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Temporal fluctuation scaling in nonstationary time series using the path integral formalism
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We model the time evolution of the mean and the variance of nonstationary time series using the path integral
formalism with the purpose to obtain the temporal fluctuation scaling presents in complex systems. To this
end, we first show how the probability of change between two times of a stochastic variable can be written
in terms of a Feynman kernel, where the cumulant generating function of statistical moments is identified as
the Hamiltonian of the system. Thus, by including the effects of a stochastic drift and a temporal logarithmic
term in the cumulant generating function, we find analytical expressions describing the temporal evolutions
of the mean and the variance in terms of cumulants. Starting from these expressions, we obtain the temporal
fluctuation scaling written as a general analytical relation between the variance and the mean, in such a way that
this relation satisfies a power law, with the exponent being a function on time. Additionally, we study several
financial time series associated with changes of prices for some stock indexes and currencies. For this financial
time series, we find that the temporal evolution of the mean and the variance, the temporal fluctuation scaling,
and the temporal evolution of the exponent which are obtained from this path integral approach are in agreement
with those obtained using the empirical data.
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I. INTRODUCTION

Fluctuation scaling (FS) observed in a wide variety of
complex systems states the existence of a relation between the
standard deviation and the mean of a probability distribution
that satisfies a power law [1–3]. Two forms of this FS are
essentially known: the ensemble fluctuation scaling (EFS)
[1,2] and the temporal fluctuation scaling (TFS) [1,2]. An
important aspect to note is that regardless of its nature (spatial
or temporal), this FS is characterized by presenting itself as
an emergent property of complex multifractal systems [4–7].
In fact, since its discovery by Smith in 1938 [8] and Taylor
in 1961 [9], the FS has been evidenced in different areas
such as ecology [10,11], complex networks [5,12], physics
[4,13], financial markets [14,15], and city traffic [16]. At this
point, it is worth mentioning that in the study of the TFS in
financial markets, it has been found that the TFS exponent
varies between 1

2 and 3, and that in order to correctly analyze
this type of system, it is better to take the cumulative mean
into an optimal window size that also clusters the data [15].
Emphasizing the previous point, it has been found that the
TFS exponent varies with time and, like the Hurst exponent,
presents a logarithmic behavior in time that depends on the
window size �t = tb − ta chosen for the data [17–19]. In fact,
the logarithmic behavior in time of the TFS exponent, denoted
by α(�t ) and strongly influenced by external factors [20], can
be characterized by the increasing trend γt according to the
type of financial market and assuming a nonuniversal value
of α(�t ) [19]. In addition, the exponent α(�t ) carries the
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information of the properties of the collective dynamics of the
entire system, and its functional form must be independent of
the market and the chosen time interval �t [19].

The main difference between EFS and TFS lies in their spa-
tial or temporal structure, respectively, but this has not been an
impediment to trying to explain its origin through statistical
physics as a system in stationary or nonstationary states of
equilibrium [2]. Even so, these explanations do not consider
the stochastic nature that underlies the FS, and that in the
temporal case many times implies nonstationary time series,
where the known relation of the variance is not reflected as
the difference of the second moment around the origin and the
square of the mean of the distribution [21], since if this were
the case, the variance would always be a quadratic function
of the mean of the distribution [21]. In particular, for the
stochastic variables associated with financial assets, models
with nonconstant variance over time have been proposed, such
as the geometric model of Brownian motion, the generalized
autoregressive conditional heteroscedastic model (GARCH),
the Heston model, and the nonlinear Heston model [22–24].
In these types of models, volatility is studied as a stochastic
variable whose underlying dynamics is coupled to that of
the financial asset through a system of stochastic differential
equations in such a way that the first hitting time (FHT) char-
acterizes the stability of the market or financial asset [22,23].
The above stochastic variable FHT is defined in a general
way for any type of complex system as the characteristic time
interval that a system starting from a fixed initial condition θi

reaches a fixed final value θ f [22–24]. In fact, it is observed
that the behavior between the variance and the FHT behaves in
a nonmonotonic way, reaching a maximum that sets the most
optimal behavior of the system under study [25–28]. Thus, the
stochastic nature of the variance does not allow us to clearly
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explain the origin of the TFS and it is necessary to introduce
an approach that contains aspects such as stochastic drift and
the fractal nature of the TFS to explain the causal structure of
nonstationary time series [29–32].

On the other hand, the Feynman path integral is a natural
description to make the evolution of two states with a causal
structure in quantum mechanics [33]. Some approaches have
been proposed to consider a stochastic or fractal extension
of the path integral [34–38]. In the application of these ap-
proaches to systems such as financial time series (FTS), it
has been shown that these have strong limitations such as
the low-frequency limit in the data, the assumption of the
knowledge of stochastic drift for all probability distribution,
or the exponent considered in the law of invariance of fractal
behavior [35–38]. Also, it is known that the Feynman kernel
has a clear causal structure due to its form of construction
and that in the imaginary time it provides a connection with
the usual statistical physics, but this implies an evolution of
the variance and upper moments of the associated probability
distribution which scale linearly with time, which would not
allow for decreasing trends in empirical data [39,40]. Another
important fact of the path integral formalism is that the Marko-
vian property [see Eq. (17)] describes the decomposition of
the transition probability amplitude in consecutive times al-
lowing one to characterize high peaks of time series in random
times [41].

However, an approach that better describes the nature of
the empirical data of nonstationary time series, and that de-
scribes the TFS, must have nonlinear terms with a stochastic
drift present in each step of the calculation. For this rea-
son, in this paper, the TFS is obtained by introducing a
time-dependent logarithmic term in the cumulant generating
function, which represents the Hamiltonian of the Feynman
kernel in the imaginary time formalism. This approach has
three fundamental aspects that are in accordance with the
literature: (1) it is invariant under temporal translations and
scale transformations [42]; (2) it improves the limit of high
and low frequencies developed by Kleinert [35,36] and shows
the stochastic drift as a minimum measure for the evolution in
time of the moments of a probability distribution, that is, the
minimum value that takes the moments around these origin of
a distribution; and (3) it describes the temporal evolution of
the TFS exponent α(�t ) independently of the market and the
chosen time interval. In fact, this shows that the origin of the
TFS is stochastic and nonstationary in nature, which implies
that it cannot be related in principle as an equilibrium system
except at a low-frequency limit where the perturbations on the
system are small [2]. It is important to mention that, although
all the calculations developed in this paper are limited to FTS,
the formalism that follows is independent of the nature of
the time series and shows the Feynman kernel as a natural
tool to describe systems with causal structure, such as time
series. Furthermore, the path integral approach used here leads
us to estimate the variance as a deterministic variable that
varies with time in contrast with the stochastic variance of the
GARCH model, the Heston model, and the nonlinear Heston
model.

To do the above, for the case of nonstationary time series
and using the Feynman path integral formalism, we show how
the probability of change between two times of a stochastic

variable can be written in terms of a Feynman kernel, where
the cumulant generating function of statistical moments is
identified as the Hamiltonian of the system. Next, we include
the effects of a stochastic drift and a cumulant generating
function with a temporal logarithmic term, and we find an-
alytical expressions that describe the temporal evolutions of
the mean and the variance in terms of cumulants. With these
expressions, we obtain the TFS as a general analytical relation
that describes the variance as a function of the mean, in such a
way that this relation satisfies a power law, with the exponent
being a function on time. Finally, with the purpose of vali-
dating this approach, we study the time series of log-returns,
volatilities, and absolute values of log-returns for the follow-
ing four stock indexes: Nikkei 225 (Japan, daily frequency),
S&P 500 (United States, daily frequency), Dow Jones (United
States, frequency every 2 sec) and FTSE (England, daily fre-
quency), and for the following currency: the Colombian peso
to U.S. dollar exchange rate (COP-USD). We find for these
financial time series that the temporal evolutions of the mean
and the variance obtained from the analytical expressions are
in agreement with those obtained from the empirical data. We
find also that the TFS obtained by using this path integral ap-
proach is consistent with the one obtained from the empirical
data. Specifically, we find agreement between the temporal
evolutions of the TFS exponent obtained using the analytical
expression and the empirical data. It is important to mention
that high- and low-frequency time series are studied to see that
the proposed fit is independent of the frequency of the data
and is totally determined by a scale parameter b defined with a
time-dependent logarithmic term [see Eq. (31)]. Furthermore,
the study of low-frequency data (daily data) is important in
the study of financial markets since it allows one to speculate
in a more distant future about the behavior that a financial
asset may follow even when its description seems to be more
difficult and is nondeterministic.

