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Transport properties of Lennard-Jones fluids: Freezing density scaling along isotherms
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It is demonstrated that properly reduced transport coefficients (self-diffusion, shear viscosity, and thermal
conductivity) of Lennard-Jones fluids along isotherms exhibit quasi-universal scaling on the density divided
by its value at the freezing point. Moreover, this scaling is closely related to the density scaling of transport
coefficients of hard-sphere fluids. The Stokes-Einstein relation without the hydrodynamic diameter is valid in
the dense fluid regime. The lower density boundary of its validity can serve as a practical demarcation line
between gaslike and liquidlike regimes.

DOI: 10.1103/PhysRevE.103.042122

I. INTRODUCTION

The Lennard-Jones (LJ) system is one of the most popular
and extensively studied model systems in condensed matter
physics. Many results on its transport properties have been
published over the years. For recent reviews of simulation data
available in the literature, see, e.g., Refs. [1–3]. Numerical
data can be particularly useful in verifying and testing various
models and approaches to the transport properties of liquids.
The latter research topic remains important and timely despite
considerable progress achieved over many decades [4–6].

Among the existing semiquantitative models and scaling
relationships, perhaps the most familiar are the Stokes-
Einstein relation between the self-diffusion and shear viscos-
ity coefficients [7–11], the excess entropy scaling of transport
coefficients [12–15], density scaling [2,16], as well as the
freezing temperature scaling [17–19].

Some of the scaling relationships can be rationalized
within the framework of the isomorph theory [15,20,21].
This theory predicts that many liquids exhibit an approximate
“hidden” scale invariance that implies the existence of lines
in the thermodynamic phase diagram, so-called isomorphs,
along which structure and dynamics in properly reduced units
are invariant to a good approximation. Excess entropy is
constant along isomorphs and this can serve as an explana-
tion for excess energy scaling [15]. Additionally, the melting
and freezing lines are approximate isomorphs [22,23] and
therefore the lines that are parallel to them in some vicin-
ity should also be isomorphs. This explains the observation
that the transport coefficients of some simple fluids behave
quasi-universally when plotted versus temperature scaled by
the freezing temperature. But this also suggests that the trans-
port coefficients should coincide when plotted versus density
scaled by the freezing density. The purpose of this paper is to
prove this conjecture.

For some systems, the freezing density scaling is trivial.
A special case is the hard-sphere (HS) system. Since all the
structural and dynamical properties depend on the packing
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fraction (reduced density) alone, the freezing density scaling
is obvious. Another relevant example is related to strongly
coupled Yukawa fluids, which are often used to model clas-
sical systems of charged particles immersed in a neutralizing
medium, such as colloidal suspensions and complex plasmas
[24–26]. Transport coefficients of strongly coupled Yukawa
fluids turn out to be some quasi-universal functions of the
reduced coupling parameter �/�fr [17,27–36]. Here the cou-
pling parameter � = Q2ρ1/3/T is the ratio of the Coulomb
interaction energy at a mean interparticle separation (Q being
the particle charge and ρ the particle density) to the kinetic
energy, characterized by the system temperature T (measured
in energy units), and �fr is the value of � at the freezing
point (the coupling parameter at the melting point, �m, can be
used as well because the fluid-solid coexistence region is very
narrow [37] and one normally does not discriminate between
freezing and melting points in Yukawa systems). The success
of this scaling for Yukawa systems was put in the context
of the isomorph theory [21]. For the present discussion, it is
important that a universal scaling with �/�fr implies not only
scaling with T/Tfr, but also a scaling with ρ/ρfr , so that the
freezing density scaling emerges trivially.

In this paper, we demonstrate that the freezing density
scaling is more general and is not limited to the trivial ex-
amples given above. In particular, it works very well for
sufficiently dense LJ fluids in a wide region of the LJ phase di-
agram. Simulation data on the transport coefficient of LJ fluids
along isotherms fully comply with this scaling. Moreover, we
demonstrate that the observed scaling is closely related to that
of the hard-sphere fluid. It is shown that the Stokes-Einstein
relation between the diffusion and viscosity coefficients is
valid in the dense liquid regime, and that the boundary of this
regime can be used to locate the crossover between gaslike
and liquidlike regions on the phase diagram.

