lemma 3. The distributions for finite-time cycles
are obtained by performing Monte Carlo simulations. We find
that even though the average work cycles start approaching the
Carnot cycle quickly, the cumulative distribution still remains
smooth until we go to very large values of T .

2. General optimal finite-time cycles

Previously we were interested in the special case that gave
the Carnot cycle in the limit of large time periods. However,
for the most general problem, where one has access to a
hot bath at temperatures Th and a cold one at temperature
Tc, and the energy gap can only be driven between δmax

and δmin, one should optimize all the parameters in the set
{δa, pa, δb, δc, τ1}. Here, we find that the optimal cycle in the
limit of a large time period approaches a different cycle, one
where the two isotherms are connected by two purely thermal
processes. So, d �→ a and b �→ c would be thermalizations
connecting the two isotherms at d = a = δmax and δb = δc =
δmin, respectively, the limiting cycle as shown in Fig. 6 on
the right. This can be understood intuitively since we want
to maximize work output—the processes in which we have to
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FIG. 6. The optimal finite-time cycles as obtained in Sec. V B. On the x-axis we have occupation probability for the excited state p. On the
y-axis we have the energy gap δ. We use parameters δmax = 1, δmin = 0.25, Th = 2, and Tc = 1. On the left we have optimal cycles as obtained
in Sec. V B 1 with δa = δmax and δb = 2δmin. On the right we have optimal cycles from Sec. V B 2.

perform work are not favorable. As the work output of an adi-
abatic process is less than that of the corresponding isothermal
process (and vice versa for the work input), the adiabatic legs
are completely lost and get replaced by isothermal extensions.
Even though this cycle is not very relevant from the point of
view of power maximization, as for large time periods power
is no longer a meaningful metric, it is worth noting the curious
form of the cycle in contrast to the corresponding maximum
efficiency cycle—the Carnot cycle. We plot the optimal cycles
for different values of time periods T in Fig. 6 (right) along
with the cumulative distributions in Fig. 7 (right).

C. Comparing finite-time optimal cycles

First, we compare the two scenarios discussed above in
terms of their cumulative distributions, and we find that the
general optimal cycles have a better quality of work—fewer
fluctuations. For example, in Fig. 8 we plot the distributions
for T = 10, and we observe that the cumulative distribution
for the solution of the general optimum problem crosses the
one obtained in Sec. V B 1 around w = 0 and lies below it for

almost all negative values of w. This means that the proba-
bility with which one has to input work in the former case is
always less than the latter. Intuitively, there is no real reason
to constrain the parameter values as we did in Sec. V B 1
other than the imposed restriction of recovering the Carnot
cycle in the limit of large T . This limit is not particularly
interesting from the point of view of maximizing power as
it vanishes in said limit. However, such a comparison is at the
level of fluctuations only. Next, we compare P∗, the maximum
power itself as a function of T for the two cases in Fig. 9,
and we find that the general optimal power is higher than the
corresponding power from optimal cycles that approach the
Carnot cycle in the limit of large time periods. This is what
one would expect anyway as the latter is a restricted version
of the general optimization problem, Sec. V B 2.

Figures 8 and 9 together imply that the general optimal
cycles are better as far as power output and fluctuations are
concerned. Finally, we compare the optimal efficiencies η∗
for the two scenarios as a function of T in Fig. 10, and we
find that the optimal cycles that approach the Carnot cycle in
the limit of large time period T have much higher efficiencies
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FIG. 7. The cumulative distribution function for the random variable W , the work extracted during different optimal cycles (different values
of T ) as obtained in Sec. V B. On the x-axis we have the possible work values. The Monte Carlo simulations were performed for 104 samples
for each of the optimum cycles. On the left is the distribution for optimal cycles as obtained in Sec. V B 1, where δa = δmax and δb = 2δmin. On
the right is the distribution for optimal cycles from Sec. V B 2.
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FIG. 8. Comparing cumulative distribution of work for optimal
cycles obtained in Sec. V B 1 and Sec. V B 2. On the x-axis we have
the possible work values. Negative values of w imply a net work
input.

