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Generation of virtual potentials by controlled feedback in electric circuit systems
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Electric circuits influenced by thermal noise are analogous to confined Brownian particles and can be an
alternative and convenient scheme for studying stochastic thermodynamics. Here we experimentally demonstrate
an effective technique of generating tunable potentials for Brownian dynamics in an electric circuit, realized by
external controlled feedback. We present two illustrative examples of one-dimensional virtual potentials: static
harmonic potential and time-varying double-well potential. The thermal noises of both cases undergo equivalent
Brownian dynamics as if they were in the authentic potentials as long as the feedback is fast enough to respond to
the designed potentials. The results show that the electric circuit provides a simple, effective, and programmable
scheme to study the feedback-controlled virtual potential.
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I. INTRODUCTION

For the last several decades, there have been technolog-
ical advances to trap and manipulate nanosized molecules,
which have brought a new era for the experimental study in
stochastic and information thermodynamics. One of the most
popular tools is the optical tweezers, which were employed
in many frontier experiments, such as demonstrating Kramers
transition rate [1], stochastic resonance [2], Landauer’s era-
sure principle [3], and autonomous and cyclic heat engines
[4–6]. Despite the great success with the optical tweezers, fur-
ther investigation to solve complicated problems such as the
dynamics in nonharmonic potentials requires more advanced
tools to manipulate the shape of the potentials.

One technique to generate an arbitrary potential is the
feedback trap, which applies a feedback force based on a
molecule’s measured position [7,8]. Cohen first reported a
feedback technique to confine a Brownian particle in arbitrary
virtual potentials using the image processing technique and
the electrophoretic force [9]. Jun and Bechhoefer carefully
examined the effects of delay and discrete updates in the feed-
back process and confirmed the eligibility of using feedback
virtual potentials for stochastic thermodynamics studies [10].
The technique was applied to the verification of Landauer’s
principle with high precision [11]. Recently, replacing the
electrophoretic force by the optical force and the CCD camera
by the photosensitive device further improves the limitation of
the feedback trap caused by the long delay; such a scheme is
named the optical feedback trap [12,13]. The performance of
the optical feedback trap is highly desirable for nonequilib-
rium stochastic thermodynamics investigations and has been
applied to the problems of shortcut processes connecting equi-
librium states [14,15], the colloidal heat engine [16], and the
Mpemba effect [17]. Nevertheless, working with the optical
feedback trap requires heavy experimental overheads, such as
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maintaining the stability of the lasers, good optical alignment
precision, etc.

It is known that analog simulators can help to investi-
gate behaviors of stochastic and/or chaotic systems ruled by
stochastic, nonlinear differential equations [18]. Numerically
solving stochastic, nonlinear differential questions typically
involves integration over time, which might accumulate errors
out of long time integrations for studying low-frequency char-
acteristics. Also as the degrees of freedom of a studied system
increases, the need of numerical computation resources rises
dramatically. Analog simulations surpass these issues for they
are carried out via time evolution of physical electric circuits.
Successful examples include stochastic resonance [19] and
coupled nonlinear oscillators [20].

Inspired by the pioneering idea of analog simulations,
we look for a convenient experimental system via an elec-
tric circuit for studies requiring virtual potential generation.
The dynamics of accumulated charges on the capacitor of
a resistor-capacitor (RC) circuit is entirely analogous to the
dynamics of an overdamped Brownian particle trapped in a
harmonic potential well [21], encouraging us to create feed-
back virtual potentials in electric circuits. Several advantages
of the usage of electric circuit systems are remarkable. Elec-
tric systems grant a variety of choices for a random state
variable, ranging from the discrete charge state in the single-
electron device [22] to a continuous charge variable in the
RC circuit [21]. In addition, electrostatic energy stored in
capacitors, which is the key energy scale of electric systems,
is easy to set as compared to thermal energy kBT , where kB

is the Boltzmann constant, and T is the temperature of the
environment so that electric systems could dwell in a regime
where stochastic processes are apparent. Moreover, typically,
experimental setups of electric systems are relatively simple
[23–26] and are often more straightforward to couple together
[27] and to scale up.