II. FORMULATION

The LJ potential, which is often used to approximate inter-
actions in liquefied noble gases, reads

φ(r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
, (1)

2470-0045/2021/103(4)/042122(5) 042122-1 ©2021 American Physical Society

https://orcid.org/0000-0002-3393-6767
https://orcid.org/0000-0001-9987-4530
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.042122&domain=pdf&date_stamp=2021-04-14
https://doi.org/10.1103/PhysRevE.103.042122


S. A. KHRAPAK AND A. G. KHRAPAK PHYSICAL REVIEW E 103, 042122 (2021)

where ε and σ are the energy and length scales (or LJ units),
respectively. The density and temperature in LJ units are
ρ∗ = ρσ 3 and T∗ = T/ε. The LJ potential exhibits repulsion
at short interatomic distances and attraction at long distances.
As a result, the phase diagram of a LJ system contains a
liquid-vapor phase transition with the liquid-vapor coexis-
tence region and a liquid-vapor critical point, in addition to
the fluid-solid phase transition (systems of purely repulsive
particles, such as hard spheres, do not show a liquid phase).

To demonstrate the validity and usefulness of the freezing
density scaling, we consider two sets of extensive numerical
simulation data for the LJ transport coefficients. The viscosity
and self-diffusion data have been published by Meier et al.
[38–40]. The second data set for self-diffusion, viscosity, and
thermal conductivity coefficients is due to Baidakov et al.
[41–43]. The data have been obtained in a wide region of
the LJ phase diagram. Though the simulations protocols were
different, the two datasets are in good agreement where they
overlap [2].

To be concrete, the viscosity and self-diffusion coefficients
at T∗ = 1, 1.5, and 2 are taken from Refs. [41,42] and at T∗ =
3 and 4 from Ref. [38]. The thermal conductivity coefficients
at T∗ = 1, 1.5, and 2 are taken from Ref. [43]. We do not
consider data points from the fluid-solid coexistence region.

We reduce the transport coefficients (originally expressed
in LJ units) using the so-called system-independent Rosenfeld
normalization [14],

DR = D
ρ1/3

vT
, ηR = η

ρ−2/3

mvT
, λR = λ

ρ−2/3

vT
, (2)

where ρ−1/3 = 	 defines the characteristic interatomic sepa-
ration, vT = √

T/m is the thermal velocity, m is the atomic
mass, and the temperature is expressed in energy units
(kB = 1).

In the first approximation, the transport coefficients of a
dilute gas consisting of hard spheres of diameter σ (HS gas)
are [44]

D = 3

8ρσ 2

(
T

πm

)1/2

⇒ DR = 3

8
√

πρ
2/3
∗

� 0.212

ρ
2/3
∗

, (3)

η = 5

16σ 2

(
mT

π

)1/2

⇒ ηR = 5

16
√

πρ
2/3
∗

� 0.176

ρ
2/3
∗

, (4)

λ = 75

64σ 2

(
T

πm

)1/2

⇒ λR = 75

64
√

πρ
2/3
∗

� 0.661

ρ
2/3
∗

. (5)

Remarkably, when expressed in Rosenfeld’s units, the trans-
port coefficients of dilute hard-sphere gas exhibit universal
density scaling: All transport coefficients decay as ∝ ρ

−2/3
∗ .

This density scaling is, of course, only approximate for dilute
LJ gases. The actual transport cross sections are different
from the hard-sphere model and the specifics of scattering in
the LJ potential have to be properly accounted for (see, e.g.,
Refs. [45–50] and references therein for some related works).

