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Boundary conditions at a thin membrane for the normal diffusion equation
which generate subdiffusion
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We consider a particle transport process in a one-dimensional system with a thin membrane, described by the
normal diffusion equation. We consider two boundary conditions at the membrane that are linear combinations of
integral operators, with time-dependent kernels, which act on the functions and their spatial derivatives defined
on both membrane surfaces. We show how boundary conditions at the membrane change the temporal evolution
of the first and second moments of particle position distribution (the Green’s function) which is a solution to the
normal diffusion equation. As these moments define the kind of diffusion, an appropriate choice of boundary
conditions generates the moments characteristic for subdiffusion. The interpretation of the process is based on a
particle random walk model in which the subdiffusion effect is caused by anomalously long stays of the particle
in the membrane.
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I. INTRODUCTION

Anomalous diffusion in a one-dimensional system is usu-
ally characterized by the following relation defined in the long
time limit [1–4]:

〈(�x)2(t )〉 ∼ tα, (1)

where 〈(�x)2(t )〉 is the mean square displacement of the
diffusing particle, 0 < α < 1 is for subdiffusion, α = 1 is for
normal diffusion, and α > 1 is for superdiffusion. Equation
(1) is usually taken as the definition of anomalous diffu-
sion. However, in addition to relation (1), an appropriate
stochastic interpretation is needed for the process to be treated
as anomalous diffusion [5]. In particular, subdiffusion is a
non-Gaussian and non-Markovian process generated by a
heavy-tailed probability distribution of time to take a particle
jump. Equation (1) characterizes a kind of diffusion when the
parameter α is uniquely defined. When there is a probability
distribution of α [6], the particle mean square displacement is
described by a more complicated equation. In the following
we assume that α is unique and we consider the case of
subdiffusion and normal diffusion, 0 < α � 1.

Different models of subdiffusion lead to Eq. (1) in the
long time limit [1–3]. We mention here diffusion in a sys-
tem having comblike structure and diffusion on fractals. We
focus our attention on models based on differential equations.
Subdiffusion can be described by a differential equation with
a fractional time derivative [2–4,7]:

∂P(x, t |x0)

∂t
= Dα

∂1−α

∂t1−α

∂2P(x, t |x0)

∂x2
, (2)
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where P(x, t |x0) is the Green’s function which is interpreted
as probability density that a diffusing particle is at a point x at
time t , Dα is a subdiffusion coefficient measured in the units of
m2/sα , and x0 is the initial position of the particle. The initial
condition is

P(x, 0|x0) = δ(x − x0), (3)

where δ is the Dirac delta function. The Riemann-Liouville
fractional derivative is defined for 0 < γ < 1 as

dγ f (t )

dtγ
= 1

�(1 − γ )

d

dt

∫ t

0
dt ′ f (t ′)

(t − t ′)γ
. (4)

The physical interpretation of subdiffusion within the contin-
uous time random walk model that leads to Eq. (1) is that
a diffusing particle waits an anomalously long time for its
next jump. The probability density of the waiting time ψα

has a heavy tail, ψα (t ) ∼ 1/t1+α [2–4]. The other example is
a nonlinear differential equation with integer derivative order
[8,9]:

∂Pμ(x, t )

∂t
= ∂

∂x
D(x, t )

∂Pν (x, t )

∂x
, (5)

where μ, ν > 0. When D(x, t ) = const the solution P pro-
vides Eq. (1) with α = 2μ/(μ + ν); when μ < ν we have
subdiffusion. The physical interpretation of this process is
based on the nonadditive Sharma-Mittal entropy [8]. When
D(t ) ∼ tα−1 and μ = ν = 1 one gets P which leads to Eq. (1)
[10]. For diffusion in a box bounded by impenetrable walls
assuming D(x, t ) = D|x|−
, 
 > 0, one gets the Green’s
function which provides 〈(�x)2(t )〉 ∼ (Dt )
/(2+
) [11].

The continuous time random walk model of subdiffusion
assumes that particle jumps are significantly hindered at each
point of the system. However, in some processes particle dif-
fusion can be very hindered at a membrane only. Considering
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diffusion of a particle along the x axis, we have diffusion in
a one-dimensional system disturbed at a single point at which
the perpendicular to the x axis membrane is placed. Obstruc-
tion of a particle passage through the membrane may affect the
nature of diffusion. An example is breaking the Markov prop-
erty for normal diffusion due to specific boundary conditions
at the membrane [12]. The change of the character of diffusion
can also be caused by the presence of an adsorbing wall in
a system in which the process is described by the normal
diffusion equation. A boundary condition at the wall involves
an integral operator with a time-dependent kernel [13].

The mechanisms of a particle transport through the mem-
brane may be very complicated. Some of them lead to great
difficulties in particle transport inside the membrane, which
affect the process in the outer regions. From a mathematical
point of view, these mechanisms provide specific boundary
conditions at the membrane [14,15] (see also the discussion
in Ref. [12] and the references cited therein); the list of
references regarding this issue can be significantly extended.
In particular, the boundary conditions may contain fractional
derivatives [16–18]. The diffusing particle can stay in the
membrane for a long time, which can happen in, among other
places, a lipid bilayer membrane [19].

