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Integrability breaking in the one-dimensional Bose gas: Atomic losses and energy loss
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The one-dimensional δ-function interacting Bose gas (the Lieb-Liniger model) is an integrable system, which
can model experiments with ultra-cold atoms in one-dimensional traps. Even though the model is integrable,
integrability breaking effects are always present in the real-world experiments. In this work we consider the
integrability breaking due to atomic loss, which is the most relevant effect in the experiments. We set up a
framework for the exact computation of the losses of the canonical charges of the model, and compute an exact
result for the energy loss due to the local K-body processes, valid for arbitrary K . Our result takes the form of
multiple integrals, which are explicitly factorized in the experimentally relevant cases of K = 1, 2, 3.
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I. INTRODUCTION

One-dimensional (1D) integrable models are special many-
body systems, whose exact solution is possible with analytic
methods. Their solvability depends on the existence of a large
(typically infinite) number of conserved quantities, which
constrain the dynamical processes in the system. As an effect,
the scattering events in these models are purely elastic, and
the many-body S-matrix factorizes into products of two-body
S-matrices [1]. This property underlies the Bethe Ansatz so-
lution of these models [2]. The exact solvability typically
means that the eigenstates can be constructed analytically,
nevertheless the computation of the physical observables is
often quite challenging.

The experimental advances of the last 15 years made it
possible to realize integrable systems in various cold atom
experiments (see, for example, [3–5]), and this motivated the
study of the nonequilibrium dynamics of integrable models
[6]. A key result of the last 10 years was the understanding
that the equilibration in isolated integrable models can be de-
scribed by the generalized Gibbs ensemble (GGE) [7,8]. The
GGE involves all the conserved charges of the model, possibly
including the so-called quasilocal charges [9,10]. Regarding
spatially inhomogeneous situations and quantum transport the
theory of generalized hydrodynamics (GHD) was formulated
in [11,12]. Within GHD it is possible to treat both the ballistic
modes and also the diffusive corrections [13–16]. A series
of recent works [17–22] also treated the phenomenon of su-
perdiffusion. It is very important that GHD was successfully
applied to describe real-world experiments [23,24].

One of the most interesting open problems within GHD
is the treatment of the integrability breaking effects, which
are necessarily present in the experiments. In the strict long
time limit the integrability breaking effects completely spoil
the applicability of the exact methods: the systems eventually
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thermalize, or in the presence of dissipation or driving they
form nonequilibrium steady states. However, for small inte-
grability breaking and/or for intermediate timescales it might
be possible to handle these effects within GGE and GHD.

There are two main approaches to treat this problem. In
the first approach the integrability breaking terms are added
as a perturbation to the Hamiltonian [25]. Examples include
situations with slowly varying potentials [26] or space-time
inhomogeneities in the coupling constants of the model
[27,28]. Weak integrability breaking and a special class of
operators that do not lead to thermalization on the so-called
Euler scale was considered recently in [29].

An other approach is to consider the interaction between
the integrable model and its environment. If the environment
is quickly thermalizing and its response is uncorrelated on the
timescales of the integrable system, then the time evolution
of its density matrix is well described by the Lindblad equa-
tion. It was first demonstrated in [30] that in certain Lindblad
systems a time dependent GGE can give a very good approx-
imation of the state of the system (see also [31,32]). Within
this approach the effect of long wavelength noise was stud-
ied in [33]. In contrast, the effects of localized Lindbladian
interactions were investigated in [34].

The model considered in [34] is the 1D δ-function in-
teracting Bose gas (also known as the Lieb-Liniger model),
which was already realized in a couple of experiments (for a
relatively recent review see the corresponding section of [35]).
In these experiments the most relevant integrability breaking
effect is that of the particle losses, and in particular the local
three-body loss [36,37] (see also [32]). The net particle loss
is given by the local three-body correlation function (or more
generally the K-body correlator for the K-body processes),
for which a number of exact results were already computed
in the literature [38–44]. However, as explained in [34] (and
in the closely related work [45]) it is also important to know
the changes in the rapidity distribution, and not only the net
loss. At present there are no exact solutions available for this
problem, and [34] developed a numerical summation method
for the relevant quantities.
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In this work we set up a theoretical framework, which treats
the effect of the K-body losses on the canonical conserved
charges of the Lieb-Liniger model. These charges correspond
to the moments of the rapidity distribution, and computing
their time derivatives gives useful information about the root
distribution itself. As a concrete example we consider the
energy loss. The energy is the second moment of the rapidity
distribution, and in parity symmetric cases it is the next sim-
plest quantity after the total particle number. Up to now there
have been no exact results for the energy loss in the literature.

The structure of the paper is as follows. In Sec. II we
introduce the problem, and we explain our strategy for solving
it. This section also includes some observations and ideas that
can prove to be useful in other models as well. In Sec. III
we introduce the q-boson model, which is used as a lat-
tice regularization of the 1D Bose gas. Section IV includes
the technical computations about the losses in the q-boson
model. In Sec. V we perform the scaling limit towards the
Lieb-Liniger model with a finite number of particles. The
thermodynamic limit is taken afterwards in Sec. VI, where the
factorized formulas for the final quantities are also presented.
We discuss the results in Sec. VII. A number of technical
computations are relegated to the Appendixes.

II. INTEGRABILITY BREAKING
VIA THE LINDBLAD EQUATION

In this section we discuss integrability breaking effects in
general, without specifying the concrete model. We discuss
the key concepts such as the Lindblad approximation, the
GGE and the so-called string charge relations in Bethe Ansatz
solvable models. The aim of this section is to highlight the
general ideas behind our computations. Sections II B and II C
discuss a standard strategy which can be applied in a number
of integrable models, such as the Heisenberg spin chains.
However, our concrete model, the 1D Bose gas is rather spe-
cial, and some of the standard methods do not work in this
case. This is explained in Sec. II D, where we also highlight
our strategy specially adapted to the Lieb-Liniger model.

A. The Lindblad equation

Let � be the density matrix of our system. For simplicity let
us assume here that our model has finite number of degrees
of freedom, and let H be the Hamiltonian. Systems with
continuous degrees of freedom (such as our main model, the
interacting Bose gas) will be considered later.

