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Low-energy states, ground states, and variable frustrations of the finite-size dipolar Cairo lattices
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To investigate the influence of geometric frustration on the properties of low-energy configurations of systems
of ferromagnetic nanoislands located on the edges of the Cairo lattice, the model of interacting Ising-like
magnetic dipoles is used. By the method of complete enumeration, the densities of states of the Cairo pentagonal
lattices of a finite number of Ising-like point dipoles are calculated. The calculated ground and low-energy states
for systems with a small number of dipoles can be used to solve the problem of searching for the ground states
in a system with a relatively large number of dipoles. It is shown that the ground-state energy of the Cairo
pentagonal lattices exhibits nonmonotonic behavior on one of the lattice parameters. The lattice parameters can
be used to control the degree of geometric frustration. For the studied lattices of a finite number of Ising dipoles
on the Cairo lattice in the ground-state configurations, a number of closed pentagons is observed, which are
different from the obtained maximum closed pentagons. The magnetic order in the ground-state configurations
obeys the ice rule and the quasi-ice rules.

DOI: 10.1103/PhysRevE.103.042129

I. INTRODUCTION

A classic example, which is usually used to demonstrate
the effect of frustration in condensed matter physics, is a
system of three spins at the vertices of a triangle, interacting
in pairs antiferromagnetically [1]. It is impossible to realize
antiferromagnetic order over the entire triangle—at least two
spins are ordered ferromagnetically and at least one connec-
tion will be inevitably frustrated. Understanding the physics
of frustrations is essential to understanding the properties of
many materials such as spin and macrospin glasses [2,3],
water ice [4,5], spin ice and artificial spin ice [6–18], and
many others.

Frustrations are often, but not always, observed in systems
with slow relaxation, degeneracy, and, accordingly, a nonzero
value of the residual entropy. Usually, in an ensemble with
limited disorder, violations of local ordering rules manifest
themselves in the form of localized excitations of low-energy
states of the system [19–24]. Since frustrations give rise to
various forms of the so-called forced disorder, it is quite
natural that the disorder obeys some nontrivial rules, either
locally or globally. The ice rule [24–27] and the quasi-ice rule
[28] are well-known and important examples of local rules.

The influence of the geometry in combination with long-
range interaction on thermodynamic states, on ordering
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processes, degeneration of ground state, configurations and
conformation of ground state, and local or global rules for
establishing order (or for freezing disorder) is not an easy task
as it might seem at first glance. The dipole-dipole interaction
in artificial spin ice can significantly affect the formulation of
the well-known ice rules according to which the local order is
established. For example, for systems with a finite number of
Ising dipoles on some lattices, not all states obeying the ice
rule are ground states. In particular, it is easy to verify that the
configuration of dipoles of square dipole ice with long-range
dipole interaction is all “up” and all “to the right” is not a
configuration of the ground state, although it satisfies the ice
rule—at each node, “two inward, two out” [29].

The study of the thermodynamic states of bulk spin ice
to investigate the phenomenon of frustration and to study in
detail the configurations of bulk magnets is associated with
well-known experimental difficulties. Therefore, researchers
often prefer two-dimensional (2D) analogs for studying the
statistical mechanics of Ising-like frustrated spin systems on
lattices with specific geometry, including those not observed
in nature [29–31].

Artificial spin ice systems with nonfixed, variable, but
known coordination numbers are of particular interest. It is
usually assumed that a change in the lattice parameters can
significantly affect the degree of degeneracy of the energy
levels and, accordingly, the low-temperature properties of the
spin ice. Lattices with a variable coordination number were
considered in Refs. [21–23,26].

Artificial spin ice is a prospective material from the point
of view of practical applications for storing information since
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it potentially has a large information capacity. Other areas of
application also include some sections of quantum electronics,
as well as coding and storage of information [32]. The object
of research, for example [33–36], is a two-dimensional array
of ferromagnetic nanoislands elongated along one of the axes.
The magnetic moments of such single-domain nanoparticles
behave like Ising superspins. Their behavior can be described
in terms of the Ising model. Natural spin ice and artificial
spin ice, as well as spin and macrospin glasses [37–39], are
extremely diverse systems with many realizations in nature.
Their physics is too complex and varied, and they exhibit
exotic properties and novel phenomena.

Spin or macrospin glasses are systems in which the transla-
tional invariance of the arrangement of atoms or nanoislands is
violated. In contrast, systems of spin ice and artificial spin ice
are characterized by the presence of translational invariance
in the arrangement of the elements of the system. The study
of the physics of spin glass has led to the emergence of
new optimization algorithms, the development of a theory of
computational complexity, made it possible to shed light on
the processes of protein folding, as well as the development of
a model of neural networks. Despite these and other successes,
including in related branches of science, there are still several
tough fundamental questions. These include the search for the
ground-state configurations, which is common for spin glass
and spin ice [39,40], revealing the nature of the ground state
[41,42], degeneration of the ground state [43,44], and others.

