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Excitation relaxation in a molecular chain and energy transfer at steady state
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We consider the reduced dynamics of a molecular chain weakly coupled to a phonon bath. With a small and
constant inhomogeneity in the coupling, the excitation relaxation rates are obtained in closed form. They are
dominated by transitions between exciton modes lying next to each other in the energy spectrum. The rates are
quadratic in the number of sites in a long chain. Consequently, the evolution of site occupation numbers exhibits
longer coherence lifetime for short chains only. When external source and sink are added, the rate equations
of exciton occupation numbers are similar to those obtained earlier by Fröhlich to explain energy storage and
energy transfer in biological systems. There is a clear separation of timescale into a faster one pertaining to
internal influence of the chain and phonon bath, and a slower one determined by external influence, such as the
pumping rate of the source, the absorption rate of the sink, and the rate of radiation loss. The energy transfer
efficiency at steady state depends strongly on these external parameters and is robust against a change in the
internal parameters, such as temperature and inhomogeneity. Excitations are predicted to concentrate to the
lowest energy mode when the source power is sufficiently high. In the site basis, this implies that when sustained
by a high power source, a sink positioned at the center of the chain is more efficient in trapping energy than
a sink placed at its end. Analytic expressions of energy transfer efficiency are obtained in the high power and
low-power source limit. Parameters of a photosynthetic system are used as examples to illustrate the results.
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I. INTRODUCTION

We study excitation relaxation and excitation energy trans-
fer in molecular chain as an open quantum system [1].
Excitations can be introduced to a chain by external source
through optical absorption. As the excitations transfer through
the chain via intersite coupling, they couple to phonons pro-
duced by vibrational motion of sites to form collective states
in the chain [2–4]. This model can describe the transfer of
excitation energy in biological systems, such as in photo-
synthetic complexes [5–11] and α-helix protein [12,13], in
photovoltaic devices [4], organic semiconductor [14], and
quantum networks [15–17].

In previous works, because of the structural complications
in natural systems, such as photosynthetic systems [6], it
was often more convenient to carry out numerical studies
[7–11,16–18]. There were analytic results obtained by con-
sidering pure dephasing process from the viewpoint of kinetic
networks [19]. It was also found that environmental noise can
enhance the transport of energy [16–18] in these models.

Much effort had also been made to elucidate the
role of long-lived quantum coherence in energy transport
[9,18,20,21], though the interpretations of the results were
controversial [22,23]. The origin of long-lived coherence was
found to depend crucially on the coherent superpositions be-
tween exciton and vibrational degrees of freedom [24,25].

In this work, we consider excitation relaxation in amplitude
damping or population relaxation process. Using the usual
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methods in open quantum systems [1,3], we obtain analytic
expression of the transition rate between exciton modes in
chains with arbitrary number of sites through a few simplify-
ing assumptions, such as neglecting the static disorder in the
site energy, and assuming that the sites and phonons are cou-
pled weakly with small inhomogeneity. These assumptions
are usually not valid in natural systems such as photosynthetic
systems. Static disorder can be neglected, for example, in
fabricated systems, where atoms or molecules can be arranged
in a more regular pattern, and respond to a more uniform
environment.

Equipped with a better understanding of the excitation re-
laxation process, we investigate energy transfer in the chain at
steady state. In the weak coupling and Markovian limit, coher-
ence components influence the dynamics during the transient
only. We thus focus on the rate equations of exciton occupa-
tion numbers. These equations turn out to be similar to those
discovered by Fröhlich to explain energy storage and transfer
in biological systems [26].

A special feature in the time evolution of exciton occupa-
tion number is caused by the existence of nonlinear terms in
the rate equations [26,27]. The nonlinearities affect the final
distribution of the occupation numbers significantly when the
chain is energized by a sufficiently high power source, i.e.,
the excitations concentrate to the lowest energy level at steady
state. We are able to obtain approximate analytic expressions
of the energy transfer efficiency under a high power source
based on these results, and under low-power source through
some general considerations.

There are two ways in which the transfer of excitation
energy through a chain could be considered. Most of the
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studies used a transient setting [7,9,10,16–19], in which one
excitation is introduced to the system as an initial condition.
This is equivalent to a weak source. The time evolution of the
system is then followed until the excitation is finally lost from
the chain.

In the second setting which is closer to actual setups, a con-
tinuous flow of energy is supplied to the chain and eventually
a steady state is achieved. It was shown that the difference
in the efficiency between the transient process and the steady
state is very small [28]. Therefore, it is appropriate to consider
energy transfer at steady state.

We also clarify the influence of various parameters on the
efficiency of energy transfer through the chain. In our model
which assumes weak coupling between the sites and phonon
bath as well as negligible memory effects, internal parameters
related to the chain and phonon affect the energy transfer
weakly during the transient. Efficiency of energy transfer at
steady state is mostly determined by parameters external to
the chain and phonon.

Here is an outline of our discussions. We begin in Sec. II
with a summary of the procedures required to bring the Hamil-
tonian of the system into a suitable form in the exciton basis
for subsequent analysis. The reduced dynamics is then ob-
tained in Sec. III. It has transition rates that can be expressed
in closed form owing to a few simplifying assumptions. Their
behaviours in chains with large number of sites are discussed.
We then obtain the rate equations of exciton occupation
numbers in Sec. IV. External energy source and sink are
introduced to enable energy transfer through the chain. The
form of the nonequilibrium steady state of the rate equations
is also given. In Sec. V, analytic expression of the occupation
numbers can be obtained at high power source based on the re-
sults of previous works. The distribution of the site occupation
numbers at steady state can then be worked out. In Sec. VI, we
obtain the efficiency of energy transfer at steady state through
conservation of energy. The special behavior of the occupation
numbers at high power source leads to an analytic expression
of efficiency. The efficiency at low-power source can also
be deduced. We then numerically study the effects of the
various parameters on efficiency in Sec. VII, and clarify their
interconnections based on our understanding of the relaxation
dynamics. We conclude our discussions with a short summary
of the work. Some of the identities and technical details are
presented in the Appendices.

II. MOLECULAR CHAIN COUPLED TO PHONON

We consider a chain of � oscillators located at equal in-
terval from each other. Their coordinates are labeled by x =
1, 2, 3, · · · , �. The Hamiltonian of the system is

H = H0 +
∑

q

ωqb†
qbq + V, (1)

H0 =
�∑

x=1

ω0a†
xax + J

�−1∑
x=1

(a†
xax+1 + axa†

x+1), (2)

where we use the units h̄ = c = 1. a†
x and ax denote the cre-

ation and annihilation operators of excitation at site x. b†
q and

bq are the corresponding operators of the phonon field. ω0 and
ωq are the frequency or energy of the oscillators and phonon

modes, respectively. J is the intersite coupling constant. The
number operator of the excitation is coupled to the position
operator of phonon linearly,

V =
�∑

x=1

∑
q

ωqχ
(x)
q a†

xax
(
bq + b†

q

)
, (3)

where χ (x)
q denotes a dimensionless real coupling strength.

By a unitary transformation we can turn the site-phonon
interaction into a form involving the difference in the coupling
strength between neighboring sites [3,29]. This permits us to
consider inhomogeneity in the coupling strength. The details
were already worked out in Ref. [29]. Here we will quote the
main results that are relevant to our discussions.

