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Effect of viscous friction on entropy, entropy production, and entropy extraction rates in
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Considering viscous friction that varies spatially and temporally, the general expressions for entropy produc-
tion, free energy, and entropy extraction rates are derived to a Brownian particle that walks in overdamped and
underdamped media. Via the well known stochastic approaches to underdamped and overdamped media, the
thermodynamic expressions are first derived at a trajectory level then generalized to an ensemble level. To study
the nonequilibrium thermodynamic features of a Brownian particle that hops in a medium where its viscosity
varies on time, a Brownian particle that walks on a periodic isothermal medium (in the presence or absence of
load) is considered. The exact analytical results depict that in the absence of load f = 0, the entropy production
rate ėp approaches the entropy extraction rate ḣd = 0. This is reasonable since any system which is in contact with
a uniform temperature should obey the detail balance condition in a long time limit. In the presence of load and
when the viscous friction decreases either spatially or temporally, the entropy S(t ) monotonously increases with
time and saturates to a constant value as t further steps up. The entropy production rate ėp decreases in time and
at steady state (in the presence of load) ėp = ḣd > 0. On the contrary, when the viscous friction increases either
spatially or temporally, the rate of entropy production as well as the rate of entropy extraction monotonously
steps up showing that such systems are inherently irreversible. Furthermore, considering a spatially varying
viscosity, the nonequilibrium thermodynamic features of a Brownian particle that hops in a ratchet potential
with load is explored. In this case, the direction of the particle velocity is dictated by the magnitude of the
external load of f . Far from the stall load, ėp = ḣd > 0 and at stall force ėp = ḣd = 0 revealing the system
is reversible at this particular choice of parameter. In the absence of load, ėp = ḣd > 0 as long as a distinct
temperature difference is retained between the hot and cold baths. Moreover, considering a multiplicative noise,
we explore the thermodynamic features of the model system.
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I. INTRODUCTION

Understanding the physics of systems out of equilib-
rium is challenging since unlike equilibrium thermodynamics,
nonequilibrium thermodynamics deals with inhomogeneous
systems where the systems thermodynamic relation com-
plicatedly relies on the reaction rates. Recently, employing
Boltzmann-Gibbs nonequilibrium entropy along with the
entropy balance equation, the thermodynamic relations of sys-
tems which are far from equilibrium were explored [1–17].
The exactly solvable models presented in the works [18,19]
not only exposed the factors that affect the entropy production
and extraction rates for a Brownian particle that walks on a
discrete lattice system but also uncovered how the free energy,
entropy production, and entropy extraction rates behave in
time. Furthermore, considering systems that operate in the
quantum realm, the dependence of thermodynamic relations
on the system parameters is explored in the works [20–22]. All
of these studies are vital to comprehend the thermodynamic
properties of systems such as intracellular transport of kinesin
or dynein inside the cell, see for example the recent works by
Bameta et al. [23], Oriola et al. [24], and Campas et al. [25].
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More recently the general expressions for the free en-
ergy, entropy production, and entropy extraction rates to a
Brownian particle that walks in an overdamped medium was
derived [26]. Furthermore, considering a Brownian particle
that walks in an underdamped medium, the dependence for
entropy production, free energy, and entropy extraction rates
on the system parameters was studied [27]. The results ob-
tained by these two works indicate that as long as the system
is driven out of equilibrium, it constantly produces entropy
at the same time it extracts entropy out of the system. At
steady state, the rate of entropy production ėp balances the
rate of entropy extraction ḣd . At equilibrium, both entropy
production and extraction rates become zero. Moreover, the
entropy production and entropy extraction rates are also sen-
sitive to time. As time progresses, both entropy production
and extraction rates increase in time and saturate to constant
values.

In the present study we consider a simple model where
the single particle and its trajectory are considered to be
the system as contrasted with the underdamped medium
which provides friction and acts as a heat bath. Employing
Boltzmann-Gibbs nonequilibrium entropy, the dependence for
the free energy, entropy production ėp, and entropy extraction
rates ḣd on the system parameter is explored to a Brown-
ian particle moving in underdamped and overdamped media.
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First, the role of viscous friction is explored by considering
a viscous friction that varies spatially and temporally. Earlier,
Seifert et al [6] introduced a way of calculating the entropy
production and extraction rates at the ensemble level by first
analyzing the thermodynamic relation at a trajectory level for
a Brownian particle that operates in an overdamped medium.
The alternative approach by Ge et al. [28] and Lee et al. [29]
also indicate that under time reversal operation the total en-
tropy production and extraction rates can be retrieved. In this
work, extending these well known stochastic approaches to
underdamped and overdamped media, the general expressions
for different thermodynamics relations are derived. Unlike
the previous studies, we show that the entropy production
and extraction rates might not saturate to a constant value
as the viscous friction dictates the dynamics of the system.
Furthermore, to both underdamped and overdamped cases,
the rate of entropy production as well as the rate of entropy
extraction becomes zero in the long time limit when the de-
tailed balance conditions are satisfied. On the other hand, our
previous exact analytic work [27] as well as the result obtained
in this work depicts that at steady state, the entropy production
and extraction rates to the underdamped case quantitatively
agree with the overdamped case. This is rather puzzling to
the underdamped case since the heat exchange due to particle
recrossing is unavoidable as long as a distinct temperature
difference is retained between the hot and cold heat baths.

