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Low-temperature pseudo-phase-transition in an extended Hubbard diamond chain
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We consider the extended Hubbard diamond chain with an arbitrary number of particles driven by chemical
potential. The interaction between dimer diamond chain and nodal couplings is considered in the atomic limit
(no hopping), whereas the dimer interaction includes the hopping term. We demonstrate that this model exhibits
a pseudo-transition effect in the low-temperature regime. Here, we explore the pseudo-transition rigorously
by analyzing several physical quantities. The internal energy and entropy depict sudden, although continuous,
jumps which closely resembles discontinuous or first-order phase-transition. At the same time, the correlation
length and specific heat exhibit astonishing strong sharp peaks quite similar to a second-order phase-transition.
We associate the ascending and descending parts of the peak with power-law “pseudo-critical” exponents. We
determine the pseudo-critical exponents in the temperature range where these peaks are developed, namely,
ν = 1 for the correlation length and α = 3 for the specific heat. We also study the behavior of the electron
density and isothermal compressibility around the pseudo-critical temperature.

DOI: 10.1103/PhysRevE.103.042123

I. INTRODUCTION

In recent investigations of several decorated one-
dimensional models with short-range interactions, the first
derivative of free energy, such as entropy, internal energy,
and magnetization, shows a steeplike function of temper-
ature but still with a continuous change which is quite
similar to a first-order phase transition behavior. The second-
order derivative of free energy, such as the specific heat
and magnetic susceptibility, resembles a typical second-order
phase transition behavior at finite temperature. This peculiar
behavior drew attention to a more careful study, as consid-
ered in Ref. [1]. In Ref. [2], an additional discussion of
the above phenomenology focused in the behavior of the
correlation function for arbitrarily distant spins around the
pseudo-transition. Similar pseudo-transitions were shown to
take place in the Ising-Heisenberg diamond chain [3,4] and
even in the pure Ising diamond chain [5]. It also has been
explored in the one-dimensional double-tetrahedral model
where the nodal sites are occupied by localized Ising spins
and alternate with a pair of delocalized mobile electrons
within a triangular plaquette [6]. Similarly, the ladder model
with alternating Ising-Heisenberg coupling [7] as well as
the triangular tube model with Ising-Heisenberg coupling
[8] depict pseudo-transition signatures. A universal char-
acter of preasymptotic pseudo-critical exponents has been
demonstrated [9,10]. These pseudo-transitions taking place at
finite temperatures in one-dimensional model systems with

short-range interactions are of a distinct nature from the true
phase-transition exhibited in the presence of long-range cou-
plings for which the correlation length diverges, but, e.g., the
specific heat can be without divergence [11]. In all the above
model systems presenting a pseudo-transition at finite tem-
perature, one of the couplings was assumed to be Ising-like in
order to allow for the exact calculation of the thermodynamic
quantities. Examples of pseudo-transitions taking place in
one-dimensional systems of interacting electrons without the
assumption of an Ising-like nature of relevant couplings are
still missing.

The Hubbard model is one of the simplest models that
describe more accurately strongly interacting electron sys-
tems, which have attracted a great deal of interest over the
past decades related to the possible emergence of geomet-
rical frustration properties [12,13]. Magnetic frustration in
highly correlated electron models arises due to the geomet-
ric structure of the lattice, which induces system failures
to satisfy simultaneously conflicting local requirements. The
geometric frustration of the Hubbard model has been exten-
sively studied, particularly, in the diamond chain structure
as considered by Derzhko and co-workers [14–16] where
frustration for a particular class of lattice was discussed.
Montenegro-Filho and Coutinho-Filho [17] also considered
the doped AB2 Hubbard chain both in the weak coupling and
in the infinite-U limit (atomic limit) where quite interesting
phases were identified as a function of hole doping away
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from the half-filled band as well as 1/3-plateau magnetiza-
tion, Kosterlitz-Thouless transition, and Luttinger liquid [18].
Furthermore, Gulacsi et al. [19] also discussed the diamond
Hubbard chain in a magnetic field and a wide range of prop-
erties, such as flatband ferromagnetism, correlation-induced
metallic, and half-metallic processes. The thermodynamics of
the Hubbard model on a diamond chain in the atomic limit
was discussed in Ref. [20]. Furthermore, frustrated quantum
Heisenberg double-tetrahedral and octahedral chains at high
magnetic fields was discussed in Ref. [21]. Fermionic entan-
glement due to spin frustration was investigated in the hybrid
diamond chain with localized Ising spins and mobile electrons
[22].

On the other hand, generally rigorous analysis of the Hub-
bard model is a challenging task. Only in a particular case
it is possible to obtain exact results [23]. Earlier in the 1970s,
Beni and Pincus [24] focused in the one-dimensional Hubbard
model. Later Mancini [25] and Mancini and Mancini [26]
discussed several additional properties of the extended one-
dimensional Hubbard model in the atomic limit, obtaining
the chemical potentials plateaus of the particle density as a
function of the on-site Coulomb potential at zero temperature.
Earlier, the spinless versions of the Hubbard model on the
diamond chain also was investigated [27] as well as Lopes
and Dias [28] performed a detailed investigation using the
exact diagonalization approach. The Ising-Hubbard diamond
chain has been investigated in Ref. [29]. In addition, experi-
mental data regarding the 1/3 magnetization plateau in azurite
[30,31] were reproduced in several theoretical model systems,
such as the Ising-Heisenberg diamond chain [32–34]. The
quantum block-block entanglement was investigated in the
one-dimensional extended Hubbard model by exact diagonal-
ization [35]. When the absolute value of the nearest-neighbor
Coulomb interaction becomes small, the effects of the hop-
ping term and the on-site interaction cannot be neglected.
The experimental observation of the double peaks both in
the magnetic susceptibility and specific heat [36–38] can
be described accurately by the extended Hubbard diamond
chain model without the hopping of electrons or holes be-
tween the nodal sites. The interplay between interactions and
magnetic flux in the electronic properties of two-body and
many-body Hubbard diamond chains were also investigated
showing a diversity of unconventional physical properties
[19,39,40].

From an experimental point of view, the diamond
chain structure is also motivating. Recently, the com-
pound Cu3(CH3COO)4(OH)5 · 5H2O has been synthesized
[41], which exhibits a unique one-dimensional diamond
chain structure. The well known natural mineral azurite
Cu3(CO3)2(OH)2 [37] is also well represented by a similar di-
amond chain geometry. These and similar compounds would
be ideal physical systems on which pseudotransitions at finite
temperature could be searched.

