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Transport and fluctuations in mass aggregation processes: Mobility-driven clustering
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We calculate the bulk-diffusion coefficient and the conductivity in nonequilibrium conserved-mass aggre-
gation processes on a ring. These processes involve chipping and fragmentation of masses, which diffuse on
a lattice and aggregate with their neighboring masses on contact, and, under certain conditions, they exhibit
a condensation transition. We find that, even in the absence of microscopic time reversibility, the systems
satisfy an Einstein relation, which connects the ratio of the conductivity and the bulk-diffusion coefficient to
mass fluctuation. Interestingly, when aggregation dominates over chipping, the conductivity or, equivalently,
the mobility of masses, is greatly enhanced. The enhancement in the conductivity, in accordance with the
Einstein relation, results in large mass fluctuations and can induce a mobility-driven clustering in the systems.
Indeed, in a certain parameter regime, we show that the conductivity, along with the mass fluctuation, diverges
beyond a critical density, thus characterizing the previously observed nonequilibrium condensation transition
[Phys. Rev. Lett. 81, 3691 (1998)] in terms of an instability in the conductivity. Notably, the bulk-diffusion
coefficient remains finite in all cases. We find our analytic results in quite good agreement with simulations.

DOI: 10.1103/PhysRevE.103.042133

I. INTRODUCTION

Mass aggregation processes involving fragmentation, dif-
fusion, and aggregation are ubiquitous in nature. They occur
in a variety of growth and aggregation related phenomena,
such as droplet and cloud formation [1,2], planet and island
formation [3,4], aggregation in colloidal suspensions [5], traf-
fic flows [6,7], polymer gel and aerosol formation [2,8,9],
self-assembly in nanomaterials [10], etc. These systems are
inherently driven out of thermal equilibrium as they violate
detailed balance due to the lack of time reversibility at the
microscopic levels. Not surprisingly, for such systems, there is
no unified statistical mechanics framework based on a general
thermodynamic principle.

Throughout the past decades, significant efforts have been
made to understand various static and dynamic properties
of aggregation processes through studies of simple models,
which are easy to simulate on computers and amenable to
analytical calculations. Unlike their equilibrium counterparts,
these nonequilibrium model systems, while having simple
dynamical rules, possess nontrivial spatiotemporal structures.
Indeed, under certain conditions, they exhibit striking col-
lective behaviors, such as cluster and pattern formation [1],
giant mass fluctuations and intermittency [11,12], gelation [8],
and condensation transition [13–15], etc. In this paper, we
aim to characterize some of the above-mentioned collective
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properties in terms of the two transport coefficients: the bulk-
diffusion coefficient and the conductivity.

In some of the earliest studies, the clustering properties
were explored through simple kinetic models of aggregation
related growth processes, such as polymerization [8,9,16]
and droplet formation [17], etc. Later, several variants of
these models were introduced through generalized fragmen-
tation and aggregation kernels, which specify the rates with
which masses get fragmented and aggregate [8,13,18]. In
fact, depending on the relative strength of fragmentation
and aggregation processes, the systems undergo gelation or
condensation transition and exhibit self-similarity, which are
manifested in the power-law cluster size distributions of
masses. Although, in a natural environment, these mass ag-
gregation processes can be dominated by diffusion [19], the
earlier studies, however, did not take into account the underly-
ing spatial structures through which the mass diffusion could
occur in these systems.

Indeed, in a more realistic setting, the process of diffusion
should be considered to fully characterize the spatiotemporal
properties of mass aggregation processes. To this end, the
diffusion was incorporated in Refs. [14,15,20], where masses,
in addition to being fragmented with a certain rate, can also
diffuse around and aggregate when a mass comes into contact
with any other neighboring diffusing mass. Interestingly, in
this case, the system was shown to exhibit, beyond a critical
global density, a condensation transition and diverging mass
fluctuations. However, in these works, the fragmentation was
considered only through chipping of a single-unit mass. Later,
a generalized version of the fragmentation processes, though
without any diffusion, was considered in models where
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arbitrary amounts of mass can get fragmented [21]; however,
in the absence of diffusion and aggregation, the latter models
do not exhibit any condensation transition.

While such mass aggregation processes provide a simple
but a novel mechanism of a nonequilibrium condensation
transition, the dynamical origin of the phase transition, i.e.,
exactly how mass transport affects the mass fluctuations,
especially near the transition point, is not well understood.
More generally, hydrodynamics of these mass aggregation
processes and the related time-dependent properties, such as
that of density relaxations in the systems, are still largely
unexplored, even as they are of a significant interest because
hydrodynamics can also characterize large-scale fluctuations
in these systems [22,23]. Deriving hydrodynamics of driven
many-body systems is of fundamental interest in statistical
physics and requires calculations of density-dependent trans-
port coefficients, such as the bulk-diffusion coefficient and the
conductivity. However, the problem in general remains a chal-
lenging one [24,25]. The difficulties arise due to mainly two
reasons. First, interacting particle systems can have a “nongra-
dient” structure [26], making it hard to find a coarse-grained
local current, which can be expressed as a gradient of a local
observable. Second, unlike in equilibrium, the steady-state
probability weights of microscopic configurations in most
cases are a priori not known and calculating the average of the
local observables, required to obtain the transport coefficients,
is not particularly easy.

In this paper, we derive hydrodynamics of a broad class
of nonequilibrium conserved-mass aggregation processes on
a ring of discrete lattice sites and explore the relationship
between fluctuations and transport in the systems. To this end,
we consider a generalized version of the aggregation models,
where all three processes—fragmentation, diffusion, and ag-
gregation of masses—are present. In addition to the chipping
of a single-unit mass, we introduce fragmentation processes,
where a random amount of mass can get detached from the
parent mass. The fragmented mass diffuses symmetrically, to
their right or left with equal probability, and aggregates on
contact with a neighboring mass, if there is any. The total
mass remains conserved in the system. For simplicity, we
consider fragmentation, diffusion and aggregation rates being
independent of masses at departure (or destination) sites.

The hydrodynamic time evolution of the local density field
in these systems is governed by the two transport coefficients:
the bulk-diffusion coefficient and the conductivity. In a few
special cases, including the most interesting one exhibiting
a condensation transition, the transport coefficients are an-
alytically calculated from the knowledge of the single-site
mass distributions; in general, the transport coefficients in
these mass aggregation processes are nonlinear functions of
density. Indeed, the calculations of the transport coefficients
have been made possible due to the following simplifying
features of the models considered here. The systems satisfy
a “gradient” property, implying that the instantaneous coarse-
grained local current can be expressed as a gradient of a
local observable. Moreover, we find that the systems have,
in the limit of large system sizes, vanishingly small spatial
correlations so that we can use a mean-field theory to exactly
calculate the local observables required to obtain the transport
coefficients. However, for the generic parameter values, we

have calculated the transport coefficients only numerically.
Remarkably, despite the violation of detailed balance, the ratio
of the conductivity to the bulk-diffusion coefficient is related
to the mass fluctuation through an equilibrium-like Einstein
relation [see Eq. (19)].

Notably fragmentation, diffusion, and aggregation pro-
cesses together greatly enhance the conductivity, or equiv-
alently the mobility of masses, resulting in large mass
fluctuations and a mobility-driven clustering in the systems.
Indeed, in a certain parameter regime, where fragmentation
and aggregation dominate over single-particle chipping, the
systems undergo a dynamic phase transition in the sense that
the conductivity diverges in this regime (or, equivalently, the
resistivity vanishes). To characterize the collective dynamical
behaviors of such systems, we parametrize the fragmentation
processes through a probability distribution φ(v), which is
defined over nonnegative integers v � 0. During a fragmen-
tation event, a random v units of mass get fragmented from
a site, provided the mass at a site is greater than or equal to
v, and the fragmented v units of mass then diffuse together
to one of the neighboring sites; if the mass at the site is less
than v, then the whole mass diffuses to the neighboring site.
Though the system can have a large number of parameters
depending on the distribution function φ(v), we broadly ob-
serve two kinds of dynamical behaviors. If the typical value
of v is finite, there is no phase transition in the systems and
the two transport coefficients—the bulk-diffusion coefficient
and the conductivity—remain finite at all densities; however,
the conductivity can be quite large if the typical value of v is
large. On the other hand, when the typical value of v diverges,
the systems undergo, beyond a critical density, a condensa-
tion transition, where a macroscopic-size mass condensate
forms in the systems and subsystem mass fluctuations diverge.
Dynamically, the condensation transition is characterized by
the singularity in the conductivity, which also diverges at the
transition point.

To quantify the transport and the fluctuation characteris-
tics of the mass aggregating systems in concrete terms, we
consider two one-parameter families of probability distribu-
tions [a localized distribution φ(v) = δv,v0 and an exponential
distribution φ(v) ∝ exp(−v/v∗)], where we vary the typical
values v0 and v∗ for any transition to occur. We find that, in
the presence of chipping, the system exhibits a condensation
transition at a finite critical density ρc only when v0 → ∞ (or
v∗ → ∞); in the absence of chipping, a macroscopic conden-
sate however forms at any nonzero density when v0, v∗ → ∞.
We show that, at the phase transition point, both the mass fluc-
tuation and the conductivity develop a simple-pole singularity,
i.e., both the quantities as a function of density ρ diverge
as (ρc − ρ)−1. Indeed the intimate connection between the
transport and the fluctuation is precisely encoded in the Ein-
stein relation. Interestingly, the bulk-diffusion coefficients in
all cases remain bounded.

The paper is organized as follows. In Sec. II, we define
the model where chipping of single unit of mass and frag-
mentation of a variable amount of mass v are both allowed
with certain rates. In Sec. III, we describe the linear response
theory for calculating the transport coefficients. In Secs. IV
and V, we study the two types of fragmentation rules where
the distribution is either localized φ(v) = δv,v0 or exponential
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φ(v) ∝ exp(−v/v∗), having a typical size v0 or v∗, respec-
tively. We conclude in Sec. VI.

II. MASS AGGREGATION MODELS

In this section, we define a generalized version of mass
aggregation processes, which have been studied intensively in
the past [14,15,21]. The system consists of L sites on a one-
dimensional ring, where a site i is associated with a mass, or
particle number, mi ∈ [0, 1, 2, . . . ], taking unbounded integer
values (mass at any site is measured in the unit of individual
particle mass). In these processes, total mass M = ∑L

i=1 mi

remains conserved with global density ρ = M/L fixed. The
dynamics evolves in a continuous time and, at any instant of
time, there are two kinds of dynamical updates possible at an
occupied site:

(A) chipping of a single-unit mass with rate p, and
(B) fragmentation of a random amount of mass with rate

q.
In the event of (A), a single-unit of mass, or a particle, is

chipped off from the departure site, provided the site is occu-
pied. The chipped-off mass is then transferred, symmetrically,
to one of its nearest neighbors with equal probability 1/2. In
the event of (B), a random number v is drawn from a proba-

bility distribution φ(v). Provided that the site has mass greater
than v, the whole block of v units of mass are fragmented
and transferred together to one of the nearest neighbors with
probability 1/2; otherwise, the whole block of mass is trans-
ferred in the similar way, keeping the departure site empty.
In Monte Carlo simulations, we employ random sequential
updates where a site is updated with a unit rate. As shown
later, large-scale behaviors of the system is determined by the
competition between chipping and fragmentation, leading to a
dynamical phase transition on tuning either the density or the
relative strength q̃ = q/(p + q) of fragmentation to chipping.