The question considered in this paper is whether there are
boundary conditions at the membrane that change the nature
of the diffusion process described by the normal diffusion
equation in such a way that the process has subdiffusion prop-
erties. Our considerations are based on the Laplace transforms
of the Green’s functions. We consider the boundary conditions
for which Laplace transforms are linear combinations of prob-
abilities and fluxes defined on both membrane surfaces with
coefficients depending on the Laplace transform parameter.
As it is argued in Ref. [12], such boundary conditions often
occur in models of diffusion in a membrane system. In the
time domain the boundary conditions are expressed by in-
tegral operators with time-dependent kernels. We show that
appropriately chosen boundary conditions at the membrane
lead to Green’s functions for the normal diffusion equation
providing Eq. (1) with 0 < α < 1. We also present a particle
random walk model describing the process in which the sub-
diffusion effect is caused by anomalously long stays of the
particle inside the membrane.

II. METHOD

In this section we consider how boundary conditions at
the membrane are related to the first and second moments
of distribution of particle location. This distribution (Green’s
function) is a solution to the normal diffusion equation with
the initial condition Eq. (3).

A. Boundary conditions at a membrane

The normal diffusion equation with constant diffusion co-
efficient D is

∂P(x, t |x0)

∂t
= D

∂2P(x, t |x0)

∂x2
. (6)

We consider diffusion in a system with a thin membrane
which is located at x = 0. A thin membrane means that the
particle can stop inside the membrane, but its diffusive motion

FIG. 1. Illustration of the boundary conditions at a thin mem-
brane. The operator � changes the probabilities that the particle is
located at the membrane surface; the operator � changes the flux
flowing through the membrane.

is not possible in it. We additionally assume that x0 < 0.
The regions bounded by the membrane are denoted as A =
(−∞, 0) and B = (0,∞). In the following the function P and
a diffusive flux J are marked by the indices A and B which
indicate the location of the point x.

Four boundary conditions are needed to solve the diffusion
equation in both parts of the system. Two of them are taken at
the membrane. We assume that (see Fig. 1)

PB(0+, t |x0) =
∫ t

0
dt ′�(t − t ′)PA(0−, t ′|x0), (7)

JB(0+, t |x0) =
∫ t

0
dt ′�(t − t ′)JA(0−, t ′|x0), (8)

where the flux is defined as

Ji(x, t |x0) = −D
∂Pi(x, t |x0)

∂x
, (9)

where i ∈ {A, B}. Assuming that the system is unbounded, the
above boundary conditions are supplemented by

PA(−∞, t |x0) = PB(∞, t |x0) = 0. (10)

In the following we also use the probability PM defined as

PM (t |x0) = 1 −
∫ 0

−∞
PA(x, t |x0)dx

−
∫ ∞

0
PB(x, t |x0)dx. (11)

To solve the diffusion equation we use the Laplace
transform L[ f (t )] = f̂ (s) = ∫ ∞

0 e−st f (t )dt . In terms of the
Laplace transform Eq. (6) is

sP̂(x, s|x0) − P(x, 0|x0) = D
∂2P̂(x, s|x0)

∂x2
, (12)

and the boundary conditions (7), (8), and (10) read

P̂B(0+, s|x0) = �̂(s)P̂A(0−, s|x0), (13)

ĴB(0+, s|x0) = �̂(s)ĴA(0−, s|x0), (14)

P̂A(−∞, s|x0) = P̂B(∞, s|x0) = 0, (15)

where

Ĵi(x, s|x0) = −D
∂P̂i(x, s|x0)

∂x
. (16)
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The question arises whether Eqs. (7) and (8), and conse-
quently Eqs. (13) and (14) in the Laplace transform domain,
do not constitute too narrow a set of linear boundary condi-
tions at a thin membrane. Equations (13) and (14) are linear
combinations of Laplace transforms of Green’s functions and
fluxes. The general forms of such boundary conditions are as
follows:

γ1(s)P̂A(0−, s|x0) + γ2(s)ĴA(0−, s|x0)

= γ3(s)P̂B(0+, s|x0) + γ4(s)ĴB(0+, s|x0), (17)

λ1(s)P̂A(0−, s|x0) + λ2(s)ĴA(0−, s|x0)

= λ3(s)P̂B(0+, s|x0) + λ4(s)ĴB(0+, s|x0). (18)

The functions γi(s) and λi(s), where i ∈ {1, 2, 3, 4}, should
be assumed to be chosen in such a way that boundary con-
ditions Eqs. (17) and (18) are independent of each other.
Equations (17) and (18) are more general than Eqs. (13) and
(14). However, as it is shown in Appendix A, the boundary
conditions (17) and (18) and the boundary conditions (13) and
(14) provide the same Green’s functions when

�̂(s) = 2
√

DsWB(s)

W (s) + 2
√

DsWA(s)
, (19)

�̂(s) = 2
√

DsWB(s)

W (s) − 2
√

DsWA(s)
, (20)

where

W (s) = [λ1(s) −
√

Dsλ2(s)][γ3(s) +
√

Dsγ4(s)]

− [λ3(s) +
√

Dsλ4(s)][γ1(s) −
√

Dsγ2(s)], (21)

WA(s) = 1

2

[(
γ1(s)√

Ds
+ γ2(s)

)
[λ3(s) +

√
Dsλ4(s)]

−
(

λ1(s)√
Ds

+ λ2(s)

)
[γ3(s) +

√
Dsγ4(s)]