Here, we advance in the study of pseudo-phase-transitions
in quasi one-dimensional systems by presenting a detailed
exact study of the thermodynamic properties of the diamond
chain Hubbard model in the atomic limit. The present article
is organized as follows: In Sec. II, we revisit the extended
Hubbard model on the diamond chain structure [20] with

FIG. 1. Schematic of the extended Hubbard model on the dia-
mond chain. The on-site Coulomb repulsion interaction is denoted
by U , and nearest-neighbor repulsion interaction is represented by V
and V1, t stands for the electron hopping term.

nodal sites considered in the atomic limit. In Sec. III we
present our main findings where we focus in the existence
of a pseudo-critical temperature by exploring the behavior of
the correlation length. In Sec. IV (Sec. V) we analyze first
(second) derivative physical quantities in the vicinity of the
pseudo-transition. Finally, Sec. VI is devoted to our conclu-
sions and perspectives.

II. THE EXTENDED HUBBARD MODEL

In this section, we revisit the model considered in Ref. [20].
Some results that will be used in the following section are
updated and summarized. The model illustrated in Fig. 1,
consider the hopping term t between sites a and b. Addi-
tionally, there is an on-site Coulomb repulsion interaction U
and nearest-neighbor repulsion interaction V between a and b,
whereas V1 corresponds the coupling between of nodal sites c
with sites a and b (as labeled in the last block of Fig. 1). We
also assume that this model has an arbitrary particle density.
Thus, the system will be described by including a chemical
potential denoted by μ. The Hamiltonian of the proposed
model can be expressed by

H =
N∑

i=1

H i,i+1, (1)

with N being the number of unit cells (sites a–c), and H i,i+1

is given by

H i,i+1 = −t
∑

σ=↓,↑
(a†

i,σ bi,σ + b†
i,σ ai,σ ) − μ

(
na

i + nb
i + nc

i

)

+U
(
na

i,↑na
i,↓ + nb

i,↑nb
i,↓ + nc

i,↑nc
i,↓

)
+V na

i nb
i + V1

(
na

i + nb
i

)(
nc

i + nc
i+1

)
, (2)

with ai,σ , and bi,σ (a†
i,σ and b†

i,σ ) being the Fermi annihilation
(creation) operators for electrons, whereas σ stands for the
electron spin and nα

i,σ stands for the number operator with
α = {a, b, c}. Using this number operator, we also define con-
veniently the following operators nα

i = nα
i,↑ + nα

i,↓.
In order to contract and to symmetrize the Hamiltonian (2),

we can define properly the following operators:

pi,i+1 = 1
2

(
nc

i + nc
i+1

)
,

qi,i+1 = 1
2

(
nc

i,↑nc
i,↓ + nc

i+1,↑nc
i+1,↓

)
. (3)
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TABLE I. The first column means the number of particles in dimer plaquette, the second column describes the dimer plaquette magne-
tization, the third column reports the eigenvalues, whereas the fourth column corresponds to the eigenvalues degeneracy. The fifth column
corresponds to the eigenvectors of dimer plaquette. Here Dm = −(μ − 2V1 pi,i+1)m − μpi,i+1 + Uqi,i+1 and cot (2θ ) = U−V

4t .

m Mab Eigenvalues g Eigenvectors

0 0 λ0,0 = D0, 1 |S00〉 = |0
0
〉

1 0.5 λ
(±)
0,σ = D1 ± t 2

2
|S(±)

0σ 〉 = 1√
2
(|0

σ
〉 ∓ |σ

0
〉)

2 1 λσ,σ = D2 + V 2 |Sσσ 〉 = |σ
σ
〉

0 λ
(1)
0, � = D2 + U 1 |S(1)

0, �

〉 = 1√
2
(| �

0
〉 − |0

�

〉)

0 λ
(+)
�� = D2 + V + 2t cot(θ ) 1 |S(+)

�� 〉 = 1√
2
{cos(θ )(| �

0
〉 + |0

�

〉) − sin(θ )(|↑↓〉 + |↓↑〉)}
0 λ

(−)
�� = D2 + V − 2t tan(θ ) 1 |S(−)

�� 〉 = 1√
2
{sin(θ )(| �

0
〉 + |0

�

〉) + cos(θ )(|↑↓〉 + |↓↑〉)}
0 λ

(2)
↓,↑ = D2 + V 1 |S(2)

↓,↑〉 = 1√
2
(|↑↓〉 − |↓↑〉)

3 0.5 λ
(±)

�,σ = D3 + U + 2V ± t 2
2

|S(±)

�,σ
〉 = 1√

2
(| �

σ
〉 ∓ |σ

�

〉)

4 0 λ �, � = D4 + 2U + 4V 1 |S �, �〉 = | �
�

〉

Using these operators, we can rewrite the Hamiltonian (2),
which becomes as follows:

H i,i+1 = −t
∑

σ=↓,↑
(a†

i,σ bi,σ + b†
i,σ ai,σ ) − μpi,i+1

− (μ − 2V1 pi,i+1)
(
na

i + nb
i

) + V na
i nb

i

+U
(
na

i,↑na
i,↓ + nb

i,↑nb
i,↓

) + Uqi,i+1. (4)

It is worth mentioning that this model already was investi-
gated in Ref. [20] for an arbitrary number of electrons. Here
we consider in each site the following basis {0,↑,↓, �}.

The eigenvalues and eigenvectors of the dimer plaquette
are summarized in Table I, which are valid, in general, for
arbitrary values of the Hamiltonian (1) parameters.

It is worth mentioning that all analyses performed through-
out this paper will be performed in the thermodynamic limit.
Finite size effects can be evaluated in a similar way to that put
forward in Ref. [42].

A. Phase diagram

In order to analyze some relevant features, we will focus
on the more interesting case when the particle-hole symmetry
is satisfied which follows the restriction V1 = V/2. Under this
condition, for instance, we can analyze the half-filled band
case, which occurs under the following restriction for the
chemical potential μ = U/2 + 2V .

It is worthy to mention that, the Hamiltonian (2), has
64 eigenvalues per diamond plaquette. The zero temperature
phase diagram analysis was already discussed in Ref. [20].
Below we just give some ground-state energies relevant to the
following analysis of the pseudo-transition features. In what
follows, we will consider all energies in units of U .