We first apply the unitary transformation [3,30,31]

U = exp

(
−

∑
q

�∑
x=1

χ (x)
q a†

xax(bq − b†
q)

)
(4)

on H . Terms involving the difference in the coupling be-
tween neighboring sites χ (x+1)

q − χ (x)
q will emerge in the

resulting expressions. We assume that the difference can be
parameterized by a parameter that describes the degree of
inhomogeneity η, also called site-symmetry in Ref. [29], in
a site-independent form,

χ (x+1)
q − χ (x)

q = ηχq (5)

for all x. By assuming a small and constant inhomogeneity,
we expand the resulting expressions in powers of η, and keep
terms linear in η to yield the following Hamiltonian [29]:

H ′ = H ′
0 +

∑
q

ωqb†
qbq + V ′, (6)

H ′
0 =

�∑
x=1

ω′
xa†

xax + J
�−1∑
x=1

(a†
xax+1 + a†

x+1ax ), (7)

ω′
x = ω0 −

∑
q

ωq
(
χ (x)

q

)2
. (8)

The correction term to ω0 in Eq. (8) is also called reorganiza-
tion energy [3]. Under the assumption Eq. (5), the interaction
becomes

V ′ = η′ ∑
q

�∑
x=1

ω0χq(a†
xax+1 − a†

x+1ax )(bq − b†
q), (9)

where η′ ≡ ηJ/ω0 is a dimensionless parameter. As in most
cases J < ω0, later on we will use η′ as a perturbation ex-
pansion parameter when we consider the reduced dynamics
of the chain. We note that we have dropped from V ′ a quartic
term in excitation operators [29]. For small number of excita-
tions, this term is negligible. However, when there is a large
number of excitations to the extent that divergence occurs in
the cubic term Eq. (9), the quartic terms has to be included
to the interaction to avoid the divergence, see Ref. [32] and
references therein for details. Another situation in which the
quartic terms have to be considered is when the coupling to
phonon bath is homogeneous so that χ (x+1)

q − χ (x)
q vanishes.
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Before we obtain the reduced dynamics of the chain,
we first diagonalize H ′

0 by introducing exciton operators [3]
where μ = 1, 2, · · · , �,

Aμ =
√

2

� + 1

�∑
x=1

sin (kμx) ax, (10)

kμ ≡ πμ

� + 1
, (11)

and its Hermitian conjugate. The inverse of Eq. (10) is given
in Eq. (A4). The exciton operators satisfy the commutation
relation [Aμ, A†

ν] = δμν . To bring H ′
0 into a diagonalized form,

we assume that the correction term to the bare energy ω0 in
Eq. (8) is negligible due to weak coupling between the sites
and phonon. Otherwise, coupling terms involving operators
of adjacent sites cannot be diagonalized, see the details in
Appendix A. Adopting this assumption, we obtain the Hamil-
tonian of the chain in exciton basis

H ′
0 =

�∑
μ=1

ωμA†
μAμ, (12)

with exciton energy

ωμ ≡ ω0 + 2J cos kμ. (13)

Notice that contrary to usual notation, the index μ =
1, 2, · · · , � is arranged in a decreasing order of exciton energy,
i.e., �-mode is the lowest energy level of excitons.

In the exciton basis the interaction becomes

V ′ = η′ ∑
q

ω0χq

′∑
μ<ν

cμν (L†
μν − Lμν )(b−q − b†

q), (14)

where exciton indices are arranged according to the order μ <

ν. The summation symbol with a prime abbreviates a double
summation over μ and ν excluding μ = ν terms,

′∑
μ<ν

≡
�−1∑
μ=1

�∑
ν=μ+1

. (15)

The exciton raising operator

L†
μν ≡ A†

μAν (16)

creates an exciton of energy ωμ while simultaneously annihi-
lates another one of energy ων . Its Hermitian conjugate is the
lowering operator Lμν = A†

νAμ.
The exciton basis introduces a new coefficient cμν to V ′,

cμν ≡ 2

� + 1

�−1∑
x=1

{sin(kμx) sin[kν (x + 1)]

− sin[kμ(x + 1)] sin(kνx)}. (17)

The sum over site index can be carried out exactly. We first
simplify the expression by combining the products of sine
functions. Then we sum over site x using identity Eqs. (A2)
and (A3) to obtain

cμν =
⎧⎨
⎩

4

� + 1

sin kν sin kμ

cos kν − cos kμ

, ν − μ = odd only,

0, otherwise,
(18)

where μ < ν. It shows that excitons with odd indices are
coupled only to excitons with even indices, and vice versa.
There are �2/4 or (�2 − 1)/4 pairs of coupled excitons for
even � or odd �, respectively. The energy gap between two
exciton levels is

ωμν ≡ ωμ − ων = 2J (cos kμ − cos kν ). (19)

Hence, cμν is inversely proportional to the energy gap. Pair
of excitons with adjacent indices are coupled most strongly to
phonon. In particular, maximum coupling occurs between pair
lying around the center of the exciton spectrum �/2, when the
numerator of cμν is also largest. In the limit of very long chain
� � 1, cμν → −4/π approaches its maximum magnitude.

III. REDUCED DYNAMICS OF MOLECULAR CHAIN

Assuming a small inhomogeneity η and a weak coupling
between the sites and phonon, we apply the rotating-wave
approximation and the Markovian approximation [1] to obtain
the quantum master equation for the reduced density operator
of chain ρ, using η′ in V ′ Eq. (9) as a perturbation param-
eter. The chain is in contact with a phonon bath in thermal
equilibrium obeying the Bose-Einstein distribution

nth
μν ≡ 1

eβωμν − 1
, (20)

with the inverse temperature β ≡ 1/(kBT ).
The time evolution equation of ρ is

∂ρ

∂t

∣∣∣∣
ch

= −Kchρ, (21)

where Kch ≡ K0 + Kd, in which

K0ρ ≡ i[H ′
0, ρ], (22)

Kdρ ≡ −1

2

′∑
μ<ν

[

μνnth

μνRμνρ + 
μν (nth
μν + 1)Sμνρ

]
. (23)

The operator Rμν and Sμν have the Kossakowski-
Lindblad form

Rμνρ ≡ 2L†
μνρLμν − LμνL†

μνρ − ρLμνL†
μν, (24)

Sμνρ ≡ 2LμνρL†
μν − L†

μνLμνρ − ρL†
μνLμν. (25)

We have omitted a renormalization to the frequency of the ex-
citon modes [29,33]. The transition rate between two exciton
levels can be written in the form


μν ≡ c2
μνγ

(2)
μν . (26)

In Ref. [29], it was shown that the relaxation rate of a dimer
in a phonon bath

γ (2)
μν ≡

(
η

J

ωμν

)2

γd (27)

is slowed down by the factor in the round bracket over the
dephasing rate of a single site in contact with a phonon bath

γd ≡ 2π
∑

q

ω2
q(χq)2δ(ωq − ωμν ). (28)
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In the following we assume that γd is constant to simplify
our analysis. The slow down results in a longer coherence
lifetime. When chains longer than two sites are considered, the
slow down in the transition rate is still true for shorter chains.
However, as the number of sites increases, the transition rate
starts to increase and eventually exceeds γd to result in shorter
coherence lifetime.

We can understand the decrease in the coherence lifetime
better by analyzing the behavior of transition rate as a function
of the number of sites �. The transition rate has a complicated
dependence on the pair of coupled exciton indices


μν = 4η2γd

(� + 1)2

sin2 kμ sin2 kν

(cos kμ − cos kν )4
, ν − μ = odd only,

(29)

and 0 otherwise. It is inversely proportional to the fourth
power of the energy gap between exciton levels Eq. (19).

The transition rates can be separated into series each con-
taining rates with similar order of magnitude. The series is
labeled by an odd integer, m = ν − μ = 1, 3, 5, . . . . As in-
dicated at the end of Sec. II, the transition rate is highest in
the m = 1 series when the energy gap ωμν is smallest and
the magnitude of cμν largest. The rate decreases rapidly as
m increases. We demonstrate this fact by an estimate of the
ratio between 
μν of the 1 series to the next few series as
follows. The maximum of each series occurs between the pair
of indices μ = �/2 and ν = �/2 + m. After substituting them
into Eq. (29), we expand the expression in powers of m/� and
consider the long chain limit � � 1. The leading term in the
expansion is


�/2,�/2+m ≈ 4η2γd

π4

�2

m4
, m/� � 1. (30)

Consequently, the ratio of transition rates between the 1 and
the m series is


�/2,�/2+m


�/2,�/2+1
≈ 1

m4
, m/� � 1, (31)

which decreases rapidly with an increase in m.
This implies that the exciton relaxation dynamics in long

chains is dominated by the 1-series, which involves transitions
between excitons nearest in energy level. At low temperature
nth

μν ≈ 0, excitons of higher energy level cascade down to the
lowest level ν = �, which acts like a metastable state before
the excitation is lost to a sink or through radiation.

