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Entropy of fully packed hard rigid rods on d-dimensional hypercubic lattices
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We determine the asymptotic behavior of the entropy of full coverings of a L x M square lattice by rods of
size k x 1 and 1 X k, in the limit of large k. We show that full coverage is possible only if at least one of L
and M is a multiple of k, and that all allowed configurations can be reached from a standard configuration of all
rods being parallel, using only basic flip moves that replace a k x k square of parallel horizontal rods by vertical
rods, and vice versa. In the limit of large k, we show that the entropy per site S,(k) tends to Ak~2In k, with
A = 1. We conjecture, based on a perturbative series expansion, that this large-k behavior of entropy per site is

superuniversal and continues to hold on all d-dimensional hypercubic lattices, with d > 2.
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I. INTRODUCTION

Systems of particles with only hard core interactions be-
tween them have been studied as prototypical models for
phase transitions in equilibrium statistical mechanics as well
as for understanding aspects of nonequilibrium statistical
mechanics. In equilibrium statistical mechanics, hard sphere
systems serve as minimal models of solid to fluid transition in
molecular solids [1-3], and in colloidal crystals [4]. Dimer
models are equivalent to the Ising model, and anisotropic
hard particles can effectively model different phases and
phase transitions in liquid crystals [5-10]. In nonequilib-
rium statistical mechanics, hard core models like symmetric
or asymmetric exclusion processes provide basic models for
driven systems and jamming in granular systems [11-13].

Lattice models of hard-core particles have been of particu-
lar interest, as they are analytically more tractable. The phases
of assemblies of particles of many different shapes have been
studied. Examples include squares [14-19], triangles [20],
hexagons [21], long rods [22-24], rectangles [25-27], Y-
shaped molecules [28-30], tetraminoes [31], lattice gases with
exclusion up to kth nearest neighbors [32-37], cubes [38],
plates [39], etc. An analytical exact solution has been pos-
sible only for the case of hard hexagons so far [21]. Phase
transitions have also been studied in mixtures of different
shapes, for example squares and dimers [17,40], rods of dif-
ferent lengths [41,42], polydispersed spheres [43], etc. For the
mixture of squares and dimers, it was shown that the critical
exponents of the order-disorder transition depend continu-
ously on the relative concentration of the components. Despite
a long history, many basic questions about these systems
remain open; for example, for a given shape of particles, what

*deepak @iiserpune.ac.in
"rrajesh@imsc.res.in

2470-0045/2021/103(4)/042130(12)

042130-1

are the possible ordered phases, and in which sequence will
they appear on increasing the density?

Systems of hard rods and cylinders have attracted a lot
of interest, starting with the pioneering work of Onsager,
who showed that a system of thin, long cylinders in a
three-dimensional continuum undergoes a phase transition
from a disordered phase to an orientationally ordered ne-
matic phase [45]. The study of lattice models of linear k£ x 1
hard rods (k-mers) started with the work of Flory [22] and
Zwanzig [44]. On a d-dimensional hypercubic lattice, rods
can only orient in one of the d directions. It was realized in
Ref. [23], based on Monte Carlo simulations and high-density
expansions, that nematic order is present at intermediate den-
sities for large enough &, and that the lattice model at high
densities must undergo a second disordering transition at a
critical density 1 — p. ~ k2 for large k, when the nematic
order is lost. Usual Monte Carlo techniques with local moves
are rather inefficient in sampling states at high density due
to high rates of rejection of moves due to jamming, but
recently introduced strip-update Monte Carlo technique has
made it possible to reach densities within a few percent of
maximum packing density [46,47]. Using these techniques, it
is found that on the square lattice, for k < 6, there is no phase
transition, but for k > 6, as density is increased, there are
three phases: a low-density disordered phase, an intermediate-
density nematic phase, and a high-density phase in which
there is no long ranged positional or orientational order [47].
The existence of the transition may be rigorously proved [48].
The first phase transition belongs to the Ising [49-51] or
three-state Potts universality classes [49,50,52] depending on
whether the rods are on a square or triangular or honey-
comb lattice. The nature of the second transition is not so
clear. There is some indication of the high-density phase
having power law correlations [47] with the second transi-
tion not being in the Ising universality class [47,53], while
the exact solution of soft repulsive rods on a treelike lattice
[54] suggests otherwise. More recently, the transitions in two
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dimensions have been studied using measures such as the clas-
sical “entanglement” entropy, mutability, Shannon entropy,
and data compression [53,55,56].

In three dimensions, there is no phase transition for
k < 4. For k > 7, the system undergoes phase transitions
from disordered to nematic to a layered disordered phase as
density is increased. In the layered disordered phase, the sys-
tem breaks up into very weakly interacting two-dimensional
planes within which the rods are disordered. For 4 < k < 7,
there is no nematic phase, and a single phase transition from
a disordered to a layered disordered phase [57,58].

In this paper, we focus on the fully packed limit of lin-
ear rods on the square lattice and give heuristic arguments
to extend the results to higher dimensions. In particular, we
focus on the entropy per site S;(k). We note that, in addition
to understanding phase transitions in lattice systems of rods
with finite density of vacancies, the study of the fully packed
phase is relevant for other physical systems. For instance, it
would help us understand the tetratic order in self-assembly
of squares and rectangles in the continuum [59]. It may also
help in our understanding of phase transitions in other strongly
correlated systems. For example, the binding-unbinding tran-
sition of quarks as a function of the density of hadrons in
nuclear matter, studied in QCD, is similar to the binding-
unbinding transition of k species of holes during the transition
from the disordered high-density phase to the nematic phase
of k-mers.