There are many approaches to obtaining an approximate
solution of the Ising model; see, for example, [17,30,45–49].
The exact calculation of the ground-state energy even for a
classical Ising spin glass on a 2D lattice with the nearest-
neighbor interaction is a computationally difficult problem, or
even NP-complete [41]. It is believed that the issue of search-
ing for the configuration of the ground state of a spin glass in
the general case is a problem of the NP class [40]. Finding the
ground state for spin ice even in a simple model of Ising-like
dipoles is associated with combinatorial optimization prob-
lems. In Ref. [50], the model of Heisenberg-like dipoles is
considered, which can even have small oscillations relative
to the direction distinguished by the shape anisotropy. This
additional degree of freedom can be considered as an addi-
tional possibility for excitations, and in the presence of chaos
in the directions of the magnetic moments, the algorithmic
complexity of the problem under study increases intractably.

The combinatorial optimization problems that arise when
calculating the ground state of a spin glass and spin
(macrospin ice) system are similar, and it should be noted that
the solution to these problems is as difficult as they are of
fundamental and practical interest.

II. MODEL AND COMPUTATIONAL METHODS

The Cairo lattice is sometimes called the “pentagonal lat-
tice” [51] or “Cairo pentagonal lattice” [52–54]. The literature
[55–58] argues that geometric frustrations in the Cairo lat-
tice can lead to exotic properties and a variety of degenerate
ground states. The path to the ground state in magnetically
frustrated systems is an interesting optimization question that
can be attempted using various approaches. For example,
in geometrically frustrated artificial kagome spin ice, Monte

FIG. 1. (a) Cairo lattice and its relevant parameters a and b repre-
senting the two site lengths, while c (highlighted by an orange double
arrow) represents the distance between collinear dipoles (red crosses)
meeting at four-dipole vertices. (b) Scanning electron microscopy
(SEM) image of a dipolar Cairo lattice consisting of nanoislands
of lengths L = 300 nm and widths W = 100 nm, placed on the
edges of the Cairo lattice with lattice parameters a = 472 nm, b =
344 nm, and c = 500 nm. Interactions are presented between nearest
neighbors in the short-range model. (c) The explanation of the used
Ising-dipoles model, where Simi—magnetic moments and Si—unite
the one-component vector of magnetic moment. (Red arrows) “spin
up” (|Si| = +1); (blue arrows) “spin down” (|S j | = −1). For this
configuration of N = 20 dipoles, the spin excess M = ∑N

i |Si| = 0.
(d) The gray-scale representation of the magnetic moments configu-
ration, |Si| = +1 (black), |Si| = −1 (white), is presented to compare
with experimental XMCD data [63].

Carlo methods, employing the so-called dumbbell model
[59–61] were used to predict thermodynamic phase transitions
towards a long-range ordered ground state, which have also
been experimentally confirmed [62].

In our paper, we calculate the ground-state configuration in
frame long-range interaction model and estimate the degree
of frustration of samples of a finite quantity of dipoles of the
Cairo lattice for a given lattice parameter, i.e., a given coor-
dination number. Based on this analysis, we have attempted
to predict the configuration of the ground state of pentagonal
lattices when there are a relatively large number of dipoles.
The results in Ref. [63] present an experimental study of two-
dimensional artificial spin ice, where Ising-like nanoislands
are placed on the centers of the edges of the so-called Cairo
lattice (see Fig. 1).

Figures 1(a) and 1(b) show the lattice parameters a, b,
and c. With this notation the calculations were performed
for a = 472 nm, b = 344 nm, and various values of c, as
in Ref. [63], with the only difference that we calculated the
properties of the ground states for c > 600 nm. Since the
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sizes of the nanoislands are below the critical threshold for
a single-domain state, and the shape anisotropy highlights
the direction for the magnetic moment, we investigated the
model of Ising-like point dipoles. For clarity and presentation
of our model, we calculated the centers of the nanoislands and
placed the lattice of point dipoles on the lattice shown in the
image obtained in Ref. [63] by scanning electron microscopy
(SEM) [Fig. 1(b)]. The Cairo dipole lattice sample consisted
of nanoislands with lengths and widths of 300 nm and 100 nm,
respectively. In Fig. 1(c), arrows show one of the possible
configurations of the 20-dipole array, while the corresponding
XMCD contrast is given in Fig. 1(d).

The energy of the dipole-dipole interaction in the Cairo lat-
tice was calculated using the following well-known formula:

Ei j = (mim j )

|Ri j |3 − 3
(miRi j )(m jRi j )

|Ri j |5 , (1)

where mi = μi Si mi is the moment of the i dipole, μi = MsV
is the value of the magnetic moment of the nanoisland with a
volume V , the saturation magnetization Ms, and Ri j = l ri j is
the radius vector connecting the dipoles i and j, and l is the
factor which has length dimension. Then,

Ei j = D SiS j

[
(mimj )

|ri j |3 − 3
(miri j )(mjri j )

|ri j |5
]
, (2)

where D = μiμ j/l 3 is the dimensional constant for the dipole
interaction. Therefore, the energy of all pair interactions E/D
in this research has a dimensionless value. A lattice with
free boundary conditions was used, in which Ising-like point
dipoles Simi are placed on the edges of the pentagons.