In shorter chain, the transition rates remain small

μν/γd < 1. This means that the coherence lifetime between
exciton levels will survive longer as in dimer [29]. For ex-
ample, when η = 0.1, 
μν/γd < 1 for up to � = 48. When
the number of sites continue to increase, the ratio 
μν/γd

eventually exceed 1, resulting in rapid relaxation compared
to dephasing in single site.

IV. RATE EQUATION OF EXCITON
OCCUPATION NUMBER

We next consider the average number of excitations and
the coherence between them. From now on, we arrange
three indices, μ, σ , and ν, in the order μ < σ < ν. Denoting
the trace of an operator over the reduced density operator

by 〈O〉≡ tr(Oρ), the occupation number and the correlation
function of exciton operators are

nσ ≡ 〈A†
σ Aσ 〉, (32)

nμσ ≡ 〈A†
μAσ 〉, (33)

mμσ ≡ 〈AμAσ 〉, (34)

together with their complex conjugates. To obtain the time
evolution of Eqs. (32)–(34), we need to trace operators
quadratic in As over Eq. (21). The expression can be reduced
to a form involving correlation function of quartic operator.
We approximate them by the products of correlation function
of quadratic operator, for example,

〈A†
μA†

νAσ Aκ〉 = m∗
μνmσκ + nμσ n∗

κν + nμκn∗
σν, (35)

where we assume that the trace of odd number products of A
and A† have zero trace. The complete set of rate equations are
given in Appendix B.

The correlation functions satisfy the following Schwartz
inequality [34]:

|nμν |2 � nμnν, (36)

|mμν |2 � nμ(nν + 1). (37)

Consequently, their magnitudes are constraint by their diago-
nal counterparts. Numerical studies on the complete set of rate
equations also suggest that the correlation components indeed
affect the evolution of the occupation numbers only weakly.
Moreover, they vanish eventually in the long-time limit, thus
playing no role in the steady state.

For these reasons, we will drop the correlation terms from
the rate equation and consider the time evolution in occupa-
tion numbers only,

dnσ

dt

∣∣∣∣
ch

=
σ−1∑
μ=1


μσ

[
nth

μσ (nμ − nσ ) + nμ(1 + nσ )
]

+
�∑

ν=σ+1


σν

[
nth

σν (nν − nσ ) − nσ (1 + nν )
]
. (38)

Notice that terms containing the influence of phonon bath,
such as nth

μσ and nth
σν , induce transitions of excitons between

a pair of levels in both directions μ ↔ σ ↔ ν. The rest are
the “spontaneous” emission terms, which permit transitions
directed towards lower energy levels only μ → σ → ν. The
spontaneous terms contain nonlinear products of exciton oc-
cupation numbers, for instance, nμnσ and nσ nν . When the
power of an energy source supplied to the chain is beyond
a certain value, these nonlinear terms induce the majority of
excitations to stay in the lowest energy mode at steady state.
This phenomenon is called Bose-Einstein condensation in
biological systems [26,32]. We will discuss the distribution of
occupation number at steady state in Sec. V after we introduce
external sink and source to the chain.
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FIG. 1. N̄ is the total number of excitations Eq. (43) at steady
state. We use the set of reference parameters listed at the beginning
of Sec. VII, where J = 100 cm−1, ω0 = 12, 500 cm−1, γd = 20 ps−1,
γs = 1 ps−1, γr = 0.001 ps−1, and η = 0.1. The symbols denote ◦ =
(77, 0.001), • = (77, 10), and � = (300, 10), where the numbers in
brackets denote (T K, s ps−1). The sink is prepared at the end of the
chain.

The total number of exciton occupation numbers in the
chain

N ≡
�∑

σ=1

nσ , (39)

is a constant of motion, by virtue of

�∑
σ=1

dnσ

dt

∣∣∣∣
ch

= 0. (40)

The stationary state of each mode is

n̄σ |ch = 1

exp[β(ωσ − μc)] − 1
, (41)

with a constant chemical potential μc. Its value can be deter-
mined through Eq. (39). From now on, we use “bar” to denote
quantities at steady state.

Later, it will be interesting to consider the exciton occupa-
tion number in the site basis, given by

n(site)
x = tr(a†

xaxρ) = 2

� + 1

�∑
μ=1

sin2(kμx)nμ, (42)

where we have dropped the correlation component nμν which
vanishes in the steady state. Notice that the site occupation
number is symmetric with respect to the center of the chain
(� + 1)/2, for Eq. (42) gives n(site)

x = n(site)
�+1−x, see Fig. 1 for

examples of excitation profile along the chain. By means
of the identity (A6), we verify that the total site occupation
number is the same constant of motion as in Eq. (39),

�∑
x=1

n(site)
x = N. (43)

Let us now couple external sink and energy source to the
chain. In Appendix C, we discuss how this could be done.
When a field is coupled to the chain through an interaction

linear in both the site and field operator Eq. (C1), the resulting
rate Eq. (C6) has a component that functions like a source,
whereas the other component acts like a sink. To better sepa-
rate the contribution of the two components, we couple “pure”
source and “pure” sink to the chain, see Appendix C for the
details.

A “pure” sink coupled to site z of the chain will give the
following contribution to the rate equation

dnσ

dt

∣∣∣∣
sk

= −α(z)
σ γsnσ , (44)

where γs is the trapping rate of the sink. The trapping power
is distributed over all modes according to the weight

α(z)
σ ≡ 2

� + 1
sin2(kσ z), (45)

which satisfy
∑�

σ=1 α(z)
σ = 1. It shows that with a sink coupled

to the end of the chain at z = �, exciton with energy closer to
the center of the energy spectrum will experience the fastest
trapping rate.

A “pure” source that introduces s excitations per unit time
to the chain through site 1 can be described by adding the
following term to the rate equation

dnσ

dt

∣∣∣∣
src

= sσ , (46)

sσ ≡ α(1)
σ s, (47)

see Eq. (C8). As defined in Eq. (45), α(1)
σ is the fraction

of excitations channeled to the σ -mode exciton. The source
could be a radiation field that excites the chain, such as in
photosynthetic systems. Creating an excitation at site 1 from
its ground state requires an energy of ω0. Hence, the power of
the source is ω0s.

Radiation emitted following the relaxation of an excitation
per unit of time to the ground state leads to loss of energy. In
a similar way to the sink, radiation loss can be described by
adding a term

dnσ

dt

∣∣∣∣
rad

= −γrnσ (48)

to the rate equation. Here, we assume that all sites equally
radiate, thus a constant radiation rate γr for all modes.

Combining the various contributions to the energy ex-
change process in the chain, the final rate equation we
consider is

dnσ

dt

∣∣∣∣
tot

= dnσ

dt

∣∣∣∣
src

+ dnσ

dt

∣∣∣∣
sk

+ dnσ

dt

∣∣∣∣
rad

+ dnσ

dt

∣∣∣∣
ch

= sσ − ε (z)
σ nσ + dnσ

dt

∣∣∣∣
ch

, (49)

ε (z)
σ ≡ α(z)

σ γs + γr. (50)

This equation has two clearly separated timescales. We al-
ready discussed in Sec. III that longer chains have fast
transition rates dominated by 
�/2,�/2+1 from the 1 se-
ries. It provides an estimate of the shorter timescale τ1 ∼
1/
�/2,�/2+1 in the reduced dynamics. The longer timescale
τ2 is provided by the loss through external sink and radiation,
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with a smaller relaxation rate ε (z)
σ Eq. (49). Hence, the estimate

τ2 ∼ 1/ε (z)
σ .