For the case of dimers (k = 2)—the only case that is ex-
actly solvable [60—63]—the entropy per site for the square
lattice is $»(2) = G/ = 0.29156. .., where G is Catalan’s
constant [60]. On the square lattice, the orientation-orientation
correlation of two dimers separated by a distance r decays
as a power law r~!/2 for large r [64], while on a triangular
lattice these correlations are short ranged [65]. A review of
the method of solution of dimer problems on planar lattices
may be found in Ref. [66]. In three dimensions, there is a class
of lattices (not cubic lattice) for which an exact solution can
be found and the correlations are strictly finite ranged [67],
while for the cubic lattice the orientational correlations de-
cay as a power law [6]. The entropy of fully packed trimer
(k = 3) tilings on a square lattice have also been studied [68].
By numerically diagonalizing the transfer matrices for strips,
the entropy per site was found to be S,(3) = 0.158520 +
0.000015. Much less is known for higher values of k. It is
known that the tilings admit a vector height field representa-
tion [69]. For larger values of k, Gagunashvili and Priezzhev
obtained an upper bound for the entropy on the square lat-
tice: S,(k) < k~2In(yk), where y = exp(4G/m)/2, with G
being Catalan’s constant [70]. It is clear that the full packing
constraint induces strong correlations in the orientations of
rods, and one would generally expect orientation-orientation
correlations to decrease with distance as a power law.

The full packing constraint severely limits the allowed
configurations. One way to generate a large number of such
configurations, satisfying all these constraints, is to break the
system into parallel two-dimensional layers, and fully pack
each layer with rods. Since rods on different layers do not in-
teract, configurations on different layers can be independently
generated, giving a large entropy. Indeed, there is evidence
from Monte Carlo simulations (the simulations are done not

at full packing, but for densities close to full packing) that the
high-density phase of long rods in three dimensions shows
two-dimensional layering [57], and our perturbation expan-
sion suggests that, in the fully packed limit, configurations
in even higher dimensions would be dominated by layered
two-dimensional configurations.

In this paper, we determine the asymptotic behavior of the
entropy of the fully packed configurations in the limit of large
rod lengths k: first in two dimensions, and then generalized to
higher dimensions. The number of coverings depends strongly
on the boundary conditions imposed. We will consider con-
figurations of a finite L x M rectangular portion of a square
lattice fully covered by rectangles of size kK x 1 or 1 x k.
Equivalently, we can consider this a lattice model, with all
sites covered using straight rigid rods of length k. We will call
this open boundary conditions. We prove that full coverage in
the open boundary case is possible only if at least one of L
and M is a multiple of k. All the allowed configurations for
this case can be reached from the standard configuration of all
horizontal rods, using only basic flip moves that flip a k x k
square of parallel horizontal rods by vertical rods, and vice
versa. Using rigorous upper and lower bound estimates, we
show that S,(k), to leading order in k, equals Ak~ 21Ink with
A=1.

Based on a perturbation series expansion, we conjec-
ture that in higher dimensions the entropy for the fully
packed phase, for large k, would be dominated by con-
figurations where the rods arrange themselves in stacked
two-dimensional layers. Thus, we conjecture that the large-k
behavior of entropy per site is “superuniversal,” and contin-
ues to hold on d-dimensional hypercubical lattices for all
d > 2and
. k*Sa(k)

m — =

li
k—oo Ink

L, e))

independent of d.

The remainder of the paper is organized as follows. In
Sec. II, we define the problem precisely. We derive some
basic properties of the fully packed phase by showing that
an L x M rectangle can be completely covered by k-mers,
only if at least one of L or M is a multiple of k and that all
full packing configurations on an open L x M rectangle can
be obtained from the standard configuration of all horizontal
rods by a combination of basic flip moves. In Sec. III, we
obtain lower bounds for entropy by solving exactly for the
entropy of rods on semi-infinite strips k x co and 2k x oco.
These results are generalized to arbitrary strips [k x oo by
considering truncated generating functions. In Sec. IV, we
combine the lower bounds for entropy with existing upper
bounds to obtain Eq. (1). In Sec. V, we use heuristic argu-
ments based on perturbation theory to support the conjecture
that that this result should also hold for all d-dimensional
hypercubical lattices with d > 2. Section VI contains some
concluding remarks.

II. PRELIMINARIES

We consider tilings of a L x M rectangle, with L, M pos-
itive integers, by k x 1 and 1 x k rectangles (k-mers). Each
k-mer can only be in one of two orientations: horizontal or
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FIG. 1. A tiling of the Euclidean plane by k-mers, with k = 3.
Only a part of the tiling is shown here, and some k-mers do not fully
fall in the region shown.

vertical. An example is shown in Fig. 1 for the case k = 3.
Equivalently, we can consider this a lattice model, with all
sites covered using straight rigid rods of length k. Let N(L, M)
be the number of such tilings.

A. Divisibility of L, M by k

We first show that N(L, M) is nonzero, if and only if at
least one of L and M is divisible by k. The “if”” part is trivial.
For the other part, clearly LM has to be a multiple of k, for
full coverage. We now argue that in this case at least one of L
and M has to be a multiple of k.