Contrary to the situation with dilute gases, no accurate
general theory of transport process in liquids still exists, and
that is why universal relationships and scalings are of consid-
erable interest. The freezing density scaling along isotherms
is illustrated in the next section.
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FIG. 1. Reduced self-diffusion coefficient of a LJ fluid DR vs the
reduced density ρ∗/ρfr

∗ . The symbols correspond to numerical data
tabulated in Refs. [38,41]. The dashed and solid curves denote the
HS gas and fluid asymptotes. The latter is based on the simulation
data from Ref. [53].

III. RESULTS AND DISCUSSION

Our main results are shown in Figs. 1–3, where we plot the
reduced transport coefficients versus the density normalized
to its value at the freezing point, taken from Ref. [51]. They
demonstrate that the self-diffusion and viscosity data (Figs. 1
and 2) coincide excellently when plotted versus density re-
duced by its value at the freezing point. The coincidence is
not so impressive for the thermal conductivity data shown in
Fig. 3. It should be noted that the thermal conductivity coef-
ficient is proportional to the specific heat cv , which exhibits a
critical enhancement near the critical point. Thus the behav-
ior of thermal conductivity on near-critical isotherms can be
expected to be somewhat different from that on supercritical
isotherms [52]. Additionally, some scattering may reflect the
accuracy of the numerical data.

The quasi-universality of transport coefficients extends to
very low density, down to ρ∗/ρfr

∗ � 0.1. For lower densities,
the freezing density scaling is not appropriate. Here the dilute
gas regime is realized and the transport coefficients are deter-
mined by the corresponding transport cross sections [45,49].
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FIG. 2. Reduced shear viscosity coefficient of a LJ fluid ηR vs
the reduced density ρ∗/ρfr

∗ . The symbols correspond to numerical
data tabulated in Refs. [38,42]. The dashed and solid curves denote
the HS gas and fluid asymptotes. The latter is based on the simulation
data from Ref. [53].
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FIG. 3. Reduced thermal conductivity coefficient of a LJ fluid λR

vs the reduced density ρ∗/ρfr
∗ . The symbols correspond to numerical

data tabulated in Ref. [43]. The dashed and solid curves denote the
HS gas and fluid asymptotes. The latter is based on the simulation
data from Ref. [54].

Two additional curves are plotted in Figs. 1–3. The dashed
curves correspond to Eqs. (3)–(5). As pointed out above, they
do not represent accurate approximations for the LJ gas, but
the main trends in the density dependence are very well re-
produced. To plot these curves, we assumed ρfr

∗ = 1, which
is appropriate for the range of T∗ investigated due to the
relatively weak dependence of ρfr

∗ on T∗ (actually, ρfr
∗ � 1 at

T∗ � 1.5 [51]).
The solid curves correspond to the freezing density scaling

of the transport coefficients of a HS fluid. To plot these curves,
we have used extensive molecular dynamics simulation results
by Pieprzyk et al. [53,54]. The use of large simulation systems
and long simulation times allowed accurate prediction of the
transport coefficients in the thermodynamic limit. It is ob-
served in Fig. 1 that the self-diffusion coefficient of LJ fluids
is in excellent agreement with the HS asymptote, down to the
lowest density studied in Ref. [53]. For the shear viscosity
coefficient, the HS asymptote somewhat overestimates the LJ
data, but multiplying the HS asymptote by a constant factor
of 0.9 brings the LJ and HS data to a very good agreement
(see Fig. 2). For the thermal conductivity coefficients, the
agreement between the LJ and HS data is good in the moderate
density regime, ρ∗/ρfr

∗ � 0.6, but for higher relative density,
the thermal conductivity coefficient of the HS fluid is consis-
tently larger and overestimates that of the LJ fluid by about
40% at the freezing point.

It is not at all surprising that the HS model can reproduce
the transport properties of softer particle systems. It is well
recognized that properly reduced dynamical properties of flu-
ids with strong repulsive forces can be mapped into those of
HS fluids [55–57]. The difference in our approach is that the
freezing density scaling seems to provide a simple and con-
venient mapping method, in particular for the self-diffusion
coefficient.