It turns out that Eq. (49) together with Eq. (38) has a similar
form to the rate equation of Fröhlich model for biological
systems [26,27,35]. It should therefore exhibit a phenomenon
similar to Bose-Einstein condensation [26], where most of the
excitations concentrate to the lowest energy level. This occurs
when the power of the source is sufficiently high.

Summing the rate equations over all exciton modes at
steady state produces an equation that relates the power of the
source to the parameters of loss mechanism,

s =
�∑

σ=1

ε (z)
σ n̄σ , (51)

by means of Eq. (40).
The exciton occupation numbers at the steady state have a

similar form as Eq. (41),

n̄σ = 1

exp
[
β
(
ωσ − μc

σ

)] − 1
, (52)

except that now different modes have different chemical po-
tentials to account for nonequilibrium steady state [36]. The
solutions to the exciton occupation numbers at steady state can
be obtained numerically by finding the roots of the coupled
nonlinear Eq. (49) together with Eq. (38). They also satisfy
the consistency condition Eq. (51).

V. OCCUPATION NUMBERS AT STEADY STATE
UNDER HIGH POWER SOURCE

A special feature of the reduced dynamics is the exis-
tence of nonlinear terms in the rate equation. The origin of
these terms can be traced back to the cubic coupling between
the site number operator a†

xax and the phonon field. Simi-
lar rate equation was introduced to explain the storage and
transfer of energy in biological systems [26]. It was predicted
that when the source power exceeds certain value, most of
the excitations condenses to the lowest energy level, giving
rise to a coherent oscillations of the entire chain. Without the
nonlinear terms, the occupation numbers will distribute more
uniformly across all the modes according to temperature. This
condensation was recently reported in protein as a classical
phenomenon [32].

In the special case of sufficiently high power source, the
steady state exciton occupation numbers can be approximated
analytically [26,27]. As most of the excitations condenses to
the lowest level �-mode at high power source, the chemical
potential for the lowest mode μc

� has to approach ω� in order
to support a large excitation in this mode Eq. (52). It happens
that the chemical potentials of other modes μc

σ also approach
ω� [27]. Therefore, we can approximate them by

μc
� ≈ ω�(1 − δ�), (53)

μc
σ ≈ ω�(1 + δσ ), σ < �, (54)

where the δs are small quantities. We estimate them in the
following paragraphs.

When we regard the occupation number as a function of
source power s, in the high s limit the occupation number

in the lowest mode is linear in s, whereas the occupation
numbers in other modes start at O(s0) [26,27]. By expanding
the occupation number in powers of s, then substituting them
into Eq. (49) together with Eq. (38) and extracting terms of
the same order in s, we obtain the coefficients of expansion
[27]. As a result,

n̄� = s/ε (z)
� + O(s0), (55)

n̄σ =
(

1 + α(1)
σ ε

(z)
�


σ�

)
1

eβωσ� − 1
+ O(s−1), σ < �. (56)

However, by expanding the occupation number Eq. (52) in
powers of δs, we can write them in a similar form to Eqs. (55)
and (56). Upon comparing both sets of expressions, we
deduce that

δ� ≈ kT

ω�

· ε
(z)
�

s
, (57)

δσ ≈ kT

ω�

· α(1)
σ ε

(z)
�


σ�

, σ < �. (58)

We should note that we do not apply the high-temperature
limit in our consideration.

The requirement δ� � 1 then provides a condition whereby
the approximation in Eqs. (55) and (56) should hold during
condensation,

s � kT

ω�

ε
(z)
� . (59)

Imposing the requirement δσ � 1, we obtain a condition sat-
isfied by the other modes,


σ� � kT

ω�

α(1)
σ ε

(z)
� , σ < �. (60)

The approximation breaks down when 
σ� Eq. (29) vanishes
in certain modes. When this occurs, we can estimate the
occupation number for this mode using the rate equation at
the steady state Eq. (49). To this end, we neglect the μ < σ

terms which are increasingly smaller, then we solve for n̄σ to
obtain

n̄σ ≈
sσ +

∑�

ν=σ+1

σνnth

σν n̄ν

ε (z)
σ +

∑�

ν=σ+1

σν

(
nth

σν + n̄ν + 1
) . (61)

It is interesting to investigate the profile of the normalized
site occupation numbers along the chain at steady state. We
make use of the typical values of parameters in photosynthetic
system [6,7] listed in the caption of Fig. 1, see also discussion
at the beginning of Sec. VII. For a low-power source of
s = 0.001 ps−1 at a temperature of 77 K, the exciton modes
are almost evenly excited. The distribution of the occupation
number in the site basis is uniform across the chain, depicted
by the ◦-curve in Fig. 1, where we consider a chain with 15
sites. Other parameters of the curves are listed in the caption.
With an increase in the power of the source to s = 10 ps−1 at
the same temperature, the excitations condense to the lowest
energy mode. The distribution of the site occupation numbers
then approaches the profile of the lowest exciton mode (in the
site basis) as depicted by the •-curve in Fig. 1. It reminisces
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the profile of the lowest stationary mode of a vibrating string
fixed at both ends.

With the source power fixed at this higher rate, a further
increase in the temperature of the phonon bath to 300 K
removes excitations trapped in the lowest mode and excites
them to higher modes, thus distributing the excitations more
evenly among all the modes. We then regain a more uniform
distribution (�-curve) that approaches the ◦-curve at even
higher temperature.

We can also learn from Fig. 1 how high s should be to
initiate condensation. In the •-curve, about 95% of the ex-
citations are in the lowest mode, followed by 2%, 1%, etc.,
in subsequent higher modes. With a value of δ� ≈ 2.5 × 10−6

and s = 10 ps−1, it implies that s has to be about 4 × 105 times
greater than ε

(z)
� kT/ω� to fully achieve condensation to the

lowest mode. However, in the �-curve, condensation is only
partially realized. The fraction of excitations in the lowest
mode is about 42%, followed by 20%, 11%, etc., in subse-
quent higher modes. It has δ� ≈ 9.7 × 10−6, which means s is
about 105 times greater than ε

(z)
� kT/ω�.

VI. ENERGY TRANSFER EFFICIENCY AT STEADY STATE

As already mentioned in Sec. IV, a source that supplies a
constant rate of excitations s to the chain at site 1, channels a
rate of energy ω0s to the chain. This fact is consistent with the
sum of the rate of exciton energy over all the modes,

esrc ≡
�∑

σ=1

ωσ

dnσ

dt

∣∣∣∣
src

=
�∑

σ=1

ωσ sσ = ω0s, (62)

where the last equality is obtained by simplifying the products
of trigonometric functions in ωσ Eq. (13) and sσ Eq. (47),
followed by using identity Eq. (A2).