Figure 2(a) illustrates the zero temperature phase diagram
on the plane t-μ for fixed V/U = 0.1 and 0 < μ/U < 0.3.
There is a phase corresponding to a dimer antiferromagnetic

FIG. 2. Zero temperature phase diagram on the plane t-μ, as-
suming fixed V/U = 0.1. (a) Shows the region of μ/U values where
ρ = 2/3 phases appear; (b) the range of μ/U values where ρ = 4/3
phases appear.
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(AFM2) state,

|AFM2〉 =
N∏

i=1

∣∣S(−)
��

〉|0〉. (5)

In this case, there are two electrons with opposite spins in the
dimer sites, whereas nodal sites are empty. Thus, the electron
density per unit cell is ρ = 2/3. The corresponding eigenvalue
is given by

EAFM2 = −2μ + V − 2t tan(θ ). (6)

There is also a phase corresponding to a dimer and nodal
frustrated (FRU2) state,

|FRU2〉 =
N∏

i=1

1√
2

(∣∣∣∣0
σi

〉
−

∣∣∣∣σi

0

〉)
|τi〉. (7)

This state also has two electrons: One electron is in a dimer
site whereas the other occupies a nodal site both with arbitrary
spin orientation. The electron density ρ = 2/3. The corre-
sponding residual entropy in units of kB is S = ln(4), whereas
the ground-state energy becomes

EFRU2 = −2μ − t + V. (8)

The vertical red line corresponds to tc = (U − V )/3 =
0.3U . We will focus in this phase boundary between |AFM2〉
and |FRU2〉. The corresponding interface residual entropy is
S = kB ln(4), as we will verify ahead.

Other surrounding states in the phase diagram are as
follows:

|FRU1〉 =
N∏

i=1

1√
2

(∣∣∣∣σ0
〉
−

∣∣∣∣0
σ

〉)
|0〉, (9)

with n = 1 particle per unit cell and electron density ρ = 1/3,

|FRU3〉 =
N∏

i=1

1√
2

(∣∣∣∣ �

0

〉
−

∣∣∣∣0 �

〉)
|τi〉, (10)

with n = 3 electrons per unit cell or ρ = 1. The residual
entropy in the frustrated phases (9) and (10) is given by
S = kB ln(2).

Similarly, in Fig. 2(b) we show the phase diagram for the
same set of fixed parameters but in the range 1.1 < μ/U <

1.4 where ρ = 4/3 phases appear.
In this region we observe also another dimer antiferromag-

netic (AFM4) state given by

|AFM4〉 =
N∏

i=1

∣∣S(−)
��

〉| �〉, (11)

where two electrons with opposite spins are located in the
dimer sites, and the other pair of electrons is located in the
nodal site. The respective ground-state energy becomes

EAFM4 = −4μ + 5V + U − 2t tan(θ ). (12)

There is also a dimer and nodal frustrated state (FRU4),

|FRU4〉 =
N∏

i=1

1√
2

(∣∣∣∣ �

σi

〉
−

∣∣∣∣σi

�

〉)
|τi〉, (13)

with corresponding ground-state energy,

EFRU4 = −4μ − t + 5V + U, (14)

and electron density ρ = 4/3.
The vertical red line corresponds to t = (U − V )/3 =

0.3U which gives the phase boundary between |AFM4〉 and
|FRU4〉 on which the residual entropy is S = kB ln(4) as we
will verify ahead.

The additional phase states illustrated in this diagram is
composed by n = 5,

|FRU5〉 =
N∏

i=1

1√
2

(∣∣∣∣ �

σi

〉
−

∣∣∣∣σi

�

〉)
| �〉, (15)

with ρ = 5/3. This frustrated phase has residual entropy S =
kB ln(2).

Further details of the ground-state phase diagrams can be
found in Ref. [20]. Pseudo-transitions are identified in the
close vicinity of the AFM2 − FRU2 and the AFM4 − FRU4

phase boundaries.

B. Thermodynamics

In order to use the decoration transformation approach, we
need to write the sum of the Boltzmann factors connecting
the nodal sites i and i + 1 with each possible occupation
configuration for the extended Hubbard model on the diamond
chain. These can be written as follows:

wnc
i ,n

c
i+1

= e−βD0 + 4(e−βD1 + e−β(D3+U+2V ) ) cosh(βt )

+ e−βD2 (e−βU + 3e−βV ) + e−β(D4+2U+4V )

+ e−β(D2+V )(e−βϑ+t/2 + e−βϑ−t/2), (16)

with β = 1/kBT and

Dm = −(μ − V pi,i+1)m − μpi,i+1 + Uqi,i+1. (17)

Here, ϑ± is defined by

ϑ± = U − V ±
√

(U − V )2 + 16t2

t
. (18)

To solve the effective Hubbard model with up to four-body
coupling, we can use the transfer matrix method [43], sim-
ilar to that used in Refs. [24,27]. Therefore, the symmetric
Hamiltonian by exchanging i → i + 1 and i + 1 → i leads to
a symmetric transfer matrix which can be expressed by

W =

⎡
⎢⎣

w0,0 w0,1 w0,1 w0,2

w0,1 w1,1 w1,1 w1,2

w0,1 w1,1 w1,1 w1,2

w0,2 w1,2 w1,2 w2,2

⎤
⎥⎦, (19)

where the elements of W are given by Eq. (15). Let us define
a convenient notation,

w0,0(x) = 1 + 2x

(
1 + x2

z4y2

)(
1

γ 2
+ γ 2

)

+x2

(
3

z2
+ 1

y2
+ 1

yzς
+ ς

yz

)
+ x4

y4z8
, (20)

with x = eβμ, y = e(1/2)βU , z = e(1/2)βV , γ = e(1/2)βt , and

ς = e(1/2)β
√

(U−V )2+16t2
. All other Boltzmann factors could be
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TABLE II. Cubic root solutions are tabulated in decreasing order
by intervals in φ.

φ Largest Second largest Lowest

〈0, π〉 �0 �1 �2

〈π, 2π〉 �1 �0 �2

〈2π, 3π〉 �1 �2 �0

〈3π, 4π〉 �2 �1 �0

〈4π, 5π〉 �2 �0 �1

〈5π, 6π〉 �0 �2 �1

expressed in terms of w0,0(x) defined by Eq. (20) as follows:

wn1,n2 (x) = x(n1+n2 )/2

y
n1/2�+
n2/2� w0,0

( x

zn1+n2

)
, (21)

by 
· · · � we mean the floor function for any real number.
In order to carry out a reduced transfer matrix, we use

the symmetry of the system. The proposed Hamiltonian is
invariant with respect to electron spin orientation in nodal sites
(site c). Therefore, the reduced transfer matrix becomes

V =
⎡
⎣ w0,0

√
2 w0,1 w0,2√

2 w0,1 2 w1,1

√
2 w1,2

w0,2

√
2 w1,2 w2,2

⎤
⎦. (22)

The determinant of the reduced transfer matrix becomes a
cubic equation of the form

det(V − �) = (�3 + a3�
2 + a2� + a1) = 0, (23)

where the coefficients become

a1 = 2w0,0w
2
1,2 + 2w2

0,2w1,1 + 2w2
0,1w2,2

−2w0,0w1,1w2,2 − 4w0,2w0,1w1,2,

a2 = 2w0,0w1,1 + 2w1,1w2,2 + w0,0w2,2

−2w2
0,1 − w2

0,2 − 2w2
1,2, (24)

a3 = −w0,0 − 2w1,1 − w2,2.