Let mi(t ) be the mass at site i and at time t . Now let us
define the indicator function,

âi = 1 − δmi,0, (1)

which is 1 if ith site is occupied and 0 otherwise. We define
another indicator function âv

i , which is 1 if the ith site contains
at least v particles, and 0 otherwise,

âv
i =

{
1 if mi � v

0 if mi < v
. (2)

Then the continuous-time evolution for mass mi(t ), in an
infinitesimal time interval dt , can be written as follows:

mi(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mi(t ) − 1 prob. pâidt,

mi(t ) + 1 prob. pâi−1dt/2,

mi(t ) + 1 prob. pâi+1dt/2,

mi(t ) − v prob. qâv
i φ(v)dt,

0 prob. qâi
(
1 − âv

i

)
φ(v)dt,

mi(t ) + mi−1(t ) prob. qâi−1
(
1 − âv

i−1

)
φ(v)dt/2,

mi(t ) + v prob. qâv
i−1φ(v)dt/2,

mi(t ) + mi+1(t ) prob. qâi+1
(
1 − âv

i+1

)
φ(v)dt/2,

mi(t ) + v prob. qâv
i+1φ(v)dt/2,

mi(t ) prob. 1 − �dt,

(3)

where the sum of the rates for all possible mass transfer events in the infinitesimal time interval dt is given by

� = p

2
(2âi + âi−1 + âi+1) + q

2

∞∑
v=0

φ(v)
[
2âv

i + 2âi
(
1 − âv

i

) + âi−1
(
1 − âv

i−1

) + âv
i−1 + âi+1

(
1 − âv

i+1

) + âv
i+1

]
. (4)

III. HYDRODYNAMICS: THEORETICAL FRAMEWORK

According to the mass aggregation model defined in
Eq. (3), there is only one conserved quantity, viz. the mass
or the particle numbers. Consequently, the hydrodynamic
evolution of local density ρ(x, τ ) at suitably scaled space
and time coordinates x and τ , respectively, is governed by
the two transport coefficients, the bulk-diffusion coefficient
D(ρ) and the particle conductivity χ (ρ), which are in general
nonlinear functions of density ρ. In this section, we set up a
general framework to calculate the two transport coefficients
directly from the microscopic dynamics. The bulk-diffusion
coefficient can be calculated in an appropriate scaling limit
from the time-evolution equation of the local density field

obtained using the continuous-time microscopic dynamics as
Eq. (3). On the other hand, the conductivity can be obtained
by calculating the response of the system against an external
perturbation (force here), which couples to the mass of the
particles. As in a standard linear response theory, we calculate
the average current due to a small externally applied biasing
force field, which drives the particles in a preferred direction.
Indeed the conductivity calculated in this paper is analogous
to the conductivity of charged particles in the presence of an
electric field. We incorporate the effect of the biasing force
into the microscopic dynamics [Eq. (3)] of the model by
following a local detailed balance condition. In the presence
of a biasing force of magnitude F , which is applied, say,
in the counterclockwise direction, the particle hopping rates
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are modified by exponentially weighting the original hopping
rates of Eq. (3) as given below [23],

cF
i→ j = ci→ j exp

[
1
2�mi→ jF ( j − i)δx

]
,

� ci→ j
[
1 + 1

2�mi→ jF ( j − i)δx
] + O(F 2). (5)

Here ci→ j and cF
i→ j are the mass transfer rates from site i

to site j = i ± 1 in the absence and in the presence of the
biasing force of magnitude F , respectively, and �mi→ j is the
transferred mass from site i to j, and δx is the lattice spacing.
Also, in the last step of the above equation, we have kept only
the leading order term in F , which is required for the linear
response analysis performed below.

Large-scale spatiotemporal properties of a system can be
understood in terms of the relevant local degrees of freedom,
which vary slowly in space and time; in the case of mass ag-
gregation processes considered here, the desired slow variable
is the local mass density

ρi(t ) = 〈mi(t )〉. (6)

Interestingly, the large-scale fluctuation properties of a diffu-
sive system can be characterized through the large-deviation
probabilities for the coarse-grained local density and local
diffusive and drift currents, which are obtained on a suitable
macroscopic scale (i.e., the diffusive scaling limit discussed
later) through a continuity equation corresponding to the
conserved local density. This is the essence of a recently
developed fluctuating hydrodynamics, or the macroscopic
fluctuation theory, which provides a general framework for
studying macroscopic fluctuations in the diffusive systems
[23,27]. In the past, for systems satisfying a “gradient con-
dition” [26], this particular approach has been elucidated for
various systems that possess a local equilibrium property
on large spatiotemporal scales [22,32]. Later, it has been
used to derive hydrodynamics for various conserved-mass
transport processes that manifestly violate detailed balance
at the microscopic level [28,29]. In a more recent develop-
ment, large-scale hydrodynamics has been derived for systems
having a “generalized gradient property” [30,31]. The mass
aggregation models considered here have the “gradient prop-
erty,” which, along with the hypothesis of a local steady
state—analogous to that of local equilibrium [22,32]—can be
used to calculate the transport coefficients.

To this end, assuming the existence of local steady state,
we introduce local single-site mass distribution Prob.(mi =
m|ρi ) ≡ Ploc(m|ρi ), the probability that a site i contains mass
m provided that the local density is ρi = 〈mi〉. In the following
calculations, the local mass distribution Ploc(m|ρi ) corre-
sponding to a local density ρi is replaced by the steady-state
single-site mass distribution P(m|ρ) calculated at density ρ =
ρi. That is, we use an equality Ploc(m|ρ) = P(m|ρ), which
is expected to hold on the large spatiotemporal scales. Con-
sequently, the steady-state mass distribution can be used to
calculate also the other local observables, such as, the local oc-
cupation probability, which can be written as 〈âi(t )〉ρi (t )=ρ =
a(ρ) = 1 − P(m = 0|ρ). For the notational simplicity, in the
rest of the paper we denote the steady-state single-site mass
distribution as P(m) ≡ P(m|ρ).

In the presence of the small biasing force of magni-
tude F → 0, the particle hopping rates change according to

Eq. (5) and we obtain an exact expression of the density
evolution equation,

∂ρi(t )

∂t
= 1

2
(gi−1 + gi+1 − 2gi ) − F

4
δx(ui+1 − ui−1). (7)

Here the two local observables gi and ui are given by

gi = p〈âi〉 + qρi + q
∞∑

v=0

φ(v)
[
v
〈
âv

i

〉 − 〈
miâiâ

v
i

〉]
, (8)

ui = p〈âi〉 + q
〈
m2

i

〉 + q
∞∑

v=0

φ(v)
[
v2

〈
âv

i

〉 − 〈
m2

i âiâ
v
i

〉]
. (9)

The calculation details for the derivation of Eq. (7) are
presented in Appendix A 1. Note that the system satisfies “gra-
dient condition” in the sense that the local diffusive current JD

in Eq. (7) can be written as a gradient (discrete) of a local
observable gi. The gradient property of these models is useful
as it helps one to immediately identify the bulk-diffusion
coefficient in the systems. Now, by taking the diffusive scal-
ing limit i → x = i/L and t → τ = t/L2, and lattice constant
δx → 1/L, Eq. (7) leads to the time-evolution equation for the
scaled coarse-grained density field ρ(x, τ ) ≡ ρi(t ),

∂ρ(x, τ )

L2∂τ
= 1

2

[
g

(
x − 1

L
, τ

)
+ g

(
x + 1

L
, τ

)
− 2g(x, τ )

]

− 1

4

[
u

(
x + 1

L
, τ

)
− u

(
x − 1

L
, τ

)]
F

L
,

= 1

2

[
1

L2

∂2g(ρ)

∂x2

]
− 1

4

[
2

L

∂u(ρ)

∂x

]
F

L
+ O

(
1

L3

)
.

(10)

Here we assume the density gradients being small O(1/L) and
use the following small-gradient expansions:

g

(
x ± 1

L
, τ

)
= g(ρ(x, τ )) ± 1

L

∂g(ρ(x, τ ))

∂x

+ 1

2L2

∂2g(ρ(x, τ ))

∂x2
+ O

(
1

L3

)
, (11)

u

(
x ± 1

L
, τ

)
= u(ρ(x, τ )) ± 1

L

∂u(ρ(x, τ ))

∂x
+ O

(
1

L2

)
.

(12)

Moreover, in the above expansions, we assume the existence
of a local steady state, implying that, on the macroscopic
spatiotemporal scales, the local quantities gi(t ) ≡ g(ρ(x, τ ))
and ui(t ) ≡ u(ρ(x, τ )) depend on the coarse-grained (macro-
scopic) space and time variables x and τ , respectively, only
through the coarse-grained density field ρ(x, τ ). In the limit
of L → ∞, Eq. (10) immediately leads to the desired hydro-
dynamic time-evolution equation of the density field,

∂ρ(x, τ )

∂τ
= 1

2

∂2g(ρ(x, τ ))

∂x2
− F

2

∂u(ρ(x, τ ))

∂x
, (13)

where the quantities g(ρ) and u(ρ) can be calculated as a
function of density ρ from the single-site mass distribution as
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discussed below [see Eqs. (17) and (18)]. Note that the above
equation can be recast in the form of a continuity equation,

∂ρ(x, τ )

∂τ
= − ∂

∂x

[
−D(ρ)

∂ρ

∂x
+ χ (ρ)F

]
≡ −∂J (ρ)

∂x
,

(14)

through a constitutive relation between hydrodynamic current
J (ρ) and local density ρ,

J (ρ) = −D(ρ)∂xρ + χ (ρ)F, (15)

where D(ρ) and χ (ρ) are the bulk diffusion coefficient and
the conductivity, respectively. The first term in the current
arises according to Fick’s law where a nonuniform density
profile contributes to a diffusive current JD(ρ) = −D(ρ)∂xρ

and the second term in the current provides a drift current
Jd (ρ) = χ (ρ)F , which is essentially the (linear) response to
the small biasing force of magnitude F . Comparing Eq. (13)
with Eq. (14), one can identify the bulk-diffusion coefficient
and conductivity, respectively as,

D(ρ) = 1

2

∂g(ρ)

∂ρ
, χ (ρ) = u(ρ)

2
. (16)

To explicitly calculate the transport coefficients D(ρ) and
χ (ρ) as a function of density ρ, we now use the identities
〈âi〉 = 1 − P(0) and 〈âv

i 〉 = ∑∞
m=v P(m) in Eqs. (8) and (9)

and express g(ρ) and u(ρ) in terms of P(m) as

g(ρi ) = q
∞∑

v=1

φ(v)v
∞∑

m=v

P(m) − q
∞∑

v=2

φ(v)
∞∑

m=v

mP(m)

+ p[1 − P(0)] + qρi[1 − φ(0) − φ(1)], (17)

u(ρi ) = q
∞∑

v=1

φ(v)v2
∞∑

m=v

P(m) − q
∞∑

v=2

φ(v)
∞∑

m=v

m2P(m)

+p[1 − P(0)] + q[1 − φ(0) − φ(1)]
∞∑

m=1

m2P(m).

(18)

Note that the right-hand sides of the above equations depend
on the local density ρi through the dependence of mass dis-
tribution P(m) on the local density. So the task of calculating
the transport coefficients essentially boils down to calculating
the single-site mass distribution P(m). Moreover, due to the
gradient property, one would expect, through the macroscopic
fluctuation theory [23], the existence of an Einstein relation
between the ratio of the two transport coefficients and the
mass, or the particle-number, fluctuation in the systems,

χ (ρ)

D(ρ)
= σ 2(ρ). (19)

Here the scaled subsystem mass fluctuation σ 2(ρ) is defined
as

σ 2(ρ) = lim
lsub→∞

〈
M2

sub

〉 − 〈Msub〉2

lsub
, (20)

where Msub = ∑lsub
i=1 mi is the mass in a subsystem of size lsub.

In the following sections, we explicitly calculate the local
observables g(ρ) and u(ρ) as a function of density and demon-

strate the above results obtained in Eqs. (16) and (19) for
mass aggregation models with various choices of the probabil-
ity distribution φ(v). Note that, unless mentioned otherwise,
we take p = q = 1/2 throughout; extension of the results to
generic values of p and q is straightforward.