When an excitation relaxes to the ground state, its energy
can be either collected by the sink as useful energy, or lost to
radiation wasted. At steady state, the rate of energy captured
by the sink is

esk ≡ −
�∑

σ=1

ωσ

dn̄σ

dt

∣∣∣∣
sk

=
�∑

σ=1

ωσα(z)
σ γsn̄σ . (63)

The radiation loss has a similar expression

erad ≡ −
�∑

σ=1

ωσ

dn̄σ

dt

∣∣∣∣
rad

=
�∑

σ=1

ωσγrn̄σ . (64)

The loss of energy to phonon bath is given by applying energy
conservation through the steady state condition, dn̄σ /dt |tot =
0, to Eq. (49) to yield

eph = esrc − esk − erad. (65)

It can be further simplified into a compact form

eph ≡ −
�∑

σ=1

ωσ

dn̄σ

dt

∣∣∣∣
ch

=
′∑

μ<ν

ωμν
μν

[
nth

μν (n̄μ − n̄ν ) + n̄μ(n̄ν + 1)
]
. (66)

The sum of eph and erad then amounts to the total rate of energy
dissipated by the chain,

ediss ≡ eph + erad = esrc − esk. (67)

Finally, the energy transfer efficiency at steady state is

ηe ≡ esk

esrc
= 1 − ediss

esrc
, (68)

which also equals

ηe =

∑�

σ=1

ωσ

ω0
α(z)

σ γsn̄σ∑�

σ=1
ε (z)
σ n̄σ

, (69)

where we use Eq. (51) in place of s in the denominator.
This expression has a similar form to the quantum trapping
yield obtained in Ref. [19]. In Appendix D we show that if
we consider the efficiency by following the evolution of the
system, it approaches Eq. (69) in the long-time limit when the
steady state is reached. It was previously shown in Ref. [28]
that an initial excitation that drives the reduced dynamics pro-
duces almost identical efficiency with continuous excitations
provided by a source.

A. High power source

When the high power source condition Eq. (59) is fulfilled,
we can approximate ηe by keeping contribution from the low-
est dominant mode only Eq. (55), to yield

ηe ≈ ω�

ω0

1

1 + γr

α
(z)
� γs

. (70)

Let us now consider two situations, whether a sink is prepared
at the end or at the center of the chain.

(1) Sink is at the end z = �. In this configuration, we
approximate the weight α

(z)
� Eq. (45) by

α
(�)
� = 2

� + 1
sin2

( π

� + 1

)
≈ 2π2

(� + 1)3
. (71)

Then, the efficiency has the following expressions in two
opposite limits,

ηe ≈ ω�

ω0
×

⎧⎪⎪⎨
⎪⎪⎩

1 − (� + 1)3

2π2

γr

γs
,

(� + 1)3

2π2
γr � γs,

2π2γs

(� + 1)3γr
,

(� + 1)3

2π2
γr � γs.

(72)

(2) Sink is at the center. In this configuration, we choose
z = �/2 for even � or z = (� + 1)/2 for odd �. We approxi-
mate the weight by

α
(z)
� ≈ 2

� + 1
. (73)

This yields the efficiency

ηe ≈ ω�

ω0
×

⎧⎪⎪⎨
⎪⎪⎩

1 − (� + 1)γr

2γs
,

� + 1

2
γr � γs,

2γs

(� + 1)γr
,

� + 1

2
γr � γs.

(74)
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Notice that Eqs. (72) and (74) contain qubic and linear
terms in �, respectively. This suggests that in longer chain,
a sink prepared at the center of the chain is more effective
in trapping excitations than a sink positioned at its end. This
result will be illustrated in Sec. VII A when we obtain the
efficiency numerically.

When the trapping rate of the sink is much greater than
the rate of radiation source, the first equation in each of
Eqs. (72) and (74) has a simple interpretation. Each excitation
introduced by the source acquires energy ω0. For a high power
source, the excitation tends to relax to the lowest mode, giving
off 2J cos k1 of energy difference to the phonon bath. With a
small competition from the radiation loss because of its small
rate compared to the absorption rate of the sink, the energy
trapped by the sink is then close to ω0 − 2J cos k1 = ω�.
Hence, the efficiency is ω�/ω0, with a correction term linear
in the ratio γr/γs.

B. Low-power source

When the energy transfer is sustained by a low-power
source, we consider ηe (69) in the low- and high-temperature
limit. In the low-temperature limit, the excitations will con-
centrate to the lower energy modes in the steady state under a
weak source. The numerator and denominator in ηe are then
dominated by the n̄� term. Hence, we obtain an expression
identical to Eq. (70), though under different conditions. This
suggests that the behavior of the energy transfer efficiency
under a high power source at moderate temperature is similar
to one under a low-power source in the low-temperature limit.
The analysis in Sec. VI A is then applicable to this situation.

However, in the high-temperature limit the excitations will
reach a uniform distribution among all the modes in the steady
state. Equation (69) then yields

ηe ≈

∑�

σ=1

ωσ

ω0
α(z)

σ γs

γs + �γr
, (75)

where we use
∑�

σ=1 α(z)
σ = 1 in the denominator. In the nu-

merator, the second term in the exciton energy ωσ Eq. (13)
when multiplied by α(z)

σ will give a zero sum over the modes,
since we can show that

∑
σ cos kσ sin2 kσ = 0 using the iden-

tity in Appendix A. We then obtain

ηe ≈ 1

1 + �γr

γs

. (76)

Notice that this expression is independent of the position of
the sink. Hence, efficiency is not sensitive to the position
of the sink when a weak source is supplied under high-
temperature bath.

We can consider two opposite limits,

ηe ≈

⎧⎪⎨
⎪⎩

1 − �γr

γs
, �γr � γs,

γs

�γr
, �γr � γs.

(77)

When the trapping power of the sink is much larger than the
total rate of radiation loss �γr, energy transfer to the sink
achieves almost perfect efficiency.

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

ηe

�

FIG. 2. Similar symbols denote the same set of parameters.
Filled (empty) symbols denote sink at the end (center) of the chain.
In all the curves, J = 100 cm−1, ω0 = 12 500 cm−1, T = 77 K, η =
0.1, and γd = 20 ps−1. The symbols denote ◦ = (1, 0.001, 0.1), � =
(1, 0.01, 0.1), ♦ = (0.1, 0.01, 0.1), and �= (0.1, 0.01, 10), where
the numbers in brackets refer to (γs, γr, s) in units of ps−1.

Equations (72), (74), and (77) also show that efficiency
generally decreases as the site number grows bigger.

VII. EFFECTS OF PARAMETERS ON EFFICIENCY

We use as a reference the typical values of parameters
from the well-studied photosynthetic system [6,7] to evaluate
energy transfer efficiency. For Fenna-Matthews-Olson (FMO)
pigment protein complex in green sulfur bacteria, the inter-
site coupling is approximately J = 100 cm−1. We use ω0 =
12 500 cm−1 as the energy or natural frequency of the sites.
A single site dephases in a phonon bath quite rapidly, with a
typical dephasing time of 50 fs. Hence, we use γd = 20 ps−1

as a reference, assuming that the dephasing rate is independent
of sites. Exciton can also relax to the ground state through
radiation. The rate γr is usually small, with a relaxation time
of about 1 ns. Hence, we choose γr = 0.001 ps−1. In most
studies on the energy transfer efficiency in FMO complex such
as in Refs. [7,8,10,18], the system is set off with one excitation
that transfers through the complex until it is eventually lost.
Using the radiation loss as the longest timescale of the system,
we assume that a power of one excitation per nanosecond,
or s = 0.001 ps−1, refers to a low-power source. We choose
the inhomogeneity or site-asymmetry to be η = 0.1, and use a
trapping power of the sink γs = 1 ps−1 as a reference. Finally,
we start with a chain without excitation as an initial condition.

The efficiencies of energy transfer plotted in the following
graphs are obtained by numerically solving for the roots of the
set of rate Eq. (49) together with Eq. (38) at steady state. The
solutions then give the efficiency by means of Eq. (69).

We first note that with a temperature of either 77 or 300 K
the above set of reference parameters produces an energy
transfer efficiency that is almost perfect, ranging from about
99.8% for a chain with 2 sites to about 97.2% for a chain with
25 sites, regardless of whether the sink is placed at the end of
the chain or at its center. Though they are not shown in Fig. 2,
the curves of the efficiency for the reference set of parameters
almost overlaps with the ◦ and • curves in Fig. 2.
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A. Parameters external to chain: Radiation, source, and sink

In Fig. 2, curves labeled by similar shapes refer to the
same set of parameters. Sinks located at the end or center
of the chain are denoted by filled shapes or empty shapes,
respectively. The temperature of all the curves is fixed at 77 K.
The values of other parameters are listed in Fig. 2.