Here, we report a simple and effective electric-circuit
scheme for creating virtual potentials, experimentally estab-
lish this idea with ultrafast feedback controls offered by a
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FIG. 1. Feedback-controlled virtual potential. (a) Schematic of an analogous particle confined in a designed virtual potential Ud .
(b) Schematic diagram of the experiment setup to realize feedback-controlled virtual potential. The system mainly consists of an RC circuit
circled by a dashed line, and a FPGA board for sampling the position q, calculating the required feedback, and producing the feedback voltage
Vf . ξ represents the thermal noise from the resistor. A voltage preamplifier is used to magnify the voltage signal V (t ) with signal level of the
order of microvolts before sampling by FPGA. A low-pass filter is introduced after the preamplifier to prevent the aliasing effect caused by the
high-frequency white noise from the preamplifier. (c) The timing diagram of the feedback system. The FPGA samples q(n) at t (n) and begins to
apply the feedback voltage V (n)

f after a delay time td due to the required signal processing time. q(n) is sampled every time interval tu, and each

V (n)
f lasts for the same time interval tu.

field-programmable gate array (FPGA) device, and charac-
terize the effects of discreteness and delay of feedback in a
virtual harmonic potential. With the justification of the va-
lidity of dynamics in the discrete system, we investigate the
dynamics of stochastic resonance in a time-varying virtual
double-well potential. Our studies confirm that the system be-
haves as if it is in the authentic potentials, and validate that our
feedback trap is well suited for the study on nonequilibrium
thermodynamics and information thermodynamics under the
time-dependent protocol. Moreover, the methodology can be
generalized to multidimensional systems, which could even
outperform numerical studies regarding time efficiency.

For an RC circuit analogous to an overdamped Brownian
particle trapped in a designed one-dimensional (1D) virtual
potential Ud (q), as illustrated in Fig. 1(a), the motion obeys
the Langevin equation

−Rsq̇ − d

dq
Ud + ξ = 0, (1)

where q is the accumulated charge on the capacitor Cs and
stands for the dynamical coordinate of the system, −Rsq̇ rep-
resents the damping due to charge flowing through the resistor
Rs, − d

dqUd represents the conservative force originated by the
designed virtual potential, and ξ is Johnson-Nyquist noise

from the resistor and represents the random thermal force
[28,29]. The thermal noise has zero mean 〈ξ (t )〉 = 0, and
has no time correlation 〈ξ (t )ξ (t ′)〉 = 2kBT Rsδ(t − t ′), where
δ(t − t ′) is the Dirac delta function. Figure 1(b) shows the
schematic of the system to realize the virtual potential gen-
eration. An FPGA device is used to record the coordinate
q(t ) = CsV (t ) at the moment t via sampling the voltage V (t ),
and to immediately output a corresponding voltage Vf [q(t )].
In accordance with Kirchhoff’s law, the equation of motion of
the circuit is

−Rsq̇ + Vf − q/Cs + ξ = 0. (2)

As long as Vf = −dUd/dq + q/Cs is applied and updated
immediately and constantly according to q(t ), the dynamic of
the system will resemble the dynamic governed by Eq. (1),
therefore creating the designed virtual potential Ud (q). How-
ever, in reality, the feedback voltage provided by the digital
instrument is discrete in time and has delay.

As Fig. 1(b) depicts, the experimental setup to realize
the feedback-controlled virtual potential consists of a resis-
tor Rs = 9.13 M� in parallel with a capacitor Cs = 42.4 pF,
holding a time constant τs = RsCs = 387 μs. Before sam-
pling, the voltage V (t ) across the capacitor Cs is magnified
by a voltage preamplifier (SR560) with a gain of 1000 and an
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FIG. 2. Virtual harmonic potential. (a) Trajectories of analogous particle with various designed stiffness kd . (b) Probability distribution
P(q) and (c) power spectral density Sq( f ) from the trajectories in (a). The black lines in (c) are given from Eq. (A9). (d) Plot of the variance
〈q2〉 as a function of kd . The symbols are the data. The blue solid line indicates 〈q2〉 = kBT/kd , the prediction of equipartition theorem for real
harmonic potential confinement. The red dashed line is the fitting curve Eq. (A4) from the result of the delay differential equation.

added noise of 1.6 × 10−17 V2/Hz above 1 kHz. The white
noise added by the preamplifier is removed by a low-pass
RC filter with a cutoff frequency of 50 kHz to avoid aliasing
effect. The FPGA board (NI sbRIO-9637) is used to sample
V (t ) via an analog-to-digital converter (ADC) with sampling
time ts = 20 μs, and to calculate the corresponding feedback
voltage Vf , and to apply Vf via a digital-to-analog converter
(DAC) with update time tu = ts = 20 μs. Note that tu � τs

indicates that the feedback control updates constantly while
the system does not respond too much to the feedback voltage
and the thermal noise and is a key criterion for the feedback
virtual to function properly. The system is placed at room
temperature T = 296 K.