The structure of this paper is as follows: in Sec. II we define
the nonstationary time series and the cumulant generating
function. In Sec. III the Feynman path integral is established in
the imaginary time formalism that together with the evolution
equation of a financial asset defined in Sec. III A allows us
to establish the evolution in time of a probability distribution
related to a financial derivative in the Kleinert model [35,36].
In Sec. III B the evolution in time of the moments of the
probability distribution is mentioned adding the effect of the
stochastic drift. Then, taking into account the problems of
Kleinert model and the TFS, in Sec. IV the generalization of
the TFS is made by including a temporal logarithmic term
in the cumulant generating function that accounts for the
low-frequency limit. In Sec. V we define the time series of
log-returns of prices, volatilities, and the absolute value of
log-returns for each stock index which are distributed as a
truncated Lévy flight distribution, a two-parameter Gamma
distribution, and a distribution of a Boltzmann (Laplace dis-
tribution), respectively. From these FTS, the evolution of the
first moment (mean) is studied in three different ways. Ad-
ditionally, in Sec. V D we study the evolution over time of
the mean and the variance of COP-USD currency, allowing
us to estimate the highest value of this time series with good
precision and accuracy, once the associated financial asset is
known for the previous time period. Finally, in Sec. VI we

042126-2



TEMPORAL FLUCTUATION SCALING IN NONSTATIONARY … PHYSICAL REVIEW E 103, 042126 (2021)

study the time evolution of the TFS exponent for the five
FTS considered. In Sec. VII we present conclusions, and some
topics towards which the investigation is still directed are laid
out. Finally, in Appendix A we show the analytical deduction
of the evolution in time of the moments of a probability
distribution of a financial derivative using the formula of Faà
di Bruno. In Appendix B, the temporal evolution of the prob-
ability distribution is calculated using a nonzero stochastic
drift since it is often not trivial to recognize the value of
the stochastic drift from the empirical data. In Appendix C
we present the deduction of the mean and the variance as
functions of time for a probability distribution, by including
a weighting function in the calculation of the moments of
the distribution. It is important to mention that this weighting
function is what allows us to talk about the previously defined
time-dependent logarithmic term. In Appendix D we show the
regression data obtained for each stock index. In Appendix E
we show the verification of Markov property for each financial
asset.

II. CUMULANT GENERATING FUNCTION AND
NONSTATIONARY TIME SERIES

In general, a time series corresponds to the realization of
a discrete stochastic process Xt with t ∈ N. The weak-sense
stationarity or wide-sense stationarity (WSS) of a discrete
stochastic process Xt is defined as a random process in
which the mean E[Xt ] ≡ mX (t ) and autocovariance function
E[[Xt1 − mX (t1)][Xt2 − mX (t2)]] ≡ KXX (t1, t2) do not vary in
time [21]:

E[Xt ] = E[x(t + τ )], for all τ ∈ N, (1)

KXX (t1, t2) = KXX (t1 − t2, 0), for all t1, t2 ∈ N, (2)

E[|Xt |2] < ∞, for all t ∈ N. (3)

A time series is nonstationary if the above definition is not
satisfied. Henceforth, it is assumed that the time series are
nonstationary, and for simplicity, from now on we will refer
to time series as nonstationary time series.

Let D̃(z) be an arbitrary probability density function such
that

∫
R D̃(z) dz = 1. For this arbitrary probability distribution

function D̃(z), its decomposition in Fourier modes is defined
as [36]

D̃(z) =
∫
R

d p

2π
eipze−H (p) =

∫
R

d p

2π
eipzD(p), (4)

where D(p) are the Fourier components that are established to
relate to the cumulant generating function H (p) (also called
the second characteristic function) as D(p) = e−H (p). Further-
more, since the characteristic function ϕ(p) is defined as the
Fourier transform of D̃(z), an equivalent definition for the
cumulant generating function is D(p) = e−H (p) = E[e−ipz] =
ϕ(p) [43]. This establishes the relationship of the cumulant
generating function with the probability distributions through
the characteristic function. The moments around the origin of
distribution will be given by the characteristic function ϕ(p)
since for all n ∈ N, it has

E[zn] ≡ μn =
∫
R

zn D̃(z) dz = in dn

d pn
e−H (p)

∣∣∣∣
p=0

. (5)

In the case where the cumulant generating function is an
analytical function,

H (p) = − ln [E[e−ipz]] = −
∞∑

n=1

cn
(−ip)n

n!
, (6)

it is found that the moments around the origin μn can be
expressed as

μn = in
n∑

k=1

Bn,k ((−i)c1, . . . , (−i)n−k+1cn−k+1), (7)

where Bn,k are called Bell’s incomplete polynomials [44,45]
and cn = −inH (n)(0) are the cumulants of the probability den-
sity function corresponding to the coefficients of the cumulant
generating function power series. The inverse relation, that is,
the cumulants cn, in a function of moments around the origin
μn and the expressions in the case of the central moments
E[(z − μ1)n] ≡ ξn are

cn = in
n∑

k=1

(−1)k−1(k − 1)!Bn,k

× ((−i)μ1, ..., (−i)n−k+1μn−k+1), (8)

ξn = in
n∑

k=1

Bn,k (0, ..., (−i)n−k+1cn−k+1), (9)

cn = in
n∑

k=1

(−1)k−1(k − 1)!Bn,k (0, ..., (−i)n−k+1ξn−k+1),

(10)

respectively. It is important to mention that the above expres-
sions are deduced using the Faà di Bruno formula [46] and is
found in Appendix A.

Finally, in order to be able to make a comparison of the
statement in Eq. (9), the first four complete exponential Bell
polynomials are calculated [44,45]:

B1(c1) = c1, (11)

B2(c1, c2) = c2
1 + c2, (12)

B3(c1, c2, c3) = c3
1 + 3c1c2 + c3, (13)

B4(c1, c2, c3, c4) = c4
1 + 3c2

2 + 6c2
1c2 + 4c1c3 + c4. (14)

III. FEYNMAN KERNEL FOR NONSTATIONARY
TIME SERIES

In the functional formalism, Feynman’s kernel or ampli-
tude of transition probability from a state at position xa in the
time ta to a state at position xb in the time time tb, is defined as
[33]

K(xb, tb; xa, ta) =
∫

Dx
∫ Dp

2π
e− i

h̄ S(x,ẋ,p)

=
∫

Dx
∫ Dp

2π
e− i

h̄

∫ tb
ta

dt{p(t )ẋ(t )−H [p(t ),x(t )]},

(15)

where Dx and Dp correspond to functional measures in the
space of positions and moments, respectively [47–49], and
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S(x, ẋ, p) correspond to the classical action of the system
[50]. This amplitude of transition is the result of interference
between the possible paths in the configuration space, each
contributing a weight proportional to the exponential of its
classical action. All possible paths will contribute to the inte-
gral, but their contribution will be more significant the closer
the path of the classical trajectory is found [33].

In the imaginary time formalism and taking units as natural
(h̄ = 1), the Feynman kernel is

K(xb, β; xa, 0)

=
∫

Dx
∫ Dp

2π
e
∫ β

0 dτ {ip(τ )ẋ(τ )−H [p(τ ),x(τ )]}. (16)

We observe that Eq. (16) has the same structure as an
inverse Fourier transform by which the Hamiltonian is re-
lated to the cumulant generating function [34–36]. Also,
it is observed that with the same analogy, there is an ef-
fective Lagrangian system L(x(τ ), ẋ(τ )) corresponding to
L(x(τ ), ẋ(τ )) = ip(τ )ẋ(τ ) − H (p(τ ), x(τ )).

An important property to highlight of the Feynman kernel
is its semigroup property [33,34]; that is, the transition proba-
bility amplitude between times ta < tb < tc is given by

K(xc, tc; xa, ta) = K(xc, tc; xb, tb)K(xb, tb; xa, ta), (17)

where xa, xb, and xc are the positions corresponding to each
time. This property indicates that the amplitude of the transi-
tion probability is cumulative, that is, it adds up over all the
positions and times between two points in space-time. Thus,
the path integral is a natural formalism to describe processes
that are cumulative in time. At this point it is worth men-
tioning that the semigroup property also defines a Markovian
structure on the path integral that has been verified with em-
pirical data to be able to reconstruct the stochastic evolution
equations [41].

A. Connection between Feynman path integral and time series

The stochastic differential equation that defines the change
of an instrument, asset, or financial derivative x in the Kleinert
model is given by [32,34]

ẋ = rx + η(t ), (18)

where rx is called stochastic drift and indicates how the
average value of the change of the instrument, asset, or fi-
nancial derivative evolves over time, that is, E[x(t )] = rx.
The term η(t ) corresponds to a random variable that is dis-
tributed with an arbitrary distribution at each instant of time
t . This indicates the separation of the evolution of x(t ) into
a deterministic part associated with stochastic drift rx and a
stochastic part associated with noise η(t ). It is worth noting
that generally x(t ) = ln [S(t )] corresponds to the log-return of
the stock or financial asset and corresponds to one of the time
series analyzed in Sec. V.

It is important to mention that unlike Kleinert [35,36], the
stochastic drift is maintained in all the calculations since in
contrasting the model with the empirical data, it is not always
easy to remove the value of the stochastic drift from the data.
Furthermore, knowing the stochastic drift of the distribution
implies knowing the adjustment parameters of a probability
distribution, which is not always trivial to calculate. An exam-
ple of the above is the log-returns time series that is distributed
as a series of truncated Lévy flights [35], whose parameters
are difficult to adjust due to their thick tails.

The evolution of the probability that the system takes the
value xb in the time tb since it had the value xa in the time ta
has a probability distribution given by [34,35,38]

P(xb, tb|xa, ta ) =
∫

d p

2π
eip(xb−xa )−(tb−ta )H (p), (19)

where t ≡ tb − ta = �t is the time interval of a time series
ordered temporarily and x ≡ xb − xa is the range of values it
takes in the future the instrument, asset, or financial derivative.
For simplicity, by adopting the above notation and assuming
that rx �= 0, the probability distribution over time has to be
(see Appendix B)

P(x, t ) =
∫

d p

2π
eipx−iprx−tH (p). (20)

It is important to note that Eq. (20) is useful for any type of
distribution, and although it provides the probability distribu-
tion of an instrument, asset, or financial derivative in a future
time, it does so for discrete times, that is, for times measured
in integer intervals with respect to t ≡ tb − ta.