The first observation we make is that the energy transfer
efficiency decreases with an increased number of sites �.
The loss of energy through radiation and phonon bath are
competing with the sink for energy supplied by the source.
In the model we consider, there is only one sink available
regardless of the number of sites. The power of the sink is
distributed across exciton modes according to the weight α(z)

σ

Eq. (45), which becomes even weaker as the number of sites
increases. On the contrary, as the number of sites increases,
relatively more energy is prone to loss from the chain since
more channels are open to radiation loss and phonon bath. The
total power of loss eventually becomes stronger as the number
of sites increases, leading to a greater reduction in the energy
transfer efficiency.

External to the chain related parameters, namely, the ra-
diation rate, the power of sink and source, exert the most
significant effects on the energy transfer efficiency at steady
state. For example, a small rate of radiation results in a high
efficiency of nearly 98%, regardless of the position of the sink,
as can be seen from the pairs of (•, ◦) curves in Fig. 2 which
almost overlap among themselves. When we increase the rate
of radiation loss from γr = 0.001 to 0.01 ps−1, the efficiency
reduces to about 80% with a chain of 25 sites, compare the
pair of (•, ◦) curves to the pair of (�,�) curves in Fig. 2.

The power of the sink is another main factor that decides
the efficiency of energy transfer. Continue from the set of
parameters in the pair of (�,�) curves in Fig. 2, a further
decrease in the power of the sink from γs = 1 ps−1 to 0.1 ps−1

causes the efficiency to deteriorate further down to 30% in a
chain with 25 sites, as depicted by the pair of (�,♦) curves
in Fig. 2.

The position of the sink could have strong influence on the
efficiency at high power source. When the power of the source
increases from s = 0.1 ps−1 to 10 ps−1, a sink located at
the end of the chain is not so effective in trapping energy from
the source compared to a sink placed at its center. This is il-
lustrated by the � and � curves in Fig. 2, where the efficiency
reduces from above 30% to less than 5%, respectively, for a
chain with 25 sites.

The reverse effect occurs when the sink is positioned at the
center of the chain, where an increase in the power of source
from s = 0.1 to 10 ps−1 produces a rise in efficiency from
about 30% to about 40% in a chain with 25 sites, compare
the ♦-curve with the �-curve, respectively. This indicates that
a sink located at the center of the chain is more effective in
tapping energy from the chain.

This can be explained by the profile of the excitations in
the site basis in Fig. 1. There, we find that the maximum oc-
cupation number occurs at the center of the chain. Therefore,
a sink placed at the center of the chain is more efficient to trap
energy from the chain. The profiles also explain the fact that
the position of the sink will not have a significant effect on the
efficiency when the excitations distribute uniformly along the

100 200 300
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0.96

0.97
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0.99

1.00

ηe

T (K)

FIG. 3. In all the curves, J = 100 cm−1, ω0 = 12, 500 cm−1, η =
0.1, γd = 20 ps−1, γs = 1 ps−1, and γr = 0.001 ps−1. The symbols
denote ◦ = (5, 1), • = (5, 10), �= (10, 1), and � = (10, 10), where
the numbers in brackets denote (�, s ps−1).

chain. This is evident in the pairs of (•, ◦), (�,�), and (�,♦)
curves in Fig. 2 for a low-power source of s = 0.1 ps−1.

As a high power source of s = 10 ps−1 is introduced, con-
densation to the lowest mode occurs. Consequently, the profile
of excitation in the �-curve in Fig. 1 has an obvious maximum
at the center of the chain. We expect that positing the sink at
the its center of the chain can enhance the efficiency greatly.
This is evident from Fig. 2, where for a chain of 25 sites,
the efficiency increases from below 5% (� curve) to 40%
(� curve) when we reposition the sink from the end of the
chain to its center at the same set of parameters. The findings
are consistent with the analytic results obtained in Sec. VI A,
compare Eqs. (72) and (74) for sink positioned at the end of
the chain and at its center, respectively, where efficiency varies
with �3 and �, respectively.

In contrast, the steady-state efficiency is not sensitive to the
position of the source. Numerical studies show that placing the
source at site 1, at the center of the chain, or with its power
distributed uniformly over all sites, produce nearly identical
efficiency at steady state. We conclude that only the power
of the source, not its position, is important in deciding the
efficiency at steady state.

B. Chain related parameters:
Temperature and intersite coupling

In general, we find that an increase of temperature helps
in improving efficiency. In Fig. 3, efficiency is plotted as a
function of temperature which ranges from 0 to 300 K for
chains with 5 and 10 sites, and with source powers of 1 and
10 ps−1. Phonons from higher temperature bath remove exci-
tations trapped in lower levels and redistribute them to higher
levels, thus increasing the probability of excitation capture by
the sink, whose trapping power distributes among the exciton
modes with the factor α(z)

σ Eq. (45). We also notice from the
pairs of curves in higher power source (• and � curves) that
efficiency requires higher temperature to reach its optimum
value. High temperature is required because more phonons are
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required to remove the increase number of excitations trapped
in lower energy levels as s increases.

There is a small but interesting effect arises from the num-
ber of sites in the chain under a high power source, compare
the • and � curves in Fig. 3. Chains with small number of sites
(� � 8) possess a wide minimum at low temperature between
0 to 100 K in the •-curve for � = 5 in Fig. 3. An initial
rise of temperature leads to decrease in efficiency, which
then increases and eventually reaches its optimum value at
higher temperature. The minimum at low temperature is not
prominent in chains with more sites (� 	 12), for which rise
in temperature always causes the efficiency to increase as
explained in the previous paragraph. This can be seen from the
� curve around 0 K in Fig. 3, where the minimum becomes
narrower for � = 10 and eventually turns invisible for � 	 12
(not shown in the figure).

The minimum in the efficiency at low temperature is
caused by larger energy gap between transitions in chains with
smaller number of sites. We already learned that the width
of the energy gap between two exciton levels depends on the
factor cos kμ − cos kν , cf. Eq. (19), which is wider in chains
with less sites. When the bath’s temperature is so low that its
phonons are not energetic enough to remove excitations out
of the low energy level because of the larger gaps, the excita-
tions remain trapped at low levels. As a result, the efficiency
reduces slightly in chains with small number of sites at low
temperature when temperature rises slightly. As the number
of sites increases, more transitions become available because
of the smaller energy gaps. In this way, removal of excita-
tions trapped at lower energy level becomes plausible even at
low temperature. This enhances the probability of excitations
trapping by the sink. Efficiency thus increases consistently in
longer chain and the minimum at low temperature eventually
vanishes as the number of sites increases.

The intersite coupling J affects the relaxation dynamics in
that it determines the size of energy gaps Eq. (19). It scales
the temperature by T ′ ≡ T/J , as is seen in the Bose-Einstein
distribution Eq. (20) with energy gap Eq. (19). Thus, effi-
ciency of curves with similar T ′ should lie close to each other.
This is shown in the group of (•,�,�) and (◦,�,�) curves
in Fig. 4, which have T ′ = 77 and 7.7 K cm, respectively.
Since the effect is tiny, we have chosen high power sources
to enhance the effect. The similarity is good for small values
of J = 10 and 100 cm−1, where the (•,�) and (◦,�) curves
almost overlap. However, a larger J results in larger energy
gap. Relaxation of excitations would then cause more energy
lost to the phonon bath. This causes the efficiency to reduce
relatively more at larger J = 1000 cm−1, compare � with
the pair (•,�) curves, and � with the pair of (◦,�) curves
in Fig. 4.