II. VIRTUAL HARMONIC POTENTIAL

The first demonstration of virtual potentials for the anal-
ogous particle is a 1D static harmonic potential Uh =
(kd q2)/2, where kd is the designed stiffness. The correspond-
ing feedback voltage Vf ,h[q = q(t − td ), t] = (−kd + 1/Cs)q.
Figures 2(a)–2(c) depict the trajectory q(t ), the probability
density function (PDF) P(q), and the power spectral den-
sity Sq( f ), respectively, for various kd . At small kd , such
as kd = 0.11/Cs, 1/Cs, and 2.80/Cs, the fluctuation of the
system is suppressed as kd increases. P(q) has a Gaus-
sian distribution P(q) ∝ exp (−q2/2σ 2) with the variance

σ 2 = 〈q2〉 = kBT/kd , and Sq( f ) behaves like a Lorentzian
function Sq( f ) = Sq(0)/[1 + ( f / fc)2] with a plateau at the
level Sq(0) = 4kBT Rs/k2

d and the cutoff frequency at fc =
kd/2πRs. Figure 2(d) shows 〈q2〉 as a function of kd , where
the symbol corresponds to the data and the blue solid line
indicates the prediction from the equipartition theorem 〈q2〉 =
kBT/kd . The behaviors are compatible with those of a par-
ticle sitting in a real harmonic potential with the designed
stiffness and can be accurately explained by the fluctuation-
dissipation theorem (FDT) [21]. Note that the case of kd =
1/Cs = 23.6 V/nC requires no feedback, and the system is in
an unengineered harmonic potential Uh = q2/2Cs. The root
mean square of fluctuation is qrms = √

kBTCs = 0.416 fC.
Also for the case of kd = 0, the analogous particle experiences
no trapping force and behaves like a free diffusion motion.

As kd becomes large, the behaviors of the electric circuit
in the virtual harmonic potential deviate from the expectation
of FDT. The discrepancy is due to the imperfect feedback in
the system. The feedback cannot respond instantly enough
to mimic the target harmonic system with a large kd [10].
Figure 1(c) illustrates the time sequence of feedback in the
system. The ADC of the FPGA board samples the voltage
signal V (t ) every time interval tu and converts it to the anal-
ogous particle position. q(n) = q(t (n) ) = CsV (t (n) ) represents
the position sampled at t (n). The feedback reacts by apply-
ing the feedback voltage V (n)

f = Vf (q(n) ) via the DAC of the
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FIG. 3. Virtual double-well potential. (a) Trajectories of the analogous particle in double-well potential with fixed qm = 2.12 fC and
various Eb. (b) Probability distribution P(q) of the trajectories in (a). (c) Derived potential Ud (q) = −kBT ln P(q) from the distribution in
(b). The symbols represent the derived potentials, and black lines are the fit to the double-well potential. The designed values and fitting
parameters of qm and Eb are listed in Table I. (d) Dwelling time τD with various Eb in a log-log plot. The black line denotes the Kramers
relation τD ∝ exp(Eb/kBT ).

FPGA after the delay time td , and lasting for a time tu. At
large kd , the virtual force is large for the system away from
potential minimum. Even within small td , q(t (n) + td ) can be
quite different from q(n). Consequently, the required feedback
voltage Vf [q(t (n) + td )] for the moment t (n) + td could be very
different from the applied feedback voltage V (n)

f . The finite tu
has a similar effect. The required feedback voltage between
t (n) + td and t (n) + td + tu is different from V (n)

f . The finite tu
possibly causes the particle to overreact, resulting in a broader
distribution in P(q).

To fully understand the influence of the discrete update
and finite delay time quantitatively, we consider a discrete
sampling version of the equation of motion to describe the
dynamics of the analogous particle in the Appendix. The red
dashed curve in Fig. 2(d) shows the fit of the data 〈q2〉 as a
function of kd to Eq. (A4) in the Appendix. The consideration
of discrete feedback and delay captures the behaviors of the
system reasonably well. The delay time of the feedback, td =
13.3 μs, is determined by the fitting. The behaviors of Sq( f )
are also predicted by Eq. (A9). At small kd (kd � 8.49/Cs),
Eq. (A9) reduces to the Lorentzian function, corresponding
to Sq( f ) of a Brownian system sitting in a real harmonic po-
tential with the designed kd . At very large kd (kd > 8.49/Cs),
a resonance is predicted as described in the Appendix. The
black curves in Fig. 2(c) are the theoretical predictions given

by Eq. (A9), which precisely match with the experimental
data. Note that no fitting procedure is performed here. The
theory successfully explains the experimental observation,
demonstrating the validity of our theoretical understanding of
the controlled-feedback virtual potentials.