We assume that our system is in contact with a Markovian
environment: this means that the response of the environment
is uncorrelated on the timescales of our model. In this case the
evolution of the reduced density matrix of the system is well
approximated by the Lindblad equation [46,47]:

�̇ = −i[H, �] +
∑

a

γa

(
La�L†

a − 1

2
{L†

aLa, �}
)

. (1)

Here the La are the so-called Lindblad or jump operators,
which describe concrete processes of the system, mediated by
the environment. The γa are nonnegative coupling constants.
Within the Lindblad approach the time dependence of any

quantity O is given by

d

dt
〈O〉 = Tr(O�̇)

=−i〈[O, H]〉 +
∑

a

γa

(
〈L†

aOLa〉 − 1

2
〈{O, L†

aLa}〉
)

.

(2)

It is our aim to compute the effect of the Lindblad terms on
the equilibrated steady states of the integrable models. To this
order first we discuss the nature of the equilibrium states.

B. GGE and the string-charge relations

Integrable models possess a set of conserved charges
{Qα}α=1,2,..., which commute with each other, and the Hamil-
tonian is a member of the series. The construction of these
charges can depend on the concrete model, but for a large
class of systems they are obtained from a commuting set of
transfer matrices (TMs) [48].

The extra conservation laws restrict the possible dynamical
processes in the system: they allow only elastic and com-
pletely factorized scattering events [1,49]. As an effect, the
equilibrated steady states and the transport properties of these
models are markedly different from a generic quantum me-
chanical model. Regarding equilibration it is now understood
that in integrable systems which are sufficiently well isolated
from the environment the steady states can be described by
the GGE. The idea behind the GGE is to involve all conserved
charges of the model, thus a GGE density matrix has the form

� = e− ∑
j β j Q j

Z
, Z = Tr e− ∑

j β j Q j . (3)

Originally the GGE was devised for free models [7,50], where
the charges can be chosen as the mode occupation numbers.
In these cases the β j parameters can be interpreted as mode-
dependent inverse temperatures. In interacting models the
situation is more complicated, and the GGE density matrix
was an object of active interest for a couple of years. In the
prototypical example of the Heisenberg spin chain it was first
understood that it is not enough to include the canonical local
charges [51,52] and a complete GGE requires also the recently
discovered quasilocal charges [9,10]. Furthermore it was un-
derstood that the GGE is basically equivalent to specifying the
so-called Bethe root densities [9,53,54]; this is known as the
string-charge duality. Now we describe this connection, which
is the basis of our computations.

In Bethe Ansatz solvable models the finite volume eigen-
states are characterized by a set of Bethe roots, which describe
the momenta of the particles within the interacting multipar-
ticle state. In the thermodynamic limit (TDL) the states can
be described by the root distribution functions ρs(λ), where
λ is the rapidity parameter and the discrete index s stands
for the various particle types that exist in the model (for
a precise definition see Sec. VI). It is generally understood
that in the TDL the root densities completely determine the
correlation functions, thus the root densities carry all relevant
information about the equilibrated states. In accordance, a set
of charges is complete for the construction of a GGE, if the
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set of their eigenvalues completely specifies all Bethe root
densities [9,51–55].

The charges in question are extensive and their eigenval-
ues are additive. In the TDL the eigenvalues are typically
expressed as

	α =
∫

dλ hα (λ)ρ(λ), (4)

where hα (λ) is the one-particle eigenvalue function. For sim-
plicity we assumed here that there is only one particle species
in the spectrum. If the fundamental particles can form bound
states (which is the case for the so-called string solutions in
the Heisenberg chains or the attractive Lieb-Liniger model),
then all the bound states have to be treated as different parti-
cles, and the above formula needs to be supplemented with a
summation over the particle species.

It is convenient to introduce generating functions for the
charges. For example, let us define

X (u) =
∞∑

α=2

uα−2

(α − 2)!
Qα. (5)

The eigenvalues of this operator are given by

	(u) =
∫

dλ h(u, λ)ρ(λ), (6)

where

h(u, λ) =
∞∑

α=2

uα−2

(α − 2)!
hα (λ). (7)

Completeness of the charges means that the eigenvalue func-
tion 	(u) completely specifies the root density. In other
words, a set of charges is complete, if the integral transform
(6) can be inverted. The specific details of the formulas of
the type (6) depend on the model and its particle content; in
the Heisenberg chain the existence of the relations was called
string-charge duality in [53].

There are a few concrete models where the relation (6) and
its inversion is established. The most prominent example is the
XXZ Heisenberg spin chain. That model allows a large variety
of string solutions (bound states of spin waves) depending on
the anisotropy parameter. In that model the relation (6) needs
to be generalized to include all string types and all quasilocal
charges. The upshot is that eventually the integral transforms
are easily inverted (for details see [9,53,54]). A more sim-
ple situation is that of the so-called q-boson lattice model,
where the relation (6) is basically just a Fourier transform [56]
(see Sec. III).

The situation in the continuum Bose gas is more problem-
atic, and it will be discussed in Sec. II D.

C. String-charge relations and the Lindblad equation

Our aim is to compute the changes in the Bethe root distri-
butions, as an effect of the Lindblad jump operators. The most
natural idea is to compute the time derivative of the charges
via relation (2), and then to use the inversion of the relation
(6) to find the time derivative of the root densities.

If the system is equilibrated at time t , then its density ma-
trix commutes with the charges. In this case the time derivative

of the charge generating function is given by

d

dt
〈X (u)〉 =

∑
a

γa〈L†
a[X (u), La]〉. (8)

The remaining step is the exact computation of the r.h.s.
above, and the application of relation (6).

In integrable models the standard framework to treat ob-
jects like the r.h.s. above is the Algebraic Bethe Ansatz (ABA)
[48]. This method naturally accommodates the conserved
charges, and also the local operators of the models. Further-
more, commutation relations and mean values of operator
products are relatively easily derived, thus ABA is a promising
choice for the computation of (8).