Consequently, the roots of the algebraic cubic equation
may be expressed as follows:

� j = 2
√

Q cos

(
φ − 2π j

3

)
− 1

3
a3, j = {0, 1, 2},

(25)
with

φ = arccos

(
R√
Q3

)
, (26)

Q = a2
3 − 3a2

9
, (27)

R = 9a2a3 − 27a1 − 2a3
3

54
. (28)

It is verified that Q > 0 in Appendix A, which implies that all
three roots must be different and real. We also analyze which
eigenvalues must be the largest and the lowest one. So, it is
enough to restrict 0 < φ < π in the cubic solution without
losing its general solution as discussed in Appendix A. Other
intervals just exchange the cubic root solutions as illustrated

in Table II. In the interval 0 < φ < π , the eigenvalues are
ordered as �0 > �1 > �2.

III. PSEUDO-CRITICAL TEMPERATURE

In this section we will analyze the anomalous thermo-
dynamic property of the present extended diamond chain
Hubbard model in the atomic limit [20]. In order to study the
thermodynamic properties, we will use the exact free energy
f = − 1

β
ln(�0) as a starting point. Therefore, we will proceed

our discussion of thermodynamic properties as a function of
temperature and chemical potential. Particularly, we will ana-
lyze entropy, internal energy, correlation length, specific heat,
electron density, and isothermal compressibility. We aim to
study physical quantities around the pseudo-critical tempera-
ture Tp. We stress that the present definition of pseudo-critical
is different from that defined by Saito [44] to describe the
critical-like behavior in approaching the spinodal point near
the first-order transition. Therefore, by using a perturbation
approach, we can find the eigenvalues of transfer matrix (22),
as discussed in Appendix B.

In general, pseudo-transitions can be manipulated and
analyzed using perturbation techniques as detailed in Ap-
pendix B. For this purpose, we consider as unperturbed matrix
V0 defined in Appendix Eq. (B1). The eigenvalues of the
matrix (B1), are given by (B2)–(B4) where we can observe
the largest and second-largest eigenvalues are given by (B2)
and (B3), respectively.

In the low temperature region we have the condition
w0,2 � {w0,0,w1,1,w2,2}. This is so because each matrix
element results from the sum of the Boltzmann factors cor-
responding to all eigenstates of the unit cell with a specific
configuration of the nodal sites. Therefore, the leading term
of w0,2 comes from the lowest energy contribution to w0,2 that
includes only excited states, namely, Ee, whereas the leading
terms of w0,0, w1,1, and w2,2 are given by the corresponding
ground states within each specific nodal sites configuration.
Therefore, in the low temperature regime and physical pa-
rameters close to the ground-state boundary line between
the AFM2 and the FRU2 phases w0,2/w0,0 ∝ e−(Ee−EAFM2 )/kBT

and w0,2/w1,1 ∝ e−(Ee−EFRU2 )/kBT become exponentially small.
Similar relations hold among w0,2, w1,1, and w2,2 in the
close vicinity of the AFM4 − FRU4 ground-state boundary
line.

When (B2) and (B3) become eventually equal, we can get
a pseudo-critical temperature from (B5), which reads

u(0)
0 = u(0)

1 . (29)

Similar as discussed in Ref. [1], the relation (29) can induce
us to believe that there is a true phase-transition at finite tem-
perature. However, the condition (29) does not mean that the
transfer matrix eigenvalues satisfy �0 = �1: The condition
(29) is satisfied only when the matrix (B8) is ignored and for
w0,2 = 0. Therefore, the first-order perturbative corrections
[see Eqs. (B9) and (B11)] are u(1)

0 > 0 and u(1)
1 < 0, which

implies that the approximate solution given in (B12) must
satisfy �0 > �1.

042123-5



ONOFRE ROJAS et al. PHYSICAL REVIEW E 103, 042123 (2021)

Returning to the relation (29), we get the following
equation:

w0,0 = 2w1,1 for w0,0 > w2,2, (30)

and this one corresponds to the vicinity of the boundary line
between AFM2 and FRU2.

The asymptotic behavior of Tp as the hopping parameter
t approaches the critical value tc = (U − V )/3 (the boundary
between the AFM2 and the FRU2 phases) can be analytically
demonstrated by noting that, in the low temperature regime,
these two possible ground states give the dominant contribu-
tions to the sum of Boltzmann factors on w0,0 and w1,1. It is
important to stress that, whereas there is a single AFM2 state,
the FRU2 state is degenerated. Therefore, at low temperatures,
Eq. (30) defining the pseudo-critical temperature assumes the
asymptotic form

e−EAFM2 /kBTp = 4e−EFRU2 /kBTp, (31)

from which we have kBTp = �E/ ln 4 where �E = EFRU2 −
EFRU4 = 2t tan θ − t with cot 2θ = (U − V )/4t (see
Table I). For hopping amplitudes t in the close vicinity
of the boundary line separating these two ground states
[given by tan θc = 1/2 or, equivalently, tan 2θc = 4/3
or tc = (U − V )/3], the first-order contribution in
(t − tc) to the energy gap can be shown to be given by
�E = (3/5)(t − tc) [for this we considered tan 2θ =
4/3 + 4(t − tc)/3tc which, up to first order, corresponds
to tan θ = 1/2 + 3(t − tc)/10tc]. According to the above
lines, the pseudo-critical temperature is found to decrease as

kBTp = 3(t − tc)/10 ln 2, (32)

when t approaches tc from above.
Similarly, the relation (29) leads to the following equation:

w2,2 = 2w1,1 for w0,0 < w2,2, (33)

which holds in the close vicinity of the FRU4 − AFM4 bound-
ary line. The asymptotic behavior of Tp in this regime assumes
the same expression derived above.

In Fig. 3(a), we illustrate the pseudo-critical temperature
Tp as a function of chemical potential μ. The continuous
line corresponds to the pseudo-transition that occurs at low
chemical potentials for which there are nearly two electrons
per unit cell (near the boundary between AFM2 and FRU2

phases). The dashed line accounts for the second pseudo-
transition appearing at larger chemical potential for which
there are four electrons per unit cell in the ground state (near
the boundary between AFM4 and FRU4 phases). In this lat-
ter case, the chemical potential was conveniently shifted to
(μ − V − U )/U = μ/U − 1.1 (top scale) to allow represent-
ing both pseudo-transitions in the same frame.