C. Model related parameters:
Inhomogeneity and dephasing rate

From the expression of 
μν Eq. (26) and γ (2)
μν Eq. (27), we

notice that η and γd influence the reduced dynamics in the
form η2γd . We study their effects by introducing a numerical
factor ξ that scales them as ξη2γd . Four groups of curves are
plotted in Fig. 5. Arranged from the top to the bottom, they
correspond to γr = 0.001, 0.01, 0.1, and 1 ps−1, respectively.
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FIG. 4. In all the curves, ω0 = 12 500 cm−1, η = 0.1, γd =
20 ps−1, γs = 1 ps−1, and γr = 0.001 ps−1. Numbers in the follow-
ing brackets refer to (T K, J cm−1, s ps−1). The symbols denote
• = (7.7, 10, 104), � = (77, 100, 104), � = (770, 1000, 104), ◦ =
(0.77, 10, 103), � = (7.7, 100, 103), and �= (77, 1000, 103).

Within each group, there are five curves arranged from the top
to the bottom, denoted by (◦,�,♦,�,
), respectively. They
respectively correspond to the values of ξ as it varies from
0.001 to 10 in multiples of 10. We find that the efficiency
gradually reduces with the increase of ξ . Greater value of
ξ yields higher transition rate 
μν . More rapid relaxation
rate then competes with the trapping power of the sink to
induce more loss of energy to phonon bath, leading to smaller
efficiency.

This is a small effect. From Fig. 5, we find that a change of
ξ across four orders of magnitude alters the efficiency by less
than 10% for curves with intermediate efficiency. The change
in efficiency is less than 3% when the curves are in both
extremes of its efficiency, cf. the highest and the lowest group
of curves in Fig. 5. In fact, they almost overlap in these cases.
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FIG. 5. In all curves, T = 77 K, J = 100 cm−1,
ω0 = 12 500 cm−1, γs = 1 ps−1, η = 0.1, γd = 20 ps−1, and
s = 1 ps−1. The four groups of curves arranged from the
top to the bottom correspond to γr = 0.001, 0.01, 0.1, 1 ps−1,
respectively. Within each group, there are five curves labeled
by (◦,�,♦,�,
) from the top to the bottom, corresponding to
ξ = 0.001, 0.01, 0.1, 1, 10, respectively.
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FIG. 6. In all curves, T = 77 K, J = 100 cm−1,
ω0 = 12 500 cm−1, η = 0.1, γd = 20 ps−1, γs = 1 ps−1, and
γd = 0.001 ps−1. Source power s is in units of ps−1, plotted
in natural logarithmic scale. Circles and squares denote chains
with � = 7 and 15, respectively. Filled and empty shapes label
configurations with sinks prepared at the end of the chain and at its
center, respectively.

Therefore, the efficiency obtained is quite robust against the
change of the inhomogeneity η, and the dephasing rate γd . In
Fig. 5 we have chosen a temperature of 77 K. The change in
the efficiency is even smaller at 300 K.

D. Change in efficiency during condensation

We learn in Sec. V that as the source power becomes
sufficiently high, excitations will condense to the lowest en-
ergy level. Let us consider the behavior of energy transfer
efficiency during condensation using the reference set of pa-
rameters. Figure 6 plots efficiency against source power in
natural logarithmic scale for chains with � = 7 and 15, de-
noted by circles and squares, respectively. Configurations with
a sink prepared at the end of the chain and at its center are
labeled by filled and empty shapes, respectively. The power
increases from 0.001 to 103 ps−1.

We notice that under a weak source, efficiency is not sen-
sitive to the power and the position of the sink, though the
efficiency is slightly better with a sink prepared at the end
of the chain. As the source power turns into the stronger
region, efficiency for configuration with sink prepared at the
center decreases slightly. However, for sink prepared at the
end of the chain, the decrease is abrupt when excitations start
to condense to the lowest energy level between s = 1 to 10
ps−1. This change is more apparent in longer chain. We learn
from Fig. 1 that the profile of excitation in the site basis

has a prominent maximum at the center of the chain when
excitations concentrate to the lowest energy level. Therefore,
a sink prepared at the end of the chain is not as effective as
a sink placed at its center in trapping energy from the chain.
The efficiency gradually stabilizes at greater source power.

VIII. CONCLUSION

We have studied the reduced dynamics of molecular chains
coupled weakly to phonon bath with small inhomogeneity.
The excitation relaxation dynamics is largely determined by
the transition rate between modes lying next to each other
in the excitation energy spectrum. Due to collective effect,
the coherence lifetime between different excitation modes in
a chain is longer compared to single site dephasing time.
However, as the length of the chain increases, a rapid rise in
the transition rate eventually reverses the effect.

The rapid rise in the exciton relaxation rates with the length
of chain leads to a clear separation of the timescale in the
system into a shorter one determined by the exciton transition
rate, and a longer one dictated by external influence such as
the rate of radiation loss, and the trapping rate and position of
the sink. As a consequence, the efficiency of energy transfer
at steady state is not sensitive to the change of internal param-
eters related to the chain and phonon. Parameters external to
the chain and phonon, such as the pumping rate of the source,
the rate of radiation loss, and the trapping rate and the position
of the sink, play a much bigger role in deciding the efficiency
of energy transfer.

We learn that higher correlation functions give rise to non-
linear terms in the rate equations of the excitation occupation
number, which influence the distribution of the excitations at
steady state. Their effects are most prominent under strong
source, when they cause the concentration of excitations to
the lowest energy mode. They reveal themselves when a sink
prepared at the center of the chain is more efficient in trapping
energy than a sink placed at its end.

Even though in this work we use the parameters from a
specific photosynthetic system for illustrations, our analysis
on the excitation relaxation dynamics and steady state energy
transfer is general and hence is relevant to the transport of
energy in other systems.
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APPENDIX A: DISCRETE SINE TRANSFORM

A finite sum of exponential functions gives

�+1∑
x=1

eikμx =
⎧⎨
⎩

� + 1, μ = 0, 2m(� + 1), m = 1, 2, · · · ,

0, μ = 2, 4, 6, · · · , excluding 2m(� + 1), m = 1, 2, · · · ,

−1 + i cot
(

1
2 kμ

)
, μ = 1, 3, 5, · · · .

(A1)
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The real and imaginary parts of Eq. (A1) are

�+1∑
x=1

cos(kμx) =
⎧⎨
⎩

� + 1, μ = 0, 2m(� + 1), m = 1, 2, · · · ,

0, μ = 2, 4, 6, · · · , excluding 2m(� + 1), m = 1, 2, · · · ,

−1, μ = 1, 3, 5, · · · ,

(A2)

�+1∑
x=1

sin(kμx) =
{

0, μ = 0, 2, 4, · · · ,

cot
(

1
2 kμ

)
, μ = 1, 3, 5, · · · .

(A3)

Using the identities, we obtain the inverse of Eq. (10),

ax =
√

2

� + 1

�∑
μ=1

sin(kμx) Aμ. (A4)

In the exciton basis, the first term of H ′
0 Eq. (7) becomes

�∑
x=1

ω′
xa†

xax = 2

� + 1

�∑
μ,ν=1

A†
μAν

(
�∑

x=1

ω′
x sin(kμx) sin(kνx)

)
. (A5)

Since ω′
x Eq. (8) depends on the site index x, the sum over x cannot be carried out explicitly. To overcome this problem, we

assume that the correction term to ω0 in Eq. (8) is negligible, and approximate ω′
x by ω0. We can then carry out the sum in the

bracket to obtain
�∑

x=1

sin(kμx) sin(kνx) = 1

2
(� + 1)δμν, (A6)

where δμν is the kronecker-δ function. Substituting Eq. (A6) into the approximate expression of Eq. (A5) then yields the
diagonalized form of the first term of H ′

0 Eq. (7),

�∑
x=1

ω′
xa†

xax ≈
�∑

μ=1

ω0A†
μAμ. (A7)

Substituting ax Eq. (A4) and its Hermitian conjugate into the second term of H ′
0 Eq. (7), we obtain

J
�−1∑
x=1

(a†
xax+1 + axa†

x+1) = 2J

� + 1

⎛
⎜⎝ �∑

μ=1

hμμA†
μAμ +

�
′∑

μ,ν=1

hμνA†
μAν

⎞
⎟⎠, (A8)

where
∑′

μ,ν=1 denotes a sum over μ and ν but excluding μ = ν. The coefficient hμν is

hμν ≡
�∑

x=1

[sin(kμx) sin(kν (x + 1)) + sin((kμ(x + 1)) sin(kνx)]. (A9)

This sum can be evaluated to give

hμν = (� + 1) cos(kμ)δμν. (A10)

Substituting it into Eq. (A8) gives

J
�−1∑
x=1

(a†
xax+1 + axa†

x+1) = 2J
�∑

μ=1

cos(kμ)A†
μAμ. (A11)

As a result, the discrete sine transform diagonalizes H ′
0 Eq. (7) into Eq. (12), with energy ωμ given by Eq. (13).