compared to the optimal cycles for the general problem. We
also compare these with the Curzon-Ahlborn (CA) efficiency
ηCA = 1 − √

Tc/Th, and note the curious crossover between
η∗(T ) for the general problem and ηCA. Moreover, we ob-
serve that the optimal cycles obtained in both cases have
an asymmetric relation between the corresponding values of
τ1 and τ2. While there is no a priori reason to expect a
symmetric partitioning, namely one where τ1 = τ2 = T /2,
similar results were obtained for a heat engine using a quan-
tum dot in Ref. [34] where the efficiencies at maximum
power were found to exceed the Curzon-Ahlborn value. The
Curzon-Ahlborn efficiency [35,36] was derived for a specific
model of heat transfer—it is not a universal bound. However,
as discussed in Ref. [31], ηCA is close to the efficiency at
maximum power for many different models. Further discus-
sion on the topic is beyond the scope of this paper, and we
refer the interested reader to the aforementioned review. Our
view is that the problem of maximizing power is very system-

10 15 20 25 30
T

1.0

1.5

2.0

P
∗ (
T

)

×10−3

general

approaching Carnot

FIG. 9. Comparing maximum power output for optimal cycles
obtained in Secs. V B 1 and V B 2. On the y-axis we have the ef-
ficiency at maximum power P∗(T ). On the x-axis we have the
time period of the finite-time cycles, T . We use parameters Th = 2,
Tc = 1, ηC = 0.5.

10 15 20 25 30
T

0.30

0.35

0.40

0.45

0.50

η ηC

η∗(T ), approaching Carnot

η∗(T ), general

ηCA

FIG. 10. Comparing efficiency at maximum power for optimal
cycles obtained in Secs. V B 1 and V B 2. On the x-axis we have
the time period of the finite-time cycles, T . On the y-axis we have
efficiency η. We use parameters Th = 2, Tc = 1, ηC = 0.5, and ηCA =
0.293.

specific and depends upon the given setup. To ask for universal
bounds on the same requires establishing general features in
the model. An attempt along the same direction was made in
Ref. [37], where the authors studied a low-dissipation Carnot
engine, i.e., one that was operating for a large but finite time
period and obtained bounds on the efficiency at maximum
power by maximizing power over the thermalization times
with the hot and cold reservoirs. (Our problems as studied in
Secs. V B 1 and V B 2 are different since we only optimize
over one of the two thermalization times.) They were then
able to obtain the Curzon-Ahlborn efficiency as a special
case when the dissipation with respect to the reservoirs was
symmetric. Further generalizations to the bounds obtained in
Ref. [37] and related work can be found in Refs. [38,39].

VI. SUMMARY AND OUTLOOK

In this work, we analyzed fluctuations of work done during
finite-time processes in two-level systems. We obtained ana-
lytic expressions for (a) average work and (b) lower bound for
variance as functions of time. We also studied these processes
in the context of thermodynamic work extraction cycles per-
forming numerical optimizations for the power output of such
cyclic processes. We conclude that finite-time processes are
inherently prone to fluctuations that result in broad distribu-
tions of work.

Furthermore, we note that since the Markov process that
lies at the heart of the overall physical model is not a simple
one, an expression for the variance of work could not be
obtained. To illustrate this point, we recall Fig. 2. It is clear
from that figure that one can write the variance for a discrete
L-step process as

σ 2
W =

∑
x

p(x)W 2(x) −
(∑

x

p(x)W (x)

)2

, (67)

where x counts all the paths that correspond to a fixed amount
of work W (x), and p(x) is the total probability of occurrence