Some viscous fluids show a change in viscosity when time
changes. This is because as the fluid shear stress changes
in time, so does the viscosity. Often the dynamics of sys-
tems with self-organized criticality also can be explored by
considering time dependent diffusion (viscous friction) and
drift terms [30–32]. Some studies have also focused on cal-
culating the mean first passage time by considering a time
dependant diffusion term [33]. To explore the nonequilibrium
thermodynamic features of a Brownian particle that hops in
a medium where its viscosity depends on time, we consider a
Brownian particle that walks on a periodic isothermal medium
(in the presence or absence of load). The exact analytical
results depicts that in the absence of load f = 0, ėp = ḣd =
0. This is reasonable since any system which is in contact
with a uniform temperature should obey the detail balance
condition only in a long time limit. This can be intuitively
comprehended on physical grounds. When the particle op-
erates at a finite time, the system operates irreversibility,
and in this regime the second law of thermodynamics states
that the change in entropy �S(t ) > 0. As one can see that
if the thermodynamic quantities are evaluated in the time
interval between t = 0 and any time t , always the change
in entropy, entropy production, and entropy extraction rates
become greater than zero revealing such systems are inher-
ently irreversible. Moreover, we show that when a distinct
temperature difference is not retained between the hot and
cold baths, in the absence of load, ėp = ḣd = 0 showing that
the system is reversible. In the presence of load and when the
viscous friction decreases in time, we show that the entropy
S(t ) monotonously increases with time and saturates to a
constant value as t further steps up. The entropy production
rate ėp decreases in time and at steady state (in the presence
of load), ėp = ḣd > 0 which agrees with the results shown in

the works [27]. On the contrary, when the viscous friction
increases in time, the rate of entropy production as well as
the rate of entropy extraction monotonously steps up showing
that such systems are inherently irreversible.

Most of the previous studies have also focused on explor-
ing the thermodynamic feature of systems such as Brownian
heat engines by assuming temperature invariance viscous
friction. In reality, the viscous friction of a medium tends
to decrease as the temperature of the medium increases.
This is because as the intensity of the background tempera-
ture increases, the force of interaction between neighboring
molecules decreases. In this paper, considering a spatially
varying viscosity, the nonequilibrium thermodynamic features
of a Brownian particle that hops in a ratchet potential with
load is explored. The potential is also coupled with a spatially
varying temperature. In this case, the direction of the particle
velocity is dictated by the magnitude of the external load of
f . As one can note the steady state velocity of the engine
is positive when f is smaller and the engine acts as a heat
engine. In this regime ėp = ḣd > 0. When f steps up, the
velocity of the particle steps down, and at stall force, we find
that ėp = ḣd = 0 revealing that the system is reversible at this
particular choice of parameter. For large force, the current is
negative and the engine acts as a refrigerator. In this region
ėp = ḣd > 0. In the absence of load, ėp = ḣd > 0 as long as
a distinct temperature difference is retained between the hot
and cold baths.

At this point we want also to stress that most of the pre-
vious works have focused on calculating the thermodynamic
features of different model systems by considering additive
noise. On the contrary, most realistic systems such as the neu-
ron system can be also described by Langevin equations with
multiplicative noise where in this case the noise amplitude
varies spatially [34]. In this paper we study how thermody-
namic features of such systems behave.

The rest of the paper is organized as follows: in Sec. II we
derive the expression for various thermodynamic relations to a
Brownian particle walking in overdamped and underdamped
media. In Sec. III the role of viscous friction is studied by
considering viscous friction that varies spatially and tempo-
rally. In Sec. IV we explore the model system in the presence
of multiplicative noise. Section V deals with a summary and
conclusion.

II. FREE ENERGY, ENTROPY PRODUCTION, AND
ENTROPY EXTRACTION RATES

Recently the dependence for entropy production, free en-
ergy, and entropy extraction rates on the system parameters
was explored [27] by considering a Brownian particle that
walks in a medium where its viscous friction is insensitive
to time or position. However, in most realistic systems, the
viscous friction of the medium varies spatially or temporally.
To address this issue, let us consider a Brownian particle
that moves in an underdamped medium along the potential
U (x) = Us(x) + f x where Us(x) and f are the periodic po-
tential and the external force, respectively. Next, the relation
for the entropy production and extraction rates will be derived
considering a spatially varying viscous friction.
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A. Underdamped case

Derivation for entropy production and entropy extraction
rates. Let us consider a single Brownian particle that is ar-
ranged to undergo a random walk in an underdamped medium.
Here the single particle and its trajectory are considered to
be the system as contrasted with the underdamped medium
which provides friction and acts as a heat bath. The dynamics
of the system is governed by

m
dv

dt
= −γ (x, t )

dx

dt
+ dU (x)

dx
+

√
2kBγ (x, t )T (x)ξ (t ). (1)

For simplicity, Boltzmann constant kB is assumed to be unity.
The random noise ξ (t ) is assumed to be Gaussian white noise
satisfying the relations 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′).
The viscous friction γ (x, t ) and T (x) are assumed to vary
spatially along the medium.

For the underdamped case, the Fokker-Plank equation is
given by

∂P

∂t
= −∂ (vP)

∂x
− 1

m

∂[U ′(x)P]

∂v

+ γ (x, t )

m

∂ (vP)

∂v
+ γ (x, t )T (x)

m2

∂2P

∂v2
, (2)

where P(x, v, t ) is the probability of finding the particle at
particular position x, velocity v, and time t .

For convenience, Eq. (2) can be rearranged as

∂P

∂t
= −

(
k + ∂J ′

∂v

)
, (3)

where

k = v
∂P

∂x
= ∂J

∂x
(4)

and

J ′ = −γ (x, t )

m
vP + 1

m
(U ′P) − γ (x, t )T (x)

m2

∂P

∂v
. (5)

From Eqs. (4) and (5) one gets

∂P

∂v
= − m2J ′

γ (x, t )T (x)
+ mU ′P

γ (x, t )T (x)
− mvP

T (x)
(6)

and

∂P

∂x
= k

v
. (7)

Next we derive the expressions for the entropy production by
considering two cases.