In panel (b) the pseudo-critical temperatures Tp as a func-
tion of t/U for μ/U = 0.18 (solid red line) and μ/U = 1.28
(dashed blue line) are reported. The pseudo-critical temper-
ature vanishes linearly Tp ∝ (t − tc) as the boundary line
tc = (U − V )/3 is approached from above, i.e., within one
of the AFM ground states. The dashed-dot line corresponds
to the asymptotic analytical expression Eq. (32), in perfect
agreement with the numerical data.

FIG. 3. (a) Pseudo-critical temperature Tp for fixed parameters
t/U = 0.303 and V/U = 0.1 near AFM2 and FRU2 phase bound-
aries (solid line) and near the AFM4 and FRU4 phase boundaries
(dashed line). In the latter the chemical potential was shifted to
(μ − U − V )/U = μ/U − 1.1 with values shown on the top scale.
(b) Pseudo-critical temperature Tp× as a function of t/U for μ/U =
0.18 (solid red line) and μ/U = 1.28 (dashed blue line). The dashed-
dot line corresponds to the analytic asymptotic behavior Eq. (32).

A. Correlation length

Since the eigenvalues are nondegenerate, the correlation
length ξ can be obtained by using the largest �0 and second
largest �1 eigenvalues given from (25). It is simply written as

ξ =
[

ln

(
�0

�1

)]−1

. (34)

In Fig. 4 we illustrate the correlation length as a function of
temperature. Panel (a) reports data for several values of t/U
and assuming fixed μ/U = 0.18 and V/U = 0.1. Here we ob-
serve how the peak becomes more pronounced when t → tc =
(U − V )/3 = 0.3U (approaching the FRU2 − AFM2 ground-
state phase boundary). For larger t the height of the peak
becomes lower and broader. For t/U = 0.303 we already
observe a strong peak around Tp, which was computed with
high precision to be kBTp/U = 1.304 618 413 6496 × 10−3.
Similarly, panel (b) reports for the same parameters set used in
(a) but for μ/U = 1.28 (in the vicinity of the FRU4 − AFM4

phase boundary).
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FIG. 4. Correlation length as a function of temperature on the
logarithmic scale for V/U = 0.1. (a) For several values of t and fixed
μ/U = 0.18 (in the vicinity of the FRU2 − AFM2 phase boundary).
(b) For several values of t and fixed μ/U = 1.28 (in the vicinity of
the FRU4 − AFM4 phase boundary).

There are two situations where pseudo-transition occurs.
The first one satisfies the condition w0,0 ∼ 2w1,1 but in
the perturbation regime for which 8w2

0,1 � (w0,0 − 2w1,1)2.
Under this condition, we have the following result:

�0

�1
→

{
w0,0

2w1,1
, w0,0 > 2w1,1,

2w1,1

w0,0
, w0,0 < 2w1,1.

(35)

Consequently, in the regime where the perturbation ap-
proach stands, the correlation length in the close vicinity of
the pseudo-critical temperature can be expressed by

ξ0(τ ) = c0,ξ |τ |−1 + O(τ 0). (36)

Here τ = (T − Tp)/Tp, and the coefficient is given by

c0,ξ = w̃0,0

Tpṽ0
, (37)

with w̃0,0 is w0,0 evaluated at T = Tp, and

ṽ0 =
∣∣∣∣∂ (w0,0 − 2w1,1)

∂T

∣∣∣∣
Tp

. (38)

Note that w0,0(Tp) remains finite at Tp �= 0 because it is the
sum of positive Boltzmann factors. Furthermore, whereas
w0,0 − 2w1,1 = 0 at Tp, its derivative is non-null. Therefore,
the coefficient c0,ξ remains finite at Tp as confirmed numeri-
cally.

Similarly, the second pseudo-transition occurs when
w2,2 ∼ 2w1,1 but in the perturbation regime 8w2

1,2 � (w2,2 −
2w1,1)2, that provides us,

�0

�1
→

{
w2,2

2w1,1
, w2,2 > 2w1,1,

2w1,1

w2,2
, w2,2 < 2w1,1.

(39)

Analogously, the correlation length close to the pseudo-
transition, can be expressed around Tp, resulting in

ξ2(τ ) = c2,ξ |τ |−1 + O(τ 0), (40)

where the coefficient is given by

c2,ξ = w̃2,2

Tpṽ2
, (41)

with w̃2,2 evaluated at T = Tp, and

ṽ2 =
∣∣∣∣∂ (w2,2 − 2w1,1)

∂T

∣∣∣∣
Tp

. (42)

c2,ξ is also predicted to remain finite at Tp as confirmed nu-
merically. These preasymptotic power laws fail for very small
τ because the perturbation conditions cannot be satisfied at
Tp. Therefore, the correlation length actually depicts a pro-
nounced peak and not a true divergence.

In Fig. 5(a) the correlation length is depicted as a func-
tion of τ on the logarithmic scale, assuming fixed parameters
V/U = 0.1, t/U = 0.303, and μ/U = 0.18. The solid curve
represents τ > 0 (T > Tp) whereas the dashed curve de-
notes τ < 0 (T < Tp). The straight dashed-dot line reports
the asymptotic limit ξ ∝ |τ |−1 where we observe clearly the
critical exponent ν = 1 in the pseudo-critical regime. Note
that when T is very close to Tp the power-law critical ex-
ponent fails, evidencing the ultimate nonsingular behavior of
the thermodynamic quantities. A similar plot is depicted in
Fig. 5(b), assuming the same set of parameters but for chem-
ical potential μ/U = 1.28. Here again we observe manifestly
the critical exponents ν = 1. Note that the power-law behavior
holds for nearly two decades.

In order to have a clear picture of the range of temperatures
around Tp on which the pseudo-critical regime holds, we
can estimate crossover boundaries between the nonsingular
and power-law regimes as well as between the power-law
regimes and the low and high temperature ones. The non-
singular regime in the close vicinity of Tp emerges as the
perturbation analysis fails. In the vicinity of the FRU2 −
AFM2 ground-state transition, crossover lines can be built us-
ing 8w2

0,1 = (w0,0 − 2w1,1)2, which separates the perturbative
from the nonperturbative regimes. A similar crossover line can
be written in the vicinity of the FRU4 − AFM4 ground-state
transition [8w2

1,2 = (w2,2 − 2w1,1)2]. The power-law regime
holds whereas the correlation length remains much larger than
the lattice spacement. We will consider that crossover lines
from the power law to the low and high temperature regimes
satisfies ξ = 10. Equations (34) and (35) can be used to draw
the respective crossover lines.
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FIG. 5. Correlation length as a function of τ for fixed parameters
V/U = 0.1, t/U = 0.303. The red line corresponds for τ > 0 (T >

Tp), and the dashed blue line denotes τ < 0 (T < Tp), whereas
the straight dashed-dot line reports ξ ∝ |τ |−1. (a) For μ/U = 0.18.
(b) For μ/U = 1.28.

