
PHYSICAL REVIEW E 103, 042125 (2021)

Compatibility of Carnot efficiency with finite power in an underdamped Brownian
Carnot cycle in small temperature-difference regime
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We study the possibility of achieving the Carnot efficiency in a finite-power underdamped Brownian Carnot
cycle. Recently, it was reported that the Carnot efficiency is achievable in a general class of finite-power Carnot
cycles in the vanishing limit of the relaxation times. Thus, it may be interesting to clarify how the efficiency
and power depend on the relaxation times by using a specific model. By evaluating the heat-leakage effect
intrinsic in the underdamped dynamics with the instantaneous adiabatic processes, we demonstrate that the
compatibility of the Carnot efficiency and finite power is achieved in the vanishing limit of the relaxation times
in the small temperature-difference regime. Furthermore, we show that this result is consistent with a trade-off
relation between power and efficiency by explicitly deriving the relation of our cycle in terms of the relaxation
times.
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I. INTRODUCTION

Heat engines constitute one of the indispensable tech-
nologies in our modern society, and much effort has been
conducted to improve their performance in various scientific
or engineering fields [1]. Heat engines convert supplied heat
into output work. Moreover, their ratio can be used as the
efficiency to characterize the performance of heat engines.
The Carnot cycle is one of the most important models of heat
engines, which operates between hot and cold heat baths with
constant temperatures Th and Tc (<Th). Moreover, the cycle
is composed of two isothermal processes and two adiabatic
processes. Carnot demonstrated that the efficiency of any heat
engine is limited by the upper bound called the Carnot effi-
ciency [2]:

ηC ≡ 1 − Tc

Th
. (1)

It is known that we can reach the Carnot efficiency by the
reversible cycle, where the heat engine always remains at
equilibrium and is typically operated quasistatically, which
implies that the engine spends an infinitely long time per
cycle. Moreover, power, defined as output work per unit time,
is another important quantity for evaluating the performance
of heat engines. When we operate the heat engines quasistati-
cally, power vanishes. Thus, several studies have been devoted
to investigating the feasibility of finite-power heat engines
with Carnot efficiency [3–16].

However, Shiraishi et al. [17–19] recently proved a trade-
off relation between power P and efficiency η in general
heat engines described by the Markov process. The trade-off
relation is given by

P � Aη(ηC − η), (2)

where A is a positive constant depending on the heat engine
details. Based on this relation, the power should vanish as the
efficiency approaches the Carnot efficiency. Similar trade-off
relations to Eq. (2) have been obtained in various heat engine
models [20–23]. In particular, Dechant and Sasa derived a
specific expression of A for stochastic heat engines described
by the Langevin equation [23].

Recently, Holubec and Ryabov reported that the Carnot
efficiency could be obtained in a general class of finite-power
Carnot cycles in the vanishing limit of the relaxation times
[24]. Although this result seems to contradict the trade-off
relation in Eq. (2), they pointed out the possibility that A in
Eq. (2) diverges in the vanishing limit of the relaxation times,
and the Carnot efficiency and finite power are compatible
without breaking the trade-off relation in Eq. (2). Thus, it may
be interesting to study how the efficiency and power depend
on the relaxation times in more detail by using a specific
model.

The Brownian Carnot cycle with instantaneous adiabatic
processes and a time-dependent harmonic potential is a sim-
ple model, which is easy to analyze and is frequently used
to study the efficiency and power [24–27]. However, it is
pointed out that the instantaneous adiabatic process in the
overdamped Brownian Carnot cycle inevitably causes a heat
leakage [26–28]. In the overdamped dynamics, the inertial
effect of the Brownian particle is disregarded, and the sys-
tem is only described by its position. Nevertheless, heat
leakage is related to the kinetic energy of the particle, as
seen below. When the overdamped limit is considered in the
underdamped dynamics, the averaged kinetic energy of the
Brownian particle is equal to kBT/2 in the isothermal process
with temperature T , where kB is the Boltzmann constant.
Then, after the instantaneous adiabatic processes in the above
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cycle, the kinetic energy relaxes toward the temperature of the
subsequent isothermal process, and an additional heat propor-
tional to the temperature difference flows. This heat leakage
decreases the efficiency of the cycle. Thus, we must consider
the underdamped dynamics to evaluate the effect of the heat
leakage on the efficiency and power of the Brownian Carnot
cycle with the instantaneous adiabatic processes.

In this paper, we demonstrate that it is possible to achieve
the Carnot efficiency in the underdamped finite-power Brow-
nian Carnot cycle by considering the vanishing limit of the
relaxation times of both position and velocity in the small
temperature-difference regime, where the heat leakage due
to the instantaneous adiabatic processes can be negligible.
As shown below, ηC − η in Eq. (2) is proportional to the
entropy production. We show that the above compatibility
is made possible by the diverging constant A in Eq. (2) and
the vanishing entropy production, which can be expressed in
terms of the two relaxation times of the system.

The rest of this paper is organized as follows. In Sec. II,
we introduce the Brownian particle trapped by the har-
monic potential and describe it by the underdamped Langevin
equation. We also introduce the isothermal process and in-
stantaneous adiabatic process in this section. In Sec. III, we
construct the Carnot cycle using the Brownian particle. In
Sec. IV, we present the results of numerical simulations of
the underdamped Brownian Carnot cycle when we vary the
temperature difference and the relaxation times of the sys-
tem. From these results, we demonstrate that the efficiency
of our cycle approaches the Carnot efficiency while maintain-
ing finite power as the relaxation times vanish in the small
temperature-difference regime. In Sec. V, we explain the re-
sults of the numerical simulations in Sec. IV based on the
trade-off relation in Eq. (2). Section VI presents the summary
and discussion.

II. MODEL

A. Underdamped system

We consider a Brownian particle in the surrounding
medium with a temperature T . When the particle is trapped
in the harmonic potential

V (x, t ) = 1
2λ(t )x2, (3)

the dynamics of the particle is described by the underdamped
Langevin equation

ẋ =v, (4)

mv̇ = − γ v − λx +
√

2γ kBT ξ, (5)

where, x, v, and m are the position, velocity, and mass of the
particle, respectively. The dot denotes the time derivative or a
quantity per unit time. We use γ as the constant friction coeffi-
cient independent of T and set the Boltzmann constant kB = 1
for simplicity. The stiffness λ(t ) of the harmonic potential
changes over time. The Gaussian white noise ξ (t ) satisfies
〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′), where 〈· · · 〉 denotes

statistical average. In this system, the relaxation times of the
position τx and velocity τv are defined as follows:

τx(t ) ≡ γ

λ(t )
, (6)

τv ≡ m

γ
, (7)

where τx(t ) depends on the time through the stiffness λ(t ). We
introduce the distribution function p(x, v, t ) to describe the
state of the system at time t . The time evolution of p(x, v, t )
can be described by the Kramers equation [29] corresponding
to Eqs. (4) and (5),

∂

∂t
p(x, v, t ) = − ∂

∂x
(vp(x, v, t ))

+ ∂

∂v

[
γ

m
v + λ

m
x + γ T

m2

∂

∂v

]
p(x, v, t )

= − ∂

∂x
jx(x, v, t ) − ∂

∂v
jv (x, v, t ), (8)

where jx(x, v, t ) and jv (x, v, t ) are the probability currents
defined as follows:

jx(x, v, t ) ≡ vp(x, v, t ), (9)

jv (x, v, t ) ≡ −
[

γ

m
v + λ

m
x + γ T

m2

∂

∂v

]
p(x, v, t ). (10)

Here, we define the three variables σx(t ) ≡ 〈x2〉, σv (t ) ≡ 〈v2〉,
and σxv (t ) ≡ 〈xv〉. By using Eq. (8), we can derive the follow-
ing equations:

σ̇x = 2σxv, (11)

σ̇v =2γ T

m2
− 2γ

m
σv − 2λ

m
σxv, (12)

σ̇xv = σv − λ

m
σx − γ

m
σxv (13)

describing the time evolution of σx, σv , and σxv [25]. Be-
low, we assume that the probability distribution p(x, v, t ) is
a Gaussian distribution:

p(x, v, t ) = 1√
4π2

(
σxσv − σ 2

xv

)
× exp

{
−σxv

2 + σvx2 − 2σxvxv

2
(
σxσv − σ 2

xv

) }
. (14)

Thus, the state of the Brownian particle can only be described
by the above three variables. In this model, the internal energy
E (t ) and entropy S(t ) of the Brownian particle are defined as
follows:

E (t ) ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dv p(x, v, t )

[
1

2
mv2 + 1

2
λ(t )x2

]

= 1

2
mσv (t ) + 1

2
λ(t )σx(t ), (15)

S(t ) ≡ −
∫ ∞

−∞
dx

∫ ∞

−∞
dv p(x, v, t ) ln p(x, v, t )

=1

2
ln

(
σx(t )σv (t ) − σ 2

xv (t )
) + ln(2π ) + 1. (16)
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B. Isothermal process

We define the heat and work during a time interval ti <

t < t f in an isothermal process. In this process, the Brownian
particle interacts with the heat bath at a constant temperature
T . We assume that the stiffness λ(t ) changes smoothly in
this process. The heat flux Q̇ flowing from the heat bath to
the Brownian particle is defined as the statistical average of
the work performed by the force from the heat bath to the
Brownian particle (see Chap. 4 of Ref. [30]),

Q̇(t ) ≡ 〈(−γ v +
√

2γ T ξ (t )) ◦ v〉, (17)

where ◦ represents the Stratonovich-type product. Using
Eqs. (4) and (5), we derive the heat flux Q̇(t ) as follows:

Q̇(t ) = 1
2λ(t )σ̇x(t ) + 1

2 mσ̇v (t ). (18)

Thus, we obtain the heat Q flowing in this interval as

Q =
∫ t f

ti

dt

(
1

2
λσ̇x

)
+

∫ t f

ti

dt

(
1

2
mσ̇v

)

= Qo + �K, (19)

where

Qo ≡
∫ t f

ti

dt

(
1

2
λσ̇x

)
, (20)

�K ≡1

2
mσv (t f ) − 1

2
mσv (ti ). (21)

Here, Qo represents the heat related to the potential change,
and �K is the difference between the initial and final (av-
eraged) kinetic energies of the Brownian particle. In the
overdamped system [26], Qo is regarded as the heat instead
of Q in Eq. (19). However, in the underdamped system under
consideration, the heat also includes the kinetic part �K .