]
, (22)

WB(s) = 1

2

[(
γ1(s)√

Ds
+ γ2(s)

)
[λ1(s) −

√
Dsλ2(s)]

−
(

λ1(s)√
Ds

+ λ2(s)

)
[γ1(s) −

√
Dsγ2(s)]

]
, (23)

under conditions W (s) 	= 0 and WA(s) 	= ±W (s)/2
√

Ds.
Since the boundary conditions determine the solutions to
the diffusion equation uniquely, the boundary conditions
Eqs. (17) and (18) can be written as Eqs. (13) and (14) under
the above mentioned conditions the interpretation of which
is given in Appendix A. In general, the boundary conditions
(17) and (18) depend on eight functions γi and λi, where
i ∈ {1, 2, 3, 4}, while the boundary conditions Eqs. (13) and
(14) are generated by two functions �̂ and �̂ only. Thus, due
to Eqs. (19) and (20), the boundary conditions Eqs. (13) and
(14) are uniquely determined by Eqs. (17) and (18) but the
opposite is not true.

For example, one of the frequently used boundary condi-
tions at a thin membrane is

JA(0, t |x0) = κ1PA(0−, t |x0) − κ2PB(0+, t |x0), (24)

where κ1, κ2 > 0, supplemented by the condition that the flux
is continuous:

JA(0−, t |x0) = JB(0+, t |x0) (25)

see Refs. [15,20]; the list of references can be significantly ex-
tended. The boundary condition Eq. (24) is a generalization of
the radiation boundary condition. The radiation boundary con-
dition is assumed at a partially absorbing wall as J (0+, t |x0) =
κP(0+, t |x0) with J a unidirectional flux [21]. Equation (24)
assumes that each of unidirectional fluxes flowing in oppo-
site directions through the membrane is proportional to the
probability of finding the particle on an appropriate membrane
surface; the total flux J is a superposition of the unidirec-
tional fluxes. Derivation of the boundary condition Eq. (24)
is given in Appendix B [see Eq. (B7)]. The boundary con-
ditions Eqs. (24) and (25) can be written in the form of

Eqs. (7) and (8) with �(t ) = κ1√
D

[ 1√
Dt

− κ2√
D

e
κ2
2 t

D erfc( κ2
√

t√
D

)]

and �(t ) = δ(t ) [12], where erfc(u) = (2/
√

π )
∫ ∞

u e−τ 2
dτ

is the complementary error function. For this case we have
�̂(s) = κ1/(κ2 + √

Ds) and �̂(s) = 1.
The Laplace transforms of the Green’s functions for the

normal diffusion equation obtained for the boundary condi-
tions (13)–(15) are [12]

P̂A(x, s|x0) = 1

2
√

Ds
e−|x−x0|

√
s
D

−
(

�̂(s) − �̂(s)

�̂(s) + �̂(s)

)
1

2
√

Ds
e(x+x0 )

√
s
D , (26)

P̂B(x, s|x0) =
(

�̂(s)�̂(s)

�̂(s) + �̂(s)

)
1√
Ds

e−(x−x0 )
√

s
D . (27)

Equations (26) and (27) and the Laplace transform of
Eq. (11) provide

P̂M (s|x0) = ex0

√
s
D

s

[
�̂(s)[1 − �̂(s)]

�̂(s) + �̂(s)

]
. (28)

The function PM is the probability of not finding the parti-
cle in the regions A or B at time t . The Green’s functions
Eqs. (26) and (27) are normalized when PM (t |x0) ≡ 0. Thus,
the normalization condition is met when the flux through the
membrane is continuous, �̂(s) ≡ 1, or when �̂(s) ≡ 0 and
the flux is nonzero at the membrane. We treat the second
condition as nonphysical. It is not possible that the probability
of finding a particle on the membrane surface 0+ is still zero
with a nonzero flux flowing from the region A to B.

In Sec. II B we consider a model of a random walk of a
particle as it passes through a membrane. This model gives
a stochastic interpretation of the boundary conditions. It also
imposes a certain condition on the functions �̂ and �̂.

B. Random walk model of the particle passing
through the membrane

We consider a model in which a diffusing particle can be
inside a thin membrane for a very long time.

We define the Laplace transform of diffusive flux that flows
through the boundary between two media a and b located at
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FIG. 2. Illustration of the transport process described by
Eq. (29). The diffusive flux J at the point x depends on the distri-
bution of waiting times ψa and ψb for the particle to jump between
the neighboring points x− and x+ located in the media a and b,
respectively.

x as

Ĵ (x, s|x0) = εsψ̂a(s)

2[1 − ψ̂a(s)]
P̂a(x−, s|x0)

− εsψ̂b(s)

2[1 − ψ̂b(s)]
P̂b(x+, s|x0), (29)

where ψ̂i(s) is the Laplace transform of probability density
of waiting time for the particle to jump in the medium i,
where i ∈ {a, b}; ε = x+ − x− is a length of a particle step
(see Fig. 2); the derivation of Eq. (29) is in Appendix B. The
function ψ̂ is expressed by the formula [16]

ψ̂ (s) = 1

1 + ε2η(s)
, (30)

where the function η, which in practice determines a kind of
diffusion, fulfills the condition η(s) → 0 when s → 0. In the
limit of small ε we have ψ̂ (s) = 1 − ε2η(s). We assume that
the particle can stay inside the membrane at the point 0. Let
the points 0− and 0+ represent points located on the mem-
brane surfaces. Applying Eq. (29) to the system presented in
Fig. 3 we get

ĴA(0−, s|x0) = s

2εη(s)
P̂A(0−, s|x0)

− s

2εηM (s)
P̂M (s|x0), (31)

FIG. 3. Transport of a particle through the membrane. Point 0
represents the inside of the membrane where the particle can stay
even for a long time; points 0− and 0+ mark the positions of the
particle on membrane surfaces; a more detailed description is in the
text.