The direction of a magnetic moment is defined by Simi =
Si{mx,i, my,i}, where Si is the unit one-component vector of the
magnetic moment and defines the direction “up” or “down”,
i.e., |Si| can have only two values of its component +1 or −1.
In Fig. 1(c), the corresponding Simi are indicated by arrows,
and the color corresponds to the sign of |Si|, conditionally,
blue—“down”, or red—“up”. The gray-scale representation
for the moments configuration is shown in Fig. 1(d). The pro-
jection of the magnetic moments on a given direction of |Si|
allows us to obtain a black-white image of the spin configu-
ration similar to experimentally obtained XMCD images. The
direction is chosen so that there are no vectors orthogonal to
this direction. Here it is chosen along the x direction [0 degrees
for the example given in Fig. 1(d) with a 17-degree lattice
rotation), in order to obtain the same black-white pattern as
experiments. The moments of the nanoislands [see Fig. 1(c)]
will have nonzero values of both components if the entire
lattice is rotated by a certain angle entirely, except for when
the direction is parallel to one of the four subsets of moment
vectors (0, 60, 90, or 120 degrees plus the lattice rotation).

It is possible to introduce the “spin excess”:

M =
N∑

i=1

Si, (3)

the difference between magnetic moments “up” and “down”
for each configuration. Here and after we will omit the signs
of the vector and module for Si, because it has one component.
Nevertheless, it should be remembered that the value of M will

depend on the choice of the axis (direction) on which the Si

vectors are projected. Therefore spin excess M in our research
has a dimensionless value.

There are 2N configurations in an Ising model consisting
of N dipoles. The uniqueness of the configuration of the
magnetic moments is coded by a single set {Si}, in fact this is
the “ID” of the magnetic moments configuration. The orienta-
tion of the magnetic moment is determined by the direction
of the easy axis of the nanoislands’ magnetization, which
is controlled in this case by the shape anisotropy. Based on
SEM data [see Fig. 1(b) [63]], the nanoislands are seemingly
identical, while around 5% disorder in the form of a Gaus-
sian is often used in past kinetic Monte Carlo simulations to
match experimental observations [64]. As a result, for each
configuration of dipolar moments in the Ising model we can
match the spin excess M and in the case of “all-to-all” dipolar
interaction the total energy,

E =
∑
〈i, j〉

Ei j =
N∑

i=1

N−1∑
j=i+1

Ei j . (4)

Moment configurations with the smallest calculated energy E
are branded as the “ground states.” For the frustrated system
with an Ising model, from geometry or lattice, even in the
ground state, there can be multiple degenerated. In the ground
state, there are pair interaction energies Ei j that are unfavor-
able (i.e., similar to other frustrated systems like the kagome
system [65]). This means that there are more possible states
with a ground-state energy, and, more important, that there is
a special lowest energy value,

Emin = −
∑
〈i, j〉

|Ei j |, (5)

which is even lower than the ground-state energy, but it is not
realized. Despite the fact that there is no such set of {Si} that
would correspond to the value of Emin, the knowledge of this
hypothetical energy level for a frustrated system can be very
useful for assessing the degree of frustration (relative numbers
of exited pairs of moments). Another useful characteristic of
systems with frustration is the value,

Emax =
∑
〈i, j〉

|Ei j | = −Emin. (6)

All permitted energy values for any physical system with pair
interactions are always in the range from Emin to Emax. For
frustrated systems, the ground-state (gs) energy usually has a
higher value than the minimum value Egs > Emin. The exotic
thermodynamic properties of frustrated systems will depend
not only on the type of the distribution of states, but on the lo-
cation of the energy spectrum within the interval (Emin, Emax).

A quantitative measure of the frustrations was introduced
in Ref. [17] and here it is calculated as the relative number of
excitations in the ground state using

Pf (T ) = Emax + 〈E〉(T )

2Emax
= Emax + Egs

2Emax

∣∣∣∣
T →0

, (7)

where Pf ∈ [0, 1] and 〈E〉(T ) is the thermodynamic mean
value. For 1D, 2D, and 3D Ising ferromagnets Pf (T → 0) =
0, and there are no frustrations.
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We used the complete enumeration method for lattices with
N = 20 and 40 dipoles. The time it takes to solve a problem
by the complete enumeration method increases exponentially
with the number of elements in the model. However, the
benefits of this method include the fact that if it is possible
to apply this method, it always finds a solution.

The search for the ground state for an 80-dipole lattice was
performed in two ways. First, we calculated all possible states
of the lattices with N = 20, then from the low-energy states
we collected the low-energy state for the Cairo lattice with
N = 80. We used less than 0.1% of the low-energy states to
combine the four found low-energy states of 20 dipoles into
a lattice of 80 dipoles. Secondly, using the hybrid multispin
Monte Carlo method [17], the ground state was sought for the
80-dipole lattice.

The method consists of combining the classical Monte
Carlo and the complete enumeration method. The explanation
of a common scheme was given in Ref. [17]. We proposed
a new hybrid multispin method (the logical continuation of
the Metropolis algorithm [45]), which in some cases can be
used to solve the problem of ground-state or low-energy state
search for frustrated vector models of complex systems of
many interacting Ising dipoles. We used Eqs. (1) and (4).