042141-12



WORK FLUCTUATIONS DUE TO PARTIAL … PHYSICAL REVIEW E 103, 042141 (2021)

of those paths during the process. For example, there would
be various paths corresponding to W = ε/2, and one needs to
count these paths and sum their contribution, which is where
the complexity lies. However, there is exactly one path each
corresponding to W = 0 and W = ε, respectively. We were
able to use this fact to obtain the lower bound for variance. In
fact, a similar reasoning was used by the authors of Ref. [23]
to derive the distribution of work for a similar process in the
limit of slow driving, which allowed them to ignore all but a
few relevant paths. On this note, we would like to mention that
there exist approaches [40,41] for deriving the distribution of
work within the Lindblad master equation formalism for ar-
bitrarily driven quantum systems interacting weakly with the
bath. However, such analyses lead to generic expressions for
average work and variance. Whether they can be solved to ob-
tain closed-form analytical expressions given specific driving
rates and fixed thermalization times is beyond the scope of this
work and constitutes a future study. We conclude by stating
that one of the original motivations for this work was to ob-
serve the resource resonance phenomenon as seen in Ref. [42]
(within the resource theory for thermodynamics) in a physical
system, but we could not make any relevant connections.
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APPENDIX A: QUANTUM ISOTHERMAL PROCESSES

In the following lemma, we denote the change in the energy
of a system during a thermodynamic process a �→ b by �Uab,
we denote the heat exchanged by Qab, and we denote the work
done by Wab.

Lemma 5. A quantum isothermal expansion is such that
the gaps between the energy levels of the Hamiltonian H are
scaled by a factor k < 1.

Proof. A priori, there is nothing constraining the value of
k other than the trivial requirement of k > 0. However, it
is clear that if we choose k > 1, then we are stretching the
energy levels apart, while if k < 1, then we are compressing
them together. For an isothermal process (a �→ b) to be an
expansion, the following should be true:

Qab > 0 ⇐⇒ �Uab > Wab.

We know that Wab = �Fab = Th ln (Za/Zb) [11], where Za =∑
i e−εi/Th and Zb = ∑

i e−kεi/Th . Therefore, the following
inequality must be satisfied by any quantum isothermal

expansion:

∑
j

ε j

(
k

e−kε j/Th

Zb
− e−ε j/Th

Za

)
> Th(ln Za − ln Zb). (A1)

Let us assume that k > 1. Then

e−kεi/Th < e−εi/Th (A2)

⇒ Zb < Za. (A3)

Thus, (A1) implies

∑
j

ε j

(
k

e−kε j/Th

Zb
− e−ε j/Th

Za

)
> 0,

which implies

k
e−kε j/Th

Zb
>

e−ε j/Th

Za
. (A4)

Now, (A3) implies

e−kεi/Th

Zb
>

e−kεi/Th

Za
, (A5)

but, by (A2), one has

e−εi/Th

Zb
>

e−kεi/Th

Zb
. (A6)

Combining (A5) with (A6), we have

e−εi/Th

Zb
>

e−kεi/Th

Za
. (A7)

Differentiating both sides with respect to εi, we obtain

e−εi/Th

Zb
<

ke−kεi/Th

Za
.

But, this contradicts (A4). So, the assumption is wrong, which
implies that k < 1 for a quantum isothermal expansion.

APPENDIX B: ASIDE ON SPECIAL FUNCTIONS

Definition B.1 (Hypergeometric function in integral form).∫
dx

epx

1 + e(q−rx)

= e(p+r)x+q

p + r
× 2F1

(
1,

p

r
+ 1,

p

r
+ 2; −e−(q−rx)

)
,

(B1)

where p, q, and r are rationals, and the hypergeometric
function is

2F1 : (a, b, c, z) �→
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, |z| � 1, (B2)

and (x)n denotes the rising factorial

(x)n =
{

1, n = 0,

x(x + 1) · · · (x + n − 1), n > 0.
(B3)

042141-13



QUADEER, KORZEKWA, AND TOMAMICHEL PHYSICAL REVIEW E 103, 042141 (2021)

Definition B.2 (Lerch transcendent).