ĴB(0+, s|x0) = s

2εηM (s)
P̂M (s|x0)

− s

2εη(s)
P̂B(0+, s|x0), (32)

where

ψ̂M (s) = 1

1 + ε2ηM (s)
. (33)

For normal diffusion the distribution of waiting time for the
particle to jump is given by Eq. (30) with

η(s) = s

2D
. (34)

We are going to find the function ηM which together with
Eqs. (31) and (32) provides Eq. (14). The probability that the
particle is inside the membrane, represented by the point 0, is
PM (t |x0). From Eqs. (26) and (27) we get

P̂A(0−, s|x0) =
(

�̂(s)

�̂(s) + �̂(s)

)
ex0

√
s
D

√
Ds

, (35)

P̂B(0+, s|x0) =
(

�̂(s)�̂(s)

�̂(s) + �̂(s)

)
ex0

√
s
D

√
Ds

. (36)

Combining Eqs. (14), (28), and (31)–(36) we obtain

ηM (s) = �̂(s)[1 − �̂2(s)]

2�̂(s)[�̂(s) + �̂(s)]

√
s

D
. (37)

The boundary conditions at the membrane Eqs. (13) and (14)
are generated by the residence time of the particle in the
membrane with distribution Eq. (33) in which ηM is expressed
by Eq. (37). However, due to the normalization condition
ψ̂M (0) = 1, there is ηM (s) → 0 when s → 0. This condition
and Eq. (37) provide the following condition for the functions
�̂ and �̂:

√
s�̂(s)[1 − �̂2(s)]

�̂(s)[�̂(s) + �̂(s)]
→ 0 (38)

when s → 0.

C. First and second moments of P(x, t|x0)

The probability of finding a particle in a point x at time t is
described by the following function:

P(x, t |x0) =
⎧⎨
⎩

PA(x, t |x0), x < 0,

PM (0, t |x0),
PB(x, t |x0), x > 0.

(39)

In this equation PA and PB are probability densities to find the
particle at x in regions A and B, respectively, whereas PM is
a probability that the particle is located inside the membrane
placed at x = 0. Due to Eq. (11) the function P is normalized.

We derive the relations between the moments 〈xi(t )〉 =∫ ∞
−∞ xiP(x, t |x0)dx and the functions � and � that define

boundary conditions at the membrane. Equation (39) leads to

〈xi(t )〉 =
∫ 0

−∞
xiPA(x, t |x0)dx

+
∫ ∞

0
xiPB(x, t |x0)dx, (40)
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where i = 1, 2, . . .. From Eqs. (26) and (27) and the Laplace
transform of Eq. (40) we get

L[〈x(t )〉] = x0

s
+ ex0

√
s
D v̂(s), (41)

L[〈x2(t )〉] = x2
0

s
+ 2D

s2
+ ex0

√
s
D ŵ(s), (42)

where

v̂(s) =
√

D

s3/2

(
[�̂(s) − 1]�̂(s)

�̂(s) + �̂(s)

)
, (43)

ŵ(s) = 2D

s2

(
[�̂(s) − 1]�̂(s)

�̂(s) + �̂(s)

)
. (44)

We consider the first and second moments in the limit of
long time which corresponds to the limit of small parameter s.
If s � D/|x0|2, which corresponds to t  |x0|2/D, we can use
the approximation ex0

√
s/D ≈ 1. In this case it is convenient to

define the function

ẑ(s) = ŵ(s) + 2D

s2
. (45)

Then, Eqs. (41) and (42) read

L[〈x(t )〉] = x0

s
+ v̂(s), (46)

L[〈x2(t )〉] = x2
0

s
+ ẑ(s). (47)

From Eqs. (44) and (45) we get

ẑ(s) = 2D

s2

(
[�̂(s) + 1]�̂(s)

�̂(s) + �̂(s)

)
. (48)

From Eqs. (43) and (48) we obtain

�̂(s) =
ẑ(s) + 2

√
D
s v̂(s)

ẑ(s) − 2
√

D
s v̂(s)

, (49)

�̂(s) =
ẑ(s) + 2

√
D
s v̂(s)

4D
s2 − ẑ(s) + 2

√
D
s v̂(s)

. (50)

Thus, knowing the boundary conditions at the membrane we
can determine the time evolution of the first and second mo-
ments of the particle position distribution in the long time
limit putting Eqs. (43) and (48) into Eqs. (46) and (47), respec-
tively, and then calculating the inverse Laplace transforms of
the obtained functions. Conversely, the temporal evolution of
these moments defines the boundary conditions at the mem-
brane by Eqs. (49) and (50).