In ABA the charges are derived from a commuting set of
transfer matrices t (u). These transfer matrices are constructed
from local Lax operators; the specific construction will be
given below. For the moment let us just note that the gener-
ating functions X (u) are typically defined through relations
like [9,10]

X (u) = ∂λ log[t (u)] = t−1(u)t ′(u). (9)

Such a definition ensures that the X (u) are extensive, and their
mean values are additive.

In ABA it is relatively easy to compute the action of the
transfer matrices or commutation relations with them. How-
ever, the definition (9) also involves the inverse of the transfer
matrix, and generally it is not known how to handle that
operator within the ABA.

One possibility is to insert a complete set of states; such
a step was also used in the numerical summation scheme of
[34]. An other possibility is to use an asymptotic inverse of the
transfer matrix, which exists in a number of models including
the Heisenberg chains.

Let us therefore assume that there exists an other transfer
matrix t̄ (u), which commutes with the original TM, and which
satisfies the asymptotic inversion relation

t̄ (u)t (u) = 1 + O(e−ξL ). (10)

This relation should hold at least in some neighborhood of
u = 0; the exponent ξ can depend on u, but it is required that
ξ (0) > 0. If these conditions hold, then it is safe to substitute
t̄ (u) for t−1(u) in (9), and for the time derivatives in the TDL
we obtain

d

dt
〈X (u)〉 =

∑
a

γa〈L†
a[t̄ (u)t ′(u), La]〉 + · · · , (11)

where the dots denote exponentially small corrections that
scale to zero in the TDL. Computation of the r.h.s. of (11)
is a relatively standard task in ABA, and together with the
inversion of (6) this can be considered the “canonical” way of
approaching integrability breaking in ABA.

An asymptotic inverse of the transfer matrix exist in many
models, including the Heisenberg spin chains and their higher
rank generalizations [57–59]; in the XXZ chain the asymp-
totic inverse is simply the original transfer matrix evaluated at
a shifted rapidity [57,58]. However, such inversion relations
seem to exist only in those models where the fundamental
particles can form bound states [9,53]. As far as we know
there is no asymptotic inverse for the TM of the repulsive Bose
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gas. Thus the “canonical” strategy of ABA does not seem to
be applicable in this model, and alternative ways are needed.
This is discussed below.

D. The repulsive Lieb-Liniger model

The Lieb-Liniger model is a continuum theory which is
given in second quantized formalism as

H =
∫ L

0
dx[∂x�

†(x)∂x�(x) + c�2†(x)�2(x)]. (12)

Here �(x) is a canonical Bose field. The number c is the
coupling constant of the model, and we treat here the repulsive
case with c > 0.

The model is solved by the Bethe Ansatz [60]. The inter-
acting multiparticle states can be characterized by a set of
rapidities {p1, . . . , pN }, and the (unnormalized) wave func-
tions are given explicitly as

χN ({p}|{x}) = 1√
N!

∑
P∈SN

ei
∑

j x j (P p) j

×
∏
j>k

(P p) j − (P p)k − icε(x j − xk )

(P p) j − (P p)k
. (13)

Here the summation runs over all permutations P ∈ Sn and
ε(x) is the sign function.

Periodic boundary conditions imply that the rapidities sat-
isfy the Bethe Ansatz equations

eip j L
∏
k �= j

p j − pk − ic

p j − pk + ic
= 1. (14)

The energy and momentum of the multiparticle state is given
by

E =
∑

j

p2
j, P =

∑
j

p j .

Generally it is assumed that there are higher canonical charges
Qα with their finite volume eigenvalues being

	α =
∑

j

pα
j . (15)

In this notation we have E = Q2 and P = Q1.
These canonical charges can be found from a transfer ma-

trix construction, appropriate for the continuous space [48].
However, the expansion of the transfer matrix into a discrete
set of charges gives singular operators. This was discussed in
detail in [61]. It was found there, that the operator expressions
for the higher charges (starting from Q4) contain a number of
singular terms (for example, Dirac δ squared), which cannot
be immediately canceled. However, the action of the charges
remains finite on the eigenstates.

The reason for the apparent singularity of the higher opera-
tors lies in the special form of the Bethe wave function. It can
be seen from (13) that the wave function is continuous in all of
its variables, but due to the interaction there are jumps in its
space derivatives whenever x j = xk for some j, k. It follows
that the higher space derivatives cannot be defined at all.
The higher conserved charges naturally involve higher space
derivatives, and this incompatibility with the wave function

underlies the singularities discussed in [61]. On the other
hand, a lattice regularization yields finite and well-defined
action of the charges on the eigenstates.

It follows from (15) that in the TDL the densities of the
charge eigenvalues are

	α

L
=

∫
d p pαρ(p), (16)

where ρ is the density of the rapidities {pk} (for a precise
definition see Sec. VI). In other words the charges measure the
moments of the root distribution. If all the 	α are known, then
in principle ρ(p) can be reconstructed, although this might not
be practical in concrete applications.

Let us now discuss the atomic losses within the Lindblad
approach. In this model the experimentally relevant processes
are the local K-body losses, the main contribution being the
three-body loss [36,37]. The discrete Lindblad equation has
to be replaced by a continuous version:

�̇ = −i[H, �] + G
∫

dx

[
L(x)�L†(x) − 1

2

{
L†(x)L(x), �

}]
,

(17)

where now G is an overall coupling constant. The Lindblad
jump operators are

L(x) = �K (x), L†(x) = �†K (x). (18)

We should compute the time derivative of the Bethe root
densities under this Lindbladian time evolution. As explained
above, we approach the problem by first looking at the canon-
ical charges. Thus we intend to calculate

d

dt
〈Qα〉 = G

∫
dx〈L†(x)[Qα, L(x)]〉. (19)

Assuming spatially homogeneous situations the time deriva-
tive of the density is found simply from a local action of the
jump operators:

d

dt

〈Qα〉
L

= G〈L†(0)[Qα, L(0)]〉. (20)

However, it is not immediately clear how to proceed from
here. In principle the charges can be computed from a trans-
fer matrix using the appropriate version of relations (5)–(9)
[48,61], but there is no asymptotic inverse as far as we know.
Thus it is not clear how to apply the ABA formalism to
compute the r.h.s. above.