	L : (z, s, a) �→
∞∑

n=0

zn

(n + a)s
, (B4)

where z ∈ C and Re(a) > 0. We can then write the function
G (Definition 1) in terms of the Lerch transcendent as

G(t ) = κτTh

ε
e−δ(t )/Th 	L

(
− e−δ(t )/Th , 1,

κτTh

ε
+ 1

)
. (B5)

APPENDIX C: PROOF OF LEMMA 3

Proof. Wab and Wcd are essentially deterministic and are
given by (55) and (58), while Wbc and Wda are random vari-
ables. In Table I, we list all the possible states that the system
could be in at each of the four nodes a, b, c, d, and thus we
obtain all the possible values for Wbc − Wda. Thus, we can
obtain an expression for the average work done by simply
multiplying and adding the corresponding entries of columns
WC and Pr (WC ) to arrive at

μWC = (Th − Tc) ln
Z (δb)

Z (δa)
−

(
1 − Tc

Th

)
δa pa

+
(

1 − Tc

Th

)
δb pb

= (Th − Tc) ln
Z (δb)

Z (δa)
−

(
1 − Tc

Th

)
(δa pa − δb pb)

=
(

1 − Tc

Th

)(
Th ln

Z (δb)

Z (δa)
+ δb pb − δa pa

)
. (C1)

We can then derive the average Carnot efficiency η
avg
C by

dividing the average work done by the heat input (which is
when the system undergoes isothermal expansion from point
a to b), Qab. The heat exchanged during a process, denoted
by Q, is given by the First Law of Thermodynamics, i.e.,
Q = �U − W , where �U is the change in the total energy of
the system during the process, while W is the corresponding
work yield/cost. In our case, the process is an isothermal

TABLE I. Occupation of the ground state is designated by 0 and
that of the excited state by 1. The Carnot cycle is a �→ b �→ c �→
d �→ a. Starting at a with the system in the ground state as one
completes the cycle, the system could be in the excited state—it
undergoes thermalization from c �→ d . Same color entries under the
Wbc + Wda column are identical and the probabilities corresponding
to those entries add up.

a �→ b �→ c �→ d �→ a Wbc − Wda Pr (Wbc − Wda )

0 0 0 0 0 0 (1 − pa)2(1 − pb)
0 0 0 1 1 −(δa − δd ) (1 − pa)(1 − pb)pa

0 1 1 0 0 δb − δc (1 − pa)2 pb

0 1 1 1 1 δb − δc − δa + δd (1 − pa)pb pa

1 0 0 0 0 0 pa(1 − pa )(1 − pb)
1 0 0 1 1 −(δa − δd ) p2

a(1 − pb)
1 1 1 0 0 δb − δc pa pb(1 − pa)
1 1 1 1 1 δb − δc − δa + δd p2

a pb

expansion a �→ b, so �Uab = (δb pb − δa pa) and W = −Wab,
where Wab is the deterministic work yield of the process and
is given by (55). Thus, we have

Qab = (δb pb − δa pa) + Th ln
Z (δb)

Z (δa)
. (C2)

Since efficiency is defined as the ratio of the work output and
the heat input, (C1) and (C2) imply (62).

APPENDIX D: PROOF OF LEMMA 4

Proof. Note that the points a, b, c, and d as in Fig. 5,
defining a cycle of a Carnot engine, are not independent—see
(56) and (59). Thus, there are only two free variables that
define any particular cycle. Let us set δa and δc as the inde-
pendent ones. Then, changing variables in (C1) and plugging
the expressions for the partition function Z , pa, and pb, we
obtain

μWC (δa, δc) = (Th − Tc)

(
ln

(
1 + e−δa/Th

1 + e−δc/Tc

)

+ δa/Th

1 + eδa/Th
− δc/Tc

1 + eδc/Tc

)
. (D1)

Introducing x := δa/Th and y := δc/Tc reduces the equation
above to

μWC (x, y)= (Th − Tc)

(
ln

(
1 + e−x

1 + e−y

)
+ x

1 + ex
− y

1 + ey

)
.