III. VIRTUAL DOUBLE WELL

Next, the analogous particle is engineered to sit in a virtual
double-well potential. The form of the double-well potential
is Udw = Eb[( q

qm
)4 − 2( q

qm
)2], where Eb is the barrier height

between the two wells, and qm is the distance of the local min-
ima from the barrier peak. Figure 3(a) shows the experimental
trajectories of the system in a virtual double-well potential
with fixed qm = 2.12 fC and different designed Eb (in a unit of
kBT ). The system sits around one of the local minima at ±qm,
jumping back and forth stochastically between two wells. The
black lines in Fig. 3(a) are the location of the well and re-
semble random telegraph signals, typical for a particle trapped
in a potential with two local minima and agitated by random
noise for hopping transitions. As Eb increases, the jumps occur
less frequently, corresponding to an increase of the dwell time
τD in a well. The probability distributions P(q) of various
trajectories are depicted in Fig. 3(b). The distributions display
two peaks. Figure 3(c) shows − ln P(q) (symbols) and their fit
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TABLE I. Comparison of the designed values and the fitting
results for the parameters of virtual double-well potential in Fig. 3.

Eb (kBT ) qm (fC)

Designed Fitting Designed Fitting

E1 1.04 1.07 2.12 2.13
E2 2.08 2.08 2.12 2.12
E3 3.12 3.05 2.12 2.12
E4 4.15 4.18 2.12 2.13
E5 5.19 5.06 2.12 2.13

to Udw(q)/kBT with two fitting parameters Eb and qm (curves).
Table I compares the fitting values with the designed ones, and
the agreement demonstrates the precision of the generation of
virtual double-well potential. The average dwell time 〈τD〉 as
a function of Eb is depicted in Fig. 3(d). The data is adequately
described by the Kramers relation 〈τD〉 ∝ exp(Eb/kBT ), indi-
cating that the transitions between two wells are governed by
thermal excitation.

IV. TILTING DOUBLE WELL

We also demonstrate the generation of a time-independent
tilting double well Utdw = Eb[( q

qm
)4 − 2( q

qm
)2 + 4At (

q
qm

)],

where At characterizes the amplitude of the tilt. |At,cr| =
2/(3

√
3) is the critical value for disappearance of the minor

well. The symbols in Figs. 4(a) and 4(b) show the PDF and
corresponding − ln P(q) for the designed Eb = 3.12kBT and
At = ±0.06. The black lines in Fig. 4(b) simply plot the
designed Utdw.

Finally, we present a study of the time-varying virtual
potential to demonstrate the competence of using virtual
potentials for investigating nonequilibrium stochastic ther-
modynamics. It is known that stochastic resonance [30,31]
occurs in the periodic tilting double-well system with an
adequate noise level [32]. We add a time-varying peri-
odic tilt term to the tilting double-well potential, Utdw(t ) =
Eb[( q

qm
)4 − 2( q

qm
)2 + 4At cos(2π ft t )( q

qm
)], where ft repre-

sents the frequency of the time-dependent tilt. This extra
time-varying tilt term makes the double-well global minimum
switch between the left and the right well alternately with the
frequency ft . For |At | > |At,cr|, the minor well will disappear
when the tilting is maximal within a period.

Figure 4(c) shows the trajectories of the system for At =
0.2, ft = 10 Hz, and various barrier height Eb. At large Eb,
such as Eb = 3.12, 4.15, and 5.19kBT , the analogous parti-
cle jumps between two wells occasionally, which is typical
for fixed double-well potentials. As Eb decreases and the
transition rate of the corresponding Eb is close to twice