IV. VARIANT I: FRAGMENTATION
OF A FIXED AMOUNT OF MASS

Depending on the choice of the probability distribution
function φ(v), we consider several special cases of the gener-
alized model described in Sec. II, some of which can be solved
analytically. The special cases we discuss in this section have
a sharply localized distribution φ(v) = δv,v0 . In order to calcu-
late the transport coefficients, we need to determine two local
observables g(ρ) and u(ρ) as a function of density ρ. So by
putting φ(v) = δv,v0 and setting p = q = 1/2 in Eqs. (8) and
(9), the local observables are written in a simplified form,

g(ρi ) = 1
2

[
ρi + 〈âi〉 + v0

〈
âv0

i

〉 − 〈
miâiâ

v0
i

〉]
, (21)

u(ρi ) = 1
2

[〈âi〉 − 〈
m2

i âiâ
v0
i

〉 + 〈
m2

i

〉 + v0
2〈âv0

i

〉]
. (22)

In the following sections, we explore a few explicitly solv-
able cases having three different values of v0 = 1, 2 and ∞;
as demonstrated later, the model with v0 = ∞, which was
previously studied in Ref. [14,15], undergoes a condensation
transition on tuning the global density of the system. How-
ever, for generic values of v0, the transport coefficients are
calculated numerically using the above equations.

A. Case I: v0 = 1, zero range process

In this section, we illustrate the general hydrodynamic
formalism developed in the previous section by starting with
the simplest case: variant I with φ(v) = δv,1. Note that this
particular case is equivalent to that with pure single-particle
chipping, or with pure single-particle aggregation, occurring
with rate (p + q). As we see later, the steady-state probability
weights of microscopic configurations and the hydrodynamic
time-evolution equations, up to a trivial rescaling of time, are
independent of the rates p and q. The mass mi(t ) at site i and
at time t for the biased system is updated in an infinitesimal
time interval dt as given below

mi(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mi(t ) − 1 prob. pâidt,

mi(t ) + 1 prob. pâi−1
(
1 + Fδx

2

)
dt
2 ,

mi(t ) + 1 prob. pâi+1
(
1 − Fδx

2

)
dt
2 ,

mi(t ) − 1 prob. qâidt,

mi(t ) + 1 prob. qâi−1
(
1 + Fδx

2

)
dt
2 ,

mi(t ) + 1 prob. qâi+1
(
1 − Fδx

2

)
dt
2 ,

mi(t ) prob. 1 − �dt,

(23)

with

�= (p+q)

[
âi+ 1

2

{
âi−1

(
1 + Fδx

2

)
+ âi+1

(
1 − Fδx

2

)}]
.

(24)
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The local density ρi(t ) = 〈mi(t )〉 at site i and time t evolves
as

∂ρi

∂t
= (p + q)

2

[
(〈âi+1〉 + 〈âi−1〉 − 2〈âi〉)

+Fδx

2
(〈âi−1〉 − 〈âi+1〉)

]
. (25)

Now in the diffusive scaling limit, i → x = i/L and t → τ =
t/L2, and lattice constant δx → 1/L, the above equation leads
to the hydrodynamic evolution of density field ρ(x, τ ),

∂ρ(x, τ )

∂τ
= (p + q)

2

∂2a(ρ)

∂x2
− (p + q)

2
F

∂a(ρ)

∂x
, (26)

where

a(ρ) = 1 − P(m = 0), (27)

is the probability that a site is occupied. By comparing
Eq. (26) with Eq. (14), the bulk diffusion coefficient and the
conductivity can be readily identified as

D(ρ) = (p + q)

2

∂a(ρ)

∂ρ
, (28)

χ (ρ) = (p + q)

2
a(ρ). (29)

To explicitly calculate the transport coefficients as a function
of density, we first try to obtain the single-site mass distribu-
tion P(m), which can be calculated using the steady-state joint
mass distribution

P (m1, m2, . . . , mL ) =
L∏

k=1

P(mk ), (30)

which, in this case, has a product form. The above product
form can be easily understood from the fact that the unbiased
process, i.e., Eq. (23) with F = 0, is a zero range process
(ZRP) with particle-hopping rates being constant [33]. In-
deed, as we demonstrate in Appendix A 3, the neighboring
spatial correlations vanish in the mass aggregation processes
for generic parameter values so that one can in principle resort
to a mean-field analysis, similar to the one performed below.

For completeness, we now present a derivation of the
single-site mass distribution P(m) for v0 = 1 using a master
equation method along the lines of Ref. [21]. Indeed the
analysis provided below illustrates our overall strategy in
calculating the transport coefficients in various other cases
discussed later. The time evolution of the single-site mass
distribution can be written as

dP(m, t )

dt
= (p + q)[−P(m, t ) − a(ρ)P(m, t ) + P(m + 1, t )

+ a(ρ)P(m − 1, t )], for m > 0, (31)

dP(0, t )

dt
= (p + q)[−a(ρ)P(0, t ) + P(1, t )]. (32)

In the steady state, Eq. (32) provides a condition

P(1) = aP(0) = P(0)[1 − P(0)]. (33)

Now by defining the steady-state generating function Q(z) =∑∞
m=1 P(m)zm, multiplying Eq. (31) by zm and then summing

over m from 1 to ∞, we obtain

−(1 + a)Q(z) + 1

z
[Q(z) − zP(1)] + az[Q(z) + P(0)] = 0,

(34)

which, after substituting Eq. (33) into Eq. (34), leads to

Q(z) = zP(0)[1 − P(0)]

1 − z[1 − P(0)]
. (35)

To determine P(0), we use the condition dQ(z)
dz |z=1 = 〈m〉 = ρ

to obtain

P(0) = 1

1 + ρ
. (36)

After substituting Eq. (36) into Eq. (35) and expanding Q(z)
in powers of z,

Q(z) = 1

1 + ρ

∞∑
m=1

(
zρ

1 + ρ

)m

, (37)

we obtain exactly the steady-state mass distribution,

P(m) = 1

1 + ρ

(
ρ

1 + ρ

)m

. (38)

Now the analytic expression of occupancy,

a(ρ) = ρ

1 + ρ
, (39)

is used in Eqs. (28) and (29) to finally obtain the bulk-
diffusion coefficient D(ρ) and the conductivity χ (ρ) as a
function of density,

D(ρ) = (p + q)

2(1 + ρ)2
, (40)

χ (ρ) = (p + q)ρ

2(1 + ρ)
. (41)

One can immediately check the Einstein relation Eq. (19) by
directly calculating the scaled subsystem mass fluctuation as

σ 2(ρ) ≡ lim
lsub→∞

〈
M2

sub

〉 − 〈Msub〉2

lsub
= ρ(1 + ρ), (42)

using the fact that 〈M2
sub〉 − 〈Msub〉2 = lsub(〈m2〉 − 〈m〉2) as

the neighboring correlations, in the limit of large system size,
identically vanish, i.e., c(r) = 〈mimi+r〉 − ρ2 = 0 for r �= 0,
due to the steady-state product measure in Eq. (30).

B. Case II: v0 = 2

We now consider the first nontrivial case, that is variant I
with v0 = 2; this model can be mapped to an exclusion pro-
cess with nearest and next-nearest-neighbor particle hopping
[33]. As the neighboring correlations are shown to vanish in
the limit of large system sizes (see Appendix A 3), we can
calculate the steady-state single-site mass distribution P(m)
by employing a mean-field theory, where the joint mass dis-
tribution is assumed to have a product form. Now taking into
account all possible ways of mass transfer, we can write the
time evolution equations of P(m, t ) for an arbitrary v0 as
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given below,

dP(m, t )

dt

∣∣∣∣
m>0

= −(p + q)

[
1 +

∞∑
m′=1

P(m′, t )

]
P(m, t ) + qP(m + v0, t ) + pP(m + 1, t ) + pP(m − 1, t )

∞∑
m′=1

P(m′, t )

+ qP(m − v0, t )�(m − v0)
∞∑

m′=v0

P(m′, t )+q
m∑

m′=1

P(m − m′, t )P(m′, t )−q
m∑

m′=v0

P(m − m′, t )P(m′, t )�(m − v0),

(43)

dP(0, t )

dt
= −(p + q)

∞∑
m′=1

P(m′, t )P(0, t ) + pP(1, t ) + q
∞∑

m′=1

P(m′, t ) + qP(v0, t ) − q
∞∑

m′=v0

P(m′, t ), (44)

where the Heaviside step function �(m − v0) = 0 if m <

v0 and �(m − v0) = 1 otherwise. We now solve the master
equations (43) and (44) for a particular value of v0 = 2 in the
steady state by setting the left-hand sides of Eqs. (43) and (44)
to zero. Now multiplying the right-hand side of Eq. (43) by
zm, summing m from 1 to ∞, and by combining Eq. (44) in
the steady state, we solve for the generating function Q(z) =∑∞

m=1 P(m)zm as given below,

Q(z) = z[q̃P1 + P0(1 − P0)(1 + q̃z)z − q̃P1P0z2]

q̃ + {z − (1 − P0)z2} − q̃(1 − P1 − P0)z3
, (45)

where we write q̃ = q/(p + q). We further simplify the prob-
lem by choosing p = q = 1/2 and in this case we obtain,

Q(z) = z
P1 + P0(1 − P0)(2 + z)z − P1P0z2

1 + 2z − 2(1 − P0)z2 − (1 − P1 − P0)z3
, (46)

where we denote the undetermined parameters P0 = P(m =
0) and P1 = P(m = 1). By definition, we have Q(0) = 0 and
Q(1) = 1 − P0, both of which are satisfied by Eq. (46), imply-
ing that the above expression for Q(z) is indeed consistent. To
determine the two unknown parameters P0 and P1 in the gen-
erating function Q(z), we need to put two conditions on Q(z).
One condition can be found from the identity dQ

dz |z=1 = ρ,
which leads to

P1 = 5 − P0(5 + 3ρ)

ρ + 2
. (47)

The second condition is obtained as follows. From the def-
inition, Q(z) converges only if |z| � 1 since 0 � P(m) � 1.
However, if the denominator of Q(z) has a root at z = z∗ with
|z∗| � 1, then Q(z) will diverge at that root z∗ which is not
allowed. So to avoid a diverging Q(z), both the denominator
and the numerator of Q(z) in Eq. (46) should share a common
root at z = z∗ so that Q(z) remains finite. This condition helps
us to determine the probability P1 in terms of probability
P0 and density ρ. As the numerator of Q(z) is a quadratic
function of z, we explicitly find the two roots,

z± = 1 − P0

1 − P1 − P0

[
−1 ±

√
1 − P1(1 − P1 − P0)

P0(1 − P0)2

]
. (48)

Since 0 < P1, P0 < 1, the prefactor
(1 − P0)/(1 − P1 − P0) in the above equation is always
greater than 1. Moreover, one can check that the term inside
the square root is always positive, implying that both the roots

are real and z− � −1. Therefore the root of physical interest
is z = z+. Furthermore, the denominator of Q(z) in Eq. (46)
should vanish at z = z∗ = z+. Using this condition and the
relation in Eq. (47) together, we express the probabilities P0

and P1 as a function of density ρ,

P0 = 9 + 5ρ −
√

1 + 10ρ + 5ρ2

2(2 + ρ)2
, (49)

P1 = (3ρ + 5)
√

1 + 10ρ + 5ρ2 − (5ρ2 + 12ρ + 5)

2(2 + ρ)3
. (50)

Next we expand the generating function Q(z) as Eq. (46) in
power series of z,

Q(z) =
∞∑

m=1

(
P1

P0

)m

P0Fm+1zm, (51)

where Fm+1 is the (m + 1)th element of the Fibonacci se-
quence, where mth element is defined as the sum of the two
preceding ones,

Fm = Fm−1 + Fm−2, (52)
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FIG. 1. Variant I, v0 = 2. Single-site mass distributions P(m) are
plotted as a function of mass m for densities ρ = 1 (green squares)
and 2 (yellow circles). Simulations (points) and the exact mean-field
theoretical results (lines) as in Eq. (53) are in excellent agreement
with each other.
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for m � 2 and the first two terms are given by F0 = 0 and
F1 = 1 [34]. Comparing the above power series expansion and
the definition of the generating function Q(z), we immediately
find the singe-site mass distribution P(m) as a function of m
for any density ρ,

P(m) =
(

P1

P0

)m

P0Fm+1, (53)

where P0 and P1 both depend on density and are provided by
Eqs. (49) and (50), respectively. One can show that variant
I with v0 = 2 (any other v0, except v0 = 1) violates detailed
balance and the joint-mass distributions cannot be writ-
ten in terms of the equilibrium Boltzmann distribution (see
Appendix A 2). In Fig. 1, we plot, for two different densities
ρ = 1 (green squares) and 2 (yellow circles), the single-site
mass distributions P(m) as a function of mass m, obtained
from simulations, which are in excellent agreement with the
analytic expression as in Eq. (53).