Instead of the ambitious goal of solving (19) for all α let
us focus on the simplest charges. This can already give useful
information, and it might be a starting point for the general
case.

The simplest charge in the series is the net particle number

N = Q0 =
∫

dx �†(x)�(x). (21)

Its time derivative in equilibrium is given by

d

dt

〈N〉
L

= G〈L†(0)[N, L(0)]〉 = −GKgK , (22)

where

gK = 〈�†K (0)�K (0)〉 (23)
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is the local K-body correlation function. In deriving (22) we
just used the commutation relations of the field operators.

The local correlation functions have been an object of
active interest, and a number of exact results for gK were
computed in the literature [38–44]. Remarkably none of these
works dealt directly with the Lieb-Liniger model; instead they
considered various scaling limits of other models. The works
[38,42] used the q-boson model and the XXZ Heisenberg
chain as lattice regularizations, whereas [39–41,43,44] used
a special nonrelativistic limit of the sinh-Gordon model.

Let us now turn to the next simplest charge. If the initial
Bethe root distribution is parity symmetric, then the overall
momentum is zero and the next relevant charge is the energy.
We intend to compute

d

dt

〈H〉
L

= G〈�†K (0)[H, �K (0)]〉. (24)

To gain some insight to the problem, we can attempt a direct
evaluation of the commutator above. However, this yields
singular contributions. For example, a formal substitution of
the interaction term of H into the r.h.s. gives

− GcK
∫

dx δ(x)[�†K (0)�†(x)�K−1(0)�2(x)

+ �†K (0)�K−1(0)�†(x)�2(x)]. (25)

This expression cannot be normal ordered, and we obtain a
singular contribution. A different singular term is also ob-
tained as we substitute the kinetic term in H . Altogether we
observe a situation similar to that of the higher conserved
charges discussed in [61]: we get singular contributions on
the operator level, but we expect that their action on the Bethe
states remains finite. In order to unambiguously obtain these
finite terms a lattice regularization has to be applied. However,
before turning to the lattice model let us compute the finite
term in (25). Dropping the singular term and taking the mean
value we get

−2GcK〈�†(K+1)(0)�K+1(0)〉 = −2GcKgK+1. (26)

This means that in the final exact result there should be a term
proportional to the local K + 1-body correlation function.
Below we show that this is indeed the case, and we obtain
the proportionality factors as given above.

Regarding the lattice discretization we choose the so-called
q-boson model, which is introduced in the next section. Two
important advantages of the q-boson model are that the string-
charge relations are simple (they consist of a mere Fourier
transform, see below), and that the scaling limit towards the
Lieb-Liniger model is rather straightforward.

To close this section we give more comments on the dif-
ferent regularization schemes. The singular terms obtained
above do not seem to depend on the states, and it might be
possible to subtract them directly in the continuum. However,
the main advantage of the lattice regularization is that it yields
all the higher charges and their action on the Bethe states.
On the contrary, the regularization in the continuum would
necessarily become more complicated, as already shown by
the charges themselves [61].

III. THE q-BOSON MODEL AND ITS SCALING LIMIT

The q-boson model is a model of interacting bosons on
the lattice, originally constructed in [62–64] and further an-
alyzed in [65]. It can serve as a lattice regularization of the
Lieb-Liniger model [38], and it has connections to combina-
torics [66–69] and the theory of symmetric functions [70]. In
this section we introduce the model and its Algebraic Bethe
Ansatz solution, following the conventions of [65].

Consider a lattice consisting of L sites such that the config-
uration space of each site is a single bosonic space. We define
the canonical Bose operators a j , a†

j , and Nj acting on site j by
the usual commutation relations

[a j, a†
k] = δ j,k,

[Nj, ak] = −δ j,kak, [Nj, a†
k] = δ j,ka†

k .

The action of these operators on the local states |n〉 j , n =
0, . . . ,∞ is given by

a j |n〉 j = √
n|n − 1〉 j, a†

j |n〉 j = √
n + 1|n + 1〉 j,

Nj |n〉 j = n|n − 1〉 j .

Let us also define the local q-boson field operators ψ
†
j , ψ j

through their action

ψ j |n〉 j = √
[n]q|n − 1〉 j ψ

†
j |n〉 j = √

[n + 1]q|n + 1〉 j,

where

[x]q = 1 − q−2x

1 − q−2
.

The parameter q is a real number which is related to the
interaction strength in the model. We will consider the regime
q � 1, and we will use the parametrization q = eη, η > 0.

These q-deformed operators satisfy the following commu-
tation relations:

[Nk, ψk] = −ψk, [Nk, ψ
†
k ] = ψ

†
k , [ψk, ψ

†
k ] = q−2Nk .

These equations are the defining relations of the so-called
q-boson algebra [71]. The canonical Bose operators are re-
covered in the q → 1 limit:

lim
q→1

ψk = ak, lim
q→1

ψ
†
k = a†

k .

The Hamiltonian of the q-boson model is defined as

Hqb =
L∑

j=1

(2Nj − ψ
†
j ψ j+1 − ψ

†
j+1ψ j ). (27)

We assume periodic boundary conditions.
The Hamiltonian (27) has the form of a free hopping

model, but there are interactions between the particles due to
the fact that the ψ and ψ† are deformed annihilation and cre-
ation operators: their action depends on the local occupation
numbers.

A. Algebraic Bethe Ansatz

The q-boson model can be solved by the Algebraic Bethe
Ansatz (ABA) [72,73], which we now review. The main
objects in ABA are the monodromy matrix and its matrix
elements. They are constructed as follows.
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Let us first consider an auxiliary space Va = C2. The so-
called Lax operator L(λ) is a linear operator acting on Va ⊗
Vj , where Vj is one of the local bosonic spaces. In this model
the Lax operator is written in as

L j (λ) =
(

eiλ χψ
†
j

χψ j e−iλ

)
. (28)

Here the matrix structure corresponds to the auxiliary space,
and the matrix elements are operators acting on Vj . The nu-
merical parameter χ is given by χ2 = 1 − q−2.