FIG. 4. Demonstration of tilting double well and stochastic resonance. (a) PDF P(q) of time-independent tilting double well for Eb =
3.12kBT and At = −0.06 (blue inverted triangle) and +0.06 (red triangle), respectively. (b) Effective potential Ud (q) from the distributions in
(a). The symbols denote the effective potential, and the black lines plot the designed static tilting double-well potential. (c) Trajectory response
of the analogous particle in a periodic tilt double-well potential for At = 0.2, ft = 10 Hz, and various Eb. (d) The map of 1/2 ft 〈τD〉 with fixed
At = 0.2 for various Eb and ft . The white color-mapping denotes ft = 1/2〈τD〉, which is the region that stochastic resonance occurs.
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the modulation frequency, namely, 1/〈τD〉 ≈ 2 ft , the system
begins to travel back and forth between the two wells periodi-
cally with a frequency that coincides with the tilting frequency
of the virtual double-well potential, as shown for the cases of
Eb = 1.04 and 2.08kBT . The behavior of the system synchro-
nizes with the control of virtual double-well potential when
the thermal noise level and the size of the tilt are appropriate,
i.e., stochastic resonance occurs. Figure 4(d) shows the map
of transition rates to the modulation frequency ratio 1/2 ft 〈τD〉
as a function of Eb for ft = 2, 4, 6, 8, and 10 Hz with fixed
At = 0.2. The region, where stochastic resonance occurs, is
shown in white color-mapping. The light-red color signifies
the cases of 1/2〈τD〉 larger than the modulation frequency
ft , and the dark-blue color represents the opposite case. One
can see that at ft = 2 Hz, stochastic resonance occurs at Eb =
5.19kBT . As ft increases, the resonance locates at decreasing
Eb. This implies that the proper transition rate induced by
thermal noise is important for observing the occurrence of
stochastic resonance.

V. CONCLUSION

In conclusion, we have successfully demonstrated sev-
eral feedback-controlled virtual potentials in the RC electric
circuit system and analyze the dynamics of the analogous
particle confined in the potentials. We also study the limitation
of the feedback due to the delay and the discrete nature of the
update in the linear harmonic potential. The demonstration of
the double-well potential generalizes the applications of vir-
tual potential to nonlinear cases. The time-varying protocol of
virtual double-well potential shows the dynamical behaviors
are consistent with the phenomenon of stochastic resonance,
and illustrates the applicability of this simple, effective, and
programmable system to studies in stochastic thermodynam-
ics, nonequilibrium steady-state dynamics, heat engines, and
information topics. We stress that the virtual potential system
we demonstrated here is only 1D. The methodology can, in
principle, be generalized to systems with multi degrees of
freedom. The generalization could be relevant to a broad range
of applications. For instance, the features of the Brownian
gyrator [26,33] can be observed by coupling two RC circuits
with a feedback function instead of a coupling capacitor. The
technique opens the possibility of studying nonequilibrium
steady-state dynamics in the sophisticated, nonlinear high-
dimensional virtual potentials created by feedback control.
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APPENDIX: DISCRETE ANALYSIS OF POWER
SPECTRAL DENSITY

Here we perform discrete analysis to derive the power
spectral density of the feedback control system for the gen-
eration of a virtual harmonic potential. Consider the feedback
system with a finite updating time tu and sampling time ts,

and take tu = ts. By the Wiener-Khinchin theorem, the power
spectral density of a discrete-time random process is given by
the discrete Fourier transform of its autocorrelation function,
i.e.,

Sq( f ) = 2tu

∞∑
k=−∞

Rk exp(−i2π f tuk), (A1)

where Rk = 〈q(n)q(n−k)〉 denotes the discrete autocorrelation
function of q(t ). As long as the analytical expression of Rk is
available, Sq( f ) can be determined via Eq. (A1).

Incorporating Eq. (2) and feedback voltage Vf ,h with the
time sequence of the feedback in Fig. 1(c), the evolution of q
sampled at discrete times can be written as

q(n+1) = q(n) + (1 − Cskd )

(
td
τs

q(n−1) + tu − td
τs

q(n)

)

− tu
τs

q(n) + 1

Rs
ξ (n), (A2)

where ξ (n) ≡ ∫ (n+1)tu
ntu

ξ (t )dt is the impulse due to the random
noise in the time interval [ntu, (n + 1)tu]. ξ (n) holds statis-
tical properties of 〈ξ (n)〉 = 0 and 〈ξ (n)ξ (m)〉 = 2kBT Rstuδnm.
For convenience, we define βd ≡ td/τs and βu ≡ tu/τs, and
Eq. (A2) is simplified to

q(n+1) = a1q(n) − a2q(n−1) + 1

Rs
ξ (n), (A3)

where a1 = 1 − (Cskd − 1)(βu − βd ) − βu and a2 = (Cskd −
1)βd . The variance of q can be given by R0 = 〈q2〉 =
(a2

1 + a2
2)〈q2〉 − 2a1a2〈q(n)q(n−1)〉 + 〈ξ (n)2 〉

R2
s

and the correla-

tion term is R1 = 〈q(n)q(n−1)〉 = a1
1+a2

〈q2〉. Thus, we obtain

R0 = 〈ξ (n)2 〉(1+a2 )/R2
s

(1−a2 )[a2−(a1−1)][a2+(a1+1)] , or

〈q2〉 = 2kBT [1 + (Cskd − 1)βd ]

kd [1 − (Cskd − 1)βd ][2(1 − βd ) − (βu − 2βd )Cskd ]
.