The output work during this interval is defined as follows:

W ≡ −
∫ t f

ti

dt
∫ ∞

−∞
dx

∫ ∞

−∞
dv p(x, v, t )

∂V (x, t )

∂t

= −1

2

∫ t f

ti

dt λ̇σx

= Q − �E , (22)

where we used Eqs. (15) and (19) for the derivation from the
middle to the last equality, and defined �E ≡ E (t f ) − E (ti ).
The last equality in Eq. (22) represents the first law of ther-
modynamics.

C. Instantaneous adiabatic process

As an adiabatic process connecting the end of the isother-
mal process with temperature T1 to the beginning of the next
isothermal process with temperature T2, we use instantaneous
changes in the potential and heat bath at t = t0, which we
regard as the final time of the isothermal process with tem-
perature T1 [26]. In this process, the stiffness λ(t ) jumps
from λ1 to λ2, and we instantaneously switch the temperature
of the heat bath from T1 to T2, maintaining the probability
distribution unchanged. Because this process is instantaneous,
no heat exchange occurs, and the output work W ad

1→2 is equal
to the negative value of the internal energy change �E ad

1→2 due

FIG. 1. Schematic illustration of the Brownian Carnot cycle. In
each box, the bottom horizontal line denotes the position coordinate
x and the boundary curve of the green filled area denotes the proba-
bility distribution of x. The red solid line corresponds to the harmonic
potential. This cycle is composed of (i) hot isothermal process,
(ii) instantaneous adiabatic process, (iii) cold isothermal process, and
(iv) instantaneous adiabatic process.

to the first law of thermodynamics as

W ad
1→2 = −�E ad

1→2 = − 1
2 (λ2 − λ1)σx(t0). (23)

III. CARNOT CYCLE

We construct a Carnot cycle operating between the two
heat baths with the temperatures Th and Tc (see Fig. 1) by
combining the isothermal processes and the instantaneous
adiabatic processes introduced in Sec. II.

First, we define a protocol of a finite-time Carnot cycle
with stiffness λ(t ) as follows: The hot isothermal process
with temperature Th lasts for 0 < t < th, and the stiffness λ

varies from λA to λB [Fig. 1(i)]. In the following instantaneous
adiabatic process, we switch the stiffness from λB to λC and
the temperature of the heat bath from Th to Tc at t = th,
[Fig. 1(ii)]. The cold isothermal process with temperature Tc

lasts for th < t < th + tc, and the stiffness λ varies from λC

to λD [Fig. 1(iii)]. In the last instantaneous adiabatic process,
we switch the stiffness from λD to λA and the temperature
of the heat bath from Tc to Th at t = tcyc, Fig. 1(iv), where
tcyc ≡ th + tc is the cycle time, which is assumed nonzero. The
final state of the Brownian particle in the cold (hot) isothermal
process should agree with the initial state in the hot (cold)
isothermal process.

We assume that the stiffness λ(t ) can be expressed as
follows:

λ(t ) = �(s)

(
s ≡ t

tcyc

)
, (24)
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using the scaling function �(s) (0 � s � 1). Under this
assumption, we can change the time scale of the proto-
col maintaining the protocol form unchanged by selecting
another value of tcyc. We also assume that th/tcyc and tc/tcyc

are finitely fixed for any value of tcyc. Furthermore, we assume
that λ(t f )/λ(ti ) is finite at any time ti and t f , where they are
in the same isothermal process. We use this assumption to
show that the heat flux after the relaxation at the beginning of
the isothermal processes is noninfinite in the Appendix. Note
that the word “finite” may situationally be used considering
two meanings, “nonzero” (e.g., “finite power”) or “noninfi-
nite” (e.g., “finite time”). In this paper, however, we refer
to “nonzero and noninfinite” by “finite” except for the two
examples above.

To consider the quasistatic Carnot cycle corresponding to
the above finite-time Carnot cycle, we must consider the limit
of tcyc → ∞ and use the stiffness λqs(t ) related to the finite-
time stiffness through Eq. (24). Here, the index “qs” of X qs

denotes the physical quantity X evaluated in the quasistatic
limit.

A. Quasistatic Carnot cycle: Quasistatic efficiency

We formulate the efficiency of the quasistatic Carnot cycle.
To this end, we need to quantify the heat leakage caused by
the adiabatic process. As the adiabatic processes are instan-
taneous, the initial distributions of the quasistatic isothermal
processes do not agree with the equilibrium distributions at
the temperature of the heat bath. Thus, a relaxation at the be-
ginning of the isothermal processes exists and, in general, the
relaxation is irreversible. After the relaxation in the quasistatic
isothermal process with temperature T , the time derivative of
the variables satisfies

σ̇ qs
x (t ) = 0, σ̇ qs

v (t ) = 0, σ̇ qs
xv (t ) = 0. (25)

Subsequently, from Eqs. (11)–(13), we obtain those values as
follows:

σ qs
x (t ) = T

λqs(t )
, σ qs

v (t ) = T

m
, σ qs

xv (t ) = 0, (26)

and the distribution in Eq. (14) in the quasistatic limit agrees
with the Boltzmann distribution

pqs(x, v, t ) =
√

mλqs(t )

4π2T 2
exp

{
−λqs(t )x2 + mv2

2T

}
. (27)

After the relaxation in each quasistatic isothermal process,
the system is in equilibrium with the heat bath and satisfies
Eq. (26). Using Eqs. (16) and (26), we derive the quasistatic
entropy as follows:

Sqs(t ) =1

2
ln σ qs

x (t ) + 1

2
ln σ qs

v (t ) + ln(2π ) + 1

=1

2
ln

(
T

λ(t )

)
+ 1

2
ln

(
T

m

)
+ ln(2π ) + 1. (28)

As mentioned above, the quasistatic isothermal processes
are composed of the relaxation part and the part after the relax-
ation. Because the instantaneous adiabatic process [Fig. 1(iv)]
just before the quasistatic hot isothermal process [Fig. 1(i)]
does not change the probability distribution, the initial dis-
tribution agrees with the final distribution in the quasistatic

cold isothermal process. Thus, the variables σ
qs
x , σ

qs
v , and σ

qs
xv

begin the quasistatic hot isothermal process with the following
values:

σ qs
x = Tc

λ
qs
D

, σ qs
v = Tc

m
, σ qs

xv = 0, (29)

where we used Eq. (26). In the relaxation at the beginning of
this process, the stiffness almost remains λ

qs
A [see Eq. (A14) in

the Appendix], and the variables relax to

σ qs
x = Th

λ
qs
A

, σ qs
v = Th

m
, σ qs

xv = 0, (30)

owing to Eq. (26).
From Eqs. (29) and (30), the kinetic energy is mσv/2 =

Tc/2 in the initial state and changes to Th/2 during the re-
laxation. The kinetic energy remains Th/2 after the relaxation
because the system is in equilibrium with the heat bath at
temperature Th during the quasistatic hot isothermal process.
Thus, a change in the kinetic energy in Eq. (21) in the qua-
sistatic hot isothermal process is given by

�Kqs
h = �T

2
, (31)

where �T ≡ Th − Tc. We can also derive the heat related to
the potential change during the relaxation Qrel,o,qs

h as follows.
As the stiffness remains λ

qs
A during the relaxation, Qrel,o,qs

h is
derived as

Qrel,o,qs
h =

∫ Th/λ
qs
A

Tc/λ
qs
D

1

2
λ

qs
A dσx

=1

2
λ

qs
A

(
Th

λ
qs
A

− Tc

λ
qs
D

)
, (32)

using Eq. (20). The entropy change of the Brownian particle
in this relaxation is given by

�Srel,qs
h ≡ 1

2
ln

(
Th

λ
qs
A

λ
qs
D

Tc

)
+ 1

2
ln

(
Th

Tc

)
, (33)

where we used Eqs. (28)–(30).
After the relaxation in the quasistatic hot isothermal pro-

cess, the probability distribution maintains the Boltzmann
distribution in Eq. (27) with T = Th, and σv does not change.
Therefore, the final state of the process should satisfy

σ qs
x = Th

λ
qs
B

σ qs
v = Th

m
, σ qs

xv = 0, (34)

where we used Eq. (26). Because the second term on the
right-hand side of Eq. (28) does not change in the quasistatic
hot isothermal process, we derive the entropy change �Siso,qs

h
after the relaxation in this process as follows:

�Siso,qs
h ≡ 1

2
ln

(
λ

qs
A

λ
qs
B

)
. (35)

Note that the quantities with the index “iso” do not include
the contribution from the relaxation. Thus, the heat supplied
to the Brownian particle after the relaxation in this process is
given by