Using the mean-field analysis similar to that performed
above, it is in principle possible to find the steady-state
single-site mass distributions, and therefore to obtain the
transport coefficients, also for other values of v0. How-
ever, the calculations are outside the scope of the present
work.

Transport coefficients and density relaxation

To explicitly calculate the transport coefficients as a
function of density, one needs to first evaluate the two
density-dependent local observables g(ρ) and u(ρ). This can
be done by directly calculating the steady-state averages
in Eqs. (17) and (18) with the help of the mass distri-
bution P(m) in Eq. (53). Now, by substituting g(ρ) and
u(ρ) into Eq. (16) and performing somewhat tedious but
straightforward algebraic manipulations, we explicitly find the
analytic expressions of the bulk-diffusion coefficient and the
conductivity,

D(ρ) = 1

4

5ρ{2ρ[
√

5ρ(2 + ρ) + 1 − 1] + 10
√

5ρ(2 + ρ) + 1 − 3} + 57
√

5ρ(2 + ρ) + 1 + 7

2(2 + ρ)4
√

5ρ(2 + ρ) + 1
, (54)

χ (ρ) = 1

4

−5
√

5ρ(2 + ρ) + 1 + ρ
[
10ρ(5 + ρ) − 4

√
5ρ(2 + ρ) + 1 + 61

] + 5

2(2 + ρ)3
. (55)

First we verify the above expression of the bulk-diffusion
coefficient D(ρ) by studying the relaxation of an initial den-
sity perturbation. To this end, we numerically integrate the
nonlinear diffusion equation (14) with external biasing force
F = 0,

∂ρ(x, τ )

∂τ
= ∂

∂x

[
D(ρ)

∂ρ

∂x

]
. (56)

We start by considering an initial density profile,

ρ(x, τ = 0) = ρ0 + n1
exp(−x2/2�2)√

2π�2
, (57)

where the background density ρ0 is uniform, n1 is the strength
of the density perturbation due to the addition of excess par-
ticles over the uniform background, and � is the width (or
the standard deviation) of the initial density perturbation. We
choose �2 = 2 × 10−4 and n1 = 0.2. For the numerical inte-
gration, we employ the Euler integration scheme, where we
discretize the variables x and τ in Eq. (56). We also perform
Monte Carlo simulations of the mass aggregation processes by
employing random sequential updates (which corresponds to
the continuous-time dynamics) and the same initial condition
as in Eq. (57). In the simulations, the averaging was done
over various initial configurations as well as the trajectories.
In inset of Fig. 2, we compare the density profiles obtained by
numerically integrating the hydrodynamic evolution Eq. (56)
and that obtained from simulations, at various hydrodynamic
times τ = 0 (magenta cross), 8 × 10−3 (yellow triangle), 2 ×
10−2 (blue circle), and 4 × 10−2 (red square). The hydrody-
namic theory (lines) captures the simulation results (points)
reasonably well over several decades of density values.
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FIG. 2. Verification of Einstein relation and density relaxation in
Variant I, v0 = 2: We verify the Einstein relation by plotting scaled
mass fluctuation σ 2(ρ ), calculated from simulations (green circle),
and compare that with the analytical expression (green line) of the
ratio of the transport coefficients χ (ρ )/D(ρ ) obtained from Eqs. (54)
and (55). In inset, we verify density relaxation of an initially lo-
calized density perturbation [Eq. (57)] at different hydrodynamic
times τ = 0 (magenta cross), 8 × 10−3 (yellow triangle), 2 × 10−2

(blue circle), and 4 × 10−2 (red square); we take ρ0 = 0.5, n1 = 0.2
and �2 = 2 × 10−4 in the initial density profile as in Eq. (57). The
lines denote numerically integrated hydrodynamic time-evolution
obtained by using the functional form of D(ρ ) as in Eq. (54) and
points denote simulation results.
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We also verify the Einstein relation as given in Eq. (19).
For this purpose, we directly compute, from the knowledge of
the single-site mass distribution in Eq. (53), the scaled vari-
ance σ 2(ρ) = limlsub→∞ [〈M2

sub〉 − 〈Msub〉2]/lsub of subsystem
mass Msub in a large subsystem of size lsub. The scaled
variance σ 2(ρ), within the mean-field theory (as verified in
Appendix A 2), is exactly equal to the steady-state variance of
single-site mass m, and is given by

σ 2(ρ) = 〈m2〉 − 〈m〉2,

= ρ2 + 2ρ − 1
5

√
5ρ(ρ + 2) + 1 + 1

5 . (58)

After some algebraic manipulations using Eqs. (54) and (55),
it can indeed be shown that the expression of the scaled mass
fluctuation σ 2(ρ) given in Eq. (58) is exactly the same as the
ratio of the two transport coefficients χ (ρ)/D(ρ), immedi-
ately implying the Einstein relation Eq. (19). In Fig. 2, we
plot the scaled mass fluctuation σ 2(ρ) obtained from simu-
lations (circles) and compare the simulation results with the
analytical expression of the ratio χ (ρ)/D(ρ) (lines), obtained
from Eqs. (54) and (55); the agreement between theory and
simulations is excellent.

Now we discuss the behaviors of the transport coefficients
in the two limiting cases of small and large densities. In the
low density limit ρ → 0, the probability of a site occupied by
two or more masses is very small. In this limit, bulk-diffusion
coefficient in Eq. (54) becomes D(ρ) � 1/2 + O(ρ) and
the conductivity given by Eq. (55) becomes χ (ρ) � ρ/2 +
O(ρ2), resulting in the mass fluctuation σ 2(ρ) = χ/D � ρ

in the leading order of density. This is expected as, in the
low density limit, the mass distribution is given by the Pois-
son distribution for which the fluctuation is equal to the
mean. In the other limit of high density ρ → ∞, D(ρ) �
5/4ρ2 and χ (ρ) � 5/4, and thus the fluctuation σ 2(ρ) =
χ/D � ρ2, which is the same as the large density behavior
of the scaled subsystem mass fluctuation in the ZRP [see
Eq. (42)].

C. Case III: v0 → ∞
In this section, we consider the most interesting case of in-

finitely large v0 → ∞. This case was studied in Refs. [14,15]
to understand the steady-state properties of clustering phe-
nomena in mass aggregation processes. The model allows
for single-particle chipping, diffusion and aggregation of
masses. Beyond a critical global density ρ > ρc, a conden-
sation transition was observed with a macroscopic-size mass
aggregate forming in the system, in addition to the power-law
single-site mass distribution in the bulk. In this section, we
calculate the bulk-diffusion coefficient and the conductivity
and characterize the condensation transition in the light of
an underlying instability, or a singularity, in the conductiv-
ity. To this end, we resort to a mean-field theory, which
helps us to obtain the explicit expressions of the transport
coefficients.

As v0 → ∞, mass mi at a site i is always less than v0,
implying that the indicator function av

i is zero. By putting
av

i = 0 in Eq. (3), the continuous-time update for mass at site

i in infinitesimal time interval can be written as

mi(t + dt )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 prob. âidt/2,

mi(t )−1 prob. âidt/2,

mi(t )+1 prob. âi−1dt/4,

mi(t )+1 prob. âi+1dt/4,

mi(t )+mi−1(t ) prob. âi−1dt/4,

mi(t )+mi+1(t ) prob. âi+1dt/4,

mi(t ) prob. 1 − [
âi + 1

2 (âi−1 + âi+1)
]
dt .

(59)

The above update equation can be used to obtain the following
equation for the second moment of mass 〈m2

i (t )〉 in the steady
state:

〈m2
i 〉 = 1

4

[〈2(mi − 1)2âi〉 + 〈(mi + 1)2(âi−1 + âi+1)〉
+ 〈(mi + mi−1)2âi−1〉 + 〈(mi + mi+1)2âi+1〉
+ 4

〈
m2

i

〉 − 〈
m2

i {4âi + 2(âi−1 + âi+1)}〉], (60)

where we have used the steady-state condition 〈m2
i (t + dt )〉 =

〈m2
i (t )〉. As demonstrated in Appendix A 3, the finite-size

scaling analysis of the two-point spatial correlation functions
implies that the neighboring correlations vanish as L → ∞.
Therefore the two-point correlation functions in Eq. (60)
can be written as a product of one-point functions, such
as 〈m2

i m j〉 = 〈m2
i 〉〈mj〉, 〈m2

i â j〉 = 〈m2
i 〉〈â j〉, and 〈mim2

j â j〉 =
〈mi〉〈m2

j â j〉, etc. Then using the identities, 〈m2
j â j〉 = 〈m2

j 〉 and
〈mjâ j〉 = ρ, we straightforwardly obtain the occupation prob-
ability,

a(ρ) = ρ(1 − ρ)

1 + ρ
, (61)

as a function of density. Similarly, by using the steady-state
condition for the third moment of local mass 〈m3

i (t + dt )〉 =
〈m3

i (t )〉, we calculate, exactly within the mean-field theory,
the second moment 〈m2

i 〉 ≡ θ2(ρ),

θ2(ρ) = ρ[1 + a(ρ)]

1 − a(ρ) − 2ρ
. (62)

After substituting Eq. (61) into the above equation, we readily
obtain the scaled subsystem mass fluctuation,

lim
lsub→∞

〈
M2

sub

〉 − 〈Msub〉2

lsub
≡ σ 2(ρ)

= θ2(ρ) − ρ2 = ρ(1 + ρ)(1 + ρ2)

1 − 2ρ − ρ2
. (63)

Note that the mass fluctuation diverges beyond a critical den-
sity ρc = √

2 − 1 and signals a condensation transition [35],
which was previously observed in Refs. [14,15] in this partic-
ular variant of the mass aggregation process.