In Fig. 6 we show the above crossover lines as a func-
tion the hopping parameter t in the close vicinities of the
FRU2 − AFM2 and FRU4 − AFM4 boundary lines for an il-
lustrative set of the other Hamiltonian parameters. First note
that the width of the nonsingular regime decreases quite fast
as one approaches tc = (U − V )/3. Although the pseudo-
transition temperature Tp decreases linearly, the nonsingular
temperature range decays much faster.

One can determine how the range of the nonsingular
regime decreases as t approaches tc by recalling that only
specific Boltzmann factors contribute to w0,0, w1,1, and w0,1.
The difference |w0,0 − 2w1,1| vanishes at Tp. Up to first order,
it grows linearly with |�T |/Tp = |T − Tp|/Tpwith the domi-
nant contribution being

|w0,0 − 2w1,1| ∝ (|�T |/Tp)e−EAFM2 /kBTp . (43)

w0,1 does not have contributions coming from neither of the
ground states. At low temperatures, the dominant contribu-
tion for w0,1 comes from the closest excited state giving
w0,1 = e−Ee/kBT with Ee being the energy of the lowest excited
state. Therefore, for temperatures close to Tp, the crossover
line between the nonsingular and the pseudo-critical regimes
will satisfy |�T |/Tp ∝ e−(Ee−EAFM2 )/kBTp . Recalling that Tp ∝

FIG. 6. Distinct temperature regimes as a function of the hop-
ping parameter t in the close vicinity of the (a) FRU2 − AFM2 and
(b) FRU4 − AFM4 ground-state transitions. Here we used V/U =
0.1, (a) μ/U = 0.18, and (b) μ/U = 1.28. The nonsingular regime
becomes exponentially narrow as t → tc = (U − V )/3 = 0.3U [see
Eq. (44)]. The power-law regime holds for τ = (T − Tp)/Tp on the
order of a few percent in the close vicinity of tc. It dies away far
from tc when the perturbation and large correlation length conditions
become incompatible.

(t − tc), the width of the nonsingular regime is found to decay
as

|�T |/Tp ∝ e−a/(t−tc ), (44)

with a being a constant at tc that depends of the energy gap
between the ground state and the first excited state with the
nodal sites having distinct occupation numbers. The above
asymptotic relation for the size of the nonsingular regime
agrees with the numerical data.

The nonsingular regime widens as one departs from tc.
On the other hand, the crossover lines to the high and low
temperature regimes are weakly dependent on t . Therefore,
in the close vicinity of tc, the power-law regime extends
over a temperature range on the order of a few percent
of Tp. The crossover lines delimiting the nonsingular and
the high and low temperature regimes eventually meet. Af-
ter this point, no preasymptotic power-law regime can be
identified.
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FIG. 7. Density plot of entropy on the plane t-μ, assuming fixed
V/U = 0.1 and kBT/U = 0.005. (a) For μ/U = [0, 0.3]. (b) For
μ/U = [1.1, 1.4].

IV. FIRST-ORDER-LIKE PSEUDO-TRANSITION

It is interesting to analyze some physical quantities, which
are obtained as a first derivative of the free energy and exhibit
an almost steplike behavior.

A. Entropy

In Fig. 7(a) we illustrate the density plot of entropy
(S = − ∂ f

∂T ) on the plane t-μ for fixed parameters V = 0.1
and kBT/U = 0.005 for μ/U = [0, 0.3]. This plot is de-
picted on the same scale of the phase diagram illustrated in
Fig. 2(a). We definitely observe a pseudo-transition in the
boundary of quasiantiferromagnetic (qAFM2) and quasifrus-
trated (qFRU2) phases characterized by a sharp boundary,
whereas electron density remains constant ρ = 2/3. The re-
gions are mostly governed by the zero temperature phases
but due to thermal fluctuations the zero temperature phases
become quasilong ranged because of the lack of actual spon-
taneous long-range order at any finite temperature. A similar
density plot is illustrated in Fig. 7(b), assuming the same
parameters but in the interval of μ/U = [1.1, 1.4]. We can
observe a steep entropy change in the boundary between the
qAFM4 and qFRU4 phases where the electron density ρ =
4/3 per cell remains unaltered.

FIG. 8. (a) Entropy as a function of temperature on the semilog-
arithmic scale for fixed t/U = 0.303, μ/U = 0.18, and V/U = 0.1.
(b) Internal energy as a function of temperature on the semilogarith-
mic scale for fixed t/U = 0.303, μ/U = 0.12, and V/U = 0.1.

In Fig. 8(a) we report the magnitude of entropy as a
function of temperature on the semilogarithmic scale, assum-
ing fixed parameters t/U = 0.303, μ/U = 0.18, V/U =
0.1. Clearly one can observe a near step behavior at kBTp/U �
1.3 × 10−3. For temperatures below Tp the entropy is almost
null, which corresponds to the quasiantiferromagnetic phase
(qAFM2). On the other hand, the entropy has a plateau region
(qFRU2) with S0 = kB ln(4) for T > Tp. As the temperature
is further increased, the entropy behaves, such as in standard
models. Therefore, we observe a strong continuous change in
entropy around the pseudo-transition, which typically resem-
bles a discontinuous (first-order) phase-transition. However,
we stress that it remains analytical at Tp.

B. Internal energy

The other quantity we discuss here is the internal energy
u(T ) = TS + f , which can also be obtained after a first
derivative of the free energy.

In Fig. 8(b), the internal energy as a function of temper-
ature in semilogarithmic scale is depicted for fixed t/U =
0.303, μ/U = 0.18, and V/U = 0.1. Internal energy is con-
tinuous as a function of temperature, although it also shows
a steep variation around the pseudo-critical temperature Tp.
For temperatures below Tp, the internal energy leads to
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FIG. 9. Electron density as a function of temperature on the
semilogarithmic scale for fixed t/U = 0.303 and V/U = 0.1. (a) For
μ/U = 0.12. (b) Zooming panel (a) around Tp. (c) For μ/U = 1.28.
(d) Zooming panel (c) around Tp.

u/U = −0.5648, which corresponds to the AFM2 ground-
state energy EAFM2 . For T > Tp, the internal energy is mostly
dominated by the FRU2 ground-state energy EFRU2/U =
−0.563.

C. The electron density

Another important quantity we explore is the thermal aver-
age electron density ρ = −( ∂ f

∂μ
) per unit cell.