Th�Siso,qs
h = Th

2
ln

(
λ

qs
A

λ
qs
B

)
. (36)
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The heat related to the potential change in the quasistatic hot
isothermal process is

Qo,qs
h = Th�Siso,qs

h + Qrel,o,qs
h . (37)

Therefore, by using Eq. (31), the heat flowing in the qua-
sistatic hot isothermal process is given by

Qqs
h = Qo,qs

h + �Kqs
h

= Th�Siso,qs
h + Qrel,o,qs

h + 1
2�T, (38)

= Th�Siso,qs
h + Qrel,qs

h ,

where Qrel,qs
h denotes the heat flowing during the relaxation at

the beginning of this process, as

Qrel,qs
h ≡ Qrel,o,qs

h + 1
2�T . (39)

From Eq. (22), the work in this process is given by

W qs
h = Qqs

h − �Eqs
h , (40)

where �Eqs
h represents the internal energy change in this

process.
After the instantaneous adiabatic process [Fig. 1(ii)], the

quasistatic cold isothermal process [Fig. 1(iii)] begins with the
variables in Eq. (34), and the variables relax to

σ qs
x = Tc

λ
qs
C

σ qs
v = Tc

m
, σ qs

xv = 0, (41)

where we used Eq. (26). Similar to the quasistatic hot isother-
mal process, the change in the kinetic energy in Eq. (21)
satisfies

�Kqs
c = −�T

2
. (42)

We also define the heat related to the potential change during
the relaxation in the quasistatic cold isothermal process as

Qrel,o,qs
c ≡ 1

2
λ

qs
C

(
Tc

λ
qs
C

− Th

λ
qs
B

)
. (43)

Then, the flowing heat and the entropy change of the particle
during this relaxation are given by

Qrel,qs
c ≡ 1

2
λ

qs
C

(
Tc

λ
qs
C

− Th

λ
qs
B

)
− 1

2
�T, (44)

�Srel,qs
c ≡ 1

2
ln

(
Tc

λ
qs
C

λ
qs
B

Th

)
+ 1

2
ln

(
Tc

Th

)
, (45)

similarly to Eqs. (33) and (39), where we used Eqs. (20), (28),
(34), and (41)–(43).

After the relaxation, the variables change to the state in
Eq. (29). Then, the entropy change after the relaxation in the
quasistatic cold isothermal process is given by

�Siso,qs
c ≡ 1

2
ln

(
λ

qs
C

λ
qs
D

)
. (46)

The heat related to the potential change in the quasistatic cold
isothermal process is

Qo,qs
c = Tc�Siso,qs

c + Qrel,o,qs
h , (47)

where we used Eqs. (43) and (46). Thus, the heat flowing in
the quasistatic cold isothermal process is given by

Qqs
c = Qo,qs

c + �Kqs
c

= Tc�Siso,qs
c + Qrel,qs

c , (48)

where we used Eqs. (42)–(47). From Eq. (22), the work in this
process is given by

W qs
c = Qqs

c − �Eqs
c , (49)

where �Eqs
c is the internal energy change in this process. After

the quasistatic cold isothermal process [Fig. 1(iii)], the system
proceeds to the instantaneous adiabatic process [Fig. 1(iv)]
and returns to the initial state of the quasistatic hot isothermal
process.

Subsequently, we consider the efficiency of the quasistatic
Carnot cycle. As the cycle closes, the entropy change in the
particle per cycle vanishes as

�Srel,qs
h + �Siso,qs

h + �Srel,qs
c + �Siso,qs

c = 0, (50)

where we used Eqs. (33), (35), (45), and (46). Because the
internal energy change in the particle per cycle vanishes, we
derive the work per cycle from the first law of thermodynam-
ics as

W qs =Qqs
h + Qqs

c , (51)

using Eqs. (40) and (49). In our quasistatic cycle, the entropy
production per cycle qs, by which we imply the total entropy
production per cycle including the particle and heat baths, is
obtained as follows:

qs ≡ −Qqs
h

Th
− Qqs

c

Tc
. (52)

Because an entropy change in the particle per cycle vanishes,
as seen from Eq. (50), the entropy production per cycle qs

is expressed only by the entropy change of the heat baths.
Using Eqs. (38), (51), and (52), we can derive the quasistatic
efficiency as

ηqs ≡ W qs

Qqs
h

= ηC − Tc
qs

Qqs
h

. (53)

From Eq. (53), qs should vanish to obtain ηC . Using
Eqs. (38), (48), and (50), we can rewrite qs in Eq. (52) as

qs = − Th�Siso,qs
h + Qrel,qs

h

Th
− Tc�Siso,qs

c + Qrel,qs
c

Tc

= �Srel,qs
h − Qrel,qs

h

Th
+ �Srel,qs

c − Qrel,qs
c

Tc

= 1

2

[
− ln

(
Tcλ

qs
A

Thλ
qs
D

)
+ Tcλ

qs
A

Thλ
qs
D

− 1

]

+ 1

2

[
− ln

(
Thλ

qs
C

Tcλ
qs
B

)
+ Thλ

qs
C

Tcλ
qs
B

− 1

]
+ (�T )2

2ThTc
, (54)

where we used Eqs. (33), (39), (44), and (45) at the last
equality. The first and second terms on the right-hand side of
Eq. (54), derived from Qrel,o,qs

h,c in Eqs. (32) and (43) and the

first term of �Srel,qs
h,c in Eqs. (33) and (45), denote the entropy
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production related to the potential energy in the relaxation in
the hot and cold isothermal processes, respectively. The last
term of Eq. (54) comes from the heat related to the kinetic
energy. To achieve the Carnot efficiency, the entropy produc-
tion should vanish, as shown in Eq. (53). In the overdamped
Brownian Carnot cycle with the instantaneous adiabatic pro-
cess in previous studies [16,24,26], the Carnot efficiency is
obtained in the quasistatic limit. In the overdamped cycle,
(�T )2/(2ThTc) in Eq. (54) does not exist because σv is not
considered. Thus, the entropy production in the overdamped
cycle is given by

o,qs ≡ f

(
Tcλ

qs
A

Thλ
qs
D

)
+ f

(
Thλ

qs
C

Tcλ
qs
B

)
, (55)

where f is defined as

f (u) ≡ − ln u + u − 1, (56)

where f (u) is a downwardly convex function with the min-
imum value of f (1) = 0. Thus, for the entropy production
o,qs to vanish, the following condition is derived:

Th

λ
qs
A

= Tc

λ
qs
D

,
Th

λ
qs
B

= Tc

λ
qs
C

. (57)

This condition was adopted in the previous studies on the
overdamped Brownian Carnot cycle [16,24,26] in the qua-
sistatic limit. We impose this condition on our underdamped
cycle to reduce entropy production. Then, we obtain

�Srel,qs
h + �Srel,qs

c = 0, (58)

using Eqs. (33) and (45). Thus, from Eq. (50), we derive

�Siso,qs
h = −�Siso,qs

c ≡ �Sqs. (59)

In addition, because Qrel,o,qs
h in Eq. (32) and Qrel,o,qs

c in Eq. (43)
vanish, we obtain

Qo,qs
h = Th�Sqs, Qo,qs

c = −Tc�Sqs, (60)

Qrel,qs
h = −Qrel,qs

c = 1
2�T, (61)

using Eqs. (37), (39), (44), and (47). The heat in Eqs. (38) and
(48) can also be rewritten as follows:

Qqs
h = Th�Sqs + 1

2�T, Qqs
c = −Tc�Sqs − 1

2�T . (62)

Using Eqs. (51) and (62), We can rewrite the work in Eq. (51)
and the efficiency in Eq. (53) as follows:

W qs =�T �Sqs, (63)

ηqs ≡W qs

Qqs
h

= �T �Sqs

Th�Sqs + 1
2�T

< ηC . (64)

Despite considering the quasistatic limit of our Carnot cycle,
however, the quasistatic efficiency ηqs is smaller than the
Carnot efficiency because of the heat leakage �T/2 in the
denominator in Eq. (64), which is derived from a kinetic
energy change in the particle due to the relaxation.

Here, we consider the small temperature-difference regime
�T → 0 and assume that �Sqs = O(1) > 0. Then, we obtain
�T �Sqs = O(�T ). As the contribution of the heat leakage
to ηqs in Eq. (64) can be of a higher order of �T in the

small temperature-difference regime, ηqs is approximated by
the Carnot efficiency as

ηqs = �T �Sqs

Th�Sqs
+ O[(�T )2] = ηC + O[(�T )2]. (65)

B. Finite-time Carnot cycle: Efficiency and power

In the following, we formulate the efficiency and power
of the finite-time Carnot cycle. We assume that Eq. (57) is
satisfied in the quasistatic limit of this cycle. When we use the
protocol in Eq. (24), we obtain

λ
qs
i = λi (i = A, B,C, D), (66)

and we can remove the index “qs” in Eq. (57). In general,
finite-time processes are irreversible, and the work and heat of
the finite-time isothermal processes are different from those of
quasistatic processes. Thus, we express the work and heat in
our finite-time cycle by using those in the quasistatic limit and
the differences between the finite-time and quasistatic quanti-
ties. Below, we mainly consider the finite-time Carnot cycle.
Thus, when we deal with a finite-time isothermal process or
a finite-time cycle, we simply refer to them as an isothermal
process or a cycle, respectively. Using Eq. (66), we can rewrite
the entropy changes in Eqs. (35) and (46) in terms of the
stiffness λ(t ) as