D. Boundary conditions at the membrane generated by the
first and second moments

The boundary conditions at the membrane generated by
Eqs. (13), (14), (49), and (50) read(

s2ẑ(s)

2D
− s3/2v̂(s)√

D

)
P̂B(0+, s|x0)

=
(

s2ẑ(s)

2D
+ s3/2v̂(s)√

D

)
P̂A(0−, s|x0), (51)

(
1 − s2ẑ(s)

4D
+ s3/2v̂(s)

2
√

D

)
ĴB(0+, s|x0)

=
(

s2ẑ(s)

4D
+ s3/2v̂(s)

2
√

D

)
ĴA(0−, s|x0). (52)

Due to the formula

L−1[ĝ(s)ĥ(s)] =
∫ t

0
g(t ′)h(t − t ′)dt ′, (53)

the boundary conditions Eqs. (51) and (52) take the forms of
integral operators with the kernels depending on the functions
v(t ) and z(t ).

E. Green’s functions generated by the first and second moments

From Eqs. (26), (27), (28), (49), and (50) we get

P̂A(x, s|x0) = e−|x−x0|
√

s
D

2
√

Ds
−

(
1 − s2ẑ(s)

2D
+ s3/2v̂(s)√

D

)

× e(x+x0 )
√

s
D

2
√

Ds
, (54)

P̂B(x, s|x0) =
(

s2ẑ(s)

4D
+ s3/2v̂(s)

2
√

D

)
e−(x−x0 )

√
s
D

√
Ds

, (55)

and we also obtain

P̂M (s|x0) =
(

1 − s2ẑ(s)

2D

)
ex0

√
s
D

s
. (56)

III. BOUNDARY CONDITIONS AT A THIN MEMBRANE
WHICH GENERATE SUBDIFFUSION

We consider how the temporal evolution of the first and
second moments that are power functions of time affects the
boundary conditions and Green’s functions. These moments
lead to the relation Eq. (1).

A. Moments as power functions of time

We consider time evolution of the first and second mo-
ments, and consequently the mean square displacement, as
power functions of time. We use Eqs. (46) and (47) assuming

v̂(s) = B

s1+β
, (57)

ẑ(s) = A

s1+α
, (58)

where α, β, A > 0. In the time domain we have

〈x(t )〉 = x0 + B′tβ, (59)

〈x2(t )〉 = x2
0 + A′tα, (60)

where A′ = A/�(1 + α) and B′ = B/�(1 + β ). Using the
equation

〈(�x)2(t )〉 = 〈x2(t )〉 − 〈x(t )〉2, (61)

we get 〈(�x)2(t )〉 = A′tα − B′2t2β − 2x0B′tβ . Since
〈(�x)2(t )〉 > 0, we suppose α � 2β, but if α = 2β we
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assume that A′ > B′2. Under these conditions for sufficiently
long times this relation can be approximated as

〈(�x)2(t )〉 = Ãtα, (62)

where Ã = A′ when α > 2β and Ã = A′ − B′2 when α = 2β.

B. Boundary conditions at the membrane

Combining Eqs. (51), (52), (57), and (58) and using the
following formula valid for bounded function g,

L−1[sγ ĝ(s)] = dγ g(t )

dtγ
, 0 < γ < 1, (63)

we get the boundary conditions at the membrane with
Riemann-Liouville fractional time derivatives:(

A

2D

∂1−α

∂t1−α
− B√

D

∂1/2−β

∂t1/2−β

)
PB(0+, t |x0)

=
(

A

2D

∂1−α

∂t1−α
+ B√

D

∂1/2−β

∂t1/2−β

)
PA(0−, t |x0), (64)

(
1 − A

4D

∂1−α

∂t1−α
+ B

2
√

D

∂1/2−β

∂t1/2−β

)
JB(0+, t |x0)

=
(

A

4D

∂1−α

∂t1−α
+ B

2
√

D

∂1/2−β

∂t1/2−β

)
JA(0−, t |x0). (65)

The discussion in Sec. III A shows that 0 < α � 1 and 0 �
β � 1/2. Thus, all fractional derivatives in the above bound-
ary conditions are of non-negative orders which are not greater
than 1.

C. Solutions to the diffusion equation

From Eqs. (54)–(58) we get

P̂A(x, s|x0) = 1

2
√

Ds

[
e−|x−x0|

√
s
D − e(x+x0 )

√
s
D
]

+
(

As−α+1/2

2D3/2
− Bs−β

4D

)
e(x+x0 )

√
s
D , (66)

P̂B(x, s|x0) =
(

As−α+1/2

2D3/2
+ Bs−β

2D

)
e−(x−x0 )

√
s
D , (67)

P̂M (s|x0) =
(

1 − As1−α

2D

)
ex0

√
s
D

s
. (68)

We calculate the inverse Laplace transforms of Eqs. (66)–(68)
using the formulas L−1[e−x

√
s/D/

√
Ds] = e−x2/4Dt/

√
πDt ,

L−1[e−x
√

s/D/s] = erfc(x/2
√

Dt ), x > 0, and [22]

L−1
[
sνe−asβ ] ≡ fν,β (t ; a)

= 1

tν+1

∞∑
k=0

1

k!�(−kβ − ν)

(
− a

tβ

)k
, (69)

where a, β > 0. The function fν,β can be expressed by
the Wright function as well as the H-Fox function (see
Appendix C). In this way we obtain the following solutions

to the diffusion equation Eq. (6) with the boundary conditions
Eqs. (64) and (65):