B. Evolution of distribution moments associated with time series

Starting from Eq. (20) and taking the stochastic drift rx =
0, the moments are defined as a function of time as

E[xn(t )] =
∫ ∞

−∞
dxxnP(x, t )

=
∫ ∞

−∞

d p

2π
e−tH (p)

∫ ∞

−∞
(−i)n ∂n

∂ pn
eipx dx. (21)

Remembering the representation of the Dirac δ and taking out
the operator derivation from the integral, then

E[xn(t )] =
∫ ∞

−∞
d p e−tH (p)(−i)n dn

d pn
δ(p). (22)

After n partial integrations, we have

ϒn(t ) ≡ E[xn(t )] = in

[
dn

d pn
e−tH (p)

]
p=0

. (23)

For the evaluation of this derivative, an analogy is made with
the development made in Appendix A with f (p) = ep, g(p) =
−tH (p) and Eqs. (A5) and (A4). We obtain

�n(t ) ≡ cn(t ) = −t inH (n)(0) = tcn, (24)

ϒn(t ) ≡ μn(t ) = in
n∑

k=1

Bn,k ((−i)�1(t ), (−i)2�2(t ), . . . , (−i)n−k+1�n−k+1(t )), (25)
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�n(t ) ≡ ξn(t ) = in
n∑

k=1

Bn,k (0, (−i)2�2(t ), . . . , (−i)n−k+1�n−k+1(t )), (26)

�n(t ) ≡ cn(t ) = in
n∑

k=1

(−1)k−1(k − 1)!Bn,k ((−i)ϒ1(t ), . . . , (−i)n−k+1ϒn−k+1(t )), (27)

�n(t ) ≡ cn(t ) = in
n∑

k=1

(−1)k−1(k − 1)!Bn,k (0, (−i)2�2(t ), . . . , (−i)n−k+1ϒn−k+1(t )). (28)

Equations (24), (25), (26), (27), and (28) describe the tem-
poral evolution of the cumulants from the initial cumulants,
the temporal evolution of the moments around the origin in
time t based on the cumulants at that same moment of time,
the temporal evolution of the moments around the mean in
time t based on the cumulants at that same moment of time,
the temporal evolution of the cumulants in time t based on the
moments around the origin at that same moment of time, and
the temporal evolution of the cumulants in time t based on the
moments around the mean at that same moment of time. It is
important to mention that each cumulant grows linearly over
time.

Stochastic drift is included when taking the minimal
substitution defined by c1t → c′

1t = c1t + rx. Finally, the
standardized cumulants regarding variance are

N (rx )
n (t ) = �(rx )

n (t )[
�

(rx )
2 (t )

] n
2

= tcn + δ1,n(−i)rx

t
n
2 c

n
2
2

= t1− n
2 c̄n − iδ1,nt− n

2
rx

c
n
2
2

, (29)

where δi, j is the Kronecker delta. It is observed that when the
variance of the distribution c2 exists, then when increasing the
time interval t , the standardized cumulants tend to zero for
n � 3, corroborating the central limit theorem in the version
of quantum statistical physics [21,34,51].

It is important to note that in the case where the stochastic
drift is introduced, all the cumulants acquire a shift in rx,
that is, the evolution of the moments ϒn(t ) around the origin
acquires a different form, although the correlation functions
remain invariant since the latter correspond to fixed filter
processes. Thus, another interpretation of the stochastic drift
is assigned as a parameter of the formalism that scales the
evolution of all the moments around the origin to a minimum
value rx. Table I provides this new relationship for the first
four central moments �(rx )

n (t ) and ϒ (rx )
n (t ) around the origin.

TABLE I. Relationship for the first four central moments �(rx )
n (t )

and ϒ (rx )
n (t ) around the origin based on the cumulants �(rx )

n (t ) includ-
ing the stochastic drift of the process of Eq. (18).

Order ϒ (rx )
n (t ) �(rx )

n (t )

1 tc1 + rx 0
2 (tc1 + rx )2 + tc2 tc2

3 (tc1 + rx )3 + 3t (tc1 + rx )c2 + tc3 tc3

4 (tc1 + rx )4 + 3t2c2
2 + 6t (tc1 + rx )2c2 3t2c2

2 + tc4

+4t (tc1 + rx )c3 + tc4

It is important to note that the inclusion of the stochastic
drift does not modify the central moments of the distribution
�n(t )|rx≡0 = �(rx )

n (t ), which implies an invariance of the evo-
lution of the moments around the mean under stochastic drift.

Note that the above expressions do not satisfy Eq. (1),
which implies that Feynman path integral formalism is a nat-
ural formulation for time series because of its orderly causal
structure.

It is clear that the variance as a function of the mean would
always imply a quadratic dependence since

�
(rx )
2 (t ) = tc2 = ϒ

(rx )
2 (t ) − (tc1 + rx )2

= ϒ
(rx )
2 (t ) − [

ϒ
(rx )
1 (t )

]2
. (30)

This restricts the behavior of the variance as a function of the
mean to a polynomial form that does not reflect the FS, present
in complex systems [1–3].

IV. THEORETICAL APPROACH OF TFS THROUGH
TIME-DEPENDENT LOGARITHMIC TERM

In order to extend the evolution of the distribution associ-
ated with the time series to satisfy the TFS, better describe
the empirical low-frequency data, and improve the fit of the
data with the theory, is necessary including in the cumulant
generating function a logarithmic term defined as

Hln(p, t ) = ipb
ln (1 + t )

t
, (31)

where b ∈ R is a scale parameter even when it achieves
negative values. It is important to mention that this loga-
rithmic term is motivated by the evidence of a logarithmic
trend in time of the Hurst exponent and the variation of the
TFS exponent [17–19]. In general, the cumulant generating
function can be thought as a Hamiltonian in the path integral
imaginary time formalism, which implies that the classical dy-
namics of the real part is not altered. However, the dynamics
with the new term allows the moments to scale more slowly
since ln (1 + t ) = O(t ). Thus, using a reasoning analogous
to Eq. (21), the mean and variance of the distribution evolve
through the following expressions [see Appendix C, Eq. (C4),
and Eq. (C5)]

ϒ
(H )
1 (t ) = rx + c1t + b ln (1 + t )

= ϒ
(rx )
1 + b ln (1 + t ), (32)

�
(H )
2 (t ) = c2t − c1bt ln (1 + t ) − rxb ln (1 + t )

− b2 ln2 (1 + t ), (33)
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respectively, where the super index H refers to the new tem-
poral evolution with time-dependent logarithmic term [see
Eq. (31)]. It is important to mention that for the adjustment
of normalized higher order moments such as skewness and
kurtosis, they are not considered to be fairly complex nonlin-
ear regression models. Finally, solving for the term b ln (1 + t )
in Eq. (32) and replacing it in Eq. (33) it is obtained that the
variance as a function of the mean is

�
(H )
2 (t )= c2t − (c1t + rx + b ln (1 + t ))b ln (1 + t )

= c2t − [
ϒ

(H )
1 (t ) − rx − c1t

]
ϒ

(H )
1 (t )

= c2t + (c1t + rx )ϒ (H )
1 (t ) − [

ϒ
(H )
1 (t )

]2

= �
(rx )
2 (t ) + ϒ

(rx )
1 (t )ϒ (H )

1 (t ) − [
ϒ

(H )
1 (t )

]2
. (34)

Equation (34) shows that the variance has a linear and
quadratic dependence with respect to the mean, which allows
us to establish in a first approximation the behavior of the TFS
[1–3] as will be seen in Sec. VI. It is clear that if c1t + rx � 1,
then the dominant term in Eq. (34) is the quadratic term, which
implies a nonlinear behavior between mean and variance.
Thus, from now on we refer to this as the TFS (we will show
the reason of this name below), such that if b = 0, it reduces
to the known case of Eq. (30).

In conclusion, the inclusion of this dependent logarithmic
term (31) has the properties that (1) for small times (high fre-
quency) it tends to be constant, (2) asymptotically it behaves
linearly, and (3) it better reproduces the behavior of the TFS.

On the other hand, it can be thought that the relationship
between the variance as a function of the mean is nonlinear,
which leads to TFS [1–3]. In this case, we propose the follow-
ing ansatz:

�
(H )
2 (t ) = K

[
ϒ

(H )
1 (t )

]α(t )
, (35)

with K > 0. Now notice that we assume that the exponent of
the ansatz (35) varies with time, and then it should be through
the generalized TFS, which arises naturally from Feynman’s
description path integral with logarithmic term [see Eq. (31)
and Eq. (34)]. Hence, equaling the logarithm of Eq. (33) with
the logarithm of the ansatz equation (35) for time series with
positive values, we obtain

α(t ) = ln
[
�

(H )
2 (t )

]
ln

[
Kϒ

(H )
1 (t )

]
= 1

ln
[
Kϒ

(H )
1 (t )

] {ln[c2t − c1bt ln (1 + t )

− rxb ln (1 + t ) − b2 ln2 (1 + t )]}. (36)

In the following sections we verify that the ansatz pro-
posed in Eq. (35) behaves well with respect to the empirical
data, highlighting the three properties that this new term [see
Eq. (31)] enjoys in the cumulant generating function.