The idea was as follows: A region from 10 to 23 nearest-
neighbor and close-neighbor (up to the fifth coordination
sphere) dipoles were randomly selected. For this area, a
complete enumeration was performed taking into account
the general distribution of internal energy in the “all-to-
all” interaction model with free boundary conditions for the
configuration as a whole and formula (1). The energy and
configurations of the ground state for this local region were
calculated, after which all moments were brought to the state
with the lowest energy, and we randomly changed the area to
decrease the energy. In the Metropolis algorithm, at T → 0,
the probability of accepting the configuration with the lowest
energy tends to unity. If there was a degeneration of local
ground states, we randomly chose any gs configuration with
uniform probability from the set of those found.

III. RESULTS

We have calculated 220 states for a system of N = 20 spins
with the parameters of the Cairo pentagonal lattice specified
in Ref. [63] for the case of free boundary conditions. Figure 2
shows DOS projections g(E , M ) onto the (E , M ) plane, where
M is the spin excess or the difference between the number of
spins “up” or “down.”

The lower axis of each of Figs. 2(a)–2(d) corresponds to the
minimum value of the interaction energy of the dipoles Emin,
calculated by formula (5). The upper axes of Figs. 2(a)–2(d)
correspond to the maximum value of the energy of dipole-
dipole interactions Emin, formula (6). The distance between
the minimum of the energy Emin and the ground state Egs is
the “band gap” or “energy gap.” There are no energy levels
in the energy gap since configurations with such an energy
do not exist. One of the distinguishing features of frustrated
systems is that their band gaps are located below the ground
state. Due to the structure of the Hamiltonian, the interaction
law, or the peculiarities of the lattice geometry, states with
fewer excitations than in the ground state do not exist. Thus,

FIG. 2. Projection of the density of states onto the plane (E , M )
for the Cairo lattices of N = 20 dipoles, c = 376, 450, 500, 600 nm,
respectively, for (a)–(d).

the lowest energy states of the studied Cairo lattices, even the
ground states realized at T → 0, always contain excitations
of pair interactions of the “head to head” or “tail to tail” type.
As can be seen from Figs. 2(a)–2(d), the energy gap increases
with increasing c.

Figure 3(a) shows the density of states for the N = 20
dipole system, c = 376 nm. In Fig. 3(a) the distribution of de-
generation of configurations g(E , M ) is presented. Figure 3(b)
shows the low-energy states starting from the fourfold degen-
erate ground state. The function g(E , M ) does not increase
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FIG. 3. (a) The quantity of states g(E , M ) for the Cairo lattices
of N = 20 dipoles, c = 376 nm. (b) Low energy part of g(E , M ) for
c = 376 nm.
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(a) (b)

FIG. 4. (a) One of four ground-state configurations for lattices
N = 20 with c = 376 nm, 450 nm, 500 nm. (b) One of four configu-
rations for lattice N = 20 with 600 nm.

sharply with an increase in internal energy from the ground
state to low-energy configurations. In the case of a dipole-
dipole interaction, the degeneracy reaches a maximum density
in the area of g(0, 0). The maximum values of the energy
degeneracy over the spin excess at the selected accuracy
are observed for the following function g(−0.00326, 0) =
g(0.00143, 0) = g(0.00721, 0) = 80.

Note here that all the configurations of the ground state
that we found in this work obey ice rule “two in–two out”
for nodes of four dipoles, and the kagome ice rules “two
in–one out” or “two out–one in” for nodes of three dipoles.
Figure 4 shows the ground states for the studied lattices of
20 dipoles with free boundary conditions and different values
of the lattice parameter c = 376, 450, 500, and 600 nm. As
seen in Fig. 4, the ground states for the lattice of dipoles
with c = 376, 450, and 500 nm are the same and differ from
the ground states of the lattice where c = 600 nm only by
inverted angular dipoles. We marked with a red circle the
pentagons in which all the dipoles are lined up according to
the “head-to-tail” rule. With a cross, we marked the pentagons
in which, for nearest neighbors, at least one violation of the
“head-tail” rule takes place, respectively; frustrations of pair
interactions were observed in these figures.

Obtained in the long-range model the candidate ground
state could be analyzed in the frame of the short-range model.
The paper [63] used notations for a short-range model, with
the explanation of pair interactions given in Fig. 1(b). The
Type-A vertex minimizes (satisfies) both J1 interactions, while
J3 is maximized (Fig. 4). The Type-B vertex satisfies J1 and
the J3 interactions, while maximizing the other J1.

It should be noted that there are configurations for a lat-
tice of 20 dipoles in which all four pentagons (relative to
the central cross) have no violations of the “head-tail” rule
(for nearest neighbors). These configurations have energies
higher than the ground state. In these states, the ice rule and
the quasi-ice rule are fulfilled. The dipole-dipole interaction
removes the strong degeneracy of the low-energy states of the
dipole Cairo ice.

The four same ground states were calculated by means of
complete enumeration for each Cairo lattice of 20 dipoles with
parameters c = 376, 450 nm, 500 nm [Fig. 4(a)]; for c = 600
nm one ground-state configuration is presented in Fig. 4(b).