Transport coefficients and density relaxation

To calculate the transport coefficients, we have to use the
biased dynamics in Eq. (A1) with φ(v) = δv,v0 and also the
indicator function av0

i = 0 (which is the case in the limit of
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v0 → ∞). Subsequently, by putting av0
i = 0 in Eqs. (21) and

(22), we obtain the local observables g(ρ) and u(ρ),

g(ρ) = 1
2 [ρ + a(ρ)], (64)

u(ρ) = 1
2 [a(ρ) + θ2(ρ)], (65)

as a function of density ρ. Then we substitute Eqs. (61) and
(62) into Eqs. (64) and (65) and use Eq. (16), to find the bulk-
diffusion coefficient D(ρ) and the conductivity χ (ρ),

D(ρ) = 1

2

∂g(ρ)

∂ρ
= 1

2(1 + ρ)2
, (66)

χ (ρ) = u(ρ)

2
= ρ(1 + ρ2)

2(1 + ρ)(1 − 2ρ − ρ2)
, (67)

respectively, as a function of density. Interestingly, the con-
ductivity χ (ρ) as given in Eq. (67) diverges, or equivalently
the resistivity (the inverse of the conductivity) vanishes, at a
critical density ρc = √

2 − 1, exactly where the mass fluctua-
tion also diverges [according to Eq. (63)]. Above the critical
density, a macroscopic mass condensate forms in the system
and coexists with the bulk phase with vanishing resistivity.
Thus the clustering properties in this nonequilibrium mass
aggregation model can be directly associated with the en-
hancement of the conductivity; in other words, the diverging
conductivity is a dynamical manifestation of the underlying
condensation transition and the diverging mass fluctuations in
the system. Indeed, the intimate connection between transport
and fluctuations is precisely encoded in the Einstein relation as
following. The ratio of conductivity χ (ρ) and bulk-diffusion
coefficient D(ρ) from Eqs. (67) and (66) respectively, is given
by

χ (ρ)

D(ρ)
= ρ(1 + ρ)(1 + ρ2)

1 − 2ρ − ρ2
= σ 2(ρ), (68)

which is nothing but the scaled variance given in Eq. (63) and
immediately leads to the Einstein relation. Next we verify in
simulations the Einstein relation Eq. (68). In Fig. 3, the scaled
variance σ 2(ρ) of subsystem mass obtained from simulations
(circles) is plotted as a function of density and compared to
the ratio χ (ρ)/D(ρ) (line) obtained from the expressions in
Eqs. (66) and (67); one could see the theory and simulations
being in a reasonably good agreement. The condensate for-
mation and the diverging mass fluctuation are also reflected
in the corresponding single-site mass distribution plotted in
Fig. 4 for the global density ρ > ρc (yellow triangles), where
a delta peak along with a m−5/2 power-law mass distribution
is observed. Note that, while the conductivity diverges as we
approach the transition point (from below), the bulk-diffusion
coefficient remains finite. This implies that the phase tran-
sition in this case is facilitated not by vanishing diffusivity,
but rather by a huge enhancement in the mobility of masses,
which was also observed in mass transport processes studied
in the context of self-propelled particles [31]. However, in the
presence of an infinite-density mass condensate in the coexis-
tence phase (for global density ρ > ρc), where the condensate
and the bulk fluid coexist with each other, the small-gradient
expansions as in Eqs. (11) and (12) break down and the cal-
culations of the transport coefficients are no more valid. The
breakdown of the hydrodynamic regime is reflected in that, for
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FIG. 3. Variant I, v0 → ∞: We verify the Einstein relation by
plotting scaled subsystem mass fluctuation σ 2(ρ ), calculated from
simulations (green circle), and compare that with the analytical
expression (green line) of the ratio of the transport coefficients
χ (ρ )/D(ρ ) obtained from Eqs. (66) and (67). In inset, we verify
density relaxation at various final hydrodynamic times τ = 0 (ma-
genta circle), 2 × 10−2 (yellow triangle), and 10−1 (red square). We
take the initial density perturbation as in Eq. (57) with ρ0 = 0.1,
n1 = 0.05, and �2 = 5 × 10−3. The lines denote numerically inte-
grated hydrodynamic time evolution obtained using the functional
form of D(ρ ) as in Eq. (66) and points denote simulation results.

ρ > ρc, both the conductivity and the scaled mass fluctuation
as in Eqs. (67) and (63), respectively, become negative and
clearly are not physical. This is expected in the coexistence
region, which is analogous to a first-order transition point in
equilibrium, where hydrodynamic quantities are not defined
exactly at the transition point; however, the transport coeffi-
cients calculated here are well defined if one approaches the
transition point from below.
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FIG. 4. Mass distributions in variant I: Steady-state single-site
mass distributions P(m) are plotted as a function of mass m for
v0 = 10 (magenta square), 100 (green circle), and v0 → ∞ (yellow
triangle). The global density is kept fixed at ρ = 1. For finite v0, the
distribution has peaks at m equals to integer multiple of v0. As v0 →
∞, a macroscopic mass condensate, along with a coexisting m−5/2

power-law distributed fluid phase, is observed for ρ > ρc = √
2 − 1.
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Following the approach in Sec. IV B 1, we now verify the
expression of the bulk-diffusion coefficient D(ρ) by study-
ing the density relaxation process, which is governed by the
nonlinear diffusion equation (56) with the bulk-diffusion co-
efficient D(ρ) given in Eq. (66). We numerically integrate
Eq. (56) by discretizing x and τ and then using the Euler
integration method. We take the initial density profile as given
in Eq. (57) with the uniform background density ρ0 = 0.1, the
strength of the perturbation n1 = 0.05 and the width of the
density perturbation �2 = 5 × 10−3. The results for the time
evolution of the initial density profile is shown in the inset
of Fig. 3 for different times τ = 0 (magenta circle), 2 × 10−2

(yellow triangle), and 10−1 (red square), where lines are the
hydrodynamic theory and points are the simulation results;
theory and simulations are in a quite good agreement over a
decade of density values.

D. Case IV: Other intermediate values of v0

In this section, we numerically calculate the bulk-diffusion
coefficient and the conductivity as a function of density for
any finite values of v0. In the previous Secs. IV A, IV B,
and IV C, we have calculated the transport coefficients for
v0 = 1, 2 and ∞. However, for the intermediate values of
v0, calculating the local observables g(ρ) and u(ρ), which
are required to calculate the transport coefficients, is more
complicated even within the mean-field theory and presently
beyond scope of this work. Therefore we now proceed with a
numerical scheme to characterize the transport coefficients in
these cases.

To obtain the quantities g(ρ) and u(ρ), as given in Eqs. (21)
and (22), one first needs to calculate the steady-state mass
distributions. By performing Monte Carlo simulations, we
compute the steady-state single-site mass distribution P(m),
which shows some interesting features. In Fig. 4, we plot
probability distribution P(m) as a function of mass m at a
single site for v0 = 10 (magenta squares), 100 (green circles),
and for v0 → ∞ (yellow triangles) keeping global density
ρ = 1. The distributions are compared with that for ZRP
in Eq. (38) (red dashed line). For a finite v0, we notice
that the distributions have peaks at mass values being equal
to integer multiple of v0. However the most striking ob-
servation here is the formation of a macroscopic size mass
condensate in the limit of of v0 → ∞ and beyond a critical
density ρc = √

2 − 1 (we have taken p = q = 1/2). In the
translation-symmetry broken condensate phase, the excess
mass of amount L(ρ − ρc) coexists with a bulk phase, having
m−5/2 power-law single-site mass distribution and diverging
conductivity (i.e., vanishing resistivity). We use the mass dis-
tribution P(m) in Eqs. (21) and (22) to obtain the quantities
g(ρ) and u(ρ) and thus to calculate the bulk diffusion coef-
ficient D(ρ) and conductivity χ (ρ) using Eq. (16). In panel
(a) of Fig. 5, we plot numerically calculated D(ρ) as a func-
tion of density ρ for v0 = 10 (magenta dashed-dotted line)
and 100 (green dash-dot-dot line) along with those observed
analytically for v0 = 1 (ZRP, blue solid line), 2 (red dotted
line), and v0 → ∞ (black dashed line) given by Eqs. (40),
(54), and (66), respectively. Interestingly, the bulk-diffusion
coefficient D(ρ), though a monotonically decreasing function
of density, does not vanish and remains finite even on the onset
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FIG. 5. Transport coefficients in variant I: The bulk-diffusion
coefficient D(ρ ) (a) and the conductivity χ (ρ ) (b) are plotted as a
function of density ρ for v0 = 1 [Eqs. (40) and (41)], 2 [Eqs. (54)
and (55)], 10 and 100 [numerically calculated using Eq. (16)], and
v0 → ∞ [Eqs. (66) and (67)]. Interestingly, in the limit of v0 → ∞,
while the diffusion coefficient D(ρ ) remains finite, the conductivity
χ (ρ ) diverges at the critical density ρc = √

2 − 1, signifying a con-
densation transition in the system.

of cluster formation in the system. This is unlike the clustering
observed near an equilibrium critical point, where the bulk-
diffusion coefficient vanishes. Moreover, we see that D(ρ) for
v0 = 1 and ∞ are the same as given by Eqs. (40) and (66),
respectively. This implies that the bulk diffusion coefficient
must be a nonmonotonic function of v0. Similarly, we also
plot numerically calculated conductivity χ (ρ) as a function
of density ρ in Fig. 5(b) for v0 = 10 (magenta dash-dot line)
and 100 (green dash-dot-dot line) along with those obtained
analytically for v0 = 1 (ZRP, blue solid line), 2 (red dotted
line), and v0 → ∞ (black dashed line) given by Eqs. (41),
(55), and (67), respectively. Clearly, unlike the diffusivity,
the conductivity χ (ρ) increases monotonically with increas-
ing v0, and diverges at a critical density ρ = ρc = √

2 − 1
when v0 → ∞. This is a clear indication of a mobility-driven
clustering in the system. That is, from the dynamical point of
view, the increasing mobility of masses drives the clustering,
thus resulting in large mass fluctuations and, beyond a critical
density, leading to the condensation transition in the system.

Density relaxation and verification of the Einstein relation

Now we verify the theoretical results for the bulk-diffusion
coefficient D(ρ) by studying density relaxation for which we
follow the procedure employed in Sec. IV B 1. The only differ-
ence in this case is that now we do not have an explicit analytic
expression for the diffusivity D(ρ), rather we have only the
numerical values of the diffusivity at different densities. This,
however, help us to numerically integrate Eq. (56), starting
from the initial distribution given by Eq. (57). We set v0 = 10,
ρ0 = 0.5, n1 = 0.2, and �2 = 2 × 10−4. In Fig. 6, we plot
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FIG. 6. Density relaxation in variant I, v0 = 10: We verify the
functional dependence of the bulk-diffusion coefficient D(ρ ) on den-
sity ρ through density relaxations at various hydrodynamic times
τ = 0 (magenta plus), 4 × 10−3 (green cross), 8 × 10−3 (yellow
triangle), 2 × 10−2 (blue circle), and 4 × 10−2 (red square); we
take initial condition Eq. (57) with ρ0 = 0.5, n1 = 0.2, and �2 =
2 × 10−4. The lines denote the numerically integrated hydrodynamic
time-evolution and points denote simulation results.

the density profiles obtained from hydrodynamics (lines) and
direct simulations (points) at different times τ = 0 (magenta
plus), 4 × 10−3 (green cross), 8 × 10−3 (yellow triangle),
2 × 10−2 (blue circle), and 4 × 10−2 (red square). We again
see that the diffusivity obtained using the mean-field theory
captures the simulation results quite well.

To verify the Einstein relation, we plot in Fig. 7 the ratio
of the two transport coefficients χ (ρ)/D(ρ) as a function of
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FIG. 7. Verification of the Einstein relation in variant I: Scaled
subsystem mass fluctuation σ 2(ρ ) is plotted as a function of density
ρ for v0 = 10 (green square) and 100 (yellow circle). It is compared
with the ratio of two transport coefficients χ (ρ ) and D(ρ ), respec-
tively, calculated numerically using Eq. (16), for v0 = 10 (green solid
line) and 100 (yellow solid line). Simulations (points) and hydro-
dynamic theory (lines) agree quite well, implying the existence of
Einstein relation in the system. For comparison, the scaled subsystem
mass fluctuation for the ZRP is also plotted (red dashed line).

density ρ for v0 = 10 (green solid line) and 100 (yellow solid
line). Subsequently, we compute from simulation the scaled
steady-state mass fluctuation σ 2(ρ) and plot in Fig. 7 the
scaled fluctuation σ 2(ρ) as a function of density for v0 = 10
(green square) and 100 (yellow circle) along with that for ZRP
as in Eq. (42) (red dashed line). A nice agreement between
points and lines demonstrates the existence of the Einstein
relation also for finite values of v0.