Assign one of the k colors, called here 0, 1,2, ..., (k — 1),
to each of the squares of the lattice, with square (x, y) given
color ¢ = (x —y) mod k. The coloring of the squares for the
case k = 3 is shown in Fig. 2. Then each k-mer covers exactly
one square of each color. Let L=kl +a, M =km+ B,
with 0 < o, B < k — 1. Divide the rectangle into three smaller
rectangles of sizes k¢ x M,a x km, and « x B, as shown
in Fig. 3. Then, clearly the rectangles of size k¢ x M and
o X km can be covered by k-mers, implying that the num-
bers of squares of different colors in these two rectangles
are equal. However, the small rectangle of size o x § has
min(«, B) squares of same color along the diagonal. To cover
them would require at least min(«, 8) rods, with total area
k min(«, 8). Equating this to the total area o8, we obtain
k = max(«, ). This contradicts the assumption that «, 8 <
k. Hence, the rectangle cannot be fully covered by k-mers,
unless either L or M is divisible by k.

FIG. 2. Assigning colors to 1 x 1 squares for the case k = 3.

km

ki o

FIG. 3. Dividing an (k¢ 4+ ) x (km + B) rectangle, where 0 < o,
B < k — 1, into smaller rectangles.

For simplicity of presentation, in the following, we shall
assume that both L and M are multiples of k.

B. Ergodicity of the flip moves

In this subsection, we show that all configurations of rods
can be reached from any configurations by just using the flip
move (defined below).

We define the standard tiling configuration of a k€ x M
rectangle by k-mers as one using only horizontal k-mers. A
basic flip move is defined as replacing a k x k square filled
with vertical k-mers by one with horizontal k-mers, and vice
versa, as illustrated in Fig. 4.

A combination of two flip moves defines a “slide” move,
where a vertical k-mer next to a k x k flippable square ex-
changes position (see Fig. 5), and the vertical k-mer will be
said to slide across the flippable square.

We now argue that any full tiling of a k¢ x M rectangle
by k-mers may be reached from the standard configuration by
using only the basic flip and slide moves.

Proof. Look at the lowest row. If it consists of only horizon-
tal k-mers, then we ignore this row, and the problem reduces
to one with a smaller M. Else, it would have ¢ = ¢ — A
horizontal k-mers, and kA vertical k-mers. In Fig. 6, we have
shown an example of a 4-mer tiling of a 48 x 12 rectangle,
where £ = 12, A = 1. We move to the left any k x k block of
horizontal flippable rods we find between these kA vertical
k-mers, using the slide move, and make the vertical rods
closer to each other. If now there is any block of consecutive
vertical k-mers, we can flip these to horizontal, and reduce the
problem to one with a fewer number of vertical k-mers.

. ©

FIG. 4. The basic flip moves consist of replacing a small k x k
square in the configuration covered by k horizontal k-mers, by verti-
cal k-mers, and vice versa.
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FIG. 5. The slide move consists of transposing a rod and an ad-
jacent flippable square, i.e., sliding the rod across the square, which
may be thought of as a combination of two flip moves.

If there is no such horizontal flippable block of rods, we
look at the bottom row. Let us say that it has segments of
i1, 12, ..., I horizontal rods, interspersed with vertical rods.
(In Fig. 6, there are four segments, with iy = 1,i, = 3,i3 =4,
iy = 3). Clearly, these are bordered by vertical k-mers at the
ends, unless the segment itself is at the end of the rectangle.
Then we look at the subrectangles of sizes i1k x M, irk X
M, ... made up of these segments and bounded by vertical
boundaries. In the example shown in Fig. 6, these rectangles
are shown with orange boundaries.

We now argue that there will be a flippable k£ x k block
within each of these small rectangles. This is clear if the width
of the rectangle is exactly k. Then the sites just above can
only be covered by a horizontal rod, or k vertical rods. In
the latter case, it forms a vertical flippable rectangle. If not,
then eventually, we will have k horizontal rods just above each
other, and form a horizontal flippable rectangle.

If the width is greater than k, and the row just above is
not made of all horizontal rods, then it will be made up of
a number of horizontal segments, separated by vertical rods.
And we can repeat the argument with this smaller set. This
process cannot continue for ever, as the total width is finite,
and the width decreases at each step.

Thus, we will be able to find a flippable k£ x k box at
each stage, and eventually the number of vertical rods be-
comes zero, and the standard tiling of all horizontal k-mers
is reached. Since all moves are reversible, and any valid
configuration of full packing can be changed to standard con-
figuration, we can go from any full packing configuration on
the rectangle to any other using only flip moves.

III. LOWER BOUND FOR ENTROPY FOR LARGE k

We first show that at full packing there is a finite entropy
per site. We divide the lattice into k x k squares. There are
LM /k?* such squares, and each can be tiled in two ways, in-
dependent of the others. Then the total number of such tilings
is 2LM/ (see Fig. 7). Of course, more complicated tilings are
possible, as shown in Fig. 1, and the above only provides a

FIG. 6. Atiling of a 48 x 12 rectangle with rods of length k = 4,
where only the rods in the bottom row are shown. The vertical rods
split the rectangles into smaller rectangles, and aid in finding a block
of flippable k-mers (see text for details).

FIG. 7. Dividing a rectangle into k x k squares (here, k = 4).

lower bound. We define entropy per site:

InN(L, M)

T, @)

s = g
Then, S,(k) > k=% 1n 2.