PA(x, t |x0) = 1

2
√

πDt

[
e− (x−x0 )2

4Dt − e− (x+x0 )2

4Dt
]

+ A

2D3/2
f−α+1/2,1/2

(
t ;

−(x + x0)√
D

)

− B

2D
f−β,1/2

(
t ;

−(x + x0)√
D

)
, (70)

PB(x, t |x0) = A

2D3/2
f−α+1/2,1/2

(
t ;

x − x0√
D

)

+ B

2D
f−β,1/2

(
t ;

x − x0√
D

)
. (71)

The inverse Laplace transform of Eq. (68) reads

PM (t |x0) = erfc

( −x0

2
√

Dt

)
− A

2D
f−α,1/2

(
t ;

−x0√
D

)
. (72)

D. Comparison of two models

We compare the Green’s functions for the diffusion equa-
tion Eq. (6) and for the fractional subdiffusion equation
Eq. (2). In both cases we assume the boundary conditions that
the functions are continuous at the membrane, but the flux is
continuous for the solutions to Eq. (2) only. The discontinuity
of the flux at the membrane in the first case generates a
subdiffusion effect. We also assume that the Green’s functions
for both equations generate the same relation:

〈(�x)2(t )〉 = 2Dαtα

�(1 + α)
.

Thus, we solve the normal diffusion equation with the bound-
ary conditions (64) and (65) with A = 2Dα/�(1 + α) and
B = 0. We obtain

PA(x, t |x0) = 1

2
√

πDt

(
e− (x−x0 )2

4Dt − e− (x+x0 )2

4Dt
)

+ Dα

2D3/2�(1 + α)
f1/2−α,1/2

(
t ;

|x + x0|√
D

)
, (73)

PB(x, t |x0) = Dα

2D3/2�(1 + α)

× f1/2−α,1/2

(
t ;

x − x0√
D

)
, (74)

and the function PM is

PM (t |x0) = erfc

( −x0

2
√

Dt

)

− Dα

D�(1 + α)
f−α,1/2

(
t ;

−x0√
D

)
. (75)

The solution to the fractional diffusion equation in terms of
the Laplace transform is

P̂(x, s|x0) = s−1+α/2

2
√

Dα

e−|x−x0|
√

sα
Dα .
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FIG. 4. Plots of the Green’s functions Eqs. (73) and (74) which
are solutions to the normal diffusion equation with fractional bound-
ary conditions Eqs. (64) and (65) (lines with open symbols) and the
Green’s function Eq. (76) for the subdiffusion equation (lines with
filled symbols), for times given in the legend; the other parameters
are α = 0.6, D = Dα = 10, and x0 = −1; the values of parameters
are given in arbitrarily chosen units.

In the time domain we get

P(x, t |x0) = 1

2
√

Dα

f−1+α/2,α/2

(
t ;

|x − x0|√
Dα

)
. (76)

The function f−1+α/2,α/2 in Eq. (76) is the Mainardi function
which is a special case of the Wright function (see Appendix
C). We mention that the Mainardi functions often appear in so-
lutions to normal and anomalous diffusion equations [23–27].
However, the functions fν,β in the solutions to the normal
diffusion equations Eqs. (70) and (71) obtained for boundary
conditions Eqs. (64) and (65) cannot be expressed by the
Mainardi function.

The plots of the Green’s functions Eqs. (73) and (74) for
the model considered in this paper and of the Green’s func-
tion Eq. (76), being solutions to the fractional subdiffusion
equation, are shown in Figs. 4 and 5. The Green’s functions
are assumed to be continuous at the membrane. However, as
opposed to Eq. (76), the flux is assumed to be discontinuous
at the membrane for the functions Eqs. (73) and (74). Then,
the particle can stay inside the membrane as it passes through
it. The plots show that the subdiffusion effect is achieved by
anomalous long residence times within the membrane. The
effect is stronger for smaller α. In Fig. 6 we can see that the
probability of finding a particle inside the membrane strongly
depends on α. If α is greater, the mobility of the particle is
greater and it is less likely to remain in the membrane. From
Eqs. (37), (49), (50), (57), and (58) we obtain

ηM (s) = 2
√

D

A
sα−1/2

(
1 − A

2D
s1−α

)

×
(

1 − B
2
√

D
s−β+1/2

1 + 2B
√

D
A sα−β−1/2

)
. (77)
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FIG. 5. The description is similar to the one in Fig. 4, but here
α = 0.9.

In the limit of small s we get ηM (s) ≈ 2
√

Dsα−1/2. Using the
approximation ψ̂M (s) ≈ 1 − ε2ηM (s) ≈ e−ε2ηM (s) and Eq. (69)
with ν = 0 we find that ψM has the heavy tail

ψM (t ) ≈ κ

tα+1/2
, t → ∞, (78)

where κ = 2ε2
√

D(α − 1/2)/A�(3/2 − α). This tail is
“heavier” than the tail ψα (t ) ∼ 1/t1+α , t → ∞, for the model
provides the fractional subdiffusion equation Eq. (2) [2,4].