APPENDIX B: FULL SET OF RATE EQUATIONS

The complete set of coupled nonlinear rate equations inclusive of the correlation components is

dnσ

dt

∣∣∣∣
ch

=
∑
μ<σ


μσ

[
nμ

(
nth

μσ + 1
) + nσ

(
nμ − nth

μσ

) + |nμσ |2 + |mμσ |2]

−
∑
ν>σ


σν

[
nσ

(
nth

σν + 1
) + nν

(
nσ − nth

σν

) + |nσν |2 + |mσν |2
]
, (B1)
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dnσκ

dt

∣∣∣∣
ch

= −i(ωσ − ωκ )nσκ

− 1

2

[∑
μ<σ


μσ nth
μσ +

∑
μ<κ


μκnth
μκ

]
nσκ + 1

2

[∑
μ<σ


μσ +
∑
μ<κ


μκ

]
(nμnσκ + n∗

μσ nμκ + m∗
μσ mμκ )

− 1

2

[∑
ν>σ


σν

(
nth

σν + 1
) +

∑
ν>κ


κν

(
nth

κν + 1
)]

nσκ − 1

2

[∑
ν>σ


σν +
∑
ν>κ


κν

](
nσκnν + nσνn∗

κν + m∗
σνmκν

)
,

σ < κ, (B2)

dmσκ

dt

∣∣∣∣
ch

= i(ωσ + ωκ )mσκ

− 1

2

[∑
μ<σ


μσ nth
μσ +

∑
μ<κ


μκnth
μκ

]
mσκ + 1

2

[∑
μ<σ


μσ +
∑
μ<κ


μκ

]
(nμmσκ + nμσ mμκ + mμσ nμκ )

− 1

2

[∑
ν>σ


σν

(
nth

σν + 1
) +

∑
ν>κ


κν

(
nth

κν + 1
)]

mσκ − 1

2

[∑
ν>σ


σν +
∑
ν>κ


κν

]
(nνmσκ + n∗

σνmκν + mσνn∗
κν ),

σ � κ. (B3)

APPENDIX C: EXTERNAL SOURCE AND SINK

We can model external source and sink connected to the
chain at site z by coupling the oscillator’s operator to the
respective field through the interaction,

Hext = λ
∑

k

vk (azc
†
k + a†

z ck ), (C1)

where λ denotes a dimensionless coupling constant, vk is a
real form factor, and c†

k , ck are the creation and annihilation
operators of the field mode. In the exciton basis, Hext becomes

Hext = λ

�∑
μ=1

∑
k

α(z)
μ vk (Aμc†

k + A†
μck ), (C2)

where α(z)
μ is a weight factor defined in Eq. (45). Hext gives rise

to a dissipative reduced dynamics ∂ρ/∂t |ext = −Kextρ, where

Kextρ = −1

2

�∑
σ=1

α(z)
σ γ ext

σ

× [(
nth

σ + 1
)
(2Aσ ρA†

σ − A†
σ Aσ ρ − ρA†

σ Aσ )

+ nth
σ (2A†

σ ρAσ − Aσ A†
σ ρ − ρAσ A†

σ )
]
, (C3)

nth
σ ≡ 1

eβωσ − 1
, (C4)

with the relaxation rate

γ ext
σ ≡ 2πλ2

∑
k

v2
k δ(ωk − ωσ ). (C5)

It yields the following rate equation of exciton occupation
number of the σ -mode,

dnσ

dt

∣∣∣∣
ext

= α(z)
σ

(
�σ − γ ext

σ nσ

)
, (C6)

�σ ≡ γ ext
σ nth

σ , (C7)

where �σ functions like a source term.

To describe a “pure” source connected to the chain at site
z = 1, we assume that �σ = s, where s is the number of
excitations per unit time fed by the source to the chain, is
independent of exciton modes. It should be much greater than
the relaxation term γ ext

σ nσ in Eq. (C6) to give

dnσ

dt

∣∣∣∣
src

= α(1)
σ s. (C8)

We also assume that the source does not create new correla-
tions in the chain.

A “pure” sink is obtained by taking the bath’s temperature
to be zero, nth

σ = 0. As a result, we are led to consider the
following time evolution of the exciton occupation number

dnσ

dt

∣∣∣∣
sk

= −α(z)
σ γsnσ , (C9)

where γs is the trapping rate of the sink.
When a “pure” sink is connected to site z of the chain,

the following terms are added to the time evolution of the
correlation components,

dnσκ

dt

∣∣∣∣
sk

= −1

2

(
α(z)

σ + α(z)
κ

)
γsnσκ , (C10)

dmσκ

dt

∣∣∣∣
sk

= −1

2

(
α(z)

σ + α(z)
κ

)
γsmσκ . (C11)

APPENDIX D: EFFICIENCY BASED
ON TIME EVOLUTION

In this Appendix we show that the energy transfer ef-
ficiency obtained by considering the time evolution of the
system [7,8] approaches the efficiency at steady state Eq. (69)
in the long-time limit.
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The total energy absorbed by the sink up to a time τ is

Esk(τ ) = −
∫ τ

0

�∑
σ=1

ωσ

dnσ

dt

∣∣∣∣
sk

dt =
�∑

σ=1

ωσα(z)
σ γsaσ (τ ),

(D1)

where

aσ (τ ) ≡
∫ τ

0
nσ (t )dt (D2)

is the area enclosed by the curve nσ (t ) and the time axis up to
time τ . The total energy supplied by the source up to time τ is

Esrc(τ ) =
∫ τ

0
ω0s dt = ω0

�∑
σ=1

ε (z)
σ Aσ (τ ), (D3)

where we substitute s using Eq. (51) to get the third equality,
in which

Aσ (τ ) ≡
∫ τ

0
n̄σ dt = n̄σ τ (D4)

is the area enclosed by the steady state occupation number
n̄σ = nσ (t → ∞) and the time axis up to time τ .

Since nσ (t ) would have reached the steady state after
some finite time, the ratio (Aσ − aσ )/Aσ → 0 as τ → ∞.
Hence, we expect that in the long-time limit aσ /Aσ should
approach 1,

aσ (τ )

Aσ (τ )
τ→∞−−−→ 1. (D5)

The energy transfer efficiency up to time τ is defined as

ηE (τ ) ≡ Esk(τ )

Esrc(τ )
. (D6)

It can be cast into the form

ηE (τ ) =

∑�

σ=1

ωσ

ω0
γsα

(z)
σ Aσ (τ ) · aσ (τ )

Aσ (τ )∑�

σ=1
ε (z)
σ Aσ (τ )

. (D7)

It approaches ηe Eq. (69) in the long τ limit

ηE (τ )
τ→∞−−−→ ηe, (D8)

after using Eqs. (D5) and (D4).
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