Figure 5 shows one of the excited states of a system of 20
dipoles on a pentagonal lattice for c = 376 nm. We give it

FIG. 5. One of the excited states for a system of 20 dipoles, c =
376 nm.

as an example to show that in the long-range dipole interac-
tion model, there are excited non-ground-state configurations,
where the ice rules and the quasi-ice rules are fulfilled, as
well as for all four completely closed pentagons where the
“head-tail” rule is fulfilled. It is possible to see, that in the
ground-state configuration in Fig. 4(a), there are more Type-A
vertices, than in exited states, for example, in the state in
Fig. 5.

The energies and configurations of the ground states for
the Cairo pentagonal lattice, consisting of 40 dipoles, were
calculated by the complete enumeration method. It was found
that, as in the case for N = 20, for a system of 40 dipoles,
the configurations of the ground state for c = 376, 450, and
500 nm are repeated. The configuration of the ground state of
the lattice with c = 600 nm differs from the configuration of
the ground state for lattices with other values of c only in that
the moments at the corners of the lattice have other directions.

The exactly calculated ground-state configurations of the
Cairo lattice of 40 dipoles were used to test the solutions
that were obtained by way of combining low-energy states.
In addition, they were used to check the performance of the
solutions obtained by the Monte Carlo method. The combi-
nation method consisted of building the configuration of the
ground state of the large pentagonal lattice of dipoles using
the known low-energy configurations of Cairo lattices with
fewer dipoles. Suppose a lattice with N dipoles consists of
two subsystems, into which it is equally divided. Each of the
subsystems will have 2N/2 configurations. Each ground state
of a lattice of N dipoles will be constructed from two configu-
rations of these two subsystems. These two configurations will
be in the 2N/2 space. In this case, it is easy to verify that these
will necessarily be low-energy configurations, the excitations
of which will be associated only with the effect of boundaries.

All possible configurations of the Cairo lattice of 20 spins
were sorted in order of increasing energy and the densities of
states were plotted [see Figs. 2(a)–2(d)]. In Fig. 6 we have de-
picted a small number of low-energy states of the investigated
lattices.

Figure 6 shows the projections of the density of states
onto the (E , M ) plane of low-energy configurations for c =
376, 450, 500, 600, 650, and 700 nm, respectively, for
Figs. 6(a)–6(f). Calculations were performed for N = 20
dipoles. The circles denote configurations that were part of the
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FIG. 6. Reduced DOS for lattices N = 20 with c = 376, 450, 500, 600, 650, and 700 nm, respectively, for (a)–(f). The circles indicate the
states of the subsystems from which the ground state for a system of 40 dipoles is constructed. A bold red cross denotes the states from which
the lattice states of 80 dipoles were constructed. In (a), the green rhombus indicates the excited state with the maximum number of closed
pentagons. The excited state for N = 40 was collected from the states indicated by the blue squares.

ground-state configurations for the Cairo lattice of 40 dipoles
with the corresponding value of the parameter c. It is easy to
see that only for a lattice of 40 dipoles, where c = 600 nm,
the configurations of two subsystems are the ground states for
a lattice of 20 dipoles. For the remaining lattices, the states
of subsystems of 20 dipoles, from which the states of 40
dipoles were constructed, are excited, albeit low-energy states.
Obviously, the boundary effect plays a role here. For lattices
with c = 376, 450, and 500 nm, the energy of interactions
by absolute value at sites with four nearest neighbors can be
more than at sites with three nearest neighbors. Lattices with
c = 600, 650, and 700 nm decay into sublattices of five spins
each, so the total interaction between the subsystems weakens.
The states of the subsystems of 40 dipoles for c = 650 and
700 nm are also excited due to the boundary spins. It should
be noted that the ground state of a system of 40 dipoles at
c = 650 and 700 nm can be constructed only from configura-
tions of 20 dipoles, which are most close to the ground state
[see the circles in Figs. 6(e) and 6(f)]. A characteristic feature
of the space of states for the selected values of parameter c
is that there are some critical values of this parameter where

the positions in the (E , M ) space of the configurations, from
which the ground states of 40 and 80 dipoles are constructed,
no longer change; see, for example, Figs. 6(a) and 6(b), and
also Figs. 6(e) and 6(f). In Fig. 6(a), we have highlighted the
energy and spin excess of the state shown in Fig. 5(a) with a
green rhombus.

An enumeration of low-energy configurations of a small
lattice in order to find a solution for a larger lattice was carried
out for a different number of low-energy configurations for
each value of parameter c, in order to obtain reliable solutions.
We combined pairs of arbitrary low-energy configurations
of 20 spins to obtain a configuration for 40 dipoles. Then
an enumeration was performed over the selected low-energy
configurations of two adjacent combined subsystems, while
the energy for the lattice under construction of 40 dipoles was
controlled.