Case 1. Here we want to stress that the approach by Lee
et al. [29] and Ge et al. [28] indicate that under time reversal
operation, the total entropy production and extraction rate can
be obtained. Particularly, the analysis by Ge et al. [28] shows
that the entropy production rate is given by

ėp = −
∫

1

T (x)γ (x, t )

[
F − T (x)γ (x, t )∇v ln(P)

m

]2

P dx dv

= −
∫

1

T (x)γ (x, t )

[
F − T (x)γ (x, t ) ∂P

∂v

mP

]2

P dx dv, (8)

where F = −T (x)γ (x, t ) + U ′. Substituting Eq. (6) into
Eq. (8), one gets

ėp =
∫

m2J ′2

PT (x)γ (x, t )
dx dv. (9)

On the other hand, the entropy extraction rate can be found
via the method developed by Ge et al. [28] as

ḣd = −
∫

1

T (x)
[T (x)γ (x, t )

+ T (x)γ (x, t )∇v ln(P)

m

]
Pv dx dv

= −
∫

1

T (x)
[T (x)γ (x, t )

+ T (x)γ (x, t ) ∂P
∂v

mP

]
Pv dx dv. (10)

Substituting Eq. (6) into Eq. (10) leads to

ḣd =
∫

(U ′J − vmJ ′)
T (x)

dx dv. (11)

Here ėp = dep

dt and ḣd = dhd
dt denote the entropy production

and extraction rates. The above expressions (for the entropy
production and extraction rates) can be also derived at the
ensemble level via the approach stated in the work [7].

Case 2. One can also re-derive the expressions for the
entropy production and extraction rates at the ensemble level
by first analyzing the entropy of the system at the trajectory
level as

s(t ) = − ln P(x, v, t ), (12)

where x(t ) denotes the stochastic trajectory. The rate of en-
tropy change at trajectory level is then given by

ṡ(t ) = −∂t P(x, v, t )

P(x, v, t )
− ∂xP(x, v, t )

P(x, v, t )
ẋ − ∂vP(x, v, t )

P(x, v, t )
v̇. (13)

Substituting Eqs. (6) and (7) into Eq. (13), the entropy
production and dissipation rates at trajectory level are given
as

ė∗
p = −∂t P(x, v, t )

P(x, v, t )
+ m2J ′

γ (x, t )T (x)P(x, v, t )
v̇ − k

P(x, v, t )

(14)

and

ḣ∗
d = mU ′

γ (x, t )T (x)
v̇ − mγ (x, t )v

T (x)
v̇. (15)

Because averaging overall trajectories yields 〈v̇|x〉 = J ′
P(x,t,v)

and
∫

∂t P(x, v, t ) = 0, after some algebra one gets

ėp =
∫

m2J ′2

PT (x)γ (x, t )
dx dv −

∫
Pv dv (16)

and

ḣd =
∫

m[U ′ − vγ (x, t )]J ′

T (x)γ (x, t )
dx dv, (17)
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respectively. When a periodic boundary condition is imposed,
Eqs. (9) and (16) as well as Eqs. (11) and (17) converge to

ėp =
∫

m2J ′2

PT (x)γ (x, t )
dx dv (18)

and

ḣd = −
∫

vmJ ′

T (x)
dx dv. (19)

The heat dissipation rate Ḣd can be calculated [35,36] as

Ḣd = −〈(−γ (x, t )ẋ +
√

2kBγ (x, t )T (x)
)
ẋ
〉

= −
〈
m

vdv

dt
+ vU ′(x)

〉
. (20)

Our previous analysis also suggests [18,19,26] that the en-
tropy extraction rate ḣd can be expressed as

ḣd = −
∫ (

m vdv
dt + vU ′(x)

T (x)

)
P dx dv. (21)

One should note that Eq. (21) is exact and does not depend on
any boundary condition. Since dS(t )

dt and ḣd are computable,
the entropy production rate can be readily obtained as

ėp = dS(t )

dt
+ ḣd . (22)

In the long time limit, dS(t )
dt = 0 which implies ėp = ḣd > 0 at

steady state and ėp = ḣd = 0 at stationary state.
Once the expressions for Ṡ(t ), ėp(t ), and ḣd (t ) are com-

puted as a function of time t , the analytic expressions for
the change in entropy production, heat dissipation, and total
entropy can be found analytically via �hd (t ) = ∫ t

0 ḣd (t )dt ,
�ep(t ) = ∫ t

0 ėp(t )dt , and �S(t ) = ∫ t
0 Ṡ(t )dt where �S(t ) =

�ep(t ) − �hd (t ).
Derivation for free energy. Our next objective is to write

the expression for the free energy in terms of Ėp(t ) and Ḣd (t )
where Ėp(t ) and Ḣd (t ) are the terms that are associated with
ėp(t ) and ḣd (t ). As discussed before, the heat dissipation rate
is either given by Eq. (20) (for any cases) or if a periodic
boundary condition is imposed, Ḣd (t ) is given by

Ḣd = −
∫

m(v)J ′ dx dv, (23)

which is notably different from Eq. (19), due to the term T (x).
The term associated with ėp is given by

Ėp = −
∫

m2J ′2

Pγ (x, t )
dx dv. (24)

The entropy balance equation

dST (t )

dt
= Ėp − Ḣd (25)

is associated with Eq. (11) or (17) except the term T (x). Once
again, employing the expressions for ṠT (t ), Ėp(t ), and Ḣd (t ),
one can get �Hd (t ) = ∫ t

0 Ḣd (t )dt , �Ep(t ) = ∫ t
0 Ėp(t )dt , and

�S(t )T = ∫ t
0 Ṡ(t )T dt where �S(t )T = �Ep(t ) − �Hd (t ).