V. PROVING THE VALIDITY OF THE APPROACH IN FTS

To establish the independence of the adjustment of
Eq. (32), the adjustment of the mean of the low-frequency
time series (S&P 500, Nikkei 225, FTSE), and the high-
frequency time series (Dow Jones), is done in three ways:

taking all the data from the time series, taking the scaled data
(taking every n data), and taking the temporarily moved data.
It is important to mention that due to the amount of data in
the time series of the Dow Jones index, only the filtered time
series was taken every 20 data (every 40 sec) and temporarily
transferred 220 000 data (approximately nine days), due to the
high computing time. For this reason, in Appendix D there is
no regression data for the time series of the Dow Jones stock
index taking the total data. From this, three time series are
defined with the closing price of the stock index Si given by
the log-return LR, volatility LV , and absolute log-return LA:

LRi = ln (Si+1) − ln (Si ), (37)

LVi = 1

max1�k�N |LRk|

√∣∣∣∣LRi − E[LR]

σ (LR)

∣∣∣∣, (38)

LAi = |LRi|, (39)

respectively. The subindex refers to the data of interest, N is
the total number of data, E[·] is the expectation value, and σ (·)
is the standard deviation. It is important to mention that these
three time series are those considered by Kleinert in his work,
and that due to the semigroup property of the path integral, it is
immediate to consider the statistical moments of the accumu-
lation of the data by time windows and not a moving window
through the time series. For this same reason, a criterion of the
Markovian property [41] is also established through a χ2 test
of goodness of fit. These results are placed in Appendix E and
indicate that in most cases the time series considered satisfy
the Markovian property quite well by having a high P value
even when the number of degrees of freedom with which the
values are adjusted to a binomial distribution is high in most
cases. Note in Table VI that the currency is the FTS with
the smallest P values and highest χ2 indicating that it is the
one that satisfies the Markovian property criterion with the
least probability assuming as the null hypothesis that the data
satisfy the Markov property.

A measure of the quality of the adjustments is determined
with the χ2 test of the mean and variance and the global
average error (GBE) of the mean and variance defined by

χ2
ϒ1

=
N/W S∑
k=1

|Mk (W S) − ϒ1(k)|2
ϒ1(k)

, (40)

χ2
�2

=
N/W S∑
k=1

|Vk (W S) − �2(k)|2
�2(k)

, (41)

GBEϒ1 (%) = W S

N

N/W S∑
k=1

|Mk (W S) − ϒ1(k)|
|ϒ1(k)| × 100%, (42)

GBE�2 (%) = W S

N

N/W S∑
k=1

|Vk (W S) − �2(k)|
|�2(k)| × 100%, (43)

respectively. In expressions (40), (41), (42), and (43), given
a temporary window size W S, ϒ1(k), and �2(k) denote the
theoretical value of the adjustment made with Eqs. (32) and
(33) knowing the model parameters; Mk (W S) and Vk (W S)

042126-6



TEMPORAL FLUCTUATION SCALING IN NONSTATIONARY … PHYSICAL REVIEW E 103, 042126 (2021)

TABLE II. Regression data used to calculate the evolution of the mean and variance over time for foreign exchange COP-USD measured
daily from July 16, 2010 to February 11, 2020. Theoretical data are extracted from the Kleinert model [35,36].

COP-USD COP-USD COP-USD COP-USD COP-USD COP-USD
Time series Log-return Volatility Abs Log-return Log-return Volatility Abs Log-return

Filtration Mean Mean Mean Variance Variance Variance

Cumulant 1 regression c1 2.750 × 10−7 5.458 × 10−6 1.302 × 10−6 −9.419 × 10−5 −8.404 × 10−5 −8.984 × 10−5

Cumulant 2 regression c2 – – – 1.981 × 10−5 2.112 × 10−5 1.775 × 10−5

Drift regression rx 4.222 × 10−3 6.843 × 10−2 3.913 × 10−2 −1.243 × 10−1 −1.554 × 10−1 −1.177 × 10−1

b −6.530 × 10−4 −7.966 × 10−3 −4.667 × 10−3 2.191 × 10−2 2.557 × 10−2 2.063 × 10−2

Drift theory rx 1.257 × 10−3 3.288 × 10−2 −1.366 × 10−3 9.354 × 10−3 2.831 × 10−2 −1.385 × 10−3

Cumulant 1 theory c1 1.140 × 10−6 3.590 × 10−2 1.645 × 10−2 5.161 × 10−3 3.080 × 10−2 1.670 × 10−2

Cumulant 2 Theory c2 – – – 3.045 × 10−3 5.135 × 10−3 2.768 × 10−3

χ 2 4.035 × 10−2 8.621 × 10−1 7.270 × 10−1 1.503 × 10−2 1.463 × 10−1 7.616 × 10−2

Global error GBE (%) 27.19 7.93 7.51 8.61 5.65 7.02
Optimal window 20 2 2 132 132 132

denote the mean and variance of the sample of W S ∗ k
accumulated data for any of the three time series (37), (38),
and (39), respectively.

It is important to mention that the time series of log-returns
is distributed as a truncated Lévy flight distribution [40,52],
the series of volatilities as a Gamma distribution of two pa-
rameters [36], and the time series of absolute log-returns as a
Laplace distribution (double exponential) [35,53,54].

For all the regressions carried out, the linear Kleinert model
and the new logarithmic term were taken into account. In ad-
dition, for a better correspondence between the empirical data
and the (32), it is necessary to calculate an optimal window
size corresponding to the time window that minimizes the
error of the parameters (b, rx, c1) with respect to the final data.
Also, the χ2 test and the GBE (%) for each time series are also
calculated and placed in Tables II and VI.

A. Evolution of total time series

In this first method with the total data of each time series,
Figs. 1, 2, and 3 are obtained for the Nikkei 225, S&P 500,
and FTSE index, respectively. To obtain the empirical data
from the graph, the average of the total accumulated data in
each window was taken; that is, if W S is the window size

that optimizes the adjustment, then the average is taken every
W S datum, 2W S datum, and so on. It is observed that the
regression with logarithmic term better adjusts the trend of the
empirical data and that unlike the Kleinert model it takes into
account possible falls or steep increases in the index value.
Furthermore, regardless of the FTS, it is observed that the
adjustment to Eq. (32) follows the trend of the empirical data;
however, in the case of the log-returns there is a high global
average error according to Table V.

B. Evolution of scaled time series

In this method with the scaling of the data of each time
series, Figs. 4, 5, 6, and 7 are obtained for the Nikkei 225, S&P
500, Dow Jones, and FTSE stock index, respectively. These
figures allow us to deduce that the regression with logarithmic
term better adjusts the tendency of the empirical data and that
in addition to comparing with the previous method the form
of the regression curve prevails with (32), which implies that
the adjustment with the logarithmic term is invariant under
scaling which does not occur with the Kleinert model. Here
again a high degree of GBE is observed for the time series
of log-return even when the χ2 test is much less than 1 as
shown in Table V. Also, it is observed in Fig. 6 the linear
approximation to describe the empirical data set is not good

FIG. 1. Evolution of the mean of the time series of the Nikkei 225 stock index measured daily from January 4, 1984 to August 24, 2020
taking the average of the total accumulated data each window size W S. Left: Log-return time series (W S = 138 data). Center: Volatility time
series (W S = 159 data). Right: Log-return absolute time series (W S = 159 data).
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FIG. 2. Evolution of the mean of the time series of the S&P 500 stock index measured daily from January 3, 1950 to August 24, 2020
taking the average of the total accumulated data each window size W S. Left: Log-return time series (W S = 171 data). Center: Volatility time
series (W S = 102 data). Right: Log-return absolute time series (W S = 102 data).

FIG. 3. Evolution of the mean of the time series of the FTSE stock index measured daily from October 20, 1997 to August 24, 2020 taking
the average of the total accumulated data each window size W S. Left: Log-return time series (W S = 146 data). Center: Volatility time series
(W S = 117 data). Right: Log-return absolute time series (W S = 172 data).

FIG. 4. Evolution of the mean of the time series of the Nikkei 225 stock index measured daily from January 4, 1984 to August 24, 2020
by scaling the data weekly (every five data) and taking the average of the total accumulated data each window size W S. Left: Log-return time
series (W S = 186 data). Center: Volatility time series (W S = 159 data). Right: Log-return absolute time series (W S = 125 data).
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FIG. 5. Evolution of the mean of the time series of the S&P 500 stock index measured daily from January 3, 1950 to August 24, 2020 by
scaling the data weekly (every five data) and taking the average of the total accumulated data each window size W S. Left: Log-return time
series (W S = 95 data). Center: Volatility time series (W S = 60 data). Right: Log-return absolute time series (W S = 60 data).

FIG. 6. Evolution of the mean of the time series of the Dow Jones stock index measured every 2 sec from October 10, 2014 at 09:30:03
to October 31, 2014 at 16:20:00 by scaling the data every 40 sec (every 20 data) and taking the average of the total accumulated data each
window size W S. Left: Log-return time series (W S = 113 data). Center: Volatility time series (W S = 173 data). Right: Log-return absolute
time series (W S = 173 data).

FIG. 7. Evolution of the mean of the time series of the FTSE stock index measured daily from October 20, 1997 to August 24, 2020 by
scaling the data weekly (every five data) and taking the average of the total accumulated data each window size W S. Left: Log-return time
series (W S = 50 data). Center: Volatility time series (W S = 138 data). Right: Log-return absolute time series (W S = 194 data).
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FIG. 8. Evolution of the mean of the time series of the Nikkei 225 stock index measured daily from January 4, 1984 to August 24, 2020
moving the time series in 3000 data (12 and a half years) and taking the average of the total accumulated data each window size W S. Left:
Log-return time series (W S = 84 data). Center: Volatility time series (W S = 17 data). Right: Log-return absolute time series (W S = 14 data).

even at the high-frequency limit. However, for sufficiently
large time values, the evolution of the average is seen in a
linear fashion.

C. Evolution of time series temporarily moved

In this method with the scaling of the data of each time
series, Figs. 8–11 are obtained for the Nikkei 225, S&P 500,
Dow Jones, and FTSE stock index, respectively. It is observed
that the regression with logarithmic term better adjusts the
tendency of the empirical data and that in addition to compar-
ing with the previous method the form of the regression curve
prevails with (32), which implies that the adjustment with the
logarithmic term it is invariant under temporal translations,
which does not occur with the Kleinert model. Again, it is
observed that the time series of log-return have a high GBE
with a value of χ2 less than 1. In addition, for the Dow Jones
stock index it is observed that the adjustment improves as
time passes, which implies that for the low-frequency limit
the logarithmic term does not describe the total behavior of
the nonstationary FTS.