�Siso,qs
h =1

2
ln

(
λ

qs
A

λ
qs
B

)
= 1

2
ln

(
λA

λB

)
= �Sqs, (67)

�Siso,qs
c =1

2
ln

(
λ

qs
C

λ
qs
D

)
= 1

2
ln

(
λC

λD

)
= −�Sqs. (68)

From Eq. (19), we derive the heat flowing from the hot heat
bath to the Brownian particle in the hot isothermal process as

Qh = Qo
h + �Kh, (69)

where

Qo
h = 1

2

∫ th

0
dt λσ̇x,

�Kh = 1

2
mσv (th) − 1

2
mσv (0). (70)

Note that Qo
h and �Kh become Qo,qs

h = Th�Sqs in Eq. (60) and
�Kqs

h = �T/2 in Eq. (31), respectively, under the condition
of Eq. (57) in the quasistatic limit, as discussed in Sec. III A.
Moreover, we find that Qo

h and �Kh differ from Th�Sqs and
�T/2 because the process is not quasistatic. Here, we define
the irreversible work W irr

h to measure the difference between
Qo

h and Th�Sqs as

W irr
h ≡Th�Sqs − Qo

h. (71)

Then, the heat in the hot isothermal process in Eq. (69) can be
rewritten as follows:

Qh =Th�Sqs − W irr
h + �Kh, (72)

using Eqs. (69) and (71). Moreover, using Eqs. (22) and (72),
we obtain the output work in the hot isothermal process as

Wh = Th�Sqs − W irr
h + �Kh − �Eh, (73)
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where �Eh represents the internal energy change in this pro-
cess. The reason that we call W irr

h the irreversible work will be
clarified later when we consider the output work per cycle.

The heat in Eq. (19) in the cold isothermal process is given
by

Qc = Qo
c + �Kc, (74)

where

Qo
c =1

2

∫ tcyc

th

dt λσ̇x, (75)

�Kc =1

2
mσv (tcyc) − 1

2
mσv (th) = −�Kh. (76)

Similar to Qo
h and �Kh, Qo

c becomes −Tc�Sqs and �Kc

becomes −�T/2 under the condition of Eq. (57) in the qua-
sistatic limit. In the same way as the hot isothermal process,
we can define the irreversible work W irr

c in this process and
rewrite the heat in Eq. (74) as follows:

W irr
c ≡ − Tc�Sqs − Qo

c, (77)

Qc = − Tc�Sqs − W irr
c + �Kc. (78)

Using Eqs. (22) and (78), we derive the output work in the
cold isothermal process as

Wc = −Tc�Sqs − W irr
c + �Kc − �Ec, (79)

where �Ec represents the internal energy change in this pro-
cess.

As the cycle closes, the internal energy change per cycle in
the particle vanishes. From the first law of thermodynamics,
we derive the output work per cycle as

W = Qh + Qc = �T �Sqs − W irr
h − W irr

c , (80)

using Eqs. (73), (76), and (79). As mentioned above, the irre-
versible works arise from the irreversibility of the isothermal
processes. If the irreversible works in Eq. (80) vanish, the
work will be the same as W qs in Eq. (63). Thus, we call W irr

h,c
the irreversible works as the difference between W in Eq. (80)
and W qs. Using Eqs. (72) and (80), we obtain the efficiency η

and power P of the Carnot cycle as follows:

η ≡ W

Qh
= �T �Sqs − W irr

h − W irr
c

Th�Sqs − W irr
h + �Kh

, (81)

P ≡ W

tcyc
= �T �Sqs − W irr

h − W irr
c

tcyc
. (82)

C. Small relaxation-times regime

We consider the Carnot cycle in the regime where the
relaxation times τv and τx(t ) (0 � t � tcyc) are sufficiently
small, which is of our main interest. From Eq. (A12) in the
Appendix, the kinetic energy in this regime is approximated
by

1
2 mσv (0) = 1

2 mσv (tcyc) 	 1
2 Tc, (83)

1
2 mσv (th) 	 1

2 Th. (84)

Thus, the kinetic energy change in the isothermal processes is
given by

�Kh = −�Kc 	�T

2
, (85)

similarly to the quasistatic case, where we used Eq. (76). From
Eqs. (72), (78), and (85), the heat in the isothermal processes
can be evaluated as follows:

Qh 	 Th�Sqs − W irr
h + �T

2
, (86)

Qc 	 −Tc�Sqs − W irr
c − �T

2
. (87)

From Eq. (81), the efficiency in the small relaxation-times
regime is given by

η 	 �T �Sqs − W irr
h − W irr

c

Th�Sqs − W irr
h + �T

2

. (88)

Holubec and Ryabov pointed out the possibility of ob-
taining Carnot efficiency in a general class of finite-power
Carnot cycle in the vanishing limit of the relaxation times
[16,24]. In our underdamped Brownian Carnot cycle, we have
to consider the heat leakage [�T/2 in the denominator in
Eq. (88)] because the kinetic energy cannot be neglected.
Thus, it may be impossible to achieve the Carnot efficiency
in our finite-power Carnot cycle. Nevertheless, if W irr

h and
W irr

c vanish in the vanishing limit of the relaxation times, the
efficiency will reach the quasistatic efficiency in Eq. (64), and
we can achieve the Carnot efficiency as seen from Eq. (65)
in the small temperature-difference regime. Subsequently, we
study how the efficiency and power depend on the relaxation
times and temperature difference in Sec. IV.

IV. NUMERICAL SIMULATIONS

In this section, we show the results of efficiency and
power obtained through the numerical simulations of the pro-
posed Brownian Carnot cycle as varying the relaxation times
and temperature difference. In these simulations, we solved
Eqs. (11)–(13) numerically by using the fourth-order Runge-
Kutta method. The specific protocol λ(t ) for our simulations
is given by

λ(t ) =

⎧⎪⎨
⎪⎩

Th

σa

(
1+b1

t
th

)2 (0 � t � th)

Tc

σb

(
1+b2

t−th
tc

)2 (th � t � tcyc),
(89)

where σa and σb (>σa) are positive constants, and we defined
b1 ≡ √

σb/σa − 1 and b2 ≡ √
σa/σb − 1. This protocol is in-

spired by the optimal protocol in the overdamped Brownian
Carnot cycle [16,26] and satisfies Eq. (57) assigned to the
protocol. This protocol also satisfies the scaling condition
in Eq. (24). For all the simulations, we fixed σb/σa = 2.0,
Tc = 1.0, th = tc = 1.0, and γ = 1.0 and varied the temper-
ature difference �T , or equivalently, the temperature Th. We
calculated the heat in Eqs. (69) and (74) and the work W =
Qh + Qc in Eq. (80) from the solution of Eqs. (11)–(13).
Using the heat and work, we also numerically calculated the
efficiency η = W/Qh using Eq. (81) and power P = W/tcyc
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using Eq. (82). Before starting to measure the thermody-
namic quantities, we waited until the system settled down to
a steady cycle. Moreover, when we take the limit m → 0, the
relaxation time of velocity τv = m/γ vanishes. By a simple
calculation from Eqs. (6) and (89), we find that τx satisfies

γ σa

Th
� τx(t ) � γ σb

Tc
. (90)

Thus, the smaller σa and σb are, the smaller τx is. When we
take the limit σa, σb → 0 while maintaining σb/σa finite, τx(t )
vanishes and λ(t ) = γ /τx(t ) from Eq. (6) diverges. Because
τx(0) ∝ σa and τv ∝ m are satisfied, we varied the mass m
and the parameter σa to vary the relaxation times. Note that
in the numerical simulations, we selected a time step smaller
than the relaxation times. Specifically, we set the time step as
min(m, σa) × 10−2 because of τx(0) ∝ σa and τv ∝ m.

To evaluate the efficiency in Eq. (81) obtained numerically,
we compared it with the quasistatic efficiency ηqs in Eq. (64).
Because ηC in Eq. (1) is proportional to �T , the ratio of ηqs

in Eq. (65) to ηC in the small temperature-difference regime
satisfies

ηqs

ηC
= 1 − O(�T ). (91)

Similarly, we evaluate the power in Eq. (82) by using a
criterion P∗ defined as follows:

P∗ ≡ W qs

tcyc
= �T �Sqs

tcyc
, (92)

where W qs is the quasistatic work in Eq. (51). Here, we regard
the power as finite when the power in Eq. (82) is the same
order as P∗.

Figure 2 shows the ratio of the efficiency of the proposed
cycle with the protocol in Eq. (89) to the Carnot efficiency. We
can see that the efficiency approaches ηqs with τx, τv → 0.
Considering Eqs. (64) and (88), we can expect that the irre-
versible works disappear. Thus, the efficiency can be regarded
as the Carnot efficiency in the small relaxation-times and
small temperature-difference regime.

Figure 3 shows the ratio of the power to P∗ in Eq. (92),
corresponding to Fig. 2. At any �T , we can see that the power
approaches P∗ as τx, τv → 0. As the power in Eq. (82) is
defined using the work in Eq. (80), the ratio of P to P∗ is the
same as the ratio of W to W qs in Eq. (51). When the power
P approaches P∗, the work W approaches W qs. This implies
that the irreversible works vanish. Because the power is of the
same order as P∗ from Fig. 3, we can consider the power to be
finite. Therefore, Figs. 2 and 3 imply that the Carnot efficiency
and finite power are compatible in the vanishing limit of the
relaxation times in the small temperature-difference regime.

V. THEORETICAL ANALYSIS

This section analytically shows that it is possible to achieve
the Carnot efficiency in our cycle in the vanishing limit of the
relaxation times in the small temperature-difference regime
without breaking the trade-off relation in Eq. (2), as implied
in the numerical results in Sec. IV.