On the other hand, the expression for the internal energy
has a form

Ėin =
∫

[K̇ + vU ′
s (x)]P(x, v, t )dv dx, (26)

where K̇ = m vdv
dt and U ′

s denote the rate of kinetic and po-
tential energy, respectively. The network work done by the
system

Ẇ =
∫

v f P(x, v, t )dv dx (27)

explicitly depends on the velocity V and the load f . In terms
of Ḣ and Ẇ , the rate of the internal energy is given by

Ėin = −Ḣd (t ) − Ẇ , (28)

and after some algebra, the first law of thermodynamics can
be written as

�Ein = −
∫ t

0
[Ḣd (t ) + Ẇ ]dt . (29)

Rearranging some terms, one gets the rate of free energy
as Ḟ = Ė − T Ṡ for the isothermal case and Ḟ = Ė − ṠT for
the nonisothermal case where ṠT = Ėp − Ḣd . The rate of free
energy dissipation

Ḟ = Ėin − ṠT

= Ėin − Ėp + Ḣd (30)

can be expressed as a definite integral as

�F (t ) = −
∫ t

0
(Ẇ + Ėp(t ))dt . (31)

For the isothermal case, at quasistatic limit where the veloc-
ity approaches zero v = 0, Ėp(t ) = 0 and Ḣd (t ) = 0 and far
from quasistatic limit Ep = Ḣd > 0 which is expected as the
particle operates irreversibly.

B. Overdamped case

Derivation for free energy, entropy production, and entropy
extraction rates. For the overdamped case, as discussed by
Sancho et al [37] and Jayannavar et al [38], Eq. (1) converges
to

γ (x, t )
dx

dt
= −∂U (x)

∂x
− [γ ′(x, t )T (x) + γ (x, t )T ′(x)]

2γ (x, t )

+
√

2kBγ (x, t )T (x)ξ (t ), (32)

which corresponds to the Stratonovich interpretation [39,40].
The corresponding Fokker Planck equation is given by

∂P(x, t )

∂t

= ∂

∂x

(
U ′(x)

γ (x, t )
+ [γ ′(x, t )T (x) + γ (x, t )T ′(x)]

2γ (x, t )2

)
P(x, t )

+ ∂

∂x

(
T (x)

γ (x, t )

∂P(x, t )

∂x

)
, (33)

which can be rewritten as

∂P(x, t )

∂t
= −∂J

∂x
, (34)
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where

J = −
(

U ′(x)P(x, t )

γ (x, t )
+ P(x, t )[γ ′(x, t )T (x) + γ (x, t )T ′(x)]

2γ (x, t )2

)

−
(

T (x)

γ (x, t )

∂P(x, t )

∂x

)
. (35)

The rate of entropy change at trajectory level is given by

ṡ(t ) = −∂t P(x, t )

P(x, t )
− ∂xP(x, t )

P(x, t )
ẋ. (36)

On the other hand, from Eq. (35) one gets

∂P

∂x
= −γ (x, t )J

T (x)
− U ′(x)P(x, t )

T (x)

− P(x, t )[γ ′(x, t )T (x) + γ (x, t )T ′(x)]

2γ (x, t )T (x)
. (37)

Substituting Eq. (37) into Eq. (36), the entropy production
and dissipation rates at trajectory level are given as

ė∗
p = −∂t P(x, t )

P(x, t )
+ γ (x, t )J

T (x)P(x, t )
v̇ (38)

and

ḣ∗
d = U ′(x)

T (x)
+ [γ ′(x, t )T (x) + γ (x, t )T ′(x)]

2γ (x, t )T (x)
. (39)

Because averaging overall trajectories yields 〈ẋ|x〉 = J
P(x,t )

and
∫

∂t P(x, t ) = 0, after some algebra one gets

ėp =
∫

γ (x, t )J2

PT (x)
dx (40)

and

ḣd =
∫ (

JU ′(x)

T (x)
+ J[γ ′(x, t )T (x) + γ (x, t )T ′(x)]

2γ (x, t )T (x)

)
dx,

(41)

respectively. One should note that Eqs. (18) and (19) (under-
damped case) as well as Eqs. (40) and (41) (overdamped case)
approach

ḣd = ėp =
∫ (

JU ′(x)

T (x)

)
dx (42)

at steady state (v dv
dt = 0), as long as a periodic boundary

condition is imposed. From Eqs. (40) and (41) it is evident
that when detailed balance conditions are satisfied the velocity
of equivalently the current J = 0 and as a result ėp = 0 and
ḣd = 0. Far from equilibrium, J > 0, and in this case when
the viscous friction decreases either spatially or temporally,
ėp and ḣd approach to a constant value. When the system is
driven out of equilibrium and when viscous friction increases
spatially and temporally, ėp and ḣd monotonously step up.
Moreover, from Eq. (41), the heat dissipation rate is derived
as

Ḣd =
∫ (

JU ′(x) + J[γ ′(x, t )T (x) + γ (x, t )T ′(x)]

2γ (x, t )

)
dx.

(43)

On the other hand, the term Ėp is related to ėp and it is given
by

Ėp =
∫

γ (x, t )J2

P
dx. (44)

The new entropy balance equation has a simple form

dST (t )

dt
= Ėp − Ḣd . (45)

Furthermore, the internal energy

Ėin =
∫

JU ′
s (x)dx (46)

has functional dependence on the current J and the potential
profile Us. The total work done is then given by

Ẇ =
∫ (

J f + J[γ ′(x, t )T (x)]

2γ (x, t )
+ JT ′(x)

2

)
dx. (47)

The first law of thermodynamics can be written as

Ėin = −Ḣd (t ) − Ẇ . (48)

The change in the internal energy reduces to �Ein =
− ∫ t

0 [Ḣd (t ) + Ẇ ]dt . Once again the rate of free energy dis-
sipation can be written as Ḟ = Ėin − ṠT = Ėin − Ėp + Ḣd .
The change in the free energy is then given by �F (t ) =
− ∫ t

0 (Ẇ + Ėp(t ))dt .