In Fig. 9 the electron density as function of temperature
is reported on the semilogarithmic scale for fixed t/U =
0.303, V/U = 0.1, and μ/U = 0.12. At low temperatures,
the electron density remains almost constant ρ = 2/3, up to
roughly around kBT/U ∼ 0.01, and then the electron density
decreases to 3ρ ≈ 1.80, and for higher temperature the elec-
tron density increases with temperature (for further details see
Ref. [20]). Therefore, apparently no pseudo-critical behavior
at Tp is evidenced in ρ. In Fig. 9(b) we plot the electron
density as a function of temperature around pseudo-critical
temperature. We observe a tiny depression at Tp reminiscent
of the pseudo-transition due to thermal excitations to states
with a single electron per unit cell (see the phase diagram).

Similarly, the electron density is depicted in Fig. 9(c) as
function of temperature on the semilogarithmic scale, assum-
ing same set of parameters, but for μ/U = 1.28. Once again
electron density remains almost constant ρ = 4/3 for temper-
atures below kBT/U ∼ 0.01, whereas for higher temperatures
there is a peak reaching ρ ≈ 4.20. In Fig. 9(d) we present
a zooming plot of panel (c) around the pseudo-critical tem-
perature where a tiny peak reminiscent of the pseudo-critical
temperature is also present, reflecting thermal excitations to
states with five electrons per unit cell (see the phase diagram).
Surely we cannot expect any strong change in the electron
density around Tp because the two competing ground states
have equivalent electron densities.

FIG. 10. Specific heat as a function of temperature on the loga-
rithmic scale for V/U = 0.1. (a) For several values of t and μ/U =
0.18 (in the vicinity of the FRU2 − AFM2 phase boundary). The
inset: zooming around Tp. (b) For several values of t and μ/U = 1.28
(in the vicinity of the FRU4 − AFM4 phase boundary).

V. SECOND-ORDER-LIKE PSEUDO-TRANSITION

Now let us turn our attention to the second-order derivative
of the free energy. The following quantities exhibit trends
quite similar to second-order phase-transition. It is important
to reinforce that there is no singularity at Tp but just a rather
sharp peak.

A. The specific heat

In Fig. 10, we display the specific heat C = T ( ∂S
∂T ) as a

function of temperature on the logarithmic scale assuming
fixed V/U = 0.1. In panel (a) we depict for several values of
t and μ/U = 0.18 (close to the FRU2 − AFM2 ground-state
transition). Here we see how the height of the peak increases,
and the peak becomes sharper when t/U → 0.3, whereas for
t larger the height of the peak becomes lower and broader.
At low temperatures, we observe clearly a huge sharp peak
quite similar to a second-order phase-transition divergence
around Tp. However, a zooming look as provided in the inner
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plot around Tp evidences the rounded nature of the peak at
the pseudo-critical temperature. Panel (b) reports the specific
heat for the same set of parameters used in panel (a) but
for μ/U = 1.28 (close to the FRU4 − AFM4 ground-state
phase-transition).

Now let us analyze the nature of the peak around Tp, look-
ing for some critical exponent universality. For this purpose,
we consider the specific heat around pseudo-critical tempera-
ture in the asymptotic limit (but not very close to Tp), which
can be expressed according the discussion in Ref. [9] as

C(τ ) = T

(
∂S
∂τ

)(
∂τ

∂T

)∣∣∣∣∣
Tp

= 2c f τ
−3, (45)

where the coefficient c f is given by

c f =
{
w̃2

0,1c0,ξ , w0,0 ∼ 2w1,1,

w̃2
1,2c2,ξ , w2,2 ∼ 2w1,1.

(46)

Note that these preasymptotic coefficients also remain finite
at Tp according to the same reasoning previously discussed
for the correlation length coefficients, a feature also numeri-
cally confirmed. Therefore, the specific heat has the following
preasymptotic expression when approaching the pseudo-
critical temperature,

C(τ ) ∝ |τ |−α, (47)

with pseudo-critical exponent α = 3. The Hubbard diamond
chain in the atomic limit also satisfies the pseudo-critical
exponent found in Ref. [9]. However, it is worth stressing that
this preasymptotic regime is only valid around the ascending
and descending parts of the peak and surely fails very close to
the peak top where the perturbation condition cannot prevail.

In order to confirm the above result. We report in Fig. 11(a)
the C(τ ) as a function of τ , assuming fixed parameters V/U =
0.1, t/U = 0.303, and μ/U = 0.18 (near the FRU2 − AFM2

phase boundary). The continuous line represents data above
Tp, whereas the dashed line corresponds data below Tp. The
dashed-dot line describes the asymptotic function with critical
exponent α = 3. The straight line with angular coefficient α =
3 fits accurately data over nearly two decades. Very close to
Tp the power-law behavior breaks down, reflecting the actual
analytic behavior of the specific heat. In panel (b) we plot the
specific heat for μ/U = 1.28 (near the FRU4 − AFM4 phase
boundary), showing similar trends.

B. Compressibility

Another interesting quantity to be discussed is the isother-
mal electron compressibility [43] κT = 1

ρ2 ( ∂ρ

∂μ
)
T

as a function
of Hamiltonian parameters, temperature, and electron density.

In Fig. 12(a) the isothermal compressibility is shown as
a function of temperature on the semilogarithmic scale, we
observe a tiny peak at the pseudo-critical temperature. Magni-
fying around the pseudo-critical temperature [see Fig. 12(b)] it
illustrated a double peak with local minimum at Tp. Since the
pseudo-transition results from competing ground states with
the same electron density, we actually cannot expect any giant
peak of the electron compressibility at Tp because that would
result in a pronounced electron density change.

FIG. 11. Logarithmic specific heat as a function of ln(|τ |) for
fixed parameters V/U = 0.1, t/U = 0.303. The solid line corre-
sponds for τ > 0 (T > Tp), and the dashed line denotes τ < 0 (T <

Tp). The straight dashed-dot line reports ξ ∝ |τ |−3. (a) For μ/U =
0.18. (b) For μ/U = 1.28.