In general, the efficiency decreases when the entropy
production increases, as shown in Eq. (96). As the adi-
abatic processes have no entropy production because no

FIG. 2. The ratio of the efficiency in Eq. (81) to the Carnot
efficiency in our cycle with the protocol in Eq. (89) when τx varies
at (a) τv = 10−3 and (b) τv = 10−6. Because the parameter σa is
proportional to τx (0) in the protocol in Eq. (89), we vary σa to make
τx small. Similarly, we vary the mass m because it is proportional to
τv . In these simulations, we set σa = 10−2 (purple plus), σa = 10−4

(green square), and σa = 10−6 (orange triangle). The red solid line
corresponds to the ratio of ηqs in Eq. (64) to the Carnot efficiency. The
efficiency appears to approach the Carnot efficiency in the vanishing
limit of σa (or τx), m (or τv), and �T .

heat exchange is present, we have only to consider the en-
tropy production in the isothermal processes. In the small
relaxation-times regime, the efficiency in Eq. (81) is ap-
proximated by that in Eq. (88). If W irr

h,c → 0 is satisfied in
the vanishing limit of the relaxation times, the efficiency in
Eq. (88) approaches the quasistatic efficiency in Eq. (64).
As seen in Eq. (65), it is expected that the contribution
of the heat leakage to the efficiency can be neglected in
the small temperature-difference regime. Thus, the efficiency
in Eq. (81) approaches the Carnot efficiency in the small
relaxation-times and small temperature-difference regime,
and the power in Eq. (82) also approaches P∗ in Eq. (92)
simultaneously.

The numerical results imply that the irreversible works
vanish in the vanishing limit of the relaxation times τx and τv .
To derive a similar conclusion analytically, we first show that
the irreversible works relate to the entropy production given
by

 ≡ −Qh

Th
− Qc

Tc
. (93)

Similarly to qs in Eq. (52), the entropy production  is
expressed only by an entropy change in the heat baths. In the
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FIG. 3. The ratio of the power in Eq. (82) to P∗ in Eq. (92) in
the proposed cycle corresponding to Figs. 2(a) and 2(b). The power
appears to approach P∗ in Eq. (92) in the vanishing limit of σa (or
τx), m (or τv), and �T .

small relaxation-times regime, we can express  in Eq. (93)
as follows:

 	−�T
2 − Th�Sqs + W irr

h

Th
+

�T
2 + Tc�Sqs + W irr

c

Tc

=W irr
h

Th
+ W irr

c

Tc
+ (�T )2

2ThTc
, (94)

using Eqs. (86) and (87). The last term on the right-hand
side of Eq. (94) comes from the heat leakage due to the
instantaneous adiabatic processes. From Eq. (94), the entropy
production can be regarded as zero in the small temperature-
difference regime when the irreversible works vanish. In
general, the entropy production in Eq. (93) can also be rewrit-
ten as

 =Qh

Tc
(ηC − η), (95)

where we used Eqs. (1) and (81). This equation shows that the
efficiency approaches the Carnot efficiency when the entropy
production vanishes. Thus, by using Eqs. (94) and (95), we
obtain the efficiency as

η = ηC − Tc

Qh

	 ηC − Tc

Qh

(
W irr

h

Th
+ W irr

c

Tc

)
+ O[(�T )2], (96)

in the small relaxation-times regime. Here, the contribution
of the heat leakage to the efficiency is O[(�T )2] and it is
negligible in the small temperature-difference regime.

We consider the trade-off relation in Eq. (2) to discuss the
compatibility of the Carnot efficiency and finite power in our
Brownian Carnot cycle. Using Eq. (95), we can rewrite Eq. (2)
as

P � ηTc

Qh
A (97)

in terms of the entropy production . When the quantity A

is nonzero in the vanishing limit of the entropy production
, implying that A should diverge, the finite power may be
allowed. In fact, when the entropy production  vanishes
in the small temperature-difference regime, the irreversible
works should vanish because of Eq. (94). Then, the power in
Eq. (82) approaches P∗ in Eq. (92), which implies that the
power is regarded as finite. Thus, we find the expression A

in our cycle below.

A. Trade-off relation between power and efficiency

We derive the trade-off relation in our cycle. To obtain
the expression of the entropy production, we use Eqs. (67)
and (68) from Ref. [23]. Using the general expression of the
entropy production in the Langevin system [31,32], Dechant
and Sasa showed a trade-off relation for the underdamped
Langevin system in Ref. [23]. Thus, we can apply their results
to our system. Applying Eq. (67) from Ref. [23], we can
divide the probability currents in Eqs. (9) and (10) into the
reversible parts, jrev

x and jrev
v , and the irreversible parts, jirr

x
and jirr

v , as

jx(x, v, t ) = jrev
x (x, v, t ) + jirr

x (x, v, t ),

jv (x, v, t ) = jrev
v (x, v, t ) + jirr

v (x, v, t ), (98)

where

jrev
x (x, v, t ) ≡ vp(x, v, t ), jirr

x (x, v, t ) ≡ 0,

jrev
v (x, v, t ) ≡ − λ(t )

m
xp(x, v, t ),

jirr
v (x, v, t ) ≡

(
− γ

m
v − γ T (t )

m2

∂

∂v

)
p(x, v, t ).

(99)

For convenience, we introduce a function φ(t ) to describe the
time evolution of the temperature as

1

T (t )
= 1

Tc
−

(
1

Tc
− 1

Th

)
φ(t )

= 1

Tc
[1 − ηCφ(t )]. (100)

In our cycle, the function φ(t ) is given by

φ(t ) ≡
{

1 (0 < t < th)

0 (th < t < tcyc).
(101)
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Using Eq. (8), the heat flux in Eq. (18) is rewritten as

Q̇ =
∫ ∞

−∞
dx

∫ ∞

−∞
dv

[
1

2
mv2 + 1

2
λx2

]
∂ p

∂t

= −
∫ ∞

−∞
dx

∫ ∞

−∞
dv

[
1

2
mv2 + 1

2
λx2

](
∂ jx
∂x

+ ∂ jv
∂v

)

=
∫ ∞

−∞
dx

∫ ∞

−∞
dv[mv jv + λx jx], (102)

where the last equality is derived from the integration by parts
and we assumed that the probability currents at the boundary
vanish. By using Eqs. (98), (99), and (102), we obtain the heat
flux as

Q̇(t ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dv mv jirr

v (x, v, t ). (103)

Thus, we obtain the heat flowing from the heat bath to the
Brownian particle in the hot isothermal process as

Qh =
∫ th

0
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dv mv jirr

v

=
∫ tcyc

0
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dv φ(t )mv jirr

v , (104)

using Eq. (101). Now, we consider the entropy production
rate. Based on Eq. (68) from Ref. [23], the entropy production
rate is given by [31,32]

̇(t ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dv

m2
(

jirr
v (x, v, t )

)2

γ T (t )p(x, v, t )
. (105)

Using Eq. (105), we can also obtain the concrete expression
of the entropy production per cycle as

 =
∫ tcyc

0
dt ̇(t )

=
∫ tcyc

0
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dv

m2
(

jirr
v (x, v, t )

)2

γ T (t )p(x, v, t )
. (106)

From the Cauchy-Schwarz inequality, it is shown that the
upper bound of the heat flux in Eq. (103) is expressed using
the entropy production rate as

Q̇2 =
(∫ ∞

−∞
dx

∫ ∞

−∞
dv v

√
γ T p

m jirr
v√

γ T p

)2

�
(∫ ∞

−∞
dx

∫ ∞

−∞
dv γ T v2 p

)

×
(∫ ∞

−∞
dx

∫ ∞

−∞
dv

m2
(

jirr
v

)2

γ T p

)

= γ T σv̇ (107)

or, equivalently,

|Q̇| �
√

γ T σv̇. (108)

Because γ T (t )σv and ̇ are positive, by using Eq. (108),
we can derive the following bound for the heat

in Eq. (104):

(Qh)2 =
(∫ tcyc

0
dt φ(t ) Q̇(t )

)2

�
(∫ tcyc

0
dt φ(t )

√
γ T (t )σv̇

)2

�
(∫ tcyc

0
dt φ2(t )γ T (t )σv

)(∫ tcyc

0
dt ̇

)

= tcycT 2
c χ, (109)

where

χ ≡ γ

tcycTc

∫ tcyc

0
dt

φ2(t )

1 − ηCφ(t )
σv (t ), (110)

and we used the Cauchy-Schwarz inequality and Eq. (100).
Using Eqs. (95) and (109), we can derive the trade-off relation
in our cycle as

P = W

tcyc
= W

Qh

1

Qh

Q2
h

tcyc

� η
1

Qh
T 2

c χ

=χTcη(ηC − η). (111)

By comparing Eqs. (97) and (111), we obtain A = Tcχ . We
will show that in the limit of τx, τv → 0, the entropy produc-
tion  vanishes and χ diverges while χ maintains positive.
For this purpose, we rewrite Eq. (105) as follows. In our
model (Sec. II), the probability distribution was assumed to
be the Gaussian distribution shown in Eq. (14). Thus, we can
differentiate the distribution function p(x, v, t ) with respect to
v as

∂ p

∂v
= σxvx − σxv

σxσv − σ 2
xv

p. (112)

We can rewrite the entropy production rate in Eq. (105) by
using the variables σx, σv , and σxv and derive the expression
of ̇ under the assumption of the Gaussian distribution as