A. Entropy of strips k x oo

We can easily obtain a better lower bound on S, (k). Break
the L x kM lattice in M strips of width k each. Let N(L, k)
be denoted by Fy. Since by breaking into strips of width k&
we disallow configurations where rods cross the boundary,
leading to undercounting, we obtain the inequality

N(L, kM) > [F.]". 3)

F;, obeys a simple recursion relation. Consider the packing of
ak x L rectangle. The first row can be covered by a horizontal
k-mer (reducing L by one) or the first k x k square can be
covered by k parallel vertical k-mers (reducing L by k). Thus,
Fp’s satisfy the recursion relation

Fp =F 1+ F . @

This implies that F;, increases as A" where A is the largest root
of the equation

A=A (5)

For large k, to leading order A = 1. A little bit of algebra
shows that in the limit of large k the subleading terms take
the form

A=1+ —Wlik) + O™, (6)

where W (k) is the solution of the equation
W (k) exp[W (k)] = k. @)

The function W (k) is called the Lambert function [71]. To
leading order, W (k) ~ Ink for large k [to see this, take the
logarithm on both sides of Eq. (7) and compare the terms of
leading order]. The subleading term can be similarly obtained
to give for large k

k
W (k) ~ In (ﬂ) @®)
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FIG. 8. A partial filling of the strip 2k x oo by rods for the
case k = 4. The horizontal red line shows the reference line. The
boundary of the configuration is specified by the projection to the
top of the reference line—in this case {0, 0, 3,3, 3,3,0,0}, or in a
more compact notation {02340%}.

with corrections that only grow slower than In(In k). Thus we
obtain

1 k
A =14 —In| — | 4+ higher-order terms. 9
k Ink
The entropy per site for the k x oo strip is (In 1)/k. Thus,

lnk1 lnlnk+ (10)
k2 Ink )

Since Sixoo 18 @ lower bound for S, (k), we obtain the leading
behavior:

Skxoo =

k2S5 (k)
k—oco Ink

> 1. (11)

B. Entropy of strips 2k x oo

In this subsection, we describe the exact calculation of
the entropy of tilings of the semi-infinite 2k x oo stripe with
k-mers, where the y coordinate is > 1, and the x coordinate
lies in the range [1, 2k]. We define the generating function
Qo (x) as the sum over all covering of rectangles of size
2k x r, summed over all positive integer values of r, where
the weight of a covering with n tiles is z”. Then, we have

}:N@hwfh (12)

r=0

Qo (z) =

We also define a partial covering of the strip with rods
below some reference line y = s > 0, so that no site with y
coordinate less than s is left uncovered (see Fig. 8), and all
rods must cover at least one site with y coordinate less than s.
Clearly, all rods that do not lie completely below y = s must
be vertical. A partial covering is a rectangular covering if and
only if no site with y coordinate larger than s is covered.

RH b8

FIG. 9. Recursion equation for W({0*}), shown for k = 4. Each
subfigure is rotated clockwise by 90° for conserving space. The
jagged boundary at the right end indicates summing over all possible
configurations on the right.

A partial covering may be characterized by its top bound-
ary {h,}, for x = 1 to 2k, where h, specifies how many sites to
the top of the reference line y = s are covered in the column
with coordinate x. We will choose s to be as large as possible,
so that at least one of the /,’s has to be zero, and i, < k — 1
for all x. For example, the boundary of the configuration
shown in Fig. 8 is specified by {0, 0, 3, 3, 3, 3, 0, 0}. In a more
compact notation, we will write this as {0>3*0%}.

Not all height configurations are allowed. A bit of thought
shows that for a partial covering of the 2k x L stripe the
only allowed height configurations are {0%*}, {#*0*}, {0FR*},
{h/OKK*=7}, and {0/h*0—/}, with h and j taking values from 1
tok — 1.

We define the generating functions v ({/,}) as the generat-
ing function of all possible ways of completing a partial tiling
with a given height profile {4;}, where the completed covering
is rectangular, and the weight of the tiling in which we add n
extra rods is 7. Therefore, for example,

v{0*) = Qu) =1+ 4+ +-- -, (13)

YA ) =24+ + - (14)

Consider a particular height configuration {h,}. We can
write recursion equations for the corresponding generating
function ¥ ({h,}), by considering all possible ways of filling
the column of sites immediately to the top of the reference line
by k-mers, such that the top edge of the full tiling is horizontal,
and no sites are left uncovered.

For example, it is easily seen that (see Fig. 9)

V{0 = 1+ (2% + Z)W{0*}) + 22 w({0* (k —
k—1
+ (k- 10k - D). (15)

j=1

D))

The different terms in this equation correspond to the cases
where the next row is left empty, or filled by two horizontal
rods, or by 2k vertical rods, or by first j vertical rods, then a
horizontal rod, then k — j vertical rods.

Writing such generating functions for all possible height
configurations, we obtain a set of inhomogeneous linear equa-
tions in approximately 2k? variables. This may be written as
a transfer matrix of dimension 2k% x 2k%. However, using the
symmetries of the problem, this number can be considerably
reduced.
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We note that the recursion equation for the generating
function W({h/O*n 7} is

W((ROH ) = 2w ({(h = 1)/0"(h — 1))

+ W0/ (k — 07}, 1< h <k

(16)
This equation has no j dependence. Hence, we may expect
that W({#/0*n*~/} is independent of j. It can be checked
that this ansatz is consistent with the remaining recursion
equations. Similarly, we find that W({0/#*0¥=/}) is also in-
dependent of j. With this simplification, the number of
independent variables reduces to approximately 2k.
The remaining recursion equations are easily written down;
weobtain forall 1 < h <k —1

V{0 R0 7)) = FW({(k — B0 (k — hY 7)), (A7)
and
W0 R} = 20 ({0°(h — DY) + 00" (k — n)*}).  (18)

Substituting for W({0/(k — h)*0*~/}) in Eq. (16) from
Eq. (17), we obtain
Z

YR O R} = —=——W({(h — 1)/0F(h — 1))/}, (19)
(1 —z%)
which is immediately solved to give
h
VRO = — w0, 1<h j<k-—l.
{ 1)) =7y ({0 j