VI. SUMMARY AND CONCLUSIONS

To summarize, we considered the extended Hubbard dia-
mond chain restricted to the atomic limit with an arbitrary
number of particles driven by chemical potential. The in-
teraction between the dimer diamond chain and the nodal
couplings are taken in the atomic limit (no hopping), whereas
dimer interaction includes the hopping term. We showed
that this model exhibits a pseudo-transition effect in the low
temperature region. The internal energy and entropy were
shown to change quite abruptly in a very narrow range of
temperatures around the pseudo-transition when the physical
parameters are properly tuned in a close vicinity of spe-
cial ground-state phase-transitions. The correlation length and
specific heat display pronounced peaks with well defined
power laws in a well defined temperature range in the vicinity
of the pseudo-transition point. The pseudo-critical exponents
associated with the correlation length and specific heat were
shown to be ν = 1 and α = 3, respectively. These are the
same pseudo-exponents reported to hold is spin models with
Ising-like interactions, pointing towards a universal behav-
ior of pseudo-transitions [9,10]. We also demonstrated that
the electron density and respective electronic compressibility
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FIG. 12. Isothermal compressibility as a function of temperature
on the semilogarithmic scale for fixed t/U = 0.303, μ/U = 0.18,
and V/U = 0.1. (b) Magnified around Tp.

displays reminiscent signatures of the pseudo-transition. The
present results add to the general understanding of the remark-
able phenomenon of pseudo-transitions taking place at finite
temperatures in one-dimensional equilibrium systems having
structured interactions within the relevant unit cell.

ACKNOWLEDGMENTS

This work was supported by Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior (CAPES), Conselho
Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), Fundação de Apoio à Pesquisa do Estado de Alagoas
(FAPEAL), and Fundação de Apoio à Pesquisa do Estado
de Minas Gerais (FAPEMIG). J.T. thanks Brazilian agency
CNPq Grant No. 159792/2019-3 for full partial support.

APPENDIX A: REAL ROOTS OF THE CUBIC EQUATION

The transfer matrix is a symmetric matrix, so its eigen-
values are guaranteed to be real values. Therefore, here we
verify the cubic equation (23) roots must be different and real
numbers, given by (25).

Obviously, we can convince that both Q and R are real
numbers from (27) and (28).

Now let us verify the real number Q is positively defined
by using the cubic equation coefficients (25), thus, after some
algebraic manipulation we obtain the following expression:

Q = 1
9

(
w2,2 − 1

2w0,0 − w1,1
)2 + 1

12 (w0,0 − 2w1,1)2

+ 2
3w2

0,1 + 1
3w2

0,2 + 2
3w2

1,2, (A1)

which is strictly a positive number (Q > 0) since all Boltz-
mann factors are positive. According to a cubic equation
property, this condition is enough to conclude that three
the eigenvalues of transfer matrix will be different and real
numbers.

Now the question is to determine which are the largest and
the lowest eigenvalues? Since all eigenvalues must be real
and different because Q > 0. Which implies that the solu-
tion (25) must satisfy the following restriction φ �= ±nπ with
n = {0–2, . . .}. Therefore, we can choose φ conveniently such
that 0 < φ < π . Thus, we have the following trigonometric
relation,

cos

(
φ

3

)
> cos

(
φ − 2π

3

)
> cos

(
φ − 4π

3

)
, (A2)

if we multiply all terms of inequalities by 2
√

Q > 0 and
adding − a3

3 to all expressions (note that a3 < 0), thus, we
conclude that

�0 > �1 > �2. (A3)

Note that if φ = 0, in principle, we would have �1 = �2 but
this condition is forbidden because Q > 0. Similar for φ = π

we have �0 = �1, but again this condition cannot be satisfied
since Q > 0. Therefore, we have identified which eigenvalues
is the largest one and the lowest one.

Of course we can choose other intervals equivalently and
verify how the eigenvalues are ordered. In Table II the eigen-
values for each interval is reported. The open intervals of φ

guarantees all eigenvalues must be real and different values in
order to satisfy the condition Q > 0.

The three cubic root solutions are exchanging periodically
which depends on the interval of φ, making a bit puzzle to
identify which eigenvalue is the largest one. In Table II it is
reported how the eigenvalues are ordered. In each interval
the solutions are equivalent because other intervals simply
exchange the eigenvalues with no relevance. Therefore, here
we conveniently choose the first interval φ ∈ 〈0, π〉, so the
eigenvalues must be ordered as following �0 > �1 > �2.

Even more, according to the Perron-Frobenius theorem, the
largest eigenvalue must be nondegenerate and positive.

APPENDIX B: PERTURBATIVE TRANSFER
MATRIX CORRECTION

In order to study the pseudo-transition property in the low
temperature region, we need to analyze the transfer matrix
in the low temperature region. In principle, the cubic root
solution could be a bit cumbersome task to identify as an easy
handling solutions. A simple strategy to obtain a reasonable
solution could be considering the transfer matrix (19) as a sum
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of two matrices V = V0 + ζ V1. The first term is given by

V0 =
⎡
⎣w0,0 0 w0,2

0 2w1,1 0
w0,2 0 w2,2

⎤
⎦, (B1)

This matrix can be considered as the unperturbed transfer
matrix, whose eigenvalues are

u(0)
0 = 1

2 [w0,0 + w2,2 + s], (B2)

u(0)
1 = 2w1,1, (B3)

vskip3pt
u(0)

2 = 1
2 [w0,0 + w2,2 − s], (B4)

where s =
√

d2 + 4w2
0,2 and d = w0,0 − w2,2.

In the limit of w0,2 → 0, the unperturbed solution can
eventually satisfy the following relation:

u(0)
0 = u(0)

1 . (B5)

This condition leads to a pseudo-transition, which we can
simplify

w0,0 = 2w1,1 for w0,0 > w2,2, (B6)

w2,2 = 2w1,1 for w0,0 < w2,2. (B7)

The above condition is essential to find pseudo-critical tem-
perature Tp.

The second term of the transfer matrix is given by

V1 =
⎡
⎣ 0

√
2 w0,1 0√

2 w0,1 0
√

2 w1,2

0
√

2 w1,2 0

⎤
⎦. (B8)

Close to the pseudo-critical temperature, the elements of
matrix V1 become smaller than the elements of matrix V0.
Therefore, we can find the transfer matrix eigenvalues by
using a perturbative approach.

Consequently, the solution of the transfer matrix after a
standard perturbative manipulation up to the first-order term
gives us the following root corrections:

u(1)
0 = [(s − d )w1,2 + 2w0,2w0,1]2

s(s − d )
(
u(0)

0 − 2w1,1
) , (B9)

u(1)
1 = −u(1)

0 − u(1)
2 , (B10)

u(1)
2 = [(s + d )w1,2 − 2w0,2w0,1]2

s(s + d )
(
u(0)

2 − 2w1,1
) . (B11)

As a consequence of the perturbative correction, the trans-
fer matrix eigenvalues becomes

� j = u(0)
j + ζ u(1)

j + O(ζ 2), j = {0, 1, 2}. (B12)

Assuming the elements of matrix V1 are small, we can
obtain an approximate result of (25), fixing ζ = 1. Hence, it is
evident that the largest eigenvalue of the transfer matrix will
be �0, even when u(0)

0 = u(0)
1 since u(1)

0 > 0 and u(1)
1 < 0.
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