The ground state found by means of both the combination
method and the complete enumeration method for the system
of 40 dipoles is shown in Fig. 7(a). In Fig. 7(b) we have given
the excited state for a system of 40 dipoles on the lattice. As
in the case of a system of 20 dipoles, the excited state, with
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(b)

(a)

FIG. 7. One of four possible ground states (a) and one of the
excited states (b) for systems of 40 dipoles, c = 376 nm.

many closed pentagons, with the observance of the ice rule
and the quasi-ice rule, is not the ground state. The states of
the subsystems of 20 dipoles, from which the excited state of
40 dipoles in Fig. 7(b) is constructed, are shown in Fig. 6(a)
as blue squares. Red circles in Fig. 6(a) indicate the states of
the subsystems of 20 dipoles from which the ground state of
the system of 40 dipoles was constructed. In the short-range
model for a system of N = 40 Ising dipoles in the ground state
the situation with distribution of A and B vertex types is the
same as for a system of N = 20.

A. Predicted Ground State and Comparison with
Experimental Observations

We have constructed the ground state of a system with
N = 80 spins in the model of long-range interactions (see
Fig. 8). We have obtained energies and configurations close
to the ground state of a system of 20 dipoles. By a complete
enumeration over a given number of low-energy configura-
tions, such states of systems of 20 dipoles were found, from
which the ground state 80 is constructed.

It is interesting to note that for N = 80, the configurations
of the candidate on the ground state for all systems studied
by us with c = 376, 450, 500, and 600 nm are the same,
except for a few moments on the perimeter having different
directions, while all strictly obey all ice-rule constraints.

In the predicted ground state, Fig. 8, we see an arrangement
of these vertex types, completely fulfilling the emergent ice
rule (two Type A and two Type B). All vertices from four
dipoles in the theoretically predicted ground state satisfy the
ice rule—“two in” and “two out.”

One of two possible candidates on a ground state for
all researched Ising-dipole Cairo lattices in the interval for

B

B

B

B

B

BB

B B

B

B

B

B

B

AA A A

A

AA A A

A A A A

A AAA

A

FIG. 8. One of four possible ground-state configurations for a
system of 80 dipoles, c = 376 nm. The ground state consists of Type
I vertices at the four-island vertices, a strict ice-rule obedience at
the kagome three-island vertices, and an obedience to the emergent
ice rule (two Type A and two Type B vertices) within four-vertex
plaquettes [63].

376 � c � 600 nm was obtained by way of the simple trans-
lations of the low-energy unit cell presented in Fig. 8. We
have calculated the low-energy configuration for N = 2000
Ising dipoles (and more)—a candidate on the ground state,
therefore, now we are able to obtain the projections Si to plot
the main features of the XMCD contrast. In Fig. 9(a), by the
same way as is in Fig. 1(d), the Ising dipole moments Si were
projected onto a given theoretical direction (the direction of
the x rays in the experiment), that gave the gray-scale image
for the predicted ground state. We have shown in Fig. 9(a) a
simulated XMCD snapshot of the configuration of a candidate
on the ground state for the N = 2000 Ising-like dipoles system
on the Cairo pentagonal lattice for c = 376, 450, 500, and
600 nm. This figure is similar to Fig. 4 of [63], where x-ray
radiation was directed from left to right at an angle of 17
degrees, with the only difference that we used images without
halftones for greater contrast in Fig. 9(a).

To test this ground-state prediction, we aimed at compar-
ing the prediction with experimentally observed low-energy
configurations, following a thermal annealing of dipolar Cairo
lattices [63]. Electron beam lithography was used to fabricate
dipolar Cairo lattices [63]. First, a 70-nm-thick polymethyl-
methacrylate (PMMA) resist layer was spin-coated on a
silicon (100) substrate. Following e-beam exposure and de-
velopment, a 2.6-nm-thick Permalloy (Ni80Fe20) thin film was
deposited (base pressure: 2 × 10−7 Torr), along with a 2-nm-
thick aluminum capping layer to avoid fast oxidation. Lift-off
in acetone is then used to remove all of the unwanted magnetic
material from the substrate. Taking a background Cairo lattice
with lattice parameters a = 472 nm and b = 344 nm [see
Fig. 1(a)], the resulting nanoislands with lengths L = 300 nm,
widths W = 100 nm are then arranged onto the sites of this
Cairo lattice. The variation of lattice parameter c = 376 nm,
450 nm, 500 nm [see Fig. 1(b)], and 600 nm allows direct
control and manipulation of competing dipolar interactions
[63]. In accordance with previous work [63,66–68], the thick-
ness and overall dimensions of the nanoislands were chosen
to result in a blocking temperature (temperature at which
thermally induced moment reorientations occur at a time scale
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FIG. 9. (a) Simulated XMCD image for the candidate for the ground state of the dipole Cairo lattice for 376 � c � 600 nm. (b) Experi-
mentally observed low-energy clusters (ground-state domains) for Cairo lattices with different c.

of a few seconds) around 130 K. Each nanoisland is small
enough, to be in the monodomain state, and elongated, so
that magnetic moments can only point in one of two possible
directions along the long axis of a given nanoisland. Thus,
each nanoisland represents a single Ising macrospin. This is
the rationale for using the Ising model.