(20)
Substituting for W({(k — 1)/0f(k — 1)*~/}) in Eq. (15)
from Eq. (20) and simplifying, we obtain

[1 _ ZZ _ Z2k _ (k _ 1)Z2k(1 _ sz)_k_H]‘-p({OZk})
=1 + 2wk (k — 1)F)). 1)

To close the equations, we have to determine W({0*/*}) in
terms of W({0%}). The values of W({0¥4*}) for one value of
h are related by Eq. (18) to arguments (k2 — 1) and to (k — h).
This seems complicated, but it is easily checked that the ansatz

V{0 ) = Ca + Do, for 0<Sh<k—1 (22)
satisfies Eq. (18), so long as
(1 — £)c =Za7*D, (1 -za)D =" C. (23)
o

Eliminating C/D from Eq. (23), we obtain

(1 —az)(l - 2) = 2% (24)

This is a quadratic equation in «, and determines « for any
given value of z. Explicitly, we obtain
S L2 =2 VA -2 — 210 427 — 2]
= 2 .

(25
Using Eq. (23), we can express C and D in terms of a single
variable «:

C=ka 1 -za, (26)
D = ko /1 - zZ/a. 27

The actual values of C and D can be determined from the
boundary condition at h = 0:

C + D = w({0*Y). (28)
‘We obtain
_ W({0%))
k= a_k/2(1 _ Z(}()1/2 + ak/z(l _ Z/()[)1/2'

Substituting for « in Egs. (26) and (27), we obtain C and D in
terms of z:

(29)

I —za
= ————W({0*)), 30
1 — zo + ZFak ({0™h 0)
akzk "
D=———09Z—4¥-Y{0™}. 31
1 — za + ZFak (0 G

Finally, substituting the value of C and D in Eq. (22), we
obtain

(1 — za)o* ' + Zva

| — zo 4 Zhak vt G2

Y0k — 1)) =

Equation (32) may be simplified by substituting for z* from
Eq. (24):

W0 (k — DY)

_ \p({02k}) Otk/z_l /1 Y +a—k/2+l /1 _Z/Ol
- T — e+ T —2ja

(33)

Note the explicit symmetry of the expression under the ex-
change of o <> 1/c.

Substituting the expressions for «, W({0¥(k — 1)}}) in
Eq. (21), we obtain an explicit expression for W({0%}) of the
form

1

V(0% = —, 34
0™} EQ (34)
where the denominator E(z) equals
B s oy (k=1
EQ)=1—-z7—z7 — —(1 T vy

[N T
a k2T =za +ak2T—z/a |
(35)

The entropy Saxoo is given by —k~ ! In 23, where 23, is the
singularity of W({0%*}) that is closest to the origin. We will
show below that asymptotic behavior of entropy for strips of
width 2k is the same as that of strips of width k. The explicit
values of the entropies for strips k x 0o and 2k x oo for k up
to 23! are given in Table I, and compared with the asymptotic
result k=2 In k in Eq. (1).

We now determine the leading singularity z3, of W({0%*})
in the limit £ >> 1. To do so, consider the denominator E(z).
It has a square root singularity at z. when the discriminant in
Eq. (25) equals zero. By factorizing the discriminant and writ-
ing in terms of the modulus of z., we obtain that z. satisfies
the equation

|-z - =0, (36)
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TABLE I. Entropy S for full packing of rods of length k on strips
k x 0o and 2k x oo, compared with the leading asymptotic result
k~2Ink in Eq. (1).

k Skxoo Sotxo0 k2 Ink

2! 2.406059 x 107! 2.609982 x 10! 1.732868 x 107!
23 2.608540 x 1072 2.929916 x 1072 3.249127 x 1072
23 2.503880 x 1073 2.797511 x 1073 3.384508 x 1073

2.961444 x 1074
2.379732 x 107%
1.817851 x 107%
1.342731 x 10777
9.683154 x 107%
6.858901 x 1010
4791144 x 107"
3.309672 x 10712
2.265549 x 10713
1.539096 x 10~
1.038890 x 1071
6.974028 x 1077
4.659372 x 10718

2.429123 x 10~*
1.975853 x 1073
1.532938 x 1076
1.148760 x 1077
8.388809 x 10~°
6.006134 x 10710
4.234237 x 107!
2.948320 x 10712
2.032237 x 10713
1.389037 x 10714
9.426769 x 10716
6.358717 x 1077
4.266698 x 1073

27 2.190142 x 107*
29 1.791444 x 1073
211 1.396705 x 10~¢
2B 1.051617 x 1077
215 7.714252 x 107°
217 5546713 x 10710
219 3925774 x 107!
221 2743428 x 10712
22 1.897264 x 10713
2% 1300702 x 10~
227 8.851686 x 1071¢
2% 5.985929 x 10~V
231 4025907 x 10718

identical to that satisfied by z* for the strip k x oo [see Eq. (5)
with A = 1/z]. For large k, it has the solution

Ink Inlnk
Inz,=——1-—
k Ink

We now show that E(z) has a zero at 23, < z.. Following a
bit of algebra, it can be shown that

—(k— Dzl —z) _
Q—z)1

+> k> 1. (37)

—Ink

E(z.) = P k>1. (38

Clearly, E(z.) < 0, as z. < 1. At the same time, it is clear that
E(0) = 1 since W({0*})|.—o = 1. Therefore, there must be a
zero zj, in (0, z.), leading to a higher entropy for strips 2k x
00, as evident in Table 1. Also as E(z.) — O for large k, we
expect that 73, — z. for large k.