The fact that the freezing density scaling of the LJ fluid is
relatively close to that of a HS fluid is also not very surprising.
The effective repulsive (inverse power law) exponent of a LJ
potential is quite high, neff � 18 (at moderate densities) [58].
This is because the attractive (∝ r−6) term of the LJ potential
makes its repulsive short-range branch considerably steeper
than just the ∝ r−12 repulsive term. Only at high densities
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FIG. 4. Stokes-Einstein relation without the hydrodynamic di-
ameter in a LJ fluid. The parameter αHS is plotted as a function of the
reduced density ρ∗/ρfr

∗ . The symbols correspond to numerical data
tabulated in Refs. [38,41,42]. The dashed and solid curves denote the
HS gas and fluid asymptotes. The latter is based on the simulation
data from Ref. [53]. The horizontal line at αHS = 0.15 corresponds
to the simulation results from Ref. [10].

and temperatures does neff approach 12 [59]. In this regime,
the agreement between the LJ and HS scaling may somewhat
decline.

Let us briefly discuss the Stokes-Einstein (SE) relation be-
tween the self-diffusion and viscosity coefficient. According
to Zwanzig’s model [8] for simple atomic fluids, this relation
can be formulated without introducing a so-called hydrody-
namic diameter (in fact, the interparticle separation plays the
role of the effective hydrodynamic diameter):

Dη

ρ1/3T
= αSE. (6)

In the Rosenfeld’s normalization, Eq. (6) reduces to DRηR =
αSE. The parameter αSE can be related to the ratio of the
transverse-to-longitudinal sound velocities [8,11],

αSE � 0.13

(
1 + c2

t

2c2
l

)
,

where ct and cl are the transverse and longitudinal sound ve-
locities. For LJ fluids near the freezing point, we have cl � 2ct

[60] and this should be relevant for a sufficiently dense regime
not too far from the fluid-solid phase transition. Thus, we can
expect αSE � 0.15 on approaching freezing. This is perfectly
consistent with the numerical data on the LJ fluids; see Fig. 4.
The HS asymptote lies close, but slightly above, the LJ data
because the HS viscosity is about 10% higher than that of the
LJ fluid. In the dilute regime, we can expect an approach to
the dilute HS gas asymptote, which is DRηR � 0.037/ρ

4/3
∗ .

Figure 4 demonstrates that the data point lies quite close to this
asymptote (as previously, we used ρfr

∗ � 1 to plot this curve).
The final comment is related to the crossover between the

gaslike and liquidlike regions on the phase diagram, a topic
of considerable recent interest [61–65]. The Stokes-Einstein
relation provides us with a good pragmatic tool to estimate
the location of this crossover. Figure 4 demonstrates that the
numerical data very closely follow the dilute gas and the fluid
asymptotes. The latter intersect at ρ∗/ρfr

∗ � 0.35 and this can
be chosen as the demarcation condition between the gaslike
and liquidlike regions. Note that this is also close to the loca-
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tion of the minimum of the reduced shear viscosity coefficient
(Fig. 2). It would be interesting to verify to which extent this
condition is applicable to other soft interacting systems.

IV. CONCLUSION

To summarize, each of the properly reduced transport
coefficients of self-diffusion, shear viscosity, and thermal
conductivity of dense LJ fluids coincides along different
isotherms when plotted as a function of density divided by
its value at the freezing point. The quality of this coincidence
is particularly high for the self-diffusion and viscosity coef-

ficients and is somewhat lower for the thermal conductivity
coefficient. The freezing density scaling is close to that of a
HS fluid, in particular for the self-diffusion coefficient. This
provides a simple useful procedure of mapping between soft
(but strongly repulsive) and HS fluids. The Stokes-Einstein
relation of the form DRηR � 0.15 is satisfied to a very high
accuracy in a dense fluid regime with ρ∗/ρfr

∗ � 0.4. At low
densities, the dilute HS asymptote is appropriate, DRηR ∝
ρ

−4/3
∗ . The two asymptotes intersect at about ρ∗/ρfr

∗ � 0.35
and this can serve as a practical demarcation condition be-
tween the gaslike and liquidlike regions on the LJ system
phase diagram.
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