III. TIME DEPENDENT VISCOUS FRICTION

Some viscous fluids show a change in viscosity when time
changes. This is because as the fluid shear stress changes in
time, so does the viscosity. Often the dynamics of systems
with self-organized criticality also can be explored by con-
sidering time dependent diffusion (viscous friction) and drift
terms [30–32]. Some studies have also focused on calculating
the mean first passage time by considering a time dependant
diffusion term [33]. To explore the nonequilibrium thermody-
namic features of a Brownian particle that hops in a medium
where its viscosity depends on time, we consider a Brownian
particle that walks on a periodic isothermal medium (in the
presence or absence of load) where its viscosity is given by

γ (t ) = 1

g(1 + t z )
. (49)

In this case, the corresponding Fokker Planck equation in
overdamped medium is given as

∂P(x, t )

∂t
= ∂

∂x

(
f

γ (t )

)
P(x, t )

+ ∂

∂x

(
T

γ (t )

∂P(x, t )

∂x

)
. (50)

Imposing a periodic boundary condition P(0, t ) = P(L, t ) and
let us choose a Fourier cosine series

P(x, t ) =
∞∑

n=0

bn(t ) cos

[
nπ

L0
(x + f

γ (t )
)

]
(51)
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as a possible solution. After some algebra we get the proba-
bility distribution as

P(x, t ) =
∞∑

n=0

cos

{
nπ

L0

[
x + f

(
gt + gtz+1

(z + 1)

)]}
ζ , (52)

where

ζ = e−
(nπ )2T

(
gt+ gtz+1

(z+1)

)
L2 . (53)

Here f is the external load and T is the temperature of the
medium. The current is then given by

J (x, t ) = −
[

f P(x, t )

γ (t )
+ T

γ (t )

∂P(x, t )

∂x

]
. (54)

The current J (x, t ) > 0, only when f �= 0 since γ (x) is not
the necessary parameter to keep the system out of equi-
librium. As stated before, ėp = ḣd + dS(t )

dt where dS(t )
dt =

− ∫
J

P(x,t )
∂
∂x P(x, t )dx. After some algebra we write

dS(t )

dt
= −

∫
J

∞∑
n=0

nπ
2 cos

{
nπ
L0

[
x + f

(
gt + gtz+1

(z+1)

)]}
ζ∑∞

n=0 cos
{

nπ
L0

[
x + f

(
gt + gtz+1

(z+1)

)]}
ζ

dx.

(55)

The entropy production and entropy extraction rates are given
by the relations

ėp =
∫

J2

P(x, t )T g(1 + t z )
dx (56)

and

ḣd =
∫ (

J f

T

)
dx. (57)

Substituting Eqs. (52) and (54) into Eqs. (56) and (57), one
can explore how ėp and ḣd depend on time. For z � 0, ėp

and ḣd decrease and approach a constant value at steady state.
When z < 0, ėp and ḣd step up continuously. Hereafter, for
simplicity, the parameter g is considered to be a constant.
Furthermore, the heat dissipation rate is given by

Ḣd =
∫

(J f )dx, (58)

while the term Ėp is given by

Ėp =
∫

J2

P(x, t )g(1 + t z )
dx. (59)

On the other hand, the internal energy has a form

Ėin =
∫

JU ′
s (x)dx. (60)

The total work done is then given by

Ẇ =
∫

(J f )dx. (61)

The first law of thermodynamics can be written as

Ėin = −Ḣd (t ) − Ẇ . (62)

Hereafter, whenever we plot any figures, we use the follow-
ing dimensionless load f̄ = f L0/Tc, Ū = U/Tc, temperature

FIG. 1. (a) The entropy extraction rate ḣd (t ) as a function of
t evaluated analytically by substituting Eqs. (52) and (54) into
Eq. (57). (b) The plot of entropy production rate ėp(t ) as a function
of t . ėp(t ) is analyzed analytically by substituting Eqs. (52) and (54)
into Eq. (56). The two figures exhibit that ėp(t ) and ḣd (t ) decrease
in time and as time further steps up, ėp(t ) and ḣd (t ) increase. In both
figures, the parameters are fixed as f = 1.0, τ = 1.0, and z = −0.5.

τ̄ = T (x)/Tc where Tc is the reference temperature. We also
introduced dimensionless parameter x̄ = x/L0, v̄ = vm/γ L0,
and t̄ = tγ /m. Hereafter the bar will be dropped. From now
on all the figures will be plotted in terms of the dimensionless
parameters.

The expression for the rate of entropy production as well as
entropy extraction rate can be readily calculated via Eqs. (56)
and (57). In the absence of load f = 0, ėp = ḣd = 0. This
is reasonable since any system which is in contact with a
uniform temperature should obey the detail balance condition
in a long time limit. When a distinct temperature difference
is retained between the hot and cold baths, in the absence of
load, ėp = ḣd = 0 showing that such a system is inherently
reversible. In the presence of load and when the viscous
friction increases in time (see Fig. 1), ėp and ḣd decrease in
time and as time further steps up ėp and ḣd monotonously
increase in time as shown in Fig. 1. Figure 1 is plotted by
fixing τ = 1.0, f = 1.0, and z = −0.5. On the contrary, in the
presence of load and when the viscous friction decreases in
time (see Fig. 2), ėp and ḣd monotonously decrease with time
and saturate to a constant value as t further steps up. Figure 2
is plotted by fixing τ = 1.0, f = 1.0, and z = 1.0.