We now show that the leading behaviors of z3, and z. are
identical for large k. We look for solutions

o = e Mk, (39)

where n/k? — 0 for any 6 > 0, and n — oo for k > 1. In
this limit, « ~ 1 4+ /4n/k, and after some algebra E (z*) may
be simplified to give

2
E@) ~ 7" — ke —2e7, (40)

Equating E (3, ) to zero, we obtain

2

7’7 = ke 2 4277, (41)
From direct substitution, it is straightforward to check
that Eq. (41) is satisfied to leading order by n = Ink[l —
In(Ink)/(2 In k]. Equation (39) then gives

N Ink
anZk = —7 1

Inlnk
2Ink

+ lower-order terms]. 42)

I
T T

RERP:

FIG. 10. A schematic diagram illustrating the procedure of verti-
cal concatenation. Here 7} and 7, are two admissible tilings, and the
concatenated tiling 717,75 is obtained by putting two 7;s and one 7>
from bottom to top in the specified order.

Since the entropy is given by — In z}, /k, we obtain

Ink Inlnk
— 11— - ). 43
k2 ( 2Ink + ) “3)

The leading behavior of Sy coincides with that of Sixo
[see Eq. (10)]. The subleading term is different. We thus
obtain the same lower bound as given in Eq. (11).

Sokxoo =

C. Entropy of strips L x oo

For general L x oo, though one can write down the recur-
sion relations obeyed by different generating functions, it is
not possible to find a closed form solution for them. Here, we
provide an alternate analysis by determining a lower bound
for the asymptotic behavior of entropy of L x oo strips, which
will happen to coincide with the exact results for the strips
k x oo and 2k x oo

We define the generating function

(o]
Q) =Y N(L, M), (44)
M=0
with  N(L,0)=1, by convention. Then, by direct
enumeration,
Q](Z)=1+z+zz+z3+...’ (45)
Q@) =1+ +++ - k>2. (46)

Q1.(z) is the sum of weights of all configurations of rods on a
semi-infinite strip of width L, with the weight of a configura-
tion of n rods being z". We have the further constraint that all
rods must lie fully in a rectangular region, with both bottom
and top edge horizontal, and no uncovered regions within the
rectangle. As a slightly more complicated example, it is easily
seen that ;(z) is the generating function for k£ x oo strips,
and hence,

Qu(z) = (47)

l1—z—2z¢

In determining admissible tilings, a useful concept is that
of concatenation. Given two tilings of rectangles of sizes
L x M, and L x M,, we define the vertical concatenation of
these tilings as the tiling of size L x (M| 4+ M), obtained by
just putting the rectangles on top of each other in the order
of concatenation. An illustration of vertical concatenation of
three tilings is shown in Fig. 10. A horizontal concatenation is
defined similarly.
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A tiling is said to be vertically indecomposable, if it cannot
be expressed as a vertical concatenation of two admissible
tilings. For a vertically decomposable tiling, there is a hori-
zontal line that divides the rectangle into two smaller tilings,
such that no rod crosses the horizontal line.

We now define R;(z) as the sum of weights of all verti-
cally indecomposable tilings of rectangles of width L. Clearly,
R, () is a series in powers of z, with all coefficients as non-
negative integers. Then, we have

QL(z) = (48)

1— RL(Z) ’
Let the radius of convergence of the power series of 2;(z) be
z;. Then,

Ru(zp) =1. (49)

Since Ry (z) is a series of positive coefficients, we may trun-
cate the series at any order, and obtain an upper bound
estimate of z;, and hence of z*, the limit of z;, for large L.
This, in turn, will provide a lower bound for the entropy.

We will take L to be a multiple of k, as these give the best
bounds. The simplest case is L = k. In this case, Ri(z) is a
finite polynomial, and we have

Ri(z) =z + 7~ (50)

We see that this is consistent with Eq. (47).

Now, let us consider the more complicated case L = 2k.
In this case, Ry (z) is not a finite polynomial. But it has an
interesting structure: the lowest order term is z2, correspond-
ing to a configuration of two horizontal k-mers side by side.
But, then terms of order z*, z%, ... are all zero, as the corre-
sponding tilings are decomposable. The first nonzero term is
of order z?*, which corresponds to configurations consisting
of a plaquette of k aligned horizontal rods and k vertical rods
tiling the remaining area, and another of 2k vertical k-mers.
With a small amount of brute force enumeration, it is easily
seen that the plaquette can be placed in (k 4 1) ways to give

Ru(z) = 2% + (k +2)7* + O ). (51)

If we truncate the equation at order z2*, we obtain an upper
bound estimate for z3,. It turns out that for large k the terms
that have been dropped make only a negligible contribution
to Ry (z) at z = z5,. We will verify this claim later. First, we
solve the truncated equation for z3,:

g+ k+2)3 = 1. (52)

Writing z3, = exp(—B/k), we see that (1 — z7) ~ 2B/k; if k
is large, to leading order in k, B satisfies the equation

2Bexp(2B) ~ k(k + 2), (53)

which has the solution B ~ (1/2)W (k(k + 2)) [W(z) being
the Lambert function], which for large k has the leading

behavior
k(k +2) ( k )
B~In|,/——— |~In . (54)
[ 2Ink } V2Ink

Since Sy xoo = —In(z3,)/k, we obtain

S S Ink : 1n1nk+ (55)
2kxo0 = k2 2 1nk .

hy h, hs hjs

> <> <>

=
00000

Ik

FIG. 11. A schematic representation of configurations that con-
tribute to C; to leading order in k. Here, there must be exactly k
vertical k-mers so that iy + hy + - -+ + hy = k.