̇(t ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dv

m2

γ T p

{(
γ

m
v + γ T

m2

∂

∂v

)
p

}2

= m2

γ T

∫ ∞

−∞
dx

∫ ∞

−∞
dv

{
γ

m
v + γ T

m2

σxvx − σxv

σxσv − σ 2
xv

}2

p

=
γ

m (T − mσv )2 + (2T − mσv )γ σ 2
xv

σx

T
(
mσv − τvγ

σ 2
xv

σx

) , (113)

where we used Eqs. (6), (7), (12), (18), (99), and (112). Using
Eqs. (12) and (18), we obtain

Q̇ = γ

m
(T − mσv ). (114)

Thus, Eq. (113) can be rewritten as

̇(t ) =τvQ̇2 + (2T − mσv )γ σ 2
xv

σx

T
(
mσv − τvγ

σ 2
xv

σx

) . (115)
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Integrating Eq. (115) with respect to time, we derive the en-
tropy production per cycle  in our cycle as

 =
∫ tcyc

0
dt

τvQ̇2(t ) + [2T (t ) − mσv (t )]γ σ 2
xv (t )

σx (t )

T (t )
(
mσv (t ) − τvγ

σ 2
xv (t )

σx (t )

) . (116)

B. Small relaxation-times regime

We evaluate the entropy production in Eq. (116) in the
small relaxation-times regime. In the hot isothermal process,
the process can be divided into the relaxation part and the
part after the relaxation. Because the relaxation time of the
system at the beginning of the hot isothermal process is given
by τ0 ≡ max(τx(0), τv ), the entropy production in the hot
isothermal process h is divided as

h ≡
∫ th

0
dt ̇ =

∫ τ0

0
dt ̇ +

∫ th

τ0

dt ̇, (117)

where the first and second terms in Eq. (117) represent the
entropy production in the relaxation and after the relaxation,
respectively. We first evaluate the entropy production after the
relaxation. From Eqs. (A12) and (A17) in the Appendix, the
variables σx, σv , and σxv after the relaxation satisfy

σx 	 T

λ
, σv 	 T

m
, σxv 	 − T

2λ2

dλ

dt
. (118)

Then, we can obtain

γ
σ 2

xv (t )

σx(t )
	 τx(t )T

4

(
d

dt
ln λ(t )

)2

. (119)

Using Eqs. (115), (118), and (119), the entropy production
rate after the relaxation is given by

̇(t ) 	 1

tcycT

τv

tcyc

( dQ(s)
ds

)2 + τx
tcyc

T 2

4

(
d
ds ln �

)2

T − τv

tcyc

τx
tcyc

T
4

(
d
ds ln �

)2 , (120)

where we used s = t/tcyc to compare the cycle time tcyc and
the relaxation times τx and τv . Then, we derive the entropy
production after the relaxation in the hot isothermal process
as∫ th

τ0

dt ̇ 	 1

Th

∫ th/tcyc

τ0/tcyc

ds

τv

tcyc

( dQ(s)
ds

)2 + τx
tcyc

T 2
h
4

(
d
ds ln �

)2

Th − τv

tcyc

τx
tcyc

Th
4

(
d
ds ln �

)2 .

(121)
To consider the entropy production in the relaxation, we
rewrite ̇ in Eq. (115) by using the heat flux in Eq. (18) and
the time derivative of the entropy in Eq. (16) as follows:

̇(t ) = Ṡ(t ) − Q̇(t )

T (t )
. (122)

Because the temperature of the heat bath is constant, we derive
the entropy production in the relaxation in the hot isothermal
process as ∫ τ0

0
dt ̇ = S(τ0) − S(0) − Qrel

h

Th
, (123)

where Qrel
h is the heat flowing in this relaxation. In the small

relaxation-times regime, the relaxation is very fast (see the
Appendix), and the stiffness is regarded to be unchanged in

the relaxation because of Eq. (A14). From Eq. (A12), σx is
also unchanged during the relaxation under the condition of
Eq. (57). Thus, the heat related to the potential change in
Eq. (20) in the relaxation vanishes. By using Eqs. (19) and
(85), Qrel

h is evaluated as

Qrel
h 	 �T

2
. (124)

In addition because d (ln �)/ds is noninfinite, as shown in the
Appendix, we can approximate the entropy in Eq. (16) after
the relaxation by

S(t ) 	 1

2
ln(T 2(t )) + 1

2
ln

(
4π2

mλ(t )

)
+ 1, (125)

where we used the approximation

mλ
(
σxσv − σ 2

xv

) 	 T 2 − τx

tcyc

τv

tcyc

T 2

4

(
d

ds
ln �

)2

	 T 2,

(126)

from Eqs. (24) and (118). The initial state of the hot isother-
mal process is given by the final state of the cold isothermal
process as

σx 	 Tc

λD
, σv 	 Tc

m
, σxv 	 − Tc

2λ2
D

dλ

dt

∣∣∣∣
t=tcyc−0

, (127)

from Eq. (118). Because the stiffness remains λA in the relax-
ation, the variables relax to the following values:

σx 	 Th

λA
, σv 	 Th

m
, σxv 	 − Th

2λ2
A

dλ

dt

∣∣∣∣
t=0+0

, (128)

from Eq. (118). Using Eqs. (125)–(128), the difference be-
tween S(0) and S(τ0) can be approximated by

S(τ0) − S(0) 	 1

2
ln

(
T 2

h

) − 1

2
ln

(
T 2

c

) + 1

2
ln

(
λD

λA

)
.

(129)

We can then evaluate the entropy production in the relaxation
in Eq. (123) as∫ τ0

0
dt ̇ 	1

2
ln

(
T 2

h

) − 1

2
ln

(
T 2

c

) + 1

2
ln

(
λD

λA

)
− �T

2Th

=1

2
ln

(
Th

Tc

)
− �T

2Th
, (130)

using Eqs. (57), (66), (124), and (129). Thus, by using
Eqs. (121) and (130), the entropy production in the hot isother-
mal process in Eq. (117) is given by

h 	 1

2
ln

(
Th

Tc

)
− �T

2Th

+ 1

Th

∫ th/tcyc

τ0/tcyc

ds

τv

tcyc

( dQ(s)
ds

)2 + τx
tcyc

T 2
h
4

(
d
ds ln �

)2

Th − τv

tcyc

τx
tcyc

Th
4

(
d
ds ln �

)2 .

(131)
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Similarly, the entropy production in the cold isothermal pro-
cess c is given by

c ≡
∫ tcyc

th

dt ̇ 	 1

2
ln

(
Tc

Th

)
+ �T

2Tc

+ 1

Tc

∫ 1

(th+τ1 )/tcyc

ds

τv

tcyc

( dQ(s)
ds

)2 + τx
tcyc

T 2
c
4

(
d
ds ln �

)2

Tc − τv

tcyc

τx
tcyc

Tc
4

(
d
ds ln �

)2 , (132)

where τ1 ≡ max(τx(th + 0), τv ) is the relaxation time at the
beginning of the cold isothermal process. Because no entropy
production is present in the adiabatic processes, the entropy
production  per cycle in the small relaxation-times regime is
given by

 = h + c

	 1

Th

∫ th/tcyc

τ0/tcyc

ds

τv

tcyc

( dQ(s)
ds

)2 + τx
tcyc

T 2
h
4

(
d
ds ln �

)2

Th − τv

tcyc

τx
tcyc

Th
4

(
d
ds ln �

)2

+ 1

Tc

∫ 1

(th+τ1 )/tcyc

ds

τv

tcyc

( dQ(s)
ds

)2 + τx
tcyc

T 2
c
4

(
d
ds ln �

)2

Tc − τv

tcyc

τx
tcyc

Tc
4

(
d
ds ln �

)2

+ (�T )2

2ThTc
, (133)

using Eqs. (131) and (132).
Comparing Eqs. (94) and (133), we can derive the expres-

sion of the irreversible works as

W irr
h =

∫ th/tcyc

τ0/tcyc

ds

τv

tcyc

( dQ(s)
ds

)2 + τx
tcyc

T 2
h
4

(
d
ds ln �

)2

Th − τv

tcyc

τx
tcyc

Th
4

(
d
ds ln �

)2 , (134)

W irr
c =

∫ 1

(th+τ1 )/tcyc

ds

τv

tcyc

( dQ(s)
ds

)2 + τx
tcyc

T 2
c
4

(
d
ds ln �

)2

Tc − τv

tcyc

τx
tcyc

Tc
4

(
d
ds ln �

)2 . (135)

As shown in the Appendix, dQ/ds and d (ln �)/ds are nonin-
finite after the relaxation. Thus, the entropy production rate in
Eq. (120) after the relaxation vanishes in the vanishing limit
of the relaxation times. From Eqs. (134) and (135), it turns
out that the integrand of W irr

h,c, which is Th,ċ, vanishes at
any s in the vanishing limit of the relaxation times, and the
irreversible works also vanish. Therefore, we can confirm that
the efficiency in Eq. (88) approaches the quasistatic efficiency
in Eq. (64) in this limit, theoretically explaining the results of
the numerical simulations. Figure 4 compares the efficiency
obtained from the numerical simulations in Fig. 2 and the
efficiency derived from the theoretical analysis in the small
relaxation-times regime. Here, the efficiency of the theoretical
analysis was derived by calculating the irreversible works in
Eqs. (134) and (135) and substituting them into Eq. (88). Note
that we used Eq. (A18) to calculate dQ/ds in Eqs. (134) and
(135). We can see that the theoretical result and numerical
simulations show a good agreement.