IV. FINAL REMARKS

We have shown how boundary conditions at a thin mem-
brane affect the first and second moments of probability
density P(x, t |x0) of a particle position at x at time t . This
probability is a solution to the normal diffusion equation
for the initial condition P(x, 0|x0) = δ(x − x0). We also con-
sidered the inverse problem: knowing the time evolution of
these moments, we can find the boundary conditions and the

0 20 40 60 80 100 120
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α=0.9
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α=0.99

FIG. 6. Plots of PM (t |x0) Eq. (75) for different α; the other pa-
rameters are D = Dα = 10 and x0 = −1.
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Green’s functions. The first and second moments, considered
in the long time limit, also determine the temporal evolution of
〈(�x)2(t )〉 which is usually considered as the definition of the
kind of diffusion. We have shown that assuming appropriate
boundary conditions we can change the kind of diffusion
in the membrane system despite the fact that outside the
membrane the process is described by the normal diffusion
equation. Other remarks are as follows.

(i) Whether the relation (1) defines a kind of diffusion alone
has been treated by some authors rather as an open problem.
It has been shown in Ref. [5] that an appropriate combination
of subdiffusion and superdiffusion leads to Green’s functions
that generate Eq. (1) with α = 1 which is characteristic for
normal diffusion, although the process is non-Gaussian and
non-Markovian. The conclusion is that, in addition to the
relation (1), the characteristics of the diffusion process should
be based on its stochastic interpretation. We have presented a
stochastic random walk model in which, if the particle enters
the membrane, the waiting time for its jump has a heavy
tail ψM (t ) ∼ 1/tα+1/2 when t → ∞; the waiting time for a
particle jump in the regions external to the membrane is the
same as for normal diffusion. This tail is heavier than the
tail of distribution of waiting time for the particle to jump
ψα (t ) ∼ 1/tα+1 in a model providing the fractional subdiffu-
sion equation Eq. (2). The function ψM affects diffusion of a
particle at only one point corresponding to the position of the
membrane, while the function ψα affects particle diffusion at
each point in the system. However, both determine the relation
Eq. (1) with the same α in the long time limit. Thus, in the
presented model subdiffusion is generated by the effect of the
long retention of the diffusing particle inside the membrane.

(ii) Possible application of the particle random walk model
in a system with a subdiffusive thin membrane could be diffu-
sion of an antibiotic through a thin layer of bacterial biofilm.
The bacteria in the biofilm have many defense mechanisms
against the action of the antibiotic. One of them is the thick-
ening of the biofilm which causes antibiotic particles to be
trapped in the biofilm for a long time [28].

(iii) As an example, we have considered first and second
moments that are power functions of time. However, the re-
sults obtained in this paper can be applied to other forms of the
temporal evolution of the moments. For example, assuming
that the functions v̂ and ẑ are slowly varying, we obtain the
temporal evolution of the mean square of the particle displace-
ment which is characteristic for slow subdiffusion (ultraslow
diffusion) (see Refs. [16,17,29]).

(iv) The relations between the moments and the boundary
conditions at the membrane have the following properties.

(a) When the Green’s function is continuous at the mem-
brane, �̂(s) ≡ 1, then v̂(s) ≡ 0 [see Eq. (43)]. Due to Eq. (46)
there is 〈x(t )〉 = x0. The second moment evolves over time
according to the formula 〈x2(t )〉 = L−1[(x2

0 + 2D�̂)/s2].
(b) When the flux is continuous at the membrane,

�̂(s) ≡ 1, then Eq. (50) provides ẑ = 2D/s2. Thus, the flux is
continuous at the membrane only if 〈x2(t )〉 = x2

0 + 2Dt . Due
to Eq. (28), the probability of a particle becoming trapped in
the membrane is zero. Equation (37) shows that ηM (s) ≡ 0,
thus ψ̂M (s) ≡ 1 and ψM (t ) = δ(t ). This means that even
when a particle enters the membrane it will immediately
leave it. In this case the first moment evolves in time as long

as the Green’s function is not continuous at the membrane,
�̂(s) 	= 1.

(c) When the probability density P and flux J are contin-
uous at the membrane, �̂(s) ≡ 1 and �̂(s) ≡ 1, then in the
time domain we have 〈x(t )〉 = x0 and 〈x2(t )〉 = x2

0 + 2Dt . In
this case we get the standard relation for normal diffusion
〈(�x)2(t )〉 = 2Dt . This result is obvious as the continuity of
the Green’s function and flux means that there is no membrane
effect on particle diffusion.
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APPENDIX A

The Laplace transforms of solutions to the diffusion equa-
tion with boundary conditions Eq. (15) read

P̂A(x, s|x0) = 1

2
√

Ds
e−|x−x0|

√
s
D + Ae(x+x0 )

√
s
D , (A1)

P̂B(x, s|x0) = Be−(x−x0 )
√

s
D . (A2)

From Eqs. (16), (17), (18), (A1), and (A2) we get the follow-
ing system of linear equations with respect to A and B:

A

(
γ1(s) −

√
Dsγ2(s)

)
− B[γ3(s) +

√
Dsγ4(s)]

= −1

2

(
γ1(s)√

Ds
+ γ2(s)

)
, (A3)

A[λ1(s) −
√

Dsλ2(s)] − B[λ3(s) +
√

Dsλ4(s)]

= −1

2

(
λ1(s)√

Ds
+ λ2(s)

)
. (A4)