(A4)

When kd � 1/Csβu, 1/Csβd and βu, βd � 1, the feedback is
fast enough to react for designed potentials, and Eq. (A4)
reduces to the equipartition theorem 〈q2〉 = kBT/kd . As kd

gets large while the response times of the feedback stay fixed,
the feedback does not react fast enough for the designed
potential, and 〈q2〉 becomes larger than the expectation of the
equipartition theorem. At very large kd , the system becomes
highly agitated, 〈q2〉 increases with kd , and even some reso-
nant behavior develops. A resonant structure arising around
the inverse of the response time tu and td is clearly seen in
the power spectral density Sq( f ) for very large kd in Fig. 2.
Equation (A4) diverges at kd = 1+βd

βd

1
Cs

, and the motion of the
system becomes unstable.

To find out the discrete power spectral density solution, a
discrete autocorrelation sequence can be constructed with the
definition rk ≡ Rk

R0
,

r0 = 1,

r1 = a1

1 + a2
,

rk = a1rk−1 − a2rk−2, k > 1. (A5)
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To derive the expression of the discrete autocorrelation se-
quence, a geometric sequence is constructed as rk − α+rk−1 =
α−(rk−1 − α+rk−2). Compared with Eq. (A3), we obtain α± =
a1±

√
ζ

2 and a geometric sequence {rk − α+rk−1}:
rk − α+rk−1 = αk−1

− (r1 − α+r0)

= αk−1
−

[
a2 − α+(1 + a2)

1 + a2

]
, (A6)

where ζ = a2
1 − 4a2 can be used for the determination of the

damping behavior of rk . We define rk = rk

αk−
and construct a

new geometric sequence rk − λ = α+
α−

(rk−1 − λ). Comparing

the new sequence with Eq. (A6), we have λ = 1
2 − a1(1−a2 )

2
√

ζ (1+a2 )
and {rk − λ} is also a geometric sequence. Hence rk − λ =
( α+
α−

)k (r0 − λ) = ( α+
α−

)k (1 − λ) and we finally obtain the ex-
pression of the discrete autocorrelation sequence

rk =
(

a1 + √
ζ

2

)k[
1

2
+ a1(1 − a2)

2
√

ζ (1 + a2)

]

+
(

a1 − √
ζ

2

)k[
1

2
− a1(1 − a2)

2
√

ζ (1 + a2)

]
. (A7)

Note that there exists a special kd,cr that makes ζ = 0 and
the expression in Eq. (A7) diverges (kd,cr = 6.33/Cs in our
system). The problem can be revised by solving Eq. (A6) with
α+ = α−. As ζ < 0, rk decays and oscillates near zero, similar

to an underdamped oscillation; while ζ > 0, rk decays to zero
exponentially, similar to the overdamped case. We define the
special case kd,cr as critical damped for the fastest damping of
rk , and the autocorrelation expression is

rk =
(a1

2

)k
(

1 + k
1 − a2

1 + a2

)
. (A8)

Substituting Rk = R0rk into Eq. (A1), we obtain the dis-
crete power spectral density:

Sq( f ) = 4kBT t2
u /Rs

4a2 cos2 θ − 2a1(1 + a2) cos θ + (a2 − 1)2 + a2
1

,

(A9)

where θ = 2π f tu. As shown in Fig. 2(c), the theoretical
prediction agrees well with the experimental data. To under-
stand the resonant structure for large kd , we can rewrite the
equation as

Sq( f ) = 4kBT t2
u /Rs

4a2
[
cos θ − a1(1+a2 )

4a2

]2 + (a2 − 1)2
(

4a2−a2
1

4a2

) .

(A10)

As a1(1+a2 )
4a2

< 1, Sq( f ) has a local maximum at fr =
cos−1 [ a1(1+a2 )

4a2
]/2πtu, indicating the resonant behavior of the

system.
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