The Lax operator satisfies the RLL exchange relation

R(λ − μ)
[
L(λ) ⊗ L(μ)

] = [
L(μ) ⊗ L(λ)

]
R(λ − μ) (29)

with the R-matrix

R(u − v) =

⎛
⎜⎜⎜⎝

f (u, v) 0 0 0

0 q g(u, v) 0

0 g(u, v) q−1 0

0 0 0 f (u, v)

⎞
⎟⎟⎟⎠, (30)

where

f (u, v) = sin(u − v + iη)

sin(u − v)
, g(u, v) = sin(iη)

sin(u − v)
. (31)

This representation of the R-matrix is slightly different from
the conventional one, due to the factors of q and q−1. Never-
theless it satisfies the usual Yang-Baxter relation

R1,2(λ1,2)R1,3(λ1,3)R2,3(λ2,3)=R2,3(λ2,3)R1,3(λ1,3)R1,2(λ1,2),

(32)

where it is understood that λ j,k = λ j − λk . The relation be-
tween this R-matrix and its conventional form is discussed in
Appendix A.

The monodromy matrix is constructed as

T (λ) = LL(λ)LL−1(λ) · · ·L1(λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
. (33)

It follows from (29) that the monodromy matrix satisfies the
RTT relation

R(λ − μ)[T (λ) ⊗ T (μ)] = [T (μ) ⊗ T (λ)]R(λ − μ). (34)

A direct consequence of (34) is that the transfer matrices
defined as

t (λ) = Tr T (λ) = A(λ) + D(λ)

form a commuting family:

[t (λ), t (μ)] = 0. (35)

The asymptotic behavior at λ = ±i∞ is given by

lim
λ→i∞

[eiLλt (λ)] = lim
λ→−i∞

[e−iLλt (λ)] = 1. (36)

In this model the commuting set of charges are obtained
from the expansion of t (λ) around the special points λ = i∞;
the natural expansion parameter is e2iλ. We define a set of
charges Iα with m � 1 as

Iα = α

(2α)!(1 − q−2α )

(
∂

∂x

)2α

log{xLt[(x)]}|x=0, (37)

where x = eiλ. The prefactors are chosen such that the eigen-
values of the charges will take a simple form.

It can be seen from the definition of the transfer matrix,
that each operator Iα is extensive and it is a sum of local
operators which span at most α + 1 sites. In particular for the
first charge we obtain

I1 =
∑

j

ψ
†
j ψ j+1. (38)

Explicit formulas for I2 and I3 (in a slightly different multi-
plicative normalization) can be found in [38].

The operators Iα are not Hermitian. We can define the
charges with negative indices as their adjoint:

I−α = (Iα )†. (39)

They can be obtained by expanding the transfer matrix around
λ = −i∞. Hermitian charges are then obtained as the combi-
nations

Iα + I−α

2
,

Iα − I−α

2i
. (40)

The particle number operator

N =
∑

j

Nj

commutes with all of the charges, because the transfer matrix
includes only terms with an equal number of ψ† and ψ oper-
ators. We define I0 ≡ N . The Hamiltonian can then be written
as

Hqb = −I1 − I−1 + 2I0. (41)

We build the following set of vectors (called Bethe vectors)
via the B-operators of the monodromy matrix:

|{λ}〉 ≡
N∏

j=1

B(λ j )|0〉. (42)

Here |0〉 = ⊗L
j=1|0〉 j is the vacuum state. The parameters λ j

are the rapidities of the interacting bosons.
The dual vectors can be defined as

〈{λ}| ≡ 〈0|
N∏

j=1

C(λ j ), 〈0| = |0〉†. (43)

A state of the form (42) is an eigenstate of the transfer
matrix if the rapidities satisfy the Bethe equations:

e2iλ j L
∏
k �= j

sin(λ j − λk − iη)

sin(λ j − λk + iη)
= 1. (44)

All solutions to this equation consist of purely real rapidities.
If the Bethe equations are satisfied, then we call the states

(42) and (43) on-shell; in other cases we refer to them as off-
shell Bethe states.

The eigenvalues 	(u|{λ}) of the transfer matrix t (u) on the
Bethe states are

	(u|{λ}) = 1

qN

[
eiLu

N∏
j=1

f (u, λ j ) + e−iLu
N∏

j=1

f (λ j, u)

]
.

(45)
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Eigenvalues of the local charges are easily obtained using the
definition (37). It is easy to see that they can be expressed as
sums of single particle eigenfunctions:

Iα|{λ}〉 =
N∑

j=1

iα (λ j )|{λ}〉, (46)

where

iα (λ) = α

(2α)!(1 − q−2α )

(
∂

∂ξ

)2α

log [ f (λ, log(ξ ))]|ξ=0.

In (46) we used that the charge Iα exists only in lattices
with L > m, therefore it is enough to keep the second term
from (45). Using the substitution eiλ = a the derivatives are
calculated easily, and we find

iα (λ) = e−2iαλ.

It follows from (41) that the one-particle energy is

e(λ) = 2[1 − cos(2λ)], (47)

which is always nonnegative for the physical rapidities when
λ is purely real.

B. Integrability breaking

We wish to compute the lattice regularization of relation
(19), which describes the atomic losses of the Lieb-Liniger
model. We choose the Lindblad jump operators

Lj = ψK
j , L†

j = ψ
†K
j , (48)

where now j is a site index.
The time derivative of the charge densities is then given by

d

dt

〈Iα〉
L

= G
〈
ψ

†K
1

[
Iα, ψK

1

]〉
. (49)

Here we assumed a homogeneous situation and chose j = 1
for the site index.