The determinants W (s), WA(s), and WB(s) for the system
of equations Eqs. (A3) and (A4) are given by Eqs. (21),
(22), and (23), respectively. Solutions to Eqs. (A3) and (A4)
A = WA(s)/W (s) and B = WB(s)/W (s) are unique only if
W (s) 	= 0. Under this condition the solutions to the diffusion
equation are determined by the membrane boundary condi-
tions uniquely. Comparing Eqs. (26) and (27) with Eqs. (A1)
and (A2), respectively, we get Eqs. (19) and (20) if A 	=
±1/2

√
Ds. Since boundary conditions determine the solu-

tion to the diffusion equation uniquely, the equivalence of
solutions (26) and (27) with Eqs. (A1) and (A2) means the
equivalence of the boundary conditions (13) and (14) with
Eqs. (17) and (18). If A = ±1/2

√
Ds, from Eq. (A1) we get

P̂A(x, s|x0) = 1

2
√

Ds
e−|x−x0|

√
s
D

± 1

2
√

Ds
e(x+x0 )

√
s
D . (A5)

The plus sign before the second term on the right-hand side
of Eq. (A5) gives the Green’s function for a system with a
fully reflecting wall; in this case the boundary condition at
the membrane is JA(0−, t |x0) = 0. The minus sign gives the
Green’s function for a system with a fully absorbing wall;
the boundary condition is PA(0−, t |x0) = 0. In both cases the
diffusion is considered in region A only.
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APPENDIX B

We present how to get Eq. (29); here we use the notation
as shown in Fig. 2. Within the continuous time random walk
model the Laplace transform of diffusion flux reads [17]

Ĵ (x, s|x0) = − ε2sψ̂

2[1 − ψ̂ (s)]

∂P̂(x, s|x0)

∂x
. (B1)

The mean number of particle jumps in the time interval
[0, t] is 〈n(t )〉 = ∑∞

n=1 nQn(t ), where Qn is the probabil-
ity that the particle jumps n times in the time interval. In
terms of the Laplace transform we have Q̂n(s) = ψ̂n(s)[1 −
ψ̂ (s)]/s, then L[〈n(t )〉] = ψ̂ (s)/s(1 − ψ̂ (s)). The frequency
of particle jumps ν is defined as ν(t ) = d〈n(t )〉/dt . Since
〈n(0)〉 = 0 we get ν̂(s) = ψ̂ (s)/[1 − ψ̂ (s)]. Using the above
formula and approximating the derivative as ∂P̂(x, s|x0)/∂x =
[P̂(x+, s|x0) − P̂(x−, s|x0)]/ε we define the probability flux
by the unidirectional fluxes. The unidirectional flux Jx−→x+

controls the probability that a particle jumps from x− to x+ in
a time unit; similar interpretation is of Jx+→x− which controls
a particle jump in the opposite direction. From the above
equations we obtain

Ĵ (x, s|x0) = Ĵx−→x+ (x−, s|x0) − Ĵx+→x− (x−, s|x0), (B2)

where

Jx−→x+ (x−, s|x0) = εsν̂(s)

2
P̂(x−, s|x0), (B3)

Jx+→x− (x+, s|x0) = εsν̂(s)

2
P̂(x+, s|x0). (B4)

By adapting the above equations to the system presented in
Fig. 2, we change the particle jump frequency into frequencies
defined in the media a and b. We get

Jx−→x+ (x−, s|x0) = εsν̂a(s)

2
P̂a(x−, s|x0), (B5)

Jx+→x− (x+, s|x0) = εsν̂b(s)

2
P̂b(x+, s|x0), (B6)

where ν̂i(s) = ψ̂i(s)/(1 − ψ̂i(s)), i ∈ {a, b}. From Eqs. (B2),
(B5), and (B6) we obtain Eq. (29).

If the jump frequency of a particle located on a membrane
surface does not change over time we have νa(t ) ≡ κ ′

1 and
νb(t ) = κ ′

2 with constant κ ′
1 and κ ′

2. Then, we get ν̂a(s) = κ ′
1/s

and ν̂b(s) = κ ′
2/s which together with Eqs. (B2), (B5), and

(B6) calculated for x = 0 provides the following boundary
condition at the membrane:

J (0, t |x0) = κ1P(0−, t |x0) − κ2P(0+, t |x0), (B7)

where κi = εκ ′
i/2, i ∈ {1, 2}.

APPENDIX C

Solutions to the fractional subdiffusion equation, obtained
for various boundary conditions, are frequently presented in
terms of the Wright function [26,30] which is defined as

Wλ,μ(z) :=
∞∑

k=0

zk

k!�(λk + μ)
, (C1)

where λ > −1, μ ∈ C, and z ∈ C. Comparing Eq. (C1) with
Eq. (69) we get

fν,β (t ; a) = W−β,−ν (−a/tβ )

tν+1
. (C2)

The special case of the Wright function is the Mainardi func-
tion:

Mν (z) = W−ν,1−ν (−z). (C3)

The Gaussian distribution is the special case of the Mainardi
function:

1√
π

exp(−z2/4) = M1/2(z), (C4)

which can appear in a solution to the normal diffusion equa-
tion.

The function fν,β can be also expressed by the H-Fox
function:

fν,β (t ; a) = 1

βa(1+ν)/β
H10

11

(
a1/β

t

∣∣∣∣ 1 1
(1 + ν)/β 1/β

)
.
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