Note in Fig. 4 that, with increasing v0, the mass distri-
butions develop greater weights at their tails. This behavior
points to large mass fluctuations due to the formation of larger
clusters of masses for higher values of v0—the fact which is
also reflected in Fig. 7. Finally, in the limit of v0 → ∞, the
system goes through a condensation transition and a single
macroscopic cluster of mass is formed. Indeed, as demon-
strated in Fig. 5, the conductivity χ (ρ) is solely responsible
for the mass clustering processes as, on the approach toward
the clustering, it increases monotonically with increasing v0,
whereas the bulk diffusivity D(ρ) remains finite. Clearly, the
clustering phenomena in these mass aggregation processes
cannot be associated with the vanishing diffusivity, rather
they are driven by the large conductivity, which implies a
mobility-driven clustering. In the next section, we consider
another variant with the choice of exponential distribution
φ(v) ∝ exp(−v/v∗), which is motivated by one-dimensional
run-and-tumble-particles dynamics [36]. We explore whether
the above-mentioned scenario of mobility-driven clustering
extends also to this variant.

V. VARIANT II: FRAGMENTATION OF RANDOM
AMOUNT OF MASS

In this section, we consider another variant of the mass
aggregation process by choosing the distribution of random
variable v to be exponentially distributed,

φ(v) = (1 − e−1/v∗ )e−v/v∗ , (69)

with v∗ being the cutoff to the distribution φ(v). Depending on
the presence (or the absence) of the single-particle chipping,
we consider the following two cases separately: (i) p = 0 and
q = 1 (no chipping and only fragmentation) and (ii) p = 1/2
and q = 1/2 (both chipping and fragmentation). Below we
calculate the transport coefficients and demonstrate the Ein-
stein relation for these models. Indeed, in both the cases,
the transport coefficients can be calculated analytically in the
limit of v∗ → ∞.

A. Case I: p = 0 and q = 1

Here we consider the case in the absence of the single-
particle chipping and choose p = 0 and q = 1. We first argue
that, in the limit of v∗ � 1, the system initially undergoes an
aggregation process. In the steady state, mass is concentrated
on a few sites with large clusters on them, with most of the
other sites being empty. We will also present the numerical
findings for finite v∗ later in this section.

Let us start with a uniform distribution of particles on the
lattice. Initially, almost all moves involve a complete transfer
of the mass onto a neighboring site, since the threshold v is
usually greater than the mass on the site. Denoting the sites
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with mass on them as “A,” the process has the form A + A →
A with diffusing “A” type masses [37–39]. This process stops
when the number of empty sites, and the average mass per site,
become large enough that mass transfer events start increasing
the number of occupied sites. In other words, we can say that
the reverse process A → A + A starts becoming significant.
In the steady state, the two processes balance each other and
we have a stationary mass distribution on a site. We assume
that the mass on occupied sites is distributed according to
an exponential distribution, where the average mass on a site
is large. Consequently the probability distribution Pocc(m) of
mass at a site, provided the site is occupied, is given by

Pocc(m) = (eη − 1)e−ηm, (70)

with the parameter η being determined by the mean mass of
an occupied site,

〈m〉 = (eη − 1)−1. (71)

We now denote r as the probability that a mass transfer
process does not split the mass at a site. This is simply the
probability that m < v, where m is the mass on the site and v

is the fragmentation threshold, chosen according to Eq. (69).
Then r is given by

r ≡
∑
m=2

1

v∗
e−m/v∗ (eη − 1)e−ηm + (1 − e−η ). (72)

The last term is due to the fact that if the site initially has
m = 1, this cannot be split into two. Since the mass transfer
events themselves happen at unit rate per site, the rates for the
diffusion and fragmentation processes are (A denotes a site
with mass and φ an empty site)

Aφ
r−⇀↽−
r

φA, Aφ
(1−r)−−−→ AA, φA

(1−r)−−−→ AA.

We now use the empty interval method [38,39] to find out
the stationary distribution of the mass and empty-site clusters.
Let En denotes the probability that a chosen segment of n
contiguous sites is empty. The equation for the empty intervals
due to the above processes is

dEn

dt
= 2r(En+1 + En−1 − 2En) + 2(1 − r)(En − En+1).

(73)
The solution of this equation is given by

En = crn, (74)

and the probability distribution of void sizes can be derived
from En through the relation,

Pn = En+2 + En − En+1 = c(1 − r)2rn. (75)

After normalization, we determine that c = (1 − r)−1. Thus
the average void size is

〈n〉 = r

1 − r
, (76)

and, provided the average density is ρ, we have the relation

ρ(〈n〉 + 1) = 〈m〉. (77)
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FIG. 8. Mass distributions in variant II, p = 0, q = 1: Single-site
mass distributions P(m) are plotted as a function of mass m for
v∗ = 10 (green square), 100 (yellow circle), and 1000 (red triangle);
lines denote the corresponding distributions obtained analytically
[Eq. (80)] for v∗ = 10 (green line), 100 (yellow line), and 1000 (red
line). The mass distributions are compared with that for ZRP (black
dashed line) as in Eq. (38).

Using Eqs. (71) and (76), and solving for η in terms of v∗ and
ρ, we get

η = μ(ρ) =
√

1

v∗ρ
+ O

(
v−1

∗
)
. (78)

The number of occupied sites is therefore given by

nc =
√

ρ

v∗
+ O(v−1

∗ ). (79)

Assuming that sites are independently occupied with proba-
bility nc, we have the mass distribution

P(m) =
⎧⎨
⎩

1 − nc = 1 −
√

ρ

v∗
for m = 0,

ncPocc(m) = 1
v∗

e
−

√
1

ρv∗ m
for m > 0.

(80)

Similar mass distributions have been observed in a system
related to hardcore run-and-tumble particles on a one-
dimensional lattice [40].

In Fig. 8, we plot the analytically calculated single-site
mass distribution P(m) with mass m given by Eq. (80) for
v∗ = 10 (green line), 100 (yellow line), and 1000 (red line),
and compare them with the same calculated from Monte Carlo
simulation for v∗ = 10 (green square), 100 (yellow circle),
and 1000 (red triangle). The results are also compared with the
same for the ZRP (black dashed line) given by Eq. (38). The
plots show an excellent agreement between the mean-field
theory and the simulation results in the limit of v∗ large. One
can now use the expression of single-site mass distribution
P(m) in Eq. (80) to calculate the scaled mass fluctuations in
the large v∗ limit as

σ 2(ρ) = 2
√

v∗ρ3 + O
(
v−1

∗
)
, (81)

where we have assumed that the nearest correlations vanish in
the limit of system size large (see Fig. 18). Now, by putting
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p = 0 and q = 1 in Eqs. (17) and (18), we can write the local
observables as

g(ρ) = [1 − φ(0) − φ(1)]ρ −
∞∑

v=2

φ(v)
∞∑

m=v

mP(m)

+
∞∑

v=1

φ(v)v
∞∑

m=v

P(m), (82)

u(ρ) = [1 − φ(0) − φ(1)]〈m2〉 +
∞∑

v=1

φ(v)v2
∞∑

m=v

P(m)

−
∞∑

v=2

φ(v)
∞∑

m=v

m2P(m), (83)

which, along with Eq. (16), immediately lead to the desired
transport coefficients. The explicit expressions of the transport
coefficients are, however, quite complicated for any particular
v∗, but they do have a simple asymptotic form as we show
next.

In the limit of large v∗, we can explicitly determine the
asymptotic functional form of the bulk-diffusion coefficient
D(ρ) and the conductivity χ (ρ) by using the expressions (82)
and (83) and expanding the expressions in the leading order
of v∗,

D(ρ) = 1

2
− 3

2

√
ρ

v∗
, (84)

χ (ρ) =
√

v∗ρ3. (85)

in this limiting case, we also obtain the ratio of the transport
coefficients, which can be related to the scaled mass fluctua-
tion σ 2(ρ) as

D(ρ)

χ (ρ)
=

√
1

4v∗ρ3
+ O(v−1

∗ ) = 1

σ 2(ρ)
, (86)

immediately implying the Einstein relation. We now verify
in simulations the Einstein relation for finite values of v∗.
To this end, we first calculate mass distribution P(m) from
simulation and use it in Eqs. (82) and (83) to calculate the
two local observables g(ρ) and u(ρ) as a function of den-
sity ρ. Then, by substituting g(ρ) and u(ρ) in Eq. (16), we
obtain the bulk-diffusion coefficients D(ρ) and the conduc-
tivity χ (ρ). In Fig. 9, we plot D(ρ) [Fig. 9(a)] and χ (ρ)
[Fig. 9(b)] as a function of ρ for v∗ = 10 (magenta dash-dot),
100 (green dash-dot-dot) and 1000 (red dotted) and compared
them with those obtained for ZRP (sky blue solid lines) given
by Eqs. (40) and (41). Now, to check the Einstein relation,
in Fig. 10 we plot the ratio of the two transport coefficients
χ (ρ)/D(ρ) as a function of density ρ for v∗ = 10 (green
solid line), 100 (yellow solid line), and 1000 (magenta solid
line) and compare them with the scaled mass fluctuations
σ 2(ρ) computed from simulation for v∗ = 10 (green square),
100 (yellow circle), and 1000 (magenta triangle). An excel-
lent agreement between simulations (points) and the theory
(lines) demonstrates the existence of the Einstein relation for
finite v∗.

Furthermore, we note that the scaled subsystem mass fluc-
tuation in this variant of the mass aggregation processes
increase with increasing v∗, as seen in the plots for the
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FIG. 9. Transport coefficients in variant II, p = 0, q = 1: The
bulk-diffusion coefficient D(ρ ) [panel (a)] and the conductivity χ (ρ )
[panel (b)] are plotted as a function of density ρ for v∗ = 10, 100 and
1000. While the bulk-diffusion coefficient remains finite for all v∗,
the conductivity however monotonically increases with increasing
v∗. We compare the transport coefficients with that (sky blue solid
lines) for the ZRP [Eqs. (40) and (41)].

single-site mass distributions in Fig. 8, where the probability
weights for larger masses grow with increasing v∗; for any
nonzero finite density, the mass fluctuation diverges in the
limit of v∗ → ∞. Moreover, in Fig. 9, we find that, while
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FIG. 10. Verification of the Einstein relation in variant II, p = 0
and q = 1: Simulation results for the scaled subsystem mass fluc-
tuation σ 2(ρ ) is plotted as a function of density ρ for v∗ = 10
(green square), 100 (yellow circle), and 1000 (magenta triangle). It
is compared with the ratio of two transport coefficients χ (ρ ) and
D(ρ ), respectively, calculated numerically using Eq. (16), for v∗ =
10 (green solid line), 100 (yellow solid line), and 1000 (magenta
solid line). Simulations (points) and hydrodynamic theory (lines)
agree quite well, thus demonstrating the existence of the Einstein
relation in the system. For comparison, the scaled subsystem mass
fluctuation σ 2(ρ ) for the ZRP (red dashed line) is also plotted.
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the conductivity increases with increasing v∗ in an unbounded
fashion, the bulk-diffusion coefficient remains bounded, de-
creases with increasing v∗ and eventually saturates to a finite
value at very large v∗. This clearly demonstrates the scenario
of mobility-driven clustering in the system, where, as evident
through the Einstein relation, the diverging conductivity (or,
equivalently, the mobility) contributes to the diverging mass
fluctuations. We discuss below another variant of mass aggre-
gation model, where the chipping process is also present and
the system exhibits a condensation transition in the limit of
v∗ → ∞ analogous to the case III of the variant I.

B. Case II: p = q = 1/2

In this variant, we include the single-particle chipping
dynamics along with the fragmentation process with the ex-
ponentially distributed v. In this case, except in the limit of
v∗ → ∞, it is difficult to obtain a closed form expression
of the transport coefficients. Therefore, here we resort to the
numerical scheme prescribed in Sec. IV D for all finite v∗.