The expectation value above concerns any equilibrium
state. We approach it from a finite volume situation, and we
intend to compute the normalized amplitude

Oα = 〈{λ}|ψ†K
1

[
Iα, ψK

1

]|{λ}〉
〈{λ}|{λ}〉 , (50)

where the states are given by (42) and (43).
The simplest case is that of I0 = N , for which we find

O0 = −KgK,qb, (51)

where we introduced the local correlation function of the q-
boson model as

gK,qb = 〈{λ}|ψ†K
1 ψK

1 |{λ}〉
〈{λ}|{λ}〉 . (52)

In deriving (51) we used

[N, ψK
1 ] = −KψK

1 . (53)

The next simplest Hermitian charges are the lattice mo-
mentum and the energy. We focus on space reflection

symmetric configurations, thus we are interested only in the
energy. It follows from (41) that

〈{λ}|ψ†K
1

[
Hqb, ψ

K
1

]|{λ}〉
〈{λ}|{λ}〉 = −2KgK − O1 − O∗

1. (54)

The star denotes complex conjugation.
In the next section we will show that gK can be computed

within the ABA; the concrete steps of the present derivation
are different from those of [42]. Afterwards, the next step is
the computation of O1, which requires the treatment of I1

within ABA. As explained in the previous section, the quan-
tities Oα would be relatively easy to compute for arbitrary
α, if there were an asymptotic inverse for the transfer matrix.
However, to our best knowledge there is no asymptotic inverse
in the q-boson model, and we need an alternative approach.

Our solution is to expand the transfer matrix itself to get
the charges. Using the asymptotic behavior (36) we find the
first nontrivial term as

I1 = χ−2 lim
u→i∞

e−2iu[eiLut (u) − 1]. (55)

Thus the charge I1 and therefore also the Hamiltonian can be
treated with a single insertion of a transfer matrix into the
commutator (50).

Higher charges could be obtained by further expanding
t (u) into powers of e2iu, and subtracting the contributions
from lower order terms. For example, the expansion of t (u)
at order e4iu includes terms proportional to I2 and (I1)2. The
latter term can be subtracted using (55). This way the resulting
expression for I2 would involve only a product of at most two
transfer matrices.

In this work we content ourselves with the treatment I1,
and we give some further comments about the higher charges
in the Discussion.

C. Scaling to the Lieb-Liniger model

The q-boson model can serve as a lattice regularization of
the Lieb-Liniger model. Its scaling limit was already studied
in a number of works, for example, [38,74]. Here we sum-
marize the scaling procedure, including the scaling of the
integrability breaking amplitudes.

The idea of the scaling is to perform the continuum limit
and the q → 1 limit simultaneously (a simple q → 1 limit
would result in free bosons on the lattice). To this order let
us choose a small parameter ε. The q-boson model with a
coupling constant q = eη and a finite volume L is scaled to
the Lieb-Liger model with coupling c in a finite volume l , if
the parameters are connected via

L = l/ε, η = c

2
ε, (56)

and then the ε → 0 limit is taken. In this procedure the pa-
rameters l and c of the Lieb-Liniger model are kept finite,
the length of the lattice is increased (continuum limit) and the
coupling is scaled to zero. During this process the rapidities λ

of the q-boson model will be scaled as

λ = pε

2
, (57)
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where p is the rapidity parameter of the Lieb-Liniger model.
Furthermore, the Lieb-Liniger space coordinate x is obtained
from the site index j as

x = ε j. (58)

The scaling of the constant χ is given by

χ2 = 1 − e−2η → cε. (59)

It can be seen that this scaling works on the level of wave
functions and even in ABA. For example, the scaling limit of
the Bethe equations (44) becomes

eip j l
∏
k �= j

p j − pk − ic

p j − pk + ic
= 1. (60)

The one-particle energy (47) is scaled as

e(λ) −→ ε2e(p), (61)

where e(p) is the single particle energy of the Lieb-Liniger
model given by

e(p) = p2. (62)

Regarding the K-body annihilation and creation processes
we have

ψ
†K
1 ψK

1 −→ εK�†K (0)�K (0). (63)

This follows simply from the normalization of the field oper-
ators. As an effect, the scaling of the local correlator becomes

gK,qb −→ εK gK . (64)

Finally the scaling of the Lindblad amplitude for the energy
becomes

〈{λ}|ψ†K
1

[
Hqb, ψ

K
1

]|{λ}〉
〈{λ}|{λ}〉

−→ εK+2 〈{p}|�†K (0)[HLL, �K (0)]|{p}〉
〈{p}|{p}〉 . (65)

Our goal is to compute the l.h.s. above exactly, in a finite
volume and with a finite number of particles. Afterwards we
perform the scaling limit, and extract the leading terms, which
are of the order εK+2. We take the thermodynamic limit only
at the end of the computation, when the finite volume result in
the Lieb-Liniger model is already obtained.

IV. PARTICLE LOSSES IN THE q-BOSON MODEL

In this section we compute the loss amplitudes for the first
two charges I0 and I1 of the q-boson model.

A. Notations

The computations to be presented are rather technical, with
the formulas becoming quite lengthy. In order to shorten the
formulas we introduce the following special notations.

Sets and ordered sets are to be denoted as x̄ = {x1, . . . , xN }.
Omission of elements is denoted as x̄k = x̄ \ xk , x̄k,� = x̄ \
{xk, x�}.

For arbitrary functions G(x), F (x, y) and arbitrary sets x̄, ȳ
we define

G(x̄) =
N∏

i=1

G(xi ), F (x̄, y) =
N∏

i=1

F (xi, y), etc. (66)

Similarly, for products with omissions we define

G(x̄k ) =
N∏

i=1
i �=k

G(xi ), F (x̄k, y) =
N∏

i=1
i �=k

F (xi, y), etc. (67)

Furthermore, for any function g(x, y) of two variables we
define

�g(x̄) =
∏
k> j

g(xk, x j ), �′
g(x̄) =

∏
k< j

g(xk, x j ). (68)

Now we give a few simple examples for the use of these
notations. For example, in these notations the Bethe vectors
(42) are defined as

|{λ}〉 ≡ B(λ̄)|0〉. (69)

The Bethe equations (44) can be written as

e−2iλ j L
f (λ j, λ̄)

f (λ̄, λ j )
= −1. (70)

Furthermore, the transfer matrix eigenvalues (45) are ex-
pressed as

	(u|{λ}) = 1

qN
[eiLu f (u, λ̄) + e−iLu f (λ̄, u)]. (71)

The strength of the bar notation becomes evident as the
formulas become more and more complicated.