D. Evolution of time series of other financial derivative

The previous sections allow us to conclude that the time
series for stock indexes are invariant under scale and time
translations under the adjustment with the logarithmic term.
Thus and as proof that this adjustment can be applied to other
types of financial derivatives, the regression is made for the
time series of the currency of Colombian pesos to the U.S.
dollar (COP-USD). Figure 12 is obtained for the COP-USD
foreign exchange measured daily, and it is observed again
that the regression with logarithmic term better adjusts the
tendency of the empirical data and that in addition to com-
paring with the previous method the form of the regression
curve prevails with the (32). It is important to mention that
the regression data obtained for the drift rx, cumulative c1,
and scale b parameters are in Table II. It is observed that the
Kleinert linear model is not good for this type of financial
derivatives and that it also does not reproduce the fact that the
variance of the data can start from a nonzero value.

If x is a stochastic process such that its distribution function
is stable [42], then we can conclude from the invariance under
translations and time scaling of the mean that this will be a
preserved property for all higher order moments since from

FIG. 9. Evolution of the mean of the time series of the S&P 500 stock index measured daily from January 3, 1950 to August 24, 2020
moving the time series in 12 000 data (50 yr) and taking the average of the total accumulated data each window size W S. Left: Log-return time
series (W S = 82 data). Center: Volatility time series (W S = 186 data). Right: Log-return absolute time series (W S = 186 data).
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FIG. 10. Evolution of the mean of the time series of the Dow Jones stock index measured every 2 sec from October 10, 2014 at 09:30:03
to October 31, 2014 at 16:20:00 moving the time series in 220 000 data (8 days, 6 h, 26 min, and 40 sec) and taking the average of the total
accumulated data each window size W S. Left: Log-return time series (W S = 74 data). Center: Volatility time series (W S = 200 data). Right:
Log-return absolute time series (W S = 200 data).

FIG. 11. Evolution of the mean of the time series of the FTSE stock index measured daily from October 20, 1997 to August 24, 2020
moving the time series in 500 data (2 yr) and taking the average of the total accumulated data each window size W S. Left: Log-return time
series (W S = 20 data). Center: Volatility time series (W S = 198 data). Right: Log-return absolute time series (W S = 200 data).

FIG. 12. Evolution of the mean of the time series of the COP-USD foreign exchange measured daily from July 16, 2010 to February
11, 2020 taking the average of the total accumulated data each window size W S. Left: Log-return time series (W S = 20 data). Center: Volatility
time series (W S = 30 data). Right: Log-return absolute time series (W S = 30 data).
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FIG. 13. Evolution of the variance of the time series of the COP-USD foreign exchange measured daily from July 16, 2010 to February
11, 2020 taking the variance of the total accumulated data each window size (W S = 132 data) for all time series. Left: Log-return time series.
Center: Volatility time series. Right: Log-return absolute time series.

Eq. (32) we have

�n(t ) = E[[x(t ) − ϒ1(t )]n]

= E

[
n∑

k=1

(
n

k

)
(−1)kxn−k (t )ϒk

1 (t )

]

=
n∑

k=1

(
n

k

)
(−1)kϒk

1 (t )E[xn−k (t )]

=
n∑

k=1

(
n

k

)
(−1)kϒk

1 (t )ϒn−k (t ).

Then, under a related transformation t 
→ t ′ = αt + β, with
α > 0, β ∈ R, we obtain �n(t ) 
→ �n(t ′) where

�n(t ′)=
n∑

k=1

(
n

k

)
(−1)kϒk

1 (t ′)ϒn−k (t ′)

=
n∑

k=1

(
n

k

)
(−1)kϒk

1 (αt + β )ϒn−k (αt + β )

=
n∑

k=1

(
n

k

)
(−1)kϒ ′k

1 (t )ϒ ′
n−k (t ). (44)

Expression (44) indicates that moments such as variance
preserve their functional form under scale and temporal trans-
lation transformations, and this is noted with primed indices
that preserve the form of Eq. (32) but with different param-
eters. Thus, when analyzing the variance of the time series
of the currency COP-USD with the three defined financial
derivatives (37), (38), and (39), Fig. 13 is obtained. The re-
gression data obtained for the drift rx, cumulants c1 and c2,
and scale b parameters are found in Table II. It is obtained that,
unlike the stock indexes, the currency COP-USD has a GBE
no greater than 8% and a χ2 much less than 1, corroborating
that the adjustments proposed with Eqs. (32) and (33) are
valid.

An important result is the significant decrease in all three
time series in Fig. 12, such that it shows the significant change
in the price of the dollar with respect to the Colombian peso,
as has occurred. In fact, if the error for each empirical data

is taken from the weighted standard deviation [variance ad-
justment (33) weighted at each instant of time], Fig. 14 is
obtained.

In Fig. 14 we show an extension in the tail of each financial
series where the empirical data is contrasted with the extrapo-
lation given by Eq. (32). This allows us to see that the quality
of the adjustment in each time series is well described in the
range defined by (32) with a deviation given by the weighting
of (33) with the number of data in the time series N . For
completeness, it is emphasized that to know the exact value
of the conversion of the Colombian peso to the dollar, the
value of the time series for a prior day is needed a priori,
and then, for example, on March 12 of 2020, the series of the
absolute log-return has LA = (5.911991 ± 0.17963) × 10−3,
which implies that the value of the Colombian peso with
respect to the dollar S(t ) is

S(t ) = S0eLR = 2.48 × 10−4eLR

= (2.49471 ± 0.0334356) × 10−4,

where S0 is the value of the time series the previous
day, that is, from March 11, 2020. Therefore, one dol-
lar is equivalent to [(2.49471 ± 0.0334356) × 10−4]−1 =
4008.49 ± 54.45 Colombian pesos, which compared to the
value registered that day, which was 3977 Colombian pesos,
there is a percentage error of (0.7856 ± 0.2415)% with re-
spect to our approach.

Repeating this calculation for the highest day in history
(March 23, 2020), we have for the series of the abso-
lute log-return LA = (5.659726 ± 0.15802) × 10−3, S0 =
2.43 × 10−4. Then one dollar is equivalent to [(2.44379 ±
0.0719122) × 10−4]−1 = 4092.0 ± 124.1 Colombian pesos,
which compared to the value registered that day, which
was 4176.5 Colombian pesos, there is a percentage error of
(2.065 ± 1.127)% with respect to our approach.

For comprehensiveness reasons and to see the modeling
strength of this new approach, the evolution of the empirical
data is calculated again up to August 24, 2020 illustrated
in Fig. 15. Figure 15 shows the cumulative mean of the
COP-USD currency as a function of time where an error in the
non-normalized variance is assumed, that is, without dividing
by the total data, and where the modeling with a logarithmic
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FIG. 14. Evolution of the mean of the time series of the COP-USD foreign exchange measured daily from July 16, 2010 to March 13, 2020
taking the mean of the total accumulated data keeping fixed the optimal window size found for each time series and taking the error in each data
as the weight of the variance [found with the regression of Eq. (33)] when dividing by the total number of means N/W S. Left: Log-return time
series (W S = 20 data). Center: Volatility time series (W S = 30 data). Right: Log-return absolute time series (W S = 30 data). The subcharts
in each series represent an enlargement of the tail of the series used to observe the quality of the fit.

term (31) verifies that it is a more approximate model to
describe the evolution in time of invariant nonstationary time
series of temporal translations and scaling.

We conclude this section by highlighting that the variance
of the currency data is expected to decrease over time since
the time series of log-returns, volatilities, and absolute log-
returns, constructed cumulatively, tend to a fixed value when
increasing the number of data during long periods of stability
in the market. Even so, from the monotonous increasing be-
havior for the FHT in a certain range of variances, it is worth
studying the stability of this financial asset in the future, which
is beyond the scope of this work.

VI. TEMPORAL EVOLUTION OF THE EXPONENT
IN THE TFS FOR THE FTS

Figure 16 indicates the fit with empirical data of the vari-
ance as a function of the mean following TFS [Eq. (35)]
for the time series of absolute log-returns for the currency
COP-USD and for the volatilities time series of the stock

index FTSE taking the size of the window in Tables III and
V, respectively. These nonstationary time series satisfy the
principle required for TFS where the time series is positive
data. It is important to mention that from the adjustment we
obtain K = 0.1350 ± 0.0052 and α = 0.9465 ± 0.0082 with
GBE of 5.77% for COP-USD absolute log-return time series,
which implies that the evolution in time of this time series
does not follow a linear relationship (although it is very close
to being so) and whose exponent can be related to the scale
parameter b [see Eq. (32) and Eq. (33)]. Observe that from
Table II, the value of the cumulant c1 and the value of the
stochastic drift rx are such that c1t + rx � 1 for times small
enough, which implies that the points scattered at the begin-
ning of the figure are dominated by a quadratic behavior as
stated by the expression (34). Furthermore, it is clear that
if α < 1 then xα = O(x), which implies that asymptotically
the variance behaves apparently linearly with respect to the
mean of the time series, which is in agreement with expression
(34). In the case of the volatility time series of the FTSE,
we obtain K = 0.2081 ± 0.0054 and α = 1.8901 ± 0.0101

FIG. 15. Evolution of the mean of the time series of the COP-USD foreign exchange measured daily from July 16, 2010 to August 25, 2020
taking the mean of the total accumulated data keeping fixed the optimal window size found for each time series and taking the error in each
data as the weight of the variance [found with the regression of Eq. (33)]. Left: Log-return time series (W S = 20 data). Center: Volatility time
series (W S = 30 data). Right: Log-return absolute time series (W S = 30 data). The subcharts in each series represent an enlargement of the
tail of the series used to observe the quality of the fit.
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FIG. 16. Evolution of the variance of the time series as a function of the mean of the time series measured daily until August 24, 2020
taking the mean and variance of the total accumulated data, keeping the optimal window size fixed W S. (Left) Absolute log-return of COP-USD
measured from July 16, 2010 with regression parameters K = 0.1350 ± 0.0052, α = 0.9465 ± 0.0082 and GBE of 5.77% (W S = 30 data).
(Right) Volatility of FTSE measured from October 20, 1997 with regression parameters K = 0.2081 ± 0.0054, α = 1.8901 ± 0.0101, and
GBE of 3.72% (W S = 117 data).

with GBE of 3.72%, this is a good fit observed for all the
data with a exponent close to 2, indicating that the effect of
the linear terminal at (34) is not strong enough to alter the
usual variance relationship as a function of the square of the
mean of the distribution. Thus, developing the adjustment of
the time series of volatilities and absolute log-returns of the
other financial assets, Table IV is obtained, which shows the
adjustment parameters of the FS for each of the mentioned
time series. It is important to note that the GBE (%) is no
greater than 19%, and less than 10% in most cases, indicating
a good approximation to the TFS for all financial assets.