We begin by calculating the steady-state single-site mass
distributions P(m) from simulations. We plot the mass dis-
tributions as a function of mass m in Fig. 11(a) for v∗ = 10
(magenta circle), 100 (green square), 1000 (yellow triangle),
and v∗ → ∞ (blue inverted triangle) for a fixed density ρ = 1.
For comparison, in the same figure, we also plot the mass
distributions for the ZRP [Eq. (38)] (red dashed line). In
these cases too, for larger v∗, we find that the mass distri-
butions have a longer tails, i.e., whose weights increase with
increasing v∗. Finally, in the limit of v∗ → ∞, the dynamics
becomes equivalent to the case of variant I with v0 → ∞
discussed in Sec. IV C. For v∗ → ∞, we have calculated the
occupation probability a(ρ) from simulations and compared
a(ρ) with that in Eq. (61), which is in good agreement with
the simulation results (not shown here). Therefore we observe
that, in this case also, the competition between chipping and
aggregation (together with diffusion) results in a conden-
sation transition beyond a critical density ρc = √

2 − 1. In
Fig. 11(b), we plot the mass distribution P(m) as a function of
m for densities ρ = 0.2 (magenta circle), 0.41 (approximately,
the critical density) (green squares), and 1 (red triangles),
where v∗ → ∞ in all three cases. The condensate accommo-
dates the excess mass of amount L(ρ − ρc), whereas the mass
of amount Lρc is distributed according to a m−5/2 power law
in the bulk.

Now we use the numerically calculated P(m) and φ(v)
[as in Eq. (69)] in Eqs. (17) and (18), to calculate the two
observables g(ρ) and u(ρ) as a function of density ρ. Then
using u(ρ) and g(ρ) in Eq. (16), we readily obtain the two
density-dependent transport coefficients: the bulk diffusion
coefficient D(ρ) and the conductivity χ (ρ). In Fig. 12, we
plot D(ρ) [Fig. 12(a)] and χ (ρ) [Fig. 12(b)] as a function of
density ρ for v∗ = 2 (red dotted lines), 10 (magenta dashed-
dotted line), and 100 (green dashed-dotted-dotted line) and
for v∗ → ∞ (black dashed line). We then compare the results
with that for ZRP (sky-blue solid line) [Eqs. (40) and (41)]. In-
terestingly, we again observe a nonmonotonic behavior of the
bulk-diffusion coefficient D(ρ) with increasing v∗. However,
the diffusivity remains always finite and never vanishes at any
finite density. On the other hand, the conductivity χ (ρ) mono-
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FIG. 11. Mass distributions in variant II, p = q = 1/2: Steady-
state single-site mass distributions P(m) are plotted as a function of
mass m. (a) The distributions are plotted for v∗ = 10 (magenta cir-
cle), 100 (green square), 1000 (yellow triangle), and v∗ → ∞ (blue
inverted triangle) for a fixed density ρ = 1. (b) The dependence of
the distributions on density in the limit v∗ → ∞ is shown for various
densities ρ = 0.2 (magenta circle), 0.41 (green square), and 1 (red
triangle). For v∗ → ∞, a macroscopic mass condensate, coexisting
with a m−5/2 power-law distributed fluid phase, is observed beyond a
critical density ρc.

tonically increases with increasing v∗ and eventually diverges,
in the limit of v∗ → ∞, at the critical density ρc = √

2 − 1.
The observation indeed strongly suggests a direct connec-
tion between the conductivity and the cluster formation in
the system, thus supporting the scenario of a mobility-driven
clustering in the systems.

Density relaxation and verification of the Einstein relation

We follow the same numerical procedure as in Sec. IV D 1
to verify the functional dependence of the bulk-diffusion coef-
ficient D(ρ) on density ρ by studying the relaxation of density
profiles from an initial density perturbation. For this purpose,
we set ρ0 = 0.5, n1 = 0.2, and �2 = 2 × 10−4. In Fig. 13, we
compare the density profiles obtained by numerically integrat-
ing hydrodynamic time evolution [Eq. (56)] and that obtained
from microscopic simulations, at various hydrodynamic times
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FIG. 12. Transport coefficients in variant II, p = q = 1/2: The
bulk-diffusion coefficient D(ρ ) (a) and the conductivity χ (ρ ) (b] are
plotted as a function of density ρ for v∗ = 2, 10, 100 and ∞; the
two transport coefficients are calculated numerically using Eq. (16).
In this variant too, while the bulk-diffusion coefficient remains finite,
the conductivity increases with increasing v∗. We compare them with
that for ZRP (sky blue solid lines), as in Eqs. (40) and (41).

τ = 0 (magenta cross), 2 × 10−3 (green triangle), 4 × 10−3

(yellow circle), and 2 × 10−2 (red square), starting from initial
condition given by Eq. (57). One can see that the hydrody-
namic theory (lines) captures the simulation results (points)
quite well.
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FIG. 13. Density relaxation in variant II, p = q = 1/2: The re-
laxation of an initial density perturbation is compared for the
final-time density profiles, calculated from hydrodynamic theory
and simulations at different times τ = 0 (magenta cross), 2 × 10−3

(green triangle), 4 × 10−3 (yellow circle), and 2 × 10−2 (red square)
starting from initial condition Eq. (57) for v∗ = 10, ρ0 = 0.5,
n1 = 0.2, and �2 = 2 × 10−4. Lines, hydrodynamic theory; points,
simulations.
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FIG. 14. Verification of the Einstein relation in variant II, p =
q = 1/2: Scaled subsystem mass fluctuation σ 2(ρ ) is plotted as a
function of density ρ for v∗ = 10 (green square) and 100 (yellow
circle). It is compared with the ratio of two transport coefficients
χ (ρ ) and D(ρ ), calculated numerically using Eq. (16), for v∗ = 10
(green solid line) and 100 (yellow solid line). Hydrodynamic theory
(lines) and simulations (points) agree quite well, thus demonstrating
the existence of the Einstein relation Eq. (19) in the system. For com-
parison, the scaled mass fluctuation σ 2(ρ ) for the ZRP is also plotted
(red dashed line), indicating mass fluctuations and the conductivity
both grow with increasing v∗.

Finally, we check the validity of the Einstein relation,
that connects the scaled mass fluctuation to the ratio of the
conductivity and the bulk-diffusion coefficient. In Fig. 14,
we plot the ratio of the numerically calculated transport co-
efficients χ (ρ)/D(ρ) for v∗ = 10 (green solid line) and 100
(yellow solid line) and compare them with the scaled variance
σ 2(ρ) of subsystem mass for v∗ = 10 (green square) and 100
(yellow circle) obtained from direct simulations. For com-
parison, we also plot the scaled mass fluctuation σ 2(ρ) for
the ZRP (red dashed line). We observe excellent agreement
between lines (ratio of transport of transport coefficients) and
points (mass fluctuations), thus substantiating the existence of
an equilibrium-like Einstein relation in this variant of mass
aggregation processes. One should note that the mass fluctu-
ations increase with the increasing ratio of the conductivity
to the diffusivity, implying a mobility-driven clustering in the
system.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied transport and fluctuation
properties of a broad class of one-dimensional conserved-
mass aggregation processes, which involve fragmentation,
diffusion and aggregation of masses [14,15]. These mass ag-
gregation models, and their variants, have been intensively
studied in the past couple of decades, but their hydrodynamic
structures are still largely unexplored. In this scenario, we
have calculated two density-dependent transport coefficients,
the bulk-diffusion coefficient and the conductivity, which gov-
ern the hydrodynamic time evolution of the density field in the
mass aggregation models. We observe that the models have
a gradient property, which enables us to identify the local
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FIG. 15. Heat maps for variant I with p = q = 1/2: Two trans-
port coefficients, the bulk-diffusion coefficient D(ρ, v0) in panel
(a) and the conductivity χ (ρ, v0) in panel (b), are represented over
the parameter space of ρ and v0.

diffusive and drift currents and consequently the two trans-
port coefficients in terms of single-site mass distributions. In
the absence of the knowledge of the steady-state probability
weights of microscopic configurations, explicit calculations of
the transport coefficients as a function of density are in general
difficult. However, in a few special cases, we use a mean-field
theory to obtain the steady-state mass distributions, which
are then used to calculate the transport coefficients. Indeed,
the finite-size scaling analysis (see Appendix A 3) suggests
that the neighboring spatial correlations vanish in the limit of
large system size, implying that the mean-field expressions of
the transport coefficients are exact. We find that the analytic
results agree quite well with simulations.

To get a broad overview of our results and to qualita-
tively understand the role of the various parameters such as
fragmentation-cum-aggregation processes and density on the
behaviors of the transport coefficients, in Figs. 15 and 16
we represent the bulk-diffusion coefficient D(ρ, v0) [likewise
D(ρ, v∗)] and the conductivity χ (ρ, v0) [likewise χ (ρ, v∗)]
as a function of ρ and v0 (likewise v∗) through heat-maps for
variants I (with p = q = 1/2) and II (with p = 0 and q = 1);
variant II with p = q = 1/2 has qualitatively similar behavior
as that of variant I (not shown in the heat maps). In both the
cases, the bulk-diffusion coefficients D(ρ, v0) and D(ρ, v∗)
are bounded. On the other hand, on increasing the fragmen-
tation size v0 or v∗, the conductivity can grow without bound

FIG. 16. Heat maps for variant II with p = 0, q = 1: Two trans-
port coefficients, the bulk-diffusion coefficient D(ρ, v∗) in panel
(a) and the conductivity χ (ρ, v∗) in panel (b), are represented over
the parameter space of ρ and v∗.

even at moderate density values [see the top-right corner of
Figs. 15(b) and 16(b)]. In other words, when the fragmenta-
tion and aggregation processes dominate (i.e., v0 and v∗ are
large), the conductivity or, equivalently, the mobility of the
particles is greatly enhanced, implying onset of the collective
transport, which can lead to a mobility-driven clustering in
the systems. In fact, in certain parameter regime, the con-
ductivity, along with the mass fluctuation, even diverges at
a critical density, beyond which, there is a macroscopic-size
mass condensate, coexisting with the bulk fluid, which offers
essentially zero resistance to the particle flow induced by an
external force field. Indeed, analogous to the familiar Bose-
Einstein condensation phenomenon, one could think of the
system undergoing a “superfluid-like” dynamical transition
from a disordered fluid phase having nonzero resistance to
a translation-symmetry broken condensate phase having zero
resistance. Thus we have provided a hydrodynamic character-
ization of a nonequilibrium condensation transition in terms
of a singularity (a simple pole) in the conductivity, which
manifests itself through a huge enhancement in the collective
particle transport and, for suitable parameter values, induces
diverging mass fluctuations in the system.

Note that the mass aggregation models are examples of
systems far from equilibrium as they violate, for generic
parameter values, the Kolmogorov criterion of microscopic
time-reversibility. Yet the transport coefficients and the mass
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fluctuations are found to be connected by an equilibrium-like
Einstein relation—a corner-stone for formulating a fluctuating
hydrodynamics framework for equilibrium systems. Indeed,
hydrodynamics of these nonequilibrium aggregation pro-
cesses can lead to the formulation of macroscopic fluctuation
theory [23,27], which will help in understanding fluctuation
properties of these systems under various driving conditions.

In the previous studies of mass aggregation processes,
mainly the static properties of the condensation transition
and the related mass clustering have been studied [14,21].
In this work, we have studied the time-dependent properties
of these mass aggregating systems in terms of relaxations
of density profiles from given initial conditions. Indeed, by
calculating the transport coefficients, which govern the time
evolution of the density profiles, we have demonstrated that
the dynamical origin of the condensation transition lies in
the diverging conductivity, not the vanishing diffusivity. In
other words, unlike the dynamical slowing down, which is
usually observed at the critical point for equilibrium systems,
the nonequilibrium phase transition studied here is driven by
a huge enhancement of the particle mobility. We believe that
this particular mechanism of mobility-driven clustering could
be the signature of not only the aggregation related clustering
phenomena but also the clustering observed in various active-
matter systems [31,41–44]. From an overall perspective, the
mechanism could provide an exciting avenue for character-
izing phase transitions in a broad class of out-of-equilibrium
systems.