This is a bit larger than the estimate using strips of width k
[see Eq. (10)], but for large k the leading behavior remains
the same with the difference showing only in the subleading
correction of order (Inlnk) /kz. We also note that the bound
for Saixco Obtained by truncation coincides with the exact
analysis [see Eq. (43)].

Now, the term of order z in Ry is only 27 , and its
contribution to the sum is smaller than that of the term of order
z*¢ by a factor (1/k). At higher orders, the term of order z%
has a coefficient of order k°. Using the fact that z* is of order
1/k, the net contribution of this term decreases as 1/k>. This
also does not change the leading order k dependence of z3, .

A similar argument works for other values of Ry (z). We
will only sketch the arguments here. The series expansion for
R (z) in powers of z is of the form

2k+2 2k+2

Ri(z) = 2* + Ciz** + higher powers of z'. (56)

Here C; is an [-dependent coefficient. The leading contribution
to this term comes from configurations depicted in Fig. 11,
consisting of (I — 1) plaquettes of k aligned horizontal k-

mers, interspersed with k vertical rods. The number of such
k+1—

configurations is (", ] ". Thus, keeping only the first two
nontrivial terms in the expansion for R;(z), we write

. k+1-1Y\ ,

g+ ( L )z,,f’ = 1. (57)

Solving this equation, we see that its smallest positive root has
the leading k dependence given by

) 1 k
L ~ €xXp |:_E In m}, k > m. (58)

Since the entropy Sixxeo = — In(zj})/k, we obtain that
(k) > Spnee > MK () _ InInk k> 1. (59)
2 = Olkxoo = k2 Ink B .
We conclude that
k%S, (k
lim ©520) o (60)
k—oo Ink

IV. UPPER BOUND FOR ENTROPY FOR LARGE
k AND THE MAIN RESULT

Gagunashvili and Priezzhev obtained an upper bound for
N(L, M) [70]. They considered a subset of sites of the square
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1.3
1.2
e 1.1
_= 1+(In y)/In k
g 1
[0}
2k
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ooooo °°
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k

FIG. 12. Bounds for the quantity k*S,(k)/Ink, the asymptotic
answer of which is 1 [see Eq. (1)]. Lower bounds are provided by
the entropies on strips k x oo and 2k x 0o. An upper bound [70] is
provided by 1 + In y/Ink, where y ~ 1.605.

lattice the coordinates of which are multiples of k, and as-
sumed that we are given the configuration of k-mers that cover
these sites. Then, they proved that there is at most one way to
cover the remaining sites with k-mers. Then, the number of
coverings allowed is bounded from above by the number of
ways the subset of sites can be covered by k-mers. But each
of these can be covered in at most 2k ways. Since there are at
most N/k? such sites, they obtain

N(L, M) < (2k)-M/R 61)
This implies that S, (k) < In(2k)/k?, or equivalently
k%S, (k
2(k) <1 (62)
k— o0 Ink

In fact, Gagunashvili and Priezzhev proved a stronger up-
per bound which for large k is S>(k) < k=2 In(yk), where y =
exp(4G/m)/2, with G being Catalan’s constant. Numerically,
y ~ 1.605. However, the weaker bound is adequate for our
purpose here

We now combine the lower bound obtained for entropy in
Egs. (11) and (60), and the upper bound obtained for entropy
in Eq. (62). Since these two bounds are the same, we conclude
that the entropy for fully packed rods on a square lattice has
the asymptotic behavior

2
k*Sa (k) _ 1, 63)

mm
k—oo Ink

as given in Eq. (1), thus proving our main result.

We now look at how the bounds converge to the asymp-
totic result. The entropies on the strips k£ x oo and 2k x oo
provide lower bounds for the entropy on infinite lattices.
Reference [70] gives an upper bound for large k as S»(k) <
k=2 1In(yk), where y ~ 1.605. Since the leading form is the
same for both the upper bounds as well as lower bounds,
we divide it out by considering k2S(k)/ In k, which converges
to 1 for large k. The strips provide lower bounds while In y
provides an upper bound for this quantity. These bounds are
shown in Fig. 12.

In addition, it is also possible to put a bound on the sub-
leading corrections to the entropy. Let 8 be the coefficient of
the subleading term In(In k)/k” in the asymptotic expansion
of the entropy such that

Ink Inlnk
Sz(k)=7+,37+“'. (64)
From Eq. (59), by taking the limitt — oo, it follows that
B = 0. (65)

V. EXTENSION TO HIGHER DIMENSIONS

We now present a heuristic argument that extends the above
result to higher dimensions d > 2. For a system of k-mers
on a d-dimensional hypercubical lattice, with d > 2, we ar-
gue below that configurations of rods that are fully layered
provide a good starting point to calculate the entropy of the
system. In fact, this approach becomes better for larger k
and one can develop a series expansion in the number of
rods that are between the layered planes. Then, in a typical
state, there are only a few such rods, and the full state will
show spontaneous symmetry breaking, with most of the rods
in the configuration being one of the (‘21) orientations. In this
way, one obtains the full packing constraint satisfied within a
two-dimensional layer, and different layers can be occupied
independently, leading to a large entropy. We note that the
existence of layering in the high-density phase has been seen
in simulations at densities close to full packing for rods of
length larger than or equal to 5 in d = 3 [57].

We first consider the case d = 3. The argument is easily
extended to higher d.