Magnetic imaging was performed using cryogenic photoe-
mission electron microscopy (PEEM) [69], employing x-ray
magnetic circular dichroism effect (XMCD) at the Fe L3 edge
[70]. An XMCD image is obtained by a pixel-wise division
of images recorded with circular left and right polarized light.
The resulting dark and bright contrast is a direct measurement
of the orientation of a given magnetic moment with respect
to incoming x rays. Moment pointing towards the incoming x
rays will appear dark, while moments opposing the incoming
x-ray direction will appear bright [see Fig. 9(b)]. Following
fabrication, the sample was placed in vacuum at room tem-
perature for seven days, before it was transferred into PEEM
for magnetic imaging. In PEEM, the sample was cooled down
to 100 K, to ensure that all moments remain frozen during
XMCD imaging after this thermal annealing procedure.

The existence of clusters of a low-energy phase, cluster
formation, the emergence of a “percolation cluster,” i.e., the
processes of merging into one large cluster the connection of
clusters (domains) of the ground state with thermodynamics,
were discussed for artificial superspin ice in Refs. [29,30], and
for macrospin glass in Ref. [71].

In Fig. 9(b), low-energy (ground-state) domains are high-
lighted by white contours in the experimental XMCD images,
where an ordering close to the theoretically predicted one is
preferable. The gray-scale contrast on experimental images
is more diverse. In Fig. 9(b) for some points, we see weak
contrast, because these islands have similar 75◦–80◦ angles
with respect to incoming x rays. Maximum contrast is seen

when we have parallel moments (0 degrees) with respect to
incoming x rays. An island with a 90◦ angle with respect to
incoming x rays will show no contrast at all.

For a small number of dipoles on the Cairo lattice in the
model of long-range interaction, Figs. 3(b) and 6 show that
the configurations of the ground state have a zero value of spin
excess M = 0. This is logical, since the dipole-dipole inter-
action has antiferromagnetic nature. Exact calculations show
that the situation of M = 0 is conserved for lattices with larger
size N = 40 and 80. The processing of the experimental data
showed that for the researched lattices, the average absolute
value of spin excess is |M| per one dipole, as presented in the
Table I.

Figure 10 shows the values of the interaction energy in the
configurations of the ground state from the lattice parameter c
per one dipole for N = 20, 40, 80 dipoles. The curves are con-
structed using the least-squares method. For values c > 600,
where all systems decay into separate subsystems of n = 5
dipoles, the value of the ground-state energy of pentagonal
lattices of various numbers of dipoles N tends to the same
one for all lattices of a finite number of dipoles under study.
The dependence of the reduced ground-state energy on the
lattice parameter EGS(c)

DN exhibits a maximum with a further

TABLE I. The average values of spin excess per one dipole for
experimental samples.

c (nm) |M| (dimensionless units)

376 0.01948±0.00389
450 0.04544±0.00909
500 0.04578±0.00916
600 0.04093±0.00818
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FIG. 10. Normalized energy depending on c, for N = 20, 40, 80
dipoles.

decrease in c, i.e., with an increase in the influence of the
nearest neighbors, the difference in the ground-state energy
of the studied systems with varying numbers of particles be-
comes essential. This is due to an increase in the interaction
energy in the ground state with a decrease in the value of c,
which in turn leads to an increase in the contribution to the
total interaction energy of the nearest neighbors due to an
effective increase in the coordination number, as well as to a
decrease in the influence of boundary dipoles, the ratio of the
number of which to the total number of dipoles decreases with
increasing N . Similar dependencies in the behavior of EGS(c)

DN
for a system of 80 dipoles, which were constructed by the
combination method and independently found by the Monte
Carlo method, as well as systems with the smaller number
of 40 and 20 dipoles, which were calculated by the complete
enumeration method in Fig. 10, are indirect confirmation of
the reliability of the obtained configurations of the ground
state of the lattices of 80 dipoles.

Figure 11 shows the values and the dependencies of the
frustration parameter on the lattice parameter c calculated by
the least-squares method at T → 0. Our proposed quantitative
measure of relative frustration for all explored systems did not
exceed 33%. This figure reflects the ratio of the number of
excitations to the total number of paired interactions. As one
can see, the band gap, i.e., the frustration parameter, behaves
nonmonotonically as a function of c: It has a maximum. At
very large values of c, all curves are combined into one, since
the system splits into “independent pentads.”

Figure 11 presents the results of the calculations of the
frustration parameter Pf (relative number of excitations). Ex-
perimental data show a larger number of excitations (about
50%) than in the theoretically predicted ground-state config-
uration (less than 33%) for all studied values of the lattice
parameters.

The results presented in Figs. 10 and 11 were obtained
for systems of a finite number of Ising dipoles located on
the pentagonal Cairo lattice. A characteristic property of this
lattice is that the special geometry of the pentagonal lattice
with a change in one of the lattice parameters (number of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 400  500  600  700

P
f(

c)

c (nm)

N=20 - experimental

N=80 - experimental

N=20 - theoretical

N=40 - theoretical

N=80 - theoretical

FIG. 11. The frustration parameter for systems with N =
20, 40, 80 at c = 376, 450, 500, 600, 650, 700 nm (theoretical
data, circle points) and for systems with N = 20, 80 at c =
376, 450, 500, 600 nm (experimental data, square points).

nearest neighbors) leads to a change in the level of geometric
frustrations.