Generalization of the results to higher dimensions should
be straightforward. There are a few open issues though.
For simplicity, in this work we have considered only the
mass-independent rates for fragmentation, diffusion, and ag-
gregation. However, one can in principle generalize the
models where fragmentation and diffusion rates depend on

the masses at the departure sites and the aggregation rates,
considered in the literature through a mass-dependent kernel
[8], depend on the masses at both the departure and the des-
tination sites. In the first case, the system would still possess
a gradient structure and the transport coefficients can be for-
mally expressed in terms of the single-site mass distributions.
However, obtaining the analytic expressions of the transport
coefficients may be difficult as the steady-state probabilities
of the microscopic configurations are not known. In the latter
case, the systems have a nongradient structure and calculating
the transport coefficients remains a challenge.
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APPENDIX

1. Time evolution of local density

Here we provide calculation details of deriving the time
evolution of density at site i in the presence of a biasing force
F along +x direction. Introducing the biased hopping rates
as shown in Eq. (5), the infinitesimal-time evolution of mass
mi(t ) can be written as

mi(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mi(t ) − 1 prob. pW F
i,i+1âidt/2

mi(t ) − 1 prob. pW F
i,i−1âidt/2

mi(t ) + 1 prob. pW F
i−1,iâi−1dt/2

mi(t ) + 1 prob. pW F
i+1,iâi+1dt/2

mi(t ) − v prob. qDF,v
i,i+1âv

i φ(v)dt/2

mi(t ) − v prob. qDF,v
i,i−1âv

i φ(v)dt/2

0 prob. qDF
i,i+1âi

(
1 − âv

i

)
φ(v)dt/2

0 prob. qDF
i,i−1âi

(
1 − âv

i

)
φ(v)dt/2

mi(t ) + mi−1(t ) prob. qDF
i−1,iâi−1

(
1 − âv

i−1

)
φ(v)dt/2

mi(t ) + v prob. qDF,v
i−1,iâ

v
i−1φ(v)dt/2

mi(t ) + mi+1(t ) prob. qDF
i+1,iâi+1

(
1 − âv

i+1

)
φ(v)dt/2

mi(t ) + v prob. qDF,v
i+1,iâ

v
i+1φ(v)dt/2

mi(t ) prob. 1 − �F dt

(A1)

with

�F = p

2

[
âi

(
W F

i,i+1 + W F
i,i−1

) + W F
i−1,iâi−1 + W F

i+1,iâi+1
] + q

2

∞∑
v=0

φ(v)
[
âv

i

(
DF,v

i,i+1 + DF,v
i,i−1

) + âi
(
1 − âv

i

)(
DF

i,i+1 + DF
i,i−1

)
+ DF

i−1,iâi−1
(
1 − âv

i−1

) + DF,v
i−1,iâ

v
i−1 + DF

i+1,iâi+1
(
1 − âv

i+1

) + DF,v
i+1,iâ

v
i+1

]
.
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The quantities W F
i,i+1, DF

i,i+1, and DF,v
i,i+1 denote the modified (biased) mass transfer rates from site i to i + 1 in the cases of

chipping of a single-unit mass, fragmentation of whole mass mi and fragmentation of mass v, respectively, and are written below
after using the linearized form as in Eq. (5),

W F
i, j = 1 + 1

2 F ( j − i), (A2)

DF,v
i, j = 1 + 1

2vF ( j − i), (A3)

DF
i, j = 1 + 1

2 miF ( j − i). (A4)

From the update rules as given in Eq. (A1), one can determine the time evolution equation for average mass 〈mi(t )〉 = ρi(t ) at
site i,

d〈mi〉
dt

= p

2

{(
W F

i,i+1 + W F
i,i−1

)〈[mi(t ) − 1]âi〉 + W F
i−1,i〈[mi(t ) + 1]âi−1〉 + W F

i+1,i〈[mi(t ) + 1]âi+1〉

− (
W F

i,i+1 + W F
i,i−1

)〈mi(t )âi〉 − W F
i−1,i〈mi(t )âi−1〉 − W F

i+1,i〈mi(t )âi+1〉
} + q

2

∞∑
v=0

φ(v)
{(

DF,v
i,i+1 + DF,v

i,i−1

)〈
(mi(t ) − v)âv

i

〉
+ 〈

[mi(t ) + mi−1(t )]DF
i−1,iâi−1

(
1 − âv

i−1

)〉 + DF,v
i−1,i

〈
[mi(t ) + v]âv

i−1

〉 + 〈
[mi(t ) + mi+1(t )]DF

i+1,iâi+1
(
1 − âv

i+1

)〉
+ DF,v

i+1,i

〈
[mi(t ) + v]âv

i+1

〉 − 〈
mi(t )

{(
DF

i,i+1 + DF
i,i−1

)
âi

(
1 − âv

i

) + DF
i−1,iâi−1

(
1 − âv

i−1

) + DF
i+1,iâi+1

(
1 − âv

i+1

)}〉
− (

DF,v
i,i+1 + DF,v

i,i−1

)〈
mi(t )âv

i

〉 − DF,v
i−1,i

〈
mi(t )âv

i−1

〉 − DF,v
i+1,i

〈
mi(t )âv

i+1

〉}
.

Now by using the identity 〈miâi〉 = 〈mi(1 − δmi,0)〉 = 〈mi〉 = ρi, substituting the modified mass transfer rates W F
i,i+1, DF

i,i+1,
and DF,v

i,i+1 in the above equation and after some algebraic manipulations, we obtain

∂ρi

∂t
= 1

2
[p〈(âi−1 + âi+1 − 2âi )〉 + q(ρi−1 + ρi+1 − 2ρi )]

+ q

2

∞∑
v=0

φ(v)
[〈
v
(
âv

i+1 + âv
i−1 − 2âv

i

)〉 − (〈
mi+1âi+1âv

i+1

〉 + 〈
mi−1âi−1âv

i−1

〉 − 2
〈
miâiâ

v
i

〉)]

+ Fδx

4

[
p〈âi−1〉 − q

∞∑
v=0

φ(v)
〈
m2

i−1âi−1âv
i−1

〉 + q
〈
m2

i−1

〉 + q
∞∑

v=0

φ(v)
〈
v2âv

i−1

〉]

− Fδx

4

[
p〈âi+1〉 − q

∞∑
v=0

φ(v)
〈
m2

i+1âi+1âv
i+1

〉 + q
〈
m2

i+1

〉 + q
∞∑

v=0

φ(v)
〈
v2âv

i+1

〉]
. (A5)

2. Violation of detailed balance

a. Variant I, v0 = 2

For illustration, we first consider the case of mass aggrega-
tion model - variant I with v0 = 2 and p = q = 1/2. Detailed
balance (DB) is violated if there exists a pair of configurations
C1 and C2 such that the probability current,

�J = WC1,C2 P(C1) − WC2,C1 P(C2) �= 0, (A6)

is nonzero. Here we denote WC1,C2 as the transition rate
from configuration C1 to C2 and P(C1) and P(C2) are
the steady-state probabilities of the two configurations C1

and C2, respectively. To show the violation of DB, we
consider two nearest neighbor sites i and i + 1 and configu-
rations C1 ≡ (m1, m2, . . . , mi = m, mi+1 = m′, . . . ) and C2 ≡
(m1, m2, . . . , mi = m − 1, mi+1 = m′ + 1, . . . ) with m > 0.
In this case, the transition from C1 to C2 (and the reverse one)
is solely contributed by unit-mass transfer across the bond
(i, i + 1), where the transition rates are given by

WC1,C2 = p

2
+ q

2
δm,1, WC2,C1 = p

2
+ q

2
δm′,0. (A7)

As the vanishing neighboring correlations (see Fig. 17)
suggest a statistical independence of neighboring sites, the
steady-state joint mass distribution can be written in a prod-
uct form. That is, the probability of configuration C1 ≡
{m1, . . . , m, m′, . . . mL} is given by

P(C1) = P(m1) . . . P(mi = m)P(mi+1 = m′) . . . P(mL )

= κP(m)P(m′), (A8)

where we denote κ = ∏L
s = 1

s �= i, i + 1

P(ms). Similarly, for config-

uration C2, the configuration probability can be written as

P(C2) = κP(m − 1)P(m′ + 1). (A9)

Considering p = q = 1/2 and using the single-site mass dis-
tribution as in Eq. (53), the left-hand side of Eq. (A6) can be
written as

�J = κ
P1P0

4

[
δm,1

(
P1

P0

)m′

Fm′+1 − δm′,0

(
P1

P0

)m−1

Fm

]

+ κ
P2

0

4

(
P1

P0

)m+m′

[Fm+1Fm′+1 − FmFm′+2], (A10)
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FIG. 17. Variant I, p = q = 1/2. Scaled two-point spatial corre-
lation function Lc(r, L) is plotted as a function of scaled distance
r/L for density ρ = 0.3 and for v0 = 2 (a) and v0 = ∞ (b). The
above simulation is performed for L = 50 (filled circle), 100 (open
triangle), and 200 (filled triangle). Inset: We plot (unscaled) correla-
tion function c(r, L) as a function of distance r for above-mentioned
system sizes. We find c(r, L) ∼ O(1/L) approaches zero with
increasing L.

which is in general nonzero. This can be simply seen by
considering a case where m = 1. Then the above equation is
simplified to

�J = κ
P2

0

4

(
P1

P0

)1+m′

[Fm′+1 − Fm′ ] − κ
P1P0

4
δm′,0. (A11)

It is easy to check that the right-hand side of Eq. (A11)
vanishes for m′ = 0, 1 and gives a nonzero contribution for
any other values of m′. Therefore, the forward and backward
mass transfer events with the above-mentioned configurations
C1 and C2 with m = 1 and m′ > 1 lead to the violation of DB.
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FIG. 18. Variant II. Scaled two-point spatial correlation function,
Lc(r, L) is plotted as a function of normalized spatial distance r/L for
density ρ = 0.3, p = 0, q = 1, and v∗ = 100. The above simulation
is performed for L = 50 (filled circle), 100 (open triangle), and 200
(filled triangle) and the scaling collapse captures the 1/L dependence
of c(r, L) for large L. Inset: We plot (unscaled) correlation function
c(r, L) as a function of the distance r for above-mentioned system
sizes. We find c(r, L) approaching toward zero with increasing L.

b. Variant I, v0 = ∞
Proving violation of DB is simple in this case. Consider an

aggregation event of two neighboring masses m and m′, which
become a single mass of amount m + m′. However, the reverse
process is not possible, implying violation of Kolmogorov
criterion and therefore violation of DB. In a similar way, one
could also show violation of DB for any other v0.

3. Finite-size scaling of correlation functions

Here we calculate in simulations the two-point spatial
correlation function c(r, L) = 〈mimi+r〉 − ρ2 where L is the
system size and perform a finite-size scaling analysis. In insets
of Figs. 17 and 18, we plot, for global density ρ = 0.3, spatial
correlations c(r) as a function of distance r (where r �= 0) for
variant I (v0 = 1 and ∞) and variant II (v∗ = 100). Clearly,
for large system size L � 1, the correlation function c(r, L) is
vanishingly small, i.e., c(r, L) ∼ O(1/L), for all neighboring
points with r � 1. In Fig. 17, we plot the scaled two-point
spatial correlation function Lc(r, L) as a function of scaled
position r/L for both the variants studied in the paper. The
reasonably good scaling collapse suggests that the correlation
functions have a scaling form c(r, L) � (1/L) f (r/L) where
f (x) is a bounded function of x, implying spatial correlations
vanish in the thermodynamic limit.
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