IV. SPATIALLY VARYING VISCOUS FRICTION

Most of the previous studies have focused on exploring
the thermodynamic feature of systems such as Brownian heat
engines by assuming temperature invariance viscous friction.
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FIG. 2. (a) ḣd (t ) as a function of t evaluated analytically by
substituting Eqs. (52) and (54) into Eq. (57). (b) ėp(t ) as a function
of t . ėp(t ) is analyzed analytically by substituting Eqs. (52) and (54)
into Eq. (56). The figure exhibits that ėp(t ) and ḣd (t ) decrease in
time and as time further steps up, ėp(t ) and ḣd (t ) approach a constant
value. In both figures, the parameters are fixed as f = 1.0, τ = 1.0,
and z = 1.0.

However, various studies have indicated that the viscous fric-
tion of a medium tends to decrease as the temperature of the
medium increases [41–43]. Particularly in the liquid medium,
the viscosity decreases as the intensity of the background
temperature steps up. This is because when the temperature
of the medium increases, more molecules start vibrating, and
as a result their speed increases. This speedy motion of the
molecules creates a reduction in interaction time between
neighboring molecules. At the macroscopic level, there will
be a reduction in the intermolecular force, and hence reduced
viscosity of the fluid. Consequently, when the temperature
of the viscous medium decreases, the viscous friction in the
medium decreases.

In this paper, considering a spatially varying viscosity, the
nonequilibrium thermodynamic features of a Brownian parti-
cle that hops in a ratchet potential with load is explored. The
potential is also coupled with a spatially varying temperature.

The model. Let us consider a Brownian particle that walks
in a piecewise linear potential with an external load U (x) =
Us(x) + f x (as shown in Fig. 3), where the ratchet potential
Us(x) is given by

Us(x) =
{

2U0
(

x
L0

)
, if 0 � x � L0

2 ;
2U0

(
1 − x

L0

)
, if L0

2 � x � L0.
(63)

Here U0 and L0 denote the barrier height and the width of
the ratchet potential, respectively. f designates the external
force. The potential exhibits its maximum value U0 at x = L0

2

FIG. 3. Schematic diagram for a particle that walks in a piece-
wise linear potential in the absence of an external load.

and its minima at x = 0 and x = L0. The spatially varying
temperature is arranged as

T (x) =
{

Th, if 0 � x � L0
2 ;

Tc, if L0
2 � x � L0

(64)

as shown in Fig. 1. The potential Us(x) and T (x) are assumed
to be periodic with a period L0, Us(x + L0) = Us(x), and
T (x + L0) = T (x).

For a fluid such as blood, it is reasonable to assume that
when the temperature of the blood sample increases by 1.0
degree Celsius, its viscosity steps down by 2.0 degree Celsius
[43]. Thus let us consider viscous friction that varies as

γ (x) = γ ′ − C[T (x) − Tc], (65)

where C is a constant which is less than one. In the next two
sections we will explore the model system in the overdamped
and underdamped limits.

A. Underdamped case in the absence of ratchet potential

In this section we consider an important model system
where a colloidal particle that undergoes a biased random
walk in a spatially varying thermal arrangement in the pres-
ence of external load f with no potential. Solving Eq. (3) at
steady state, the general expression for the probability distri-
bution is obtained as

P(x, v) =
e
− m{ f −(γ+cTc )v+cvT [x]}2

2T [x](γ+cTc−cT [x])2
√

m
T [x]√

2π
. (66)

The average velocity is found to be

v = f

γ (x)
. (67)

In the absence of force, the velocity of the particle approaches
zero.

Via Eqs. (9) and (11), the entropy production and extraction
rates are calculated as

ḣd (t ) = ėp(t )

= 1

2
f 2L0

(
1

γ Tc
+ 1

[γ + c(Tc − Th)]Th

)
. (68)

One can see that in the limit where the load approaches the
stall force ḣd (t ) = ėp(t ) = 0. Exploiting Eq. (62), it is evident
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that ėp(t ) and ḣd (t ) increase when the temperature difference
between the hot and cold baths decreases. This is feasible
since when the temperature difference between the heat baths
steps up, the magnitude of the viscose friction decreases.

The rate of heat dissipation is calculated employing
Eq. (20) and it converges to

Ḣd (t ) = Ėp(t )
1

2
f 2L0

(
1

γ
+ 1

γ + c(Tc − Th)

)
. (69)

In the limit where the load approach zero, Ḣd (t ) = Ėp(t ) = 0
showing that at quasistatic limit the system is reversible. On
the other hand, the rate of work done is given by

Ẇ (t ) = Ėp(t ) = 1

2
f 2L0

(
1

γ
+ 1

γ + c(Tc − Th)

)
. (70)

For isothermal case Th = Tc, one gets v = f /γ , ḣd (t ) =
ėp(t ) = f 2L0/γ Tc, and Ḣd (t ) = Ėp(t ) = f 2L0/γ .