We provide a qualitative explanation for the behavior of the
efficiency in Figs. 2 and 4, as below. We consider the case that
the relaxation times are small but finite. Then, from the above
discussion, W irr

h and W irr
c are positive and small. When �T

is large, �T �Sqs in the numerator of Eq. (88) is sufficiently

FIG. 4. The ratio of the efficiency to the Carnot efficiency de-
rived from the numerical simulations in Fig. 2 in Sec. IV (purple
plus) and theoretical analysis (sky-blue solid line). We set m = 10−3

and σa = 10−2. Although the relaxation times corresponding to these
parameters are not very small among the parameters used in Fig. 2,
the theoretical result and numerical simulations show a good agree-
ment. We have confirmed a better agreement with smaller parameters
(data not shown).

larger than W irr
h,c since we use the protocol satisfying �Sqs =

O(1) in the numerical simulation. Since Th is larger than �T ,
Th�Sqs in the denominator of Eq. (88) is also sufficiently
larger than W irr

h,c. Thus, the efficiency should mainly depend
on Th, �T , and �Sqs as shown in Eq. (88). Although the
efficiency is smaller than the Carnot efficiency because of
�T/2 due to the heat leakage in the denominator of Eq. (88),
the heat leakage becomes small and the efficiency increases
toward the Carnot efficiency as �T becomes small. At the
same time, however, the irreversible works can be comparable
to �T �Sqs. From Eq. (89), the stiffness in each isothermal
process depends only on the corresponding temperature. Since
dQ/ds in Eqs. (134) and (135) is evaluated by the protocol
as shown in Eq. (A18), W irr

h,c depend only on the temperature
of each isothermal process, but do not depend on �T in the
lowest order of �T . Thus, the irreversible works maintain
finite even when �T vanishes. Then, �T �Sqs in Eq.(88)
approaches zero while W irr

h,c are positively finite. Thus, the
efficiency turns from increase to decrease as �T becomes
small and takes the maximum for a specific value of �T as
shown in Figs. 2 and 4.

By using s = t/tcyc, the quantity φ(t ) in Eq. (101) can be
expressed as

φ(s) =
{

1 (0 < s < th/tcyc)

0 (th/tcyc < s < 1).
(136)

Thus, χ in Eq. (110) is rewritten by using the relaxation time
of the velocity as

χ = 1

tcyc

tcyc

τv

(
1

Tc

∫ 1

0
ds

mσvφ
2

1 − ηCφ

)
= C

tcyc

tcyc

τv

, (137)

where C is a positive constant given by

C ≡ 1

Tc

∫ 1

0
ds

mσvφ
2

1 − ηCφ
. (138)

In the relaxation at the beginning of each isothermal pro-
cess, mσv is positively finite. After the relaxation, mσv is
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FIG. 5. The quantities χ in Eq. (110) and χ when τx and τv

are varied. Because the parameter σa is proportional to τx (0) in the
protocol in Eq. (89), we vary σa to make τx be small. Similarly, we
vary the mass m because it is proportional to τv . In these simulations,
we used (σa = 0.1, m = 0.1) (purple plus), (σa = 0.01, m = 0.01)
(green cross), and (σa = 0.001, m = 0.001) (sky-blue square). We
can see that χ diverges at each �T when we consider the limit of
σa, m → 0 (τx, τv → 0). In addition, we can also see that the values
of χ are positively finite for the vanishing limit of �T for any
relaxation times.

approximated by the temperature of the heat bath. Thus, C is
positively finite. From Eq. (137), χ turns out to diverge in the
limit of τv/tcyc → 0 when tcyc is finite. Although τv/tcyc → 0
is satisfied even when tcyc diverges and τv is maintained finite,
we do not consider that case because it is in the quasistatic
limit. Using Eqs. (133) and (137), we can obtain χ as
follows:

χ 	 C

tcycTh

∫ th/tcyc

τ0/tcyc

ds

( dQ
ds

)2 + τxT 2
h

4τv

(
d
ds ln �

)2

Th − τv

tcyc

τx
tcyc

Th
4

(
d
ds ln �

)2

+ C

tcycTc

∫ 1

(th+τ1 )/tcyc

ds

( dQ
ds

)2 + τxT 2
c

4τv

(
d
ds ln �

)2

Tc − τv

tcyc

τx
tcyc

Tc
4

(
d
ds ln �

)2

+ C

τv

(�T )2

2ThTc
. (139)

Here, we consider the vanishing limit of the relaxation
times in the small temperature-difference regime and evaluate
the efficiency and power in this limit. As seen in Eq. (96), the
efficiency approaches the Carnot efficiency when  vanishes.
Moreover, we evaluate  in the vanishing limit of τx and τv

in the small temperature-difference regime. In this limit, we
can show that dQ/ds and d (ln �)/ds in Eq. (133) do not di-
verge after the relaxation (see the Appendix). Thus, when the
relaxation times vanish at any instant after the relaxation, the
entropy production rate always vanishes from Eq. (120), and
the first and second terms on the right-hand side of Eq. (133)
also vanish. In addition, when �T is small, the third term
in Eq. (133), which is due to the relaxation, is O[(�T )2]
and can be ignored. Therefore, the entropy production per
cycle in Eq. (133) should be O((�T )2), and the efficiency
can be regarded as the Carnot efficiency because of the rea-
soning presented below Eq. (96). Then, because dQ/ds and
d (ln �)/ds are always noninfinite, the first and second terms
on the right-hand side of Eq. (139) are positively finite in the
vanishing limit of τx and τv . Even when �T is small, χ

is positive, and the right-hand side of the trade-off relation
in Eq. (111) is positive. Therefore, the finite power may be
allowed even when  vanishes. In the above limit, because the
irreversible works in Eqs. (134) and (135) vanish, the power
in Eq. (82) approaches P∗ in Eq. (92), which implies that the
power is finite. Therefore, the Carnot efficiency is achievable
in the finite-power Brownian Carnot cycle without breaking
the trade-off relation in Eq. (111).

In Fig. 5, we numerically confirmed that χ increases and
χ remains positively finite in the limit of �T → 0 when we
consider smaller relaxation times. We can expect χ to diverge
while maintaining χ positively finite in the vanishing limit
of the relaxation times in the limit of �T → 0. This result
implies that  vanishes while maintaining χ positively
finite, and we can expect that  vanishes and χ diverges
simultaneously in the vanishing limit of the relaxation times.

VI. SUMMARY AND DISCUSSION

Motivated by the previous study [24], we studied the
relaxation-times dependence of the efficiency and power in
a Brownian Carnot cycle with the instantaneous adiabatic
processes and time-dependent harmonic potential, described
by the underdamped Langevin equation. In this system, we
numerically showed that the Carnot efficiency is compatible
with finite power in the vanishing limit of the relaxation times
in the small temperature-difference regime. We analytically
showed that the present results are consistent with the trade-
off relation between efficiency and power, which was proved
for more general systems in Refs. [17,18,23]. By expressing
the trade-off relation using the entropy production in terms of
the relaxation times of the system, we demonstrated that such
compatibility is possible by both the diverging constant and
the vanishing entropy production in the trade-off relation in
the vanishing limit of the relaxation times.

In the numerical simulation results in Sec. IV, we used a
specific protocol. However, we can use other protocols sat-
isfying the following three conditions to achieve the Carnot
efficiency and finite power in the small temperature-difference
regime: The first condition is that the protocol should sat-
isfy the condition in Eq. (57). For such a protocol, the heat
leakage in the relaxation at the beginning of the isothermal
processes is O(�T ). Thus, heat leakage can be neglected
in the small temperature-difference regime, compared with
the heat flowing in the isothermal processes. The second
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condition is that the stiffness is expressed by using a scaling
function as in Eq. (24). The third condition of the protocols
is that the stiffness diverges at any instant of time. This is
satisfied by the vanishing relaxation time of position, and it
is one of the necessary conditions for the entropy production
rate vanishing after the relaxation, as we showed in Sec. V.
When the entropy production rate at any instant vanishes,
irreversible works also vanish, which allows us to derive the
compatibility of the Carnot efficiency and finite power in the
small temperature-difference regime.

Note that we showed that achieving both the Carnot effi-
ciency and finite power is possible in the small temperature-
difference regime without breaking the trade-off relation in
Eq. (97) of the proposed cycle. In the linear irreversible ther-
modynamics, which can describe the heat engines operating
in the small temperature-difference regime, the currents of
the systems are described by the linear combination of affini-
ties and their coefficients are called the Onsager coefficients.
When these coefficients have the reciprocity resulting from
the time-reversal symmetry of the systems, a previous study
[7] showed that the compatibility of the Carnot efficiency
with finite power is forbidden. The same study also showed
that the compatibility can be allowed in the systems without
time-reversal symmetry. However, in some studies related to
the concrete systems without time-reversal symmetry [8–13],
the compatibility has not been found thus far. On the other
hand, there is a possibility of the compatibility of the Carnot
efficiency and finite power when the Onsager coefficients with
reciprocity show diverging behaviors (cf. Eq. (7) in Ref. [19]).
The Onsager coefficients of our Carnot cycle can be obtained
in the same way as Ref. [33], which have reciprocity. In the
vanishing limit of the relaxation times, we can show the di-
vergence of these Onsager coefficients. Although the effect of
the asymmetric limit of the nondiagonal Onsager coefficients
on the linear irreversible heat engines realizing the Carnot
efficiency at finite power was studied in Ref. [7], this case is
different from our case where all of the Onsager coefficients
show the diverging behaviors.