Figure 17 shows the evolution of the TFS exponent α(t )
for the absolute log-returns of the currency COP-USD and
for the volatilities time series of the stock index FTSE taking
the size of the window in Tables III and V, respectively. The
adjustments were made taking into account Eq. (36) and the
parameters already found for the cumulants, the stochastic
drift, and the constant of the TFS shown in Tables III, IV,
and V. The percentage errors of the time series of absolute
log-returns of COP-USD and the time series of volatilities of
FTSE were 2.8078% and 2.9408%, respectively, indicates that

the mentioned evolution of TFS exponent in the expression
(36) corresponds in a very good approximation to the behavior
of the empirical data knowing only the initial cumulants of
the distribution, the constant K , the scale parameter b, and the
stochastic drift rx. It is clear that as time increases, there is
better precision in the value of the exponent, while initially
this exponent easily fluctuates due to drastic changes in the
mean or variance, which implies that asymptotically, the value
of the exponent of the TFS tends to stabilize on a central value
that would allow characterizing the type of financial deriva-
tive, or more generally, the type of time series that is being
talked about. Finally, note that the empirical data were taken
from the second time window where it makes sense to always
be able to define the variance of the distribution without the
problem of the normalization factor of the variance of a data
sample proportional to N − 1.

VII. CONCLUSIONS

Taking as a starting point the model developed by Kleinert
that uses the Feynman path integral to describe the evolution

TABLE III. Comparison of empirical data with the extrapolation of Eqs. (32) and (33) for the date mentioned in each time series. The
regression with the new model refers to the one introduced in this article with the time-dependent logarithmic term, and the percentage error is
calculated taking as a theoretical value the one given by Eq. (32).

Moment Empirical data Regression new model Error (%)

Log-return (February 21, 2020) Mean −1.7463 × 10−4 −1.8080 × 10−4 3.4083
Variance 8.8690 × 10−4 8.9889 × 10−4 1.3341

Volatility (March 13, 2020) Mean 2.4058 × 10−2 2.3875 × 10−2 0.76871
Variance 1.6078 × 10−3 1.6479 × 10−3 2.4344

Absolute Log-return (March 13, 2020) Mean 5.9159 × 10−3 5.9055 × 10−3 0.17663
Variance 8.5194 × 10−4 8.5932 × 10−4 0.85847
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TABLE IV. Adjustment parameters of the TFS in the time series of volatilities and absolute log-returns for the five financial assets studied.

Time series K α Global error GBE (%) χ2

COP-USD Volatility (1.057 ± 0.288) × 100 1.5317 ± 0.0777 14.83 9.106 × 10−4

COP-USD Abs Log-return (1.350 ± 0.052) × 10−1 0.9465 ± 0.0082 5.77 1.948 × 10−4

Nikkei 225 Volatility (2.449 ± 0.086) × 10−1 1.9751 ± 0.0127 4.32 2.006 × 10−4

Nikkei 225 Abs Log-return (7.666 ± 0.508) × 10−2 1.4276 ± 0.0142 9.65 1.108 × 10−4

S&P 500 Volatility (3.579 ± 0.052) × 100 2.7534 ± 0.0041 2.61 3.898 × 10−5

S&P 500 Abs Log-return (8.505 ± 0.162) × 101 2.8516 ± 0.0037 5.13 2.368 × 10−5

Dow Jones Volatility (4.972 ± 1.796) × 10−4 0.6902 ± 0.0656 15.66 1.666 × 10−5

Dow Jones Abs Log-return (6.773 ± 4.446) × 10−2 1.6515 ± 0.0602 18.28 1.511 × 10−9

FTSE 100 Volatility (2.081 ± 0.054) × 10−1 1.8901 ± 0.0101 3.72 2.174 × 10−4

FTSE 100 Abs Log-return (1.314 ± 0.079) × 100 2.0098 ± 0.0127 7.67 2.705 × 10−5

in time of the moments of a probability distribution associated
with log-returns, we extended this formalism for nonsta-
tionary time series, that is, time series with nonzero time
correlation. The results are synthesized in (1) calculation of
the functional relationship of the cumulants of a distribution
of probability with incomplete Bell polynomials in Sec. II
[44,45], (2) extension in the inclusion of nonzero stochastic
drift in the temporal evolution of the probability distribution
and in the temporal evolution of the central moments and
around the origin of the distribution in Sec. III B [32,34],
(3) study of the invariance of scale and temporal translations
of the adjustment with the logarithmic term in the cumulant
generating function (31) which allows us to establish a bet-
ter correspondence between empirical data and the analytical
evolution using the stochastic path integral (32) regardless
of the frequency of the data, and this logarithmic term is
defined by introducing a weight function in the calculation
of the moments of the distribution (see Appendix C), and
(4) obtaining the TFS that indicates the analytical evolution
of the exponent of said law over time [see (36)], which in
principle allows characterizing a time series and verifying the
nonstationarity of FTS independently of the market and the
chosen time interval.

It is also possible to speculate on the value of the financial
derivative associated with the COP-USD foreign exchange
with good precision and accuracy by extrapolating the values
of Eq. (32) and taking as a deviation the weight of (33) with
the data number N . It is important to mention that these results
are applicable to any complex system that can be associated
with a stochastic process with a causal structure, that is, all
every nonstationary time series. In the future, it is expected to
be able to extend this formalism at moments of noninteger
orders for distributions that do not satisfy the central limit
theorem [29]. In order to do this, we would like to see the
generalization of TFS [1–3] with the Laskin path integral of
fractional quantum mechanics [37] that introduces the Lévy
distributions. Also, it is expected to study the regression of
higher moments such as asymmetry and kurtosis that require
more computational resources and nonlinear regression meth-
ods. In addition, we hope in the future to be able to analyze the
relationship between the FHT and the variance of the financial
assets studied in order to understand the region of stability in
which each of the FTS is located with respect to the curve of
nonmonotonous behavior between the FHT and the variance
[22–24]. It is important to emphasize that Eq. (33) describes
the variance as a deterministic variable, unlike other stochastic

FIG. 17. Evolution of the TFS exponent as a function of the time measured daily until August 24, 2020 taking the mean and variance of the
total accumulated data, keeping the optimal window size fixed W S. (Left) Absolute log-return of COP-USD measured from July 16, 2010 with
regression parameters K = 0.1350 ± 0.0052, α = 0.9465 ± 0.0082 and GBE of 5.77% (W S = 30 data). (Right) Volatility of FTSE measured
from October 20, 1997 with regression parameters K = 0.2081 ± 0.0054, α = 1.8901 ± 0.0101, and GBE of 3.72% (W S = 117 data).
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models such as the GARCH model, the Heston model, and the
nonlinear Heston model.
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APPENDIX A: MOMENTS AROUND THE ORIGIN,
CENTRAL MOMENTS, AND CUMULANTS

The formula of Faà di Bruno for the nth derivative of the
composition of functions is given by [46]

dn

dxn
f (g(x)) =

∑
N

n!

m1!m2! · · · mn!
f (m1+m2+···+mn )(g(x))

×
n∏

j=1

[
gj (x)

j!

]mj

, (A1)

where

N =
{

(m1, m2, . . . , mn) ∈ Nn
0

∣∣ n∑
k=1

k mk = n

}
, (A2)

or also, in terms of Bell’s incomplete polynomials [44,45], the
formula of Faà di Bruno has to be

dn

dxn
f (g(x)) =

n∑
k=1

f (k)(g(x))Bn,k (g(1)(x),

× g(2)(x), . . . , g(n−k+1)(x)). (A3)

Applying to the cumulant generating function with f (p) = ep

and g(p) = −H (p), it is

g(k)(0) = − dkH (p)

d pk

∣∣∣∣
p=0

= (−i)kck, (A4)

f (k)(p) = dk

d pk
ep = ep, for all k ∈ N. (A5)

Therefore, the moment nth centered around the origin using
Eq. (5) is

μn = in
n∑

k=1

e−H (0)Bn,k ((−i)c1, . . . , (−i)n−k+1cn−k+1)

= in
n∑

k=1

Bn,k ((−i)c1, . . . , (−i)n−k+1cn−k+1). (A6)

The inverse relationship, that is, the cumulants in terms of the
moments centered around the origin, is [43]

cn = in
n∑

k=1

(−1)k−1(k − 1)!