B. Action of ψ and ψ†

In order to compute the loss amplitudes the first step is
to derive of the action of multiple ψ operators on the Bethe
states. This is a straightforward procedure, but for this partic-
ular model it has not yet been done in the literature. Therefore
we detail some of the steps.

From the explicit form of Lax operator (28) it is easy to
establish

χψ1 = lim
v→−i∞

e−iv(L−1)C(v),

χψ
†
1 = lim

v→i∞
eiv(L−1)B(v). (72)

Thus we first need the action of C operators on the Bethe
states.

From the RTT relation (34) the following commutation
relation can be found:

C(λ)B(μ) − e−2ηB(μ)C(λ)

= e−ηg(λ,μ)[A(λ)D(μ) − A(μ)D(λ)]. (73)

Furthermore the exchange of the A and D operators with the
B operators is given by

eηA(λ)B(μ) = f (λ,μ)B(μ)A(λ) + g(μ, λ)B(λ)A(μ),

eηD(λ)B(μ) = f (μ, λ)B(μ)D(λ) + g(λ,μ)B(λ)D(μ). (74)

042121-8



INTEGRABILITY BREAKING IN THE ONE-DIMENSIONAL … PHYSICAL REVIEW E 103, 042121 (2021)

Using (73) the formula of action of ψ operators on the
Bethe vectors can be found explicitly. The computation is
presented in Appendix B 1. The result is

ψK
1 |{μ}〉 = χK eη[K (K+1)/2−NK]

[2 sinh(η)]K

K∏
�=1

(1 − e−2�η )
∑

a(μ̄A )eiμ̄A

× f (μ̄A, μ̄C)|{μC}〉. (75)

The summation here is taken over all possible partitions μ̄ →
{μ̄A, μ̄C} such that |μ̄A| = K . We expanded our agreement for
the shorthand notation as

eμ̄ =
∏
μ j∈μ̄

eμ j . (76)

Furthermore we will use the shorthand notation for the pref-
actor

CK = 1

[2 sinh(η)]K

K∏
�=1

(1 − e−2�η ). (77)

C. Norm

The norm of an eigenvector |{μ}〉 of the q-boson model is
given by [48]

〈{μ}|{μ}〉 = �g(μ̄)�′
g(μ̄)h(μ̄, μ̄)sinhN (η) det G({μ}), (78)

with

h(μ, λ) = f (μ, λ)g−1(μ, λ). (79)

The so-called Gaudin matrix is defined as

G jk ({μ}) = δ jk

[
L +

a∑
�=1

ϕq(μk − μ�)

]

− ϕq(μk − μ j ), j, k = 1, . . . , N, (80)

with

ϕq(μ) = sinh(2η)

sin(μ + iη) sin(μ − iη)
. (81)

D. Scalar products

As a next step we compute normalized scalar products of
the type

〈{μ}|ψ†K
1 |{μC}〉

〈{μ}|{μ}〉 , (82)

where μ̄C is a subset of μ̄ with |μ̄C| = N − K . In the actual
computation of the loss amplitudes we will need such scalar
products with the number of field operators given by K and
K + 1.

The normalized scalar products above can be found from
the definition (72) by using the famous Slavnov formula for
the overlaps between on-shell and off-shell Bethe states. The
detailed computation is given in Appendix B. The result is

〈{μ}|ψ†K
1 |{μC}〉

〈{μ}|{μ}〉 =
K∏

j=1

(1 − e−2 jη )
χ−K eKNη

[2 sinh(η)]K (K−1)/2

× eiKμ̄A

d (μ̄A )�g(μ̄A ) f (μ̄C, μ̄A )h(μ̄A, μ̄A )

× det M̃({μC}|{μ})

det G({μ})
. (83)

Here M̃ is a matrix obtained after a slight modification of G
[see (B23)].

E. Local correlation function

Let us first compute the quantity gK,qb defined in (52). To
do this we take the scalar product between 〈{μ}|ψ†K

1 and the
r.h.s. of (75). This gives

gK,qb =CKχK eη[K (K+1)/2−NK]

× e−ηK
∑

a(μ̄A )eiμ̄A f (μ̄A, μ̄C)
〈{μ}|ψ†K

1 |{μC}〉
〈{μ}|{μ}〉 .

(84)

Summation is taken over partitions μ̄ → {μ̄A, μ̄C}, such that
|μ̄A| = K .

Substituting (83) into (84) we obtain after elementary sim-
plifications

gK,qb =
K∏

j=1

(1 − e−2 jη )
CK 2K

χK (K+1)
×

∑
s({μA})

det G ( f )

det G ,

(85)
where

G ( f )
jk = sinh(η)e−i(2k−K−1)μ j , k = 1, . . . , K,

(86)
G ( f )

jk = G jk, k = K + 1, . . . , N,

and s({μ}) is a function defined as

s({μ}) = 1

�g(μ̄)�h(μ̄)�′
h(μ̄)

=
∏
j<k

sin(μ jk )sin(iη)

sin(μ jk + iη) sin(μ jk − iη)
. (87)

The elements of the matrix G ( f ) are complex, but the phases
are arranged symmetrically, and it can be seen that the answer
is manifestly real.

The result (85) is analogous to similar formulas found in
[42]. Regarding the q-boson model it is new.

F. Action of transfer matrix

In order to compute the loss amplitudes for the conserved
charges we also need the action of TM’s on off-shell Bethe
states. For the charge I1 (and thus the energy) it is enough to
take a single TM, which acts as

t (u)|{μ}〉 = 	(u|{μ})|{μ}〉 +
∑

j

	̃ j (u|{μ})|{μ j, u}〉. (88)

Here the first term on the r.h.s. is the so-called “wanted term,”
which gives the TM eigenvalue 	(u|μ̄) if the Bethe vector is
on-shell. The remaining terms are the “unwanted terms” for
which the prefactors are

	̃ j (u|{μ}) = e−ηN [a(μ j )g(μ j, u) f (μ j, μ̄ j )

+ d (μ j )g(u, μ j ) f (μ̄ j, μ j )]. (89)
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Now plugging (75), (83), and (88) into (50) and (55) we
can write

O1 = lim
ω→i∞

ei(L−2)ω

{ 〈{μ}|ψ†K
1 t (ω)ψK

1 |{μ}〉
〈{μ}|{μ}〉

− 〈{μ}|ψ†K
1 ψK

1 |{μ}〉
〈{μ}|{μ}〉 	(ω|{μ})

}

= CKχK e−[N−(K+1)/2]Kη
∑

a(μ̄A )eiμ̄A f (μ̄A, μ̄C)

× lim
ω→i∞

ei(L−2)ω

{ 〈{μ}|ψ†K
1 |{μC}〉

〈{μ}|{μ}〉 [	(ω|{μC})

−	(ω|{μ})] +
∑

j

	̃ j (ω|{μC})
〈{μ}|ψ†K

1 |{μ̄C,j, ω}〉
〈{μ}|{μ}〉

}
.