B. Overdamped case

In the presence of ratchet potential, in the overdamped
limit, the closed-form expression for the steady-state current
can be given as

J = − ς1

ς2ς3 + (ς4 + ς5)ς1
, (71)

where the expressions for ς1, ς2, ς3, and ς4 are given by

ς1 = −1 + e
L0 ( f − 2U0

L0
)

2Tc
+

L0 ( f + 2U0
L0

)

2Th ,

ς2 = e−
f L0 (Tc+Th )

Tc
+2U0

2Th

(
e

f L0
2Tc − e

U0
Tc

)
L0

f L0 − 2U0

−
(
e− f L0+2U0

2Th − 1
)
L0

f L0 + 2U0
,

ς3 = e− U0
Tc

+ f L0+2U0
2Th

(
e

f L0
2Tc − e

U0
Tc

)
L0Tcγ

f L0 − 2U0

+
(
e

f L0+2U0
2Th − 1

)
L0Th[γ + c(Tc − Th)]

f L0 + 2U0
,

ς4 = [γ+c(Tc − Th)]L2
0

(
f L0+2[(−1+e− f L0+2U0

2Th )Th+U0]

2( f L0+2U0)2

)
,

(72)

and ς5 = L2
0 (t1 + t2 + t3t4). Here t1, t2, t3, and t4 are given by

t1 = γ

2 f L0 − 4U0
,

t2 = γ Tc
( − 1 + e− f L0−2U0

2Tc

)
Tc

( f L0 − 2U0)2
,

t3 =
( − 1 + e− f L0−2U0

2Th

)
Th(

f 2L2
0 − 4U 2

0

) ,

t4 = e− f L0 (Tc+Th )
2TcTh

− U0
Th

(
e

f L0
2Tc − e

U0
Tc

)
[γ + c(Tc − Th)](

f 2L2
0 − 4U 2

0

) . (73)

FIG. 4. (a) The dependence of J on U0 for fixed τ = 2.0, γ ′ = 1,
and f = 0.5. The parameter C is also fixed as 0.4 (solid line), 0.2
(dashed line), and 0.04 (dotted line). (b) The plot J as a function of f
for parameter choice U0 = 2.0 and τ = 2.0. The parameter C is fixed
as 0.4 (solid line), 0.2 (dashed line), and 0.04 (dotted line).

The steady state current converges to zero (at quasistatic limit)
when

f ′ = 2U0(Th − Tc)

[L0(Th + Tc)]
. (74)

Next, let us explore the dependence for the thermodynamic
quantities on the model parameters. In Fig. 4(a) the current as
a function of potential height is plotted. The current exhibits
a maximum value at a particular barrier height. As shown in
Fig. 4(b), the current monotonously decreases with the load.
When f < f ′, J > 0 while when f > f ′, J < 0.

Once the expression for steady-state current is obtained,
the values for ḣd and ėp can be readily evaluated via Eq. (42).
At steady state (v dv

dt = 0), to both underdamped and over-
damped cases, one finds

ḣd = ėp =
∫ (

JU ′(x)

T (x)

)
dx. (75)

The rate of heat extraction is given by

Ḣd = =
∫

[JU ′(x)]dx. (76)

At quasistatic limit( f → f ′), ḣd = ėp = 0 as well as Ḣd = 0
since at this limit J = 0. Let us explore how the rate of
entropy production ėp(t ) and the rate of entropy extraction
ḣd (t ) behave. The plot of ėp(t ) and ḣd (t ) as a function of U0

is depicted in Fig. 5(a). The entropy production and extrac-
tion rates take a zero value at the stall force (zero velocity),
ėp(t ) = ḣd (t ) = 0 which implies that at the stall force the
system is reversible. The plot ėp(t ) and ḣd (t ) as a function of f
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FIG. 5. (a) The plot for ėp(t ) and ḣd (t ) as a function of U0 for
parameter choice of τ = 2.0, C = 0.04, and f = 0.5. (b) The plot
ėp(t ) and ḣd (t ) as a function of f for parameter choice of U0 = 2.0,
C = 0.04, and τ = 2.0.

is depicted in Fig. 5(b). As depicted in the figure, the entropy
production and extraction rates decrease as the load increases
and attains a zero value at the stall force. As the load further
increases, ėp(t ) and ḣd (t ) step up. The entropy production and
extraction rates increase as C and the temperature difference
between the two baths decreases. On the other hand, entropy
production and extraction rates decrease as τ increases and
attain a zero value at a particular τ . As the temperature further
increases, ėp(t ) and ḣd (t ) increase

If one considers a periodic boundary condition at steady
state in the absence of ratchet potential U0 = 0, the results
obtained quantitatively agree with the underdamped case
(Sec. IV) and one gets

ḣd (t ) = ėp(t )

= 1

2
f 2L0

(
1

γ Tc
+ 1

[γ + c(Tc − Th)]Th

)
(77)

and

Ḣd (t ) = Ėp(t )

= 1

2
f 2L0

(
1

γ
+ 1

γ + c(Tc − Th)

)
. (78)

Let now explore the energetics of the model system. When
the Brownian particle along the reaction coordinate, the heat
that is taken from the hot heat bath Qh is given as

Qh = U0 + f L0

2
(79)

while the rate of heat flow into the cold heat bath Qh can be
found as

Qc = U0 − f L0

2
, (80)

which implies the work done is given by

W = Qh − Qc = f L0. (81)

Let us now explore how the efficiency η and the coefficient
of performance of the refrigerator Pref behave. When the en-
gine acts as a heat engine, the efficiency is given by

η = W

Qh
= f L0

U0 + f L0/2
. (82)

At quasistatic limit, plugging Eq. (76) into Eq. (84), one gets

η = 1 − Tc

Th
, (83)

which is the efficiency of the Carnot heat engine. When the en-
gine performs as a refrigerator, the coefficient of performance
of the refrigerator Pref is given by

Pref = Qc

W
= U0 − f L0/2

f L0
(84)

and at quasistatic limit, plugging Eq. (76) into Eq. (86), Pref

approaches Carnot refrigerator

Pref = Tc

Th − Tc
. (85)

V. MULTIPLICATIVE NOISE

Most of the previous works have focused on calculating
the thermodynamic features of different model systems by
considering additive noise. Most realistic systems such as a
neuron system can be also described by Langevin equations
with multiplicative noise where in this case the noise ampli-
tude varies spatially [34]. Considering multiplicative noise,
the intrinsic noise-induced ordering phase transition has been
also studied in the work [44]. In this work we study how
entropy, entropy production, and extraction rate depend on the
strength of the background noise by solving the model exactly.