× Bn,k ((−i)μ1, . . . , (−i)n−k+1μn−k+1). (A7)

It is important to highlight that the cumulants correspond to
the nth central moment ξn, only for n = 1, 2, 3 denominated
mean, variance, and skewness, respectively.

Generalizing for central moments, it has that the moments
around the mean ξn and the cumulants cn are related through
[43]

ξn = in
n∑

k=1

Bn,k (0, . . . , (−i)n−k+1cn−k+1), (A8)

cn = in
n∑

k=1

(−1)k−1(k − 1)!

× Bn,k (0, . . . , (−i)n−k+1ξn−k+1), (A9)

and it is achieved by introducing the following minimal sub-
stitution into the cumulant generating function (analogous to
Hamiltonian) H (p) 
→ Hnew(p) = H (p) + iμ1 p, where μ1 is
the first moment around the origin or expected value of the
distribution.

APPENDIX B: EVOLUTION OF PROBABILITY
DISTRIBUTION WITH NONZERO STOCHASTIC DRIFT

The probability that the system takes the value xb in the
time tb since it had the value xa in the time ta through the
probability distribution η ≡ η(t ) at a fixed time t , has a prob-
ability distribution given by Pη(xb, tb|xa, ta) = δ(xη(t ) − xb)
[34]. Taking into account all the contributions of the random
variables η(t ) between the times ta and tb, it is obtained that
the probability that the system reaches the value xb at the time
tb given the value xa at the time ta is [34]

P(xb, tb|xa, ta )= Eη[Pη(xb, tb|xa, ta )]

=
∫

DηP[η]δ(xη(t ) − xb), (B1)

where P[η] is a functional and Dη is normalized by∫
DηP[η] = 1. Using the identity

δ(xη(t ) − xb) =
∫ x(tb)=xb

x(ta )=xa

Dxδ[ẋ − η − rx]

=
∫ x(tb)=xb

x(ta )=xa

Dx
∫ ∞

−∞
(ẋ(t ) − η(t ) − rx )δ(t ) dt,

(B2)

we can conclude that the path integral to go from the value xa

in the time ta to the value xb in the time tb is [34]

P(xb, tb|xa, ta ) =
∫ x(tb)

x(ta )
Dx

∫
DηP[η]δ[ẋ − η − rx], (B3)

where the measure in the path integral over the stochastic vari-
able Dμ = Dη P[η] in Eq. (B3) is called a process measure
ẋ(t ) = rx + η(t ). Further, the path integral [34]∫ x(tb)=xb

x(ta )=xa

Dx δ[ẋ − η − rx], (B4)

is called a filter, since it determines the value of the probability
distribution xb at the time tb for all paths of x(t ) starting from
xa in time ta following the equation of temporal evolution (18)
expressed in the functional Dirac δ.
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TABLE V. Regression data used to calculate the evolution of the mean over time for stock indexes Nikkei 225, S&P 500, Dow Jones, and
FTSE 100 using the three filtering methods: Normal (all data), scaling (taking every n data) and translation (starting the series in the ”Start”
data and taking the 5000 consequent data).

Number Global

of no Cumulant 1 Drift Drift Cumulant error Optimal

Time series null data Filtration regression c1 regression rx b theory rx theory c1 χ2 GBE (%) window

Nikkei 225 Log-return 9011 Normal −3.088 × 10−8 1.722 × 10−3 −1.661 × 10−4 −1.367 × 10−4 1.179 × 10−4 1.357 × 10−2 110.6 138

Nikkei 225 Volatility 9011 Normal 6.321 × 10−7 2.590 × 10−2 4.062 × 10−3 5.354 × 10−2 5.351 × 10−2 3.677 × 10−3 2.41 159

Nikkei 225 Abs
Log-return

9011 Normal 2.259 × 10−7 4.675 × 10−4 9.058 × 10−4 3.097 × 10−4 6.300 × 10−3 2.301 × 10−3 5.91 159

Nikkei 225 Log-return 9011 Scaling weekly (5 days) 1.598 × 10−7 6.701 × 10−4 −1.348 × 10−4 −8.971 × 10−5 1.021 × 10−3 8.523 × 10−3 55.97 186

Nikkei 225 Volatility 9011 Scaling weekly (5 days) 8.448 × 10−7 6.025 × 10−3 8.352 × 10−4 5.043 × 10−2 5.023 × 10−2 1.012 × 10−4 2.25 159

Nikkei 225 Abs
Log-return

9011 Scaling weekly (5 days) 2.734 × 10−7 3.835 × 10−4 1.745 × 10−4 8.508 × 10−4 4.913 × 10−3 1.119 × 10−4 5.30 125

Nikkei 225 Log-return 9011 Transfer of 3000 data −9.261 × 10−7 −1.166 × 10−2 1.818 × 10−3 1.209 × 10−4 9.968 × 10−4 5.743 × 10−2 199.6 84

Nikkei 225 Volatility 9011 Transfer of 3000 data −4.803 × 10−7 5.618 × 10−2 1.980 × 10−3 6.212 × 10−2 6.528 × 10−2 3.425 × 10−2 2.07 17

Nikkei 225 Abs
Log-return

9011 Transfer of 3000 data −2.325 × 10−7 5.211 × 10−3 8.365 × 10−4 −1.905 × 10−3 8.028 × 10−3 2.190 × 10−2 3.95 14

S&P 500 Log-return 17650 Normal 1.178 × 10−7 6.805 × 10−3 −8.499 × 10−4 6.398 × 10−4 6.289 × 10−4 1.445 × 10−2 66.37 171

S&P 500 Volatility 17650 Normal 4.360 × 10−7 3.699 × 10−2 −1.325 × 10−3 2.690 × 10−2 2.549 × 10−2 2.256 × 10−3 1.38 102

S&P 500 Abs
Log-return

17650 Normal 1.702 × 10−7 8.278 × 10−3 −4.665 × 10−4 1.147 × 10−3 4.353 × 10−3 1.534 × 10−3 2.55 102

S&P 500 Log-return 17650 Scaling weekly (5 days) 6.270 × 10−8 4.854 × 10−4 −7.986 × 10−5 4.542 × 10−5 −7.817 × 10−4 6.829 × 10−3 151.9 95

S&P 500 Volatility 17650 Scaling weekly (5 days) 3.890 × 10−7 6.951 × 10−3 −2.523 × 10−4 3.306 × 10−2 3.358 × 10−2 2.728 × 10−4 1.47 60

S&P 500 Abs
Log-return

17650 Scaling weekly (5 days) 1.316 × 10−7 1.421 × 10−3 −7.270 × 10−5 −8.171 × 10−4 7.951 × 10−3 3.335 × 10−4 3.30 60

S&P 500 Log-return 17650 Transfer of 12 000 data 8.515 × 10−7 1.127 × 10−2 −1.739 × 10−3 1.977 × 10−4 6.766 × 10−4 2.602 × 10−2 101.3 82

S&P 500 Volatility 17650 Transfer of 12 000 data −3.328 × 10−8 4.708 × 10−2 −1.282 × 10−3 3.648 × 10−2 3.507 × 10−2 1.308 × 10−3 2.54 186

S&P 500 Abs
Log-return

17650 Transfer of 12 000 data 7.877 × 10−9 1.204 × 10−2 −3.815 × 10−4 1.055 × 10−3 8.033 × 10−3 1.018 × 10−3 4.77 186

Dow Jones Log-return 240810 Scaling every 20 data (2s) 2.164 × 10−12 9.250 × 10−8 −1.360 × 10−8 −3.316 × 10−8 −5.593 × 10−6 1.268 × 10−5 232.6 113

Dow Jones Volatility 240810 Scaling every 20 data (2s) 3.035 × 10−9 2.046 × 10−4 8.508 × 10−7 5.277 × 10−3 5.286 × 10−3 8.701 × 10−5 5.55 173

Dow Jones Abs
Log-return

240810 Scaling every 20 data (2s) 2.531 × 10−11 6.481 × 10−7 3.651 × 10−8 −2.247 × 10−6 2.587 × 10−5 1.643 × 10−6 11.13 173

Dow Jones Log-return 240810 Transfer of 220 000 data 1.167 × 10−9 1.499 × 10−5 −2.356 × 10−6 −3.122 × 10−6 −3.240 × 10−6 2.006 × 10−4 290.5 74

Dow Jones Volatility 240810 Transfer of 220 000 data 4.152 × 10−7 5.517 × 10−3 −3.382 × 10−4 3.694 × 10−3 3.697 × 10−3 7.873 × 10−4 6.51 200

Dow Jones Abs
Log-return

240810 Transfer of 220 000 data 2.287 × 10−9 1.742 × 10−5 −7.899 × 10−7 3.232 × 10−7 1.215 × 10−5 5.837 × 10−6 9.42 200

FTSE 100 Log-return 5766 Normal −5.310 × 10−7 −9.326 × 10−3 1.372 × 10−3 6.398 × 10−4 −1.455 × 10−3 2.780 × 10−2 53.30 146

FTSE 100 Volatility 5766 Normal 1.650 × 10−6 9.708 × 10−2 −3.500 × 10−3 1.082 × 10−1 1.104 × 10−1 1.901 × 10−2 1.08 117

FTSE 100 Abs
Log-return

5766 Normal 2.289 × 10−7 1.126 × 10−2 −5.276 × 10−4 −1.444 × 10−3 1.407 × 10−2 5.099 × 10−3 1.56 172

FTSE 100 Log-return 5766 Scaling weekly (5 days) 9.735 × 10−8 1.175 × 10−3 −1.757 × 10−4 4.502 × 10−4 4.546 × 10−3 8.196 × 10−4 37.61 50