(D2)

Let us now look at the function

f : x �→ (1 + e−x ) e
x

1+ex . (D3)

Evaluating the derivative of this function, we obtain

f ′(x) = −
(

x

1 + ex

)
e

x
1+ex < 0, ∀ x > 0. (D4)

This means that f is a monotonically decreasing function on
R+. Hence, the minimum/maximum would be attained on
the boundaries of the interval I ⊂ R+. Note that (D2) can be
written in terms of f simply as

μWC (x, y) = (Th − Tc)(ln f (x) − ln f (y)). (D5)

As ln is a monotonically increasing function, ln ◦ f would
thus be monotonically decreasing since f is monotonically
decreasing. Now, as μWC < 0, where the negative sign implies
work output, maximizing the average work output amounts to
minimizing μWC with respect to x and y. So, we have

min
x, y∈I

μWC (x, y)

= min
x, y∈I

(Th − Tc)(ln f (x) − ln f (y)) (D6)

= (Th − Tc)
(

min
x∈I

ln f (x) − max
y∈I

ln f (y)
)
. (D7)

As ln ◦ f is monotonically decreasing, it implies that

min
x, y∈I

μWC (x, y) = (Th − Tc)
(

ln f
(

max
x∈I

x
)

− ln f
(

min
y∈I

y
))

. (D8)
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Substituting for x and y in terms of δa and δc and noting that

max
δa

δa = δmax and min
δc

δc = δmin (D9)

gives us

arg max
δa, δc

μWC (δa, δc) = (δmax, δmin). (D10)

APPENDIX E: PARTIAL THERMALIZATION UNDER
ASSUMPTION 1 WHILE INCREASING THE ENERGY GAP

Definition E.1. Given the energy gap δ(t ) of a two-level
system at time t < τ , we define the function

H : t �→
∞∑

n=0

(
e− δ(t )

Tc

)n(
nε

κτTc
+ 1

) , (E1)

where ε = δmax − δmin, κ is the thermalization rate, and Tc is
the temperature of the ambient bath.

The function H is a monotone function in t . For δ mono-
tonically increasing in t , H monotonically decreases. This
follows by noting that e−δ is also monotonically decreasing
in t .

Lemma 6 (Time evolution of occupation probabilities under
partial thermalization while increasing the energy gap). Given
a two-level system that undergoes partial thermalization as per
Assumption 1 in the presence of a bath at temperature Tc for a
time τ such that its energy gap changes from δmin to δmax, the
probability of the system to be in the excited state at any time

0 < t < τ is

p(t ) = p0e−κt + H(t ) − e−κtH(0), (E2)

where ε = δmax − δmin, p0 = p(0), and δ(t ) = δmin + εt/τ .
Proof. Rewriting the differential equation for

general partial thermalization processes where the
hot bath is replaced by the cold bath in (2), we
have

d p

dt
+ κ p(t ) = κγc(δ(t )), (E3)

which can be integrated along with the initial condition
p(0) = p0 to obtain

p(t ) = p0e−κt + κe−κt
∫ t

0
eκt ′

γc(δ(t ′)) dt ′. (E4)

Given Assumption 1 and the boundary conditions δ(0) = δmin

and δ(τ ) = δmax, we have

δ(t ) = δmin + ε

τ
t, (E5)

where ε = δmax − δmin. Plugging γc(δ(t )) = 1
1+eδ(t )/Tc and (E5)

in (E4), we obtain

p(t ) = p0e−κt + κe−κt
∫ t

0

eκt ′

1 + e
(δmin+εt ′/τ )