We will use an adaption of the series expansion technique
developed in the context of hard square lattice gases [14—16]
and hard rectangle lattice gases [72]. For the simple cubic lat-
tice, we consider different activities w;, w,, and w3 for rods
oriented along the x, y, and z directions. Let the correspond-
ing partition function for an L x L x L lattice be denoted by
Qr(wy, wa, w3).

We will consider a perturbation expansion of this in powers
of ws. We start with the case w; = w, = w, and w3 = 0. The
grand partition function of a L x L x L cuboid 2, (w, w, 0)
can be written as product of two-dimensional partition
functions

Qr(w, w, 0) = [Qog ()], (66)

where 2,41 (w) is the partition function of a full packing
of L x L x 1 layer by k-mers. We write Q;(w, w, w3) as
a perturbation expansion in ws about w3 = 0. If this series
expansion is well behaved, this implies that for large enough
k the full packed configuration will show spontaneous sym-
metry breaking, and for large k the fraction of nonplanar rods
in a random full planar configuration will tend to zero. The
first term in w3 must be proportional to L¢ so that the entropy
is extensive. We, thus, write the expansion as

QL (w, w, w3) = Q(w, w, 0)[1 + LA (w3/w)*

+ O((ws/w)*)]. (67)

Taking the logarithm and dividing by L?, we obtain the expan-
sion for the entropy,

S3(w, w, ws) = S3(w, w, 0) + Ay (w3 /w) +---,  (68)
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and we assume that this systematic expansion is well behaved,
and converges for small ws.

The first nontrivial term in Eq. (67) is proportional to
(ws/ w)*, and the coefficient A; is determined in terms of the
number of configurations of k z-type rods (to be also called
vertical rods), with the rest of the rods being of the x and y
type. These vertical rods will have to be in the same vertical
slab of height k. Let the x and y coordinates of the lowest
point of these vertical rods be {«;, B;}, i =1 to k. Let the
number of possible coverings of rods in one plane, given
unoccupied sites {x;, y;}, be N({x;, y;}). Then the number of
coverings of the cuboid is proportional to [N ({x;, y;})]¥, and
the relative weight of this term will be [N({¢;, 8i})/ Qo 1%
We note that [N ({«;, Bi})/ QM,L]" may be considered as pro-
portional to the probability distribution of the bound state of k
holes. We then sum over different possible {«;, 8;}. We expect
Ng, g;/S24,1 to be less than 1, and to decrease as a power
law of the distances between {«¢;, 8;}, but with a power large
enough so that

/ k
N({a;, B;i
A = Z [M} < 00, (69)
{ai, B} QZd’L
where the primed sum is over i = 2, 3, ..., k, with {«, 81}

fixed. Then the sum over «; and B; gives a factor proportional
to L.

This is a complicated problem, for which we do not know
the exact closed form expression. However, we note that each
term decreases exponentially with k for large k since we
expect Ny, g,/S224.1 < 1. We note that N({o;, B;}) would be
expected to be largest, when the holes are near each other. In
fact, the closest they can be be is in a continuous single line of
k points, which may be created by removing a single rod from
the 2d covering. In this case, the contribution of the term is
[1/Qh)1.

If we sum to all orders, the dominant contribution will be
expected to be of the same form. We thus conclude that for
large k

S3(k) = S»(k) + terms of order k7*. (70)

Then for €27 (w3), as a function of w3, and expanding in pow-
ers of (ws/ w)¥, order by order, each term in the perturbation
series will give an exponentially small contribution in the
large-k limit.

Taking the derivative of In 2, (w, w, w3) with respect to
In w3, we obtain the fractional number of rods in the z di-
rection at full packing in this ensemble, and we see that this

fraction tends to zero as k increases, and the departure from
perfect layering decreases for larger k.

The argument is immediately extended to higher d, and
leads us to the conjecture in Eq. (1).

VI. CONCLUDING REMARKS

In this paper, we studied the tiling of a finite rectangular
part of the plane by rectangles of size k x 1 and 1 x k. We
showed that in order to get a full coverage one of the sides of
the rectangle to be covered should be a multiple of k. We also
studied the structure of the tilings of rectangles, and showed
that all tilings can be obtained from each other by a sequence
of basic flip moves that exchanges a small £ x k small square
made of k parallel vertical rectangles into horizontal ones, and
vice versa. We also provided nonrigorous perturbation theory
based arguments for the conjecture that S;(k), the entropy
per site for k-mers on a d-dimensional hypercubical lattice
covered by straight rods of length k, for all d > 2 satisfies
Eq. (1). We emphasize that while the perturbation theory
argument seems quite plausible there is no proof that such a
perturbation expansion is convergent. If the series expansion
does not converge, or converges to a wrong value, the argu-
ment given here would break down.

The fact that this limit is independent of dimension de-
serves some comment. In general, we would expect the
coefficients of logarithms encountered in the study of critical
phenomena to be “universal,” because by definition they do
not change under a change of length scale in a renormaliza-
tion transformation. But, such coefficients are in general not
dimension independent. In fact, here, S; has a multiplying
factor k=2, which indicates that the relevant quantity is the
number of allowed configurations per unit square of length
k (which is the natural length scale in the problem). This
number is proportional to k, and the entropy is proportional
to In k. The fact that this is independent of dimension is only
reflecting the fact that for large k the problem essentially re-
duces to a two-dimensional problem, because of spontaneous
symmetry breaking, and most of the configurations at full
packing are the ones where the system breaks up into disjoint
two-dimensional layers. Consequently, for large &, the leading
behavior of entropy in higher dimensions is the same as the
two-dimensional case.
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