For the case where the temperature is position-dependent
T (x) = √

D|x| −z
2 , in the absence any external potential, the

corresponding Fokker Planck equation is given as

∂P(x, t )

∂t
= ∂

∂x

(
T ′(x)

2γ

)
P(x, t )

+ ∂

∂x

(
T (x)

γ

∂P(x, t )

∂x

)
. (86)

The probability current is given as

J = −
(

P(x, t )T ′(x)

2γ

)

−
(

T (x)

γ

∂P(x, t )

∂x

)
. (87)
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FIG. 6. The plot ḣd (t ) and ėp(t ) as a function of t for parameter
choice τ = 1, D = 1.0, and z = −4.0 is depicted in (a) and (b),
respectively. The figures depict that ḣd (t ) and ėp(t ) decrease as time
increases and in long time limit it approaches its stationary value
ḣd (t ) = ėp(t ) = 0.

The solution for the probability distribution is well known
[45] and it is given by

P(x, t ) = |x| z
2 e− |x|z+2

D(z+2)2t

√
4πDt

. (88)

From Eqs. (42) and (43) one gets

ėp =
∫

γ J2

PT (x)
dx (89)

and

ḣd =
∫ (

J[T ′(x)]

2T (x)

)
dx. (90)

The expression for the entropy production and extraction
rates can be found by substituting Eqs. (87) and (88) into
Eqs. (89) and (90). The plot ḣd (t ) and ėp(t ) as a function
of t for parameter choice τ = 1, D = 1.0, and z = −4.0 is
depicted in Figs. 6(a) and 6(b). The figures depict that ḣd (t )
and ėp(t ) decrease as time increases and in long time limit
it approaches its stationary value ḣd (t ) = ėp(t ) = 0. Only in
the long time limit t → ∞, dS(t )

dt = 0 since ėp(t ) = ḣd (t ) = 0.
This can be intuitively comprehended on physical grounds.
For the isothermal case, in the long time limit, the system
approaches stationary state and only at this particular state,
�hd = 0, �S = 0, or �ep = 0 (at stationary state). How-
ever when the particle operates at finite time, the system
operates irreversibility and in this regime, the second law
of thermodynamics states that �S(t ) > 0. As it can be seen
from Fig. 6 that if the thermodynamic quantities are evaluated

in the time interval between t = 0 and any time t , always
the inequality �hd (t ) = hd (t ) − hd (0) > 0, �S(t ) = S(t ) −
S(0) > 0, or �ep(t ) = ep(t ) − ep(0) > 0 holds true and as
time progresses the change in this parameters increases. In
fact, in small t regimes, ėp(t ) becomes much larger than ḣd (t )
[see Figs. 6(a) and 6(b)] showing that the entropy production
is higher (than entropy extraction) in the first few periods of
time. When time increases, more entropy will be extracted
ḣd (t ) > ėp(t ). Overall, since the system produces enormous
amount of entropy at initial time, in latter time or any time t ,
�ep(t ) > �hd (t ) and hence �S(t ) > 0.

VI. SUMMARY AND CONCLUSION

The influence of viscous friction on the thermodynamic
properties of a Brownian particle that walks in overdamped
and underdamped media is studied. The viscous friction is
considered to vary either spatially or temporally. By extending
Seifert stochastic approach to underdamped and overdamped
media, the general expressions for entropy production, free
energy, and entropy extraction rates are derived. To explore
the nonequilibrium thermodynamic features of a Brownian
particle that hops in medium where its viscosity depends on
time, a Brownian particle that walks on a periodic isothermal
medium (in the presence or absence of load) is considered.
The analytical results depict that in the absence of load, the
entropy production rate balances the entropy extraction rate
which is reasonable since any system which is in contact
with a uniform temperature should obey the detail balance
condition in a long time limit. It is shown that when a distinct
temperature difference is not retained between the hot and
cold baths, in the absence of load, the entropy production
still balances the entropy extraction rate revealing the system
is reversible. When the external load is zero and when the
viscous friction decreases in time, the entropy monotonously
increases with time and saturates to a constant value as t
further steps up. The entropy production rate decreases in
time and at steady state (in the presence of load), ėp = ḣd > 0
which agrees with the results shown in the works [27]. On
the contrary, when the viscous friction increases in time, the
rate of entropy production as well as the rate of entropy
extraction monotonously steps up showing that such systems
are inherently irreversible.

For a system where the viscous friction of a medium tends
to decrease as the temperature of the medium increases, the
nonequilibrium thermodynamic features of the model system
are explored. In this case, the load f dictates the direction of
the particle velocity. The steady-state velocity of the engine
is positive when f is smaller and the engine acts as a heat
engine. In this regime the entropy production and extraction
rates become nonzero. When f steps up, the velocity of the
particle steps down and at stall force, the entropy production
rate balances the entropy extraction rate revealing the system
is reversible at this particular choice of parameter. For large
loads, the current is negative and the engine acts as a refrig-
erator. In this region the entropy production and extraction
rates become nonzero. In the absence of load, the entropy
production and extraction rates become larger than zero as
long as a distinct temperature difference is retained between
the hot and cold baths. We further explore the thermodynamic
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features of such systems by considering a multiplicative noise
wherein case the noise amplitude varies spatially.

In conclusion, in this work we derive several ther-
modynamic relations to a Brownian particle moving in
underdamped and overdamped media by considering viscous
friction that varies temporally and spatially. We believe that

the present theoretical work serves as a basic tool to under-
stand the nonequilibrium thermodynamics.
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