FTSE 100 Volatility 5766 Scaling weekly (5 days) 1.471 × 10−6 1.288 × 10−2 1.279 × 10−4 7.257 × 10−2 7.165 × 10−2 7.865 × 10−5 1.86 138

FTSE 100 Abs
Log-return

5766 Scaling weekly (5 days) 4.409 × 10−7 8.867 × 10−4 4.652 × 10−5 9.347 × 10−4 6.325 × 10−3 6.467 × 10−5 7.20 194

FTSE 100 Log-return 5766 Transfer of 500 data 3.122 × 10−7 3.215 × 10−3 −5.443 × 10−4 3.683 × 10−4 −1.608 × 10−3 9.135 × 10−2 257.0 20

FTSE 100 Volatility 5766 Transfer of 500 data 3.749 × 10−6 7.512 × 10−2 −1.728 × 10−3 6.393 × 10−2 6.471 × 10−2 2.324 × 10−3 2.83 198

FTSE 100 Abs
Log-return

5766 Transfer of 500 data 6.577 × 10−7 5.994 × 10−3 −7.411 × 10−5 −3.506 × 10−4 5.444 × 10−3 8.016 × 10−4 5.44 200

Taking P[η] = exp {− ∫ tb
ta

dtH̃ [η(t )]}, where H̃ is the log-

arithm of the chosen distribution H̃ (η) = − ln (D̃[η]), we
conclude with the result in Eq. (19) [35,38].

APPENDIX C: MEAN AND VARIANCE WITH
TIME-DEPENDENT LOGARITHMIC TERM

The deduction of Eq. (21) used that∫ ∞

−∞
xneipx dx = 2π (−i)n dn

d pn
δ(p), (C1)

where the cumulant generating function (6) satisfies H (0) = 0.

Now, to introduce the logarithmic term (31) in the evolu-
tion of the mean and higher moments of the distribution, and
the linear asymptotic linear behavior [ϒ1(t ) = O(t )], we want
to introduce a weight function w(x) defined as

w(x) = 1 + b

x
ln (1 + t ). (C2)

Then for the mean of distribution over the time we have

ϒ
(H )
1 (t ) =

∫ ∞

−∞

d p

2π
e−tH (p)−iprx

∫ ∞

−∞
dx x w(x)eipx dx

=
∫ ∞

−∞

d p

2π
e−tH (p)−iprx

∫ ∞

−∞
[x + b ln (1 + t )]eipx dx
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TABLE VI. Markovian property test for stock indexes Nikkei 225, S&P 500, Dow Jones and FTSE and currency COP-USD. For the stock
indexes, we use the 3 filtering methods: Normal (all data), scaling (taking every n data) and translation (starting the series in the ”Start” data
and taking the 5000 consequent data). For currency we take the mean and the variance data.

Index Filtration χ 2 Degrees of freedom P value

Nikkei 225 Log-return Normal 0.00000 65 1.0000
Nikkei 225 Volatility Normal 0.00000 56 1.0000
Nikkei 225 Abs Log-return Normal 0.00000 56 1.0000
Nikkei 225 Log-return Scaling weekly (5 days) 0.00000 9 1.0000
Nikkei 225 Volatility Scaling weekly (5 days) 0.00000 11 1.0000
Nikkei 225 Abs Log-return Scaling weekly (5 days) 0.00000 14 1.0000
Nikkei 225 Log-return Transfer of 3000 data 0.00000 59 1.0000
Nikkei 225 Volatility Transfer of 3000 data 0.00000 294 1.0000
Nikkei 225 Abs Log-return Transfer of 3000 data 0.00000 357 1.0000
S&P 500 Log-return Normal 0.00000 103 1.0000
S&P 500 Volatility Normal 0.00000 174 1.0000
S&P 500 Abs Log-return Normal 0.00000 174 1.0000
S&P 500 Log-return Scaling weekly (5 days) 0.00000 37 1.0000
S&P 500 Volatility Scaling weekly (5 days) 0.00000 11 1.0000
S&P 500 Abs Log-return Scaling weekly (5 days) 0.00000 59 1.0000
S&P 500 Log-return Transfer of 12 000 data 0.00000 60 1.0000
S&P 500 Volatility Transfer of 12 000 data 0.00000 26 1.0000
S&P 500 Abs Log-return Transfer of 12 000 data 0.00000 26 1.0000
Dow Jones Log-return Scaling every 20 data (2s) 0.00000 125 1.0000
Dow Jones Volatility Scaling every 20 data (2s) 0.00000 81 1.0000
Dow Jones Abs Log-return Scaling every 20 data (2s) 0.00000 81 1.0000
Dow Jones Log-return Transfer of 220 000 data 0.00000 67 1.0000
Dow Jones Volatility Transfer of 220 000 data 0.00000 24 1.0000
Dow Jones Abs Log-return Transfer of 220 000 data 0.00000 24 1.0000
FTSE 100 Log-return Normal 0.00000 39 1.0000
FTSE 100 Volatility Normal 0.00000 49 1.0000
FTSE 100 Abs Log-return Normal 0.00000 33 1.0000
FTSE 100 Log-return Scaling weekly (5 days) 0.00000 23 1.0000
FTSE 100 Volatility Scaling weekly (5 days) 0.00000 8 1.0000
FTSE 100 Abs Log-return Scaling weekly (5 days) 0.00000 5 1.0000
FTSE 100 Log-return Transfer of 500 data 0.00000 249 1.0000
FTSE 100 Volatility Transfer of 500 data 0.00000 25 1.0000
FTSE 100 Abs Log-return Transfer of 500 data 0.00000 24 1.0000
COP-USD Log-return Mean 80.33929 112 0.9896
COP-USD Volatility Mean 1.02041 1574 1.0000
COP-USD Abs Log-return Mean 68.02041 1455 1.0000
COP-USD Log-return Variance 0.00000 150 1.0000
COP-USD Volatility Variance 0.02041 1489 1.0000
COP-USD Abs Log-return Variance 0.02041 1489 1.0000

=
∫ ∞

−∞
d p e−tH (p)−iprx

×
[
−i

d

d p
δ(p) + b ln (1 + t )δ(p)

]
= i

d

d p
[e−tH (p)−iprx ]p=0 + b ln (1 + t )

× [e−tH (p)−iprx ]p=0

= − i[tH ′(0) + irx] + b ln (1 + t )

= − i[ic1t + irx] + b ln (1 + t )

= c1t + rx + b ln (1 + t ). (C3)

Also

ϒ
(H )
2 (t ) =

∫ ∞

−∞

d p

2π
e−tH (p)−iprx

∫ ∞

−∞
dx x2 w(x)eipx dx

=
∫ ∞

−∞

d p

2π
e−tH (p)−iprx

×
∫ ∞

−∞
[x2 + bx ln (1 + t )]eipx dx

=
∫ ∞

−∞
d p e−tH (p)−iprx

×
[

(−i)2 d2

d p2
δ(p) − ib ln (1 + t )

d

d p
δ(p)

]
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= i2 d2

d p2
[e−tH (p)−iprx ]p=0

+ ib ln (1 + t )
d

d p
[e−tH (p)−iprx ]p=0

= tH ′′(0) − [tH ′(0) + irx]2 − ib ln (1 + t )

× [tH ′(0) + irx]

= c2t − [ic1t + irx]2 − ib ln (1 + t )[ic1t + irx]

=, c2t + [c1t + rx]2 + b ln (1 + t )[c1t + rx]. (C4)

Therefore, the variance as a function of time is

�
(H )
2 = ϒ

(H )
2 (t ) − [

ϒ
(H )
1 (t )

]2

= c2t + [c1t + rx]2 + b ln (1 + t )[c1t + rx]

− [c1t + rx + b ln (1 + t )]2

= c2t − (c1t + rx )b ln (1 + t ) − b2 ln2 (1 + t ). (C5)

It is important to note that with the interaction Hamiltonian
(31) and Eq. (23), we obtain

ϒ
(H )
1 =

∫ ∞

−∞
dx

d p

2π
xe−tH (p)+ip(x−rx )−Hint (p,t )

=
∫ ∞

−∞
d p e−tH (p)−iprx−Hint (p,t )

[
−i

d

d p
δ(p)

]
= i

d

d p
[e−tH (p)−iprx−Hint (p,t )]p=0

= −i[tH ′(0) + irx + ib ln (1 + t )]

= c1t + rx + b ln (1 + t ), (C6)

which motivates the definition given to the time-dependent
logarithmic term although it is important to mention that what
is done is to introduce a new measure at the moments of the
distribution with the weight function w(x).

APPENDIX D: REGRESSION DATA

The theoretical regression data in Table V were taken with
Kleinert’s theory [35,36]. It is important to mention that these
data should be divided by the interval between data (optimal
window and scaling filter) in order to obtain a correct descrip-
tion of the evolution of the mean as shown in the Sec. V.
Additionally, in the transferred time series, “Start” indicates
from the data where the time series is taken.

APPENDIX E: MARKOV PROPERTY OF FTS

To establish the Markov property of the FTS, the
markovchain package is used in the programming language R.
In this package, the Markov property of a time series (xi )N

i=1
can be verified by setting a time instant t , with 1 � t �
N − 2 and counting the number of times ni, j,k in which xt =
i, xt+1 = j and xt+2 = k. Thus, ni jk must follow a binomial
distribution with parameters ni j and p jk . Finally, the χ2 test
is calculated on this distribution with q degrees of freedom in
such a way that the P value is fixed with the inverse of the
probability given by the right tail in the adjusted χ2 test [55]
(see Table VI).
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