Tc

dt ′. (E6)

Evaluating the integral above, we obtain

p(t ) = p0e−κt + κe−κt

{
eκt ′

κ
2F1

(
1,

κτTc

ε
,
κτTc

ε
+ 1; −e

(δmin+εt ′/τ )
Tc

)∣∣∣∣∣
t

0

}

= p0e−κt + κe−κt

{
eκt

κ
2F1

(
1,

κτTc

ε
,
κτTc

ε
+ 1; −e

δ(t )
Tc

)
− 1

κ
2F1

(
1,

κτTc

ε
,
κτTc

ε
+ 1; −e

δmin
Tc

)}

= p0e−κt + 2F1

(
1,

κτTc

ε
,
κτTc

ε
+ 1; −e

δ(t )
Tc

)
− e−κt

2F1

(
1,

κτTc

ε
,
κτTc

ε
+ 1; −e

δmin
Tc

)
. (E7)

Next, using Definition 1 we can write

2F1(1, a, 1 + a; −z) =
∞∑

n=0

n!(a)n

(1 + a)n

(−z)n

n!

=
∞∑

n=0

(a)(1 + a) · · · (n − 1 + a)

(1 + a)(2 + a) · · · (n + a)
(−z)n

=
∞∑

n=0

a (−z)n

(n + a)

=
∞∑

n=0

(−z)n(
n
a + 1

) . (E8)

Using (E8) we can write (E7) in terms of H to obtain (E2).
Lemma 7 (Average work when increasing the energy gap).

The average work done by a two-level system during a process
as per Assumption 1 along with partial thermalizations in the
presence of a bath at temperature Th for a time τ such that its

energy gap changes from δmin to δmax is

μW (τ ) = −W Tc
iso − Wad

κτ
(1 − e−κτ ) + ε

κτ
{H(τ ) − e−κτH(0)},

(E9)

where ε = δmax − δmin, p0 = p(0), and W Tc
iso is the work out-

put of the corresponding isothermal process, i.e., W Tc
iso =

−Tc ln Z (δmin )
Z (δmax ) , where Z is the partition function Z : δ �→ 1 +

e−δ/Tc .
Proof. We start by noting that

d p

dδ
= d p

dt

dt

dδ
= −κτ

ε
(γh(δ) − p), (E10)

where the last line follows from (2) and Assumption 1 while
suppressing the dependence on t . Integrating (18) with respect
to δ from δmin to δmax, we have∫ δmax

δmin

p dδ =
∫ δmax

δmin

γc(δ)dδ + ε

κτ

∫ δmax

δmin

d p

dδ
dδ. (E11)

042141-15



QUADEER, KORZEKWA, AND TOMAMICHEL PHYSICAL REVIEW E 103, 042141 (2021)

Thus, (8) and (E11) together imply

μW (τ ) =
∫ δmax

δmin

γc(δ)dδ + ε

κτ

∫ δmax

δmin

d p

dδ
dδ. (E12)

The first term on the right-hand side is the negative of the
work done during the corresponding isothermal process (when
the energy gap changes from δmax to δmin). Substituting the
expression for γc(δ) and evaluating the integral gives us the
first term of (E12) as

∫ δmax

δmin

γc(δ)dδ = Tc ln
Z (δmin)

Z (δmax)
= −W Tc

iso, (E13)

where Z is the partition function Z : δ �→ 1 + e−δ/Tc . Next, we
evaluate the integral in the second term in (E12) using Lemma
6. First we note that∫ δmax

δmin

d p

dδ
dδ = p(δmax) − p(δmin).

As p(δmin) = p(0) = p0 is given and p(δmax) = p(τ ), we use
(E2) to obtain

p(δmax) − p(δmin) = −p0(1 − e−κτ ) + H(τ ) − e−κτH(0).

(E14)

Plugging (E13) and (E14) in (E12) along with (24), we obtain
(E9).
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