Furthermore, another study reported the compatibility of
the Carnot efficiency with finite power using a time-delayed
system within the linear response theory [34]. Because the
time-delayed systems are not described by the Markovian
dynamics, the trade-off relation in Eq. (2) may not be applied
to them. Thus, there may be a possibility to achieve the Carnot
efficiency in finite-power non-Markovian heat engines. In this
paper, however, we showed that achieving both the Carnot
efficiency and finite power is possible in a Markovian heat
engine.

Although we have used the instantaneous adiabatic pro-
cess, the other type of adiabatic process can be used for
the study of the Brownian Carnot cycle [24,28,35,36]. In
this adiabatic process, the system contacts with a heat bath
with varying temperature that maintains vanishing heat flow
between the system and the heat bath on average. While
the Brownian Carnot cycle utilizing this adiabatic process
does not suffer from the heat leakage, mathematical treatment
may become more difficult. Therefore, it is a challenging
task to study the detailed relaxation-times dependence of the
efficiency and power for this cycle, which we will report
elsewhere.
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APPENDIX: BEHAVIOR OF HEAT FLUX IN THE
VANISHING LIMIT OF RELAXATION TIMES

We show that heat flux Q̇ after the relaxation in an isother-
mal process is noninfinite in the vanishing limit of the relax-
ation times. For this purpose, we first consider the case where
the stiffness λ and the temperature T are constant. We assume
that an isothermal process lasts for ti < t < t f . As the adia-
batic processes take no time, the variables σx, σv , and σxv at
the beginning of the isothermal process should be unchanged
from the end of the preceding isothermal process. We set
σx(ti ) = σx0, σv (ti ) = σv0, and σxv (ti ) = σxv0. Under these ini-
tial conditions, we can solve Eqs. (11)–(13) using the Laplace
transform [27], and we can obtain σx and σv as follows:

σx(t ) = T

λ
+ m

λ
D1e− γ

m (t−ti )

+ (γ + mω∗)2

4λ2
D2e−( γ

m −ω∗ )(t−ti )

+ (γ − mω∗)2

4λ2
D3e−( γ

m +ω∗ )(t−ti ), (A1)

σv (t ) = T

m
+ D1e− γ

m (t−ti ) + D2e−( γ

m −ω∗ )(t−ti )

+ D3e−( γ

m +ω∗ )(t−ti ), (A2)

where

ω∗ ≡ γ

m

√
1 − 4

mλ

γ 2
, (A3)

D1 ≡ λ

mω∗2

(
4

T

m
− 2σv0 − 2

λ

m
σx0 − 2

γ

m
σxv0

)
, (A4)

D2 ≡ − 1

2ω∗2

[
γ T

m2

(
γ

m
− ω∗

)
+

(
2

λ

m
− γ 2

m2
+ γ

m
ω∗

)
σv0

− 2
λ2

m2
σx0 +2

λ

m

(
− γ

m
+ ω∗

)
σxv0

]
, (A5)

D3 ≡ − 1

2ω∗2

[
γ T

m2

(
γ

m
+ ω∗

)
+

(
2

λ

m
− γ 2

m2
− γ

m
ω∗

)
σv0

− 2
λ2

m2
σx0 +2

λ

m

(
− γ

m
− ω∗

)
σxv0

]
. (A6)

We can also derive σxv using Eqs. (13) and (A1). We can
rewrite Eq. (A3) using the relaxation times Eqs. (6) and (7) as

ω∗ = 1

τv

√
1 − 4

τv

τx
. (A7)

The exponential functions in Eqs. (A1) and (A2) are
represented using s = t/tcyc and the relaxation times as

e− γ

m (t−ti ) = e− tcyc
τv

(s− ti
tcyc

)
, (A8)

e−( γ

m −ω∗ )(t−ti ) = e− tcyc
τv

(1−√
1−4 τv

τx
)(s− ti

tcyc
)
, (A9)

e−( γ

m +ω∗ )(t−ti ) = e− tcyc
τv

(1+√
1−4 τv

τx
)(s− ti

tcyc
)
. (A10)
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When we consider τx � 4τv , ω∗ in Eq. (A7) becomes purely
imaginary. Thus, the exponential terms in Eqs. (A8)–(A10)
vanish in τv/tcyc → 0 when s > ti/tcyc is satisfied. When we
also consider τx > 4τv , the exponential terms in Eqs. (A8)
and (A10), vanish in τv/tcyc → 0. Because the exponent of
Eq. (A9) can be approximated by

− tcyc

τv

(
1 −

√
1 − 4

τv

τx

)(
s − ti

tcyc

)
	 −2

tcyc

τx

(
s − ti

tcyc

)
,

(A11)

the exponential terms in Eq. (A9) vanishes in τx/tcyc → 0
when s > ti/tcyc is satisfied. Thus, the exponential terms
vanish in any value of τv/τx in the vanishing limit of τx and τv

when s − ti/tcyc is positively finite. Therefore, σx and σv after
the relaxation are approximated by

σx 	 T

λ
, σv 	 T

m
. (A12)

To obtain σxv , we use Eqs. (11) and (A1) as follows: Because
T and λ are constant, the time derivative of the first term
in Eq. (A1) disappears. Moreover, as the exponential terms
vanish rapidly, the remaining terms in Eq. (A1) vanish after
the relaxation even when we differentiate them with respect
to time. Thus σxv vanishes after the relaxation.

Subsequently, we consider the isothermal process where
the stiffness λ depends on time. When τ j ( j = x, v) is suffi-
ciently small, by using the Taylor expansion, we derive

λ(t + τ j ) 	 λ(t )

(
1 + τ j

d

dt
ln λ(t )

)
. (A13)

If d (ln λ)/dt is noninfinite in the vanishing limit of τ j , we can
obtain

λ(t + τ j ) 	 λ(t ), (A14)

which implies that the stiffness λ is constant during the re-
laxation. We show that d (ln λ)/dt is noninfinite as below.
Because λ varies smoothly in the isothermal process, λ is
differentiable, and we obtain

λ(t + �t )

λ(t )
	 1 + �t

d

dt
ln λ(t ), (A15)

where �t is finite but sufficiently small. Because we assumed
that λ(t f )/λ(ti ) is finite at any time ti and t f in the isothermal
process, as mentioned below Eq. (24) in Sec. III, d (ln λ(t ))/dt
should be noninfinite. Thus, as Eq. (A14) is satisfied, we
can regard λ as a constant in the relaxation even if λ varies
with time and diverges. Thus, we can apply σx and σv in
Eqs. (A1) and (A2) under constant λ to the case of varying
λ in the relaxation. Then, σx and σv immediately relax in the
vanishing limit of τx and τv and satisfy Eq. (A12) immediately
after the relaxation. When the stiffness changes from λ(t ) to
λ(t + �t ) after the relaxation, σx and σv immediately relax to
Eq. (A12) with λ = λ(t + �t ) in the limit of τx(t ), τv → 0.
Thus, when τx(t ) and τv vanish at any instant, we can regard
that Eq. (A12) is always satisfied in the isothermal process
after the relaxation. When we consider σxv , the time derivative
of T/λ in Eq. (A1) does not vanish because λ varies smoothly.
The remaining terms in Eq. (A1) vanish after the relaxation
even when we differentiate them with respect to time because

FIG. 6. Time evolution of Q̇h(t ) (purple solid line), its potential
part λσ̇x/2 (green dashed line), and its kinetic part mσ̇v/2 (sky-blue
dotted line) in the hot isothermal process. We can see a relaxation at
the beginning of the process. The lower figure is an enlargement view
of a part of the upper figure, which shows that Q̇h(t ) 	 λ(t )σ̇x (t )/2
and mσ̇v (t ) 	 0 are satisfied. In this simulation, we used λ(t ) in
Eq. (89) and set Th = 2.0, Tc = 1.0, th = tc = 1.0, m = 0.1, σa =
0.1, γ = 1.0, and σb/σa = 2.0.

the exponential terms vanish rapidly. Using Eq. (A12), we
obtain the time evolution of σx and σv after the relaxation in
the isothermal process with the temperature T as

σ̇x(t ) 	 − T

λ(t )

(
d

dt
ln λ

)
, σ̇v 	 0. (A16)

Then, from Eq. (11), we obtain

σxv (t ) 	 − T

2λ(t )

(
d

dt
ln λ

)
. (A17)

The heat flux Q̇(t ) in Eq. (18) is represented as

Q̇(t ) 	1

2
λ(t )σ̇x(t ) 	 −T

2

(
d

dt
ln λ

)
, (A18)

where we used Eq. (A16), and Q̇ is noninfinite because
d (ln λ)/dt is noninfinite. Note that we obtain

d

ds
ln � = tcyc

d

dt
ln λ,

dQ

ds
= tcyc

dQ

dt
= −T

2

(
d

ds
ln �

)
, (A19)

using s and Eqs. (24) and (A18). Because d (ln λ)/dt is non-
infinite, d (ln �)/ds and dQ/ds are also noninfinite after the
relaxation when tcyc is finite.
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Figure 6 shows a time evolution of the heat flux Q̇h, its
potential part λσ̇x/2, and its kinetic part mσ̇v/2 in the hot
isothermal process with the protocol in Eq. (89). In this sim-
ulation, we used the same parameters as in Sec. IV. From the

figure, we can see a relaxation at the beginning of the process.
As implied in Eq. (A18), the heat flux Q̇h is almost equal to
its potential part λσ̇x/2, and the kinetic part mσ̇v/2 almost
vanishes after the relaxation.
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