For the comparison of the considered systems, for the anal-
ysis, and for the conclusions about the ground-state energy
in the thermodynamic limit, the finite-dimensional scaling
was performed. Our theoretical predictions about the mag-
netic ordering rules in the ground state allows us to obtain
systems with a relatively large number of Ising dipoles. Re-
gions containing different numbers of dipoles were taken on
experimental XMCD pictures; the reverse operation of the
conversion was performed of the black-and-white contrast

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0.001  0.01

E
/D

N

1/N

FIG. 12. Scaling of the final size for theoretically calculated can-
didates in the ground state (solid curves) and for experimental data
(dashed lines with error bars). Colored lines with black triangles,
green circles, blue diamonds, and red squares refer to the lattice
parameter values c = 376, 450, 500, and 600 nm, respectively.
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to the corresponding values of Si at known coordinates and
magnetic moments, which made it possible to calculate the
energy of the dipole-dipole interaction. We have presented the
results of extrapolation with finite-size scaling for comparison
both for the theoretically calculated ground-state energy and
for experimental XMCD data in Fig. 12.

The standard deviation from the mean lines is that there
is a spread in energies depending on the selection of the site.
It took place because the experimental XMCD images show
significant order violations for the predicted ground state. In
the model of long-range dipole-dipole interaction, the low-
energy states obtained experimentally (Fig. 9) have an energy
higher than that theoretically calculated for both researched
values of lattice parameter c. The mean lines were computed
using the GNUPLOT program package smoothing method.

IV. CONCLUSIONS

We calculated all possible configurations for systems of 20
and 40 Ising-like dipoles on the Cairo lattice by means of the
enumeration method. It is possible to exactly find all ground
states for the investigated images of the Cairo pentagonal lat-
tices with the parameter c = 376, 450, 500, and 600 nm. The
results obtained for N = 40 made it possible to test and debug
the Monte Carlo and combination methods that were used to
construct lattices of N = 80 dipoles and to make assumptions
about the configuration of the ground state.

Identical results were found by independent calculations of
the ground-state configurations using the Monte Carlo method
and the combination method, which is consistent evidence
that the ground-state configuration for the Cairo lattice of
80 dipoles has been found. The reliability of the results is
also confirmed by the fact that they have the same type of
dependencies on c and N of the energy and the frustration
parameter for the Cairo pentagonal lattices.

Comparison of the theoretically predicted ground state and
the experimentally obtained low-energy states showed that in
the experiment, clusters of the ground state are observed [see
Fig. 9(b)]. It is obvious that the experimental system attempts
to access a long-range ordered ground state, but as shown
in previous studies on various artificial frustrated spin sys-
tems, fabrication-related intrinsic disorder, and the blocking
temperature of the nanomagnets can significantly slow down
and hinder relaxation towards a long-range ordered ground
state [64,65,68]. The free energy minimum must correspond
to stable thermodynamic equilibrium and the realization of
the most probable state. For the temperature range below the
blocking temperature, reaching the equilibrium state during
the experiment can be difficult, for example, due to the hierar-
chical distribution of logarithmic-large relaxation times.

It is shown that the dependence on c of the ground-state en-
ergy of the Cairo pentagonal lattices exhibits a nonmonotonic
behavior, thus the lattice parameters can be used to control
the geometric frustration. For Cairo lattices of dipoles in the

configurations of the ground states, the quantity of closed
pentagons is less than maximally possible. Configurations
with more closed pentagons have higher interaction energy.
The ordering in the configurations of the ground states obeys
the ice rule and the quasi-ice rule.

In this work, for the model of long-range dipole inter-
action, we tried to investigate the question of the existence
of an elementary magnetic cell, which can be translated to
obtain the global ground state. In other words, the question of
whether there is a translational order in the ground state of the
artificial dipole spin ice of the Cairo lattice was investigated.
The solution to the problem of the ground state both in the
model with a short interaction radius and in the model with
a long-range interaction radius rests on the central problem
of the theory of algorithms—the problem of P and NP. This
is a serious theoretical riddle, the main unsolved problem of
computer science.

In the long-range interaction model for the researched sys-
tem of a finite number of Ising dipoles, there are only two
or four opposite configurations of ground states. In the short-
range model, it is possible that a macroscopic degeneracy of
the ground-state configurations is observed.

In our research, we proceeded from the assumptions that
if a system of a relatively large number of particles is in the
energy minimum, then the subsystems into which it can be
divided should also be in their energy minima, since energy
is additive. The excitations from these minima are associated
with the influence of the boundaries. Boundary effects should
be researched more thoroughly, e.g., it would be interesting to
determine the influence of periodic or antiperiodic boundary
conditions on the solutions.

Artificial spin ice systems on the Cairo lattice can exhibit
exotic thermodynamic properties that would be interesting
to study for the development of the theory of phase transi-
tions. We investigated the problem of the configuration of
the ground state in a zero external magnetic field. It is of
interest to study the behavior of the magnetic susceptibility as
a function of temperature, calculate the blocking temperature
and Curie temperature, energy, spin excess, and degeneracy of
the ground-state configurations in a nonzero external magnetic
field.
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