(90)

Here the outer summation is taken over partitions μ̄ →
{μ̄A, μ̄C} with |μ̄A| = K , and the inner summation is over
the partitions μ̄C → {μ̄C,j, μ j} where |μ j | = 1 and μ̄C,j =
μ̄C \ μ j .

The limit w → i∞ in the direct amplitude follows from
(55). The limit w → i∞ of the indirect amplitude can be
computed using

lim
u→i∞

eiu	̃ j (u|μ̄C) = 2e−(N−K )η sinh(η)eiμ j

×
[
a(μ j )

f (μ j, μ̄ j )

f (μ j, μ̄A )
− d (μ j )

f (μ̄ j, μ j )

f (μ̄A, μ j )

]
.

(91)

G. Loss amplitude of I1

We can now rewrite (90) as the sum of two parts

O1 = Y + Z, (92)

where we call Y and Z the direct term and indirect term,
respectively. The direct term stems from the direct action of
the transfer matrix on the eigenstate, and it is given by

Y = − CK e−[N−(K+1)/2]Kη
∑

a(μ̄A )eiμ̄A

× f (μ̄A, μ̄C)
〈{μ}|ψ†K

1 |{μC}〉
〈{μ}|{μ}〉 I1({μA}). (93)

Here the summation is taken over partitions μ̄ → {μ̄A, μ̄C},
such that |μ̄A| = K , and for the eigenvalues of I1 we use the
following shorthand notation

I1({μA}) =
∑

μ j∈μ̄A

e2iμ j . (94)

The indirect term results from the “unwanted terms” of the
action of the transfer matrix, and it reads

Z = CK e−[N−(K+1)/2]Kηχe−(N−K−1)η

×
∑

a(μ̄A )a(μb)eiμ̄A eiμb f (μ̄A, μ̄C) f (μb, μ̄C)

× [ f (μ̄A, μb) − f (μb, μ̄A )]
〈{μ}|ψ†(K+1)

1 |{μC}〉
〈{μ}|{μ}〉 . (95)

The summation is taken over all partitions μ̄ → {μ̄A, μ̄C, μ̄b},
such that |μ̄A| = K , μb is a single rapidity, and finally |μ̄C| =
N − K − 1. Note that the set μ̄C here is different than in the
previous formula: now it has one less element.

To proceed we substitute the scalar products (83) with K
and K + 1 into the formulas above.

For the direct term (93) we obtain after elementary simpli-
fications

Y = − CK

K∏
j=1

(1 − e−2 jη )
2K

[2 sinh(η)]KχK (K+1)

×
∑

s({μA})
det G ( f )

det G I1({μA}). (96)

Here summation is taken over the same partitions as in (93).
Substituting (B25) into (95) we get

Z =CK

K+1∏
j=1

(1 − e−2 jη )
2K+1

χ (K+1)(K+2)

×
∑ e2iμb

�g(μ̄A )h(μ̄A, μ̄A )h(μb, μ̄A )

×
[

1 − f (μb, μ̄A )

f (μ̄A, μb)

]
det G ( f )

det G , (97)

where

G ( f )
jk = sinh(η)e−i(2k−K−2)μ j , k = 1, . . . , K,

G ( f )
jk = sinh(η)e−i(2k−K−2)μb, k = K + 1,

G ( f )
jk = G jk, k = K + 2, . . . , N. (98)

Here rapidities {μk} in the first K columns belong to the set
μ̄A. Summation is taken over the same partitions as in (95).

H. Energy loss

Using (41) and (39) we can present the energy loss ampli-
tude as a sum of two terms:

〈{μ}|ψ†K
[
Hqb, ψ

K
1

]|{μ}〉
〈{μ}|{μ}〉 = −(YE ,K + ZE ,K ). (99)

Here the subscript E denotes that the quantities describes the
energy loss, and K stands for the K-body processes.

The new direct term is

YE ,K =CK

K∏
j=1

(1 − e−2 jη )
2K

χK (K+1)

×
∑

E ({μA})s({μA})
det G ( f )

det G , (100)

where E ({μA}) is given by the sum of the one-particle eigen-
values (47)

E ({μA}) =
N∑

μ j∈μ̄A

e(μ j ). (101)
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The new indirect term is given by

ZE ,K =CK

K+1∏
j=1

(1 − e−2 jη )
2K+1

χ (K+1)(K+2)

∑
s({μD})

det G ( f )

det G

×
{∑

[ f (μ̄A, μb) − f (μb, μ̄A )](e2iμb − e−2iμb )

}
,

(102)

where we denote set μ̄D = {μ̄A, μb}, | p̄D| = K + 1 and use
the rewriting h(μ̄A, μb)h(μb, μ̄A )h(μ̄A, μ̄A ) = h(μ̄D, μ̄D). The
first sum is taken over partitions μ̄ → {μ̄C, μ̄D}, |μ̄D| = K + 1
and the second over partitions μ̄D → {μ̄A, μb}.

This way the indirect term becomes

ZE ,K =CK

K+1∏
j=1

(1 − e−2 jη )
2K+1

χ (K+1)(K+2)

×
∑

μ̄→{μ̄C,μ̄D}
s({μD})F ({μD})

det G ( f )

det G , (103)

where the sum is taken over partitions μ̄ → {μ̄C, μ̄D}, |μ̄D| =
K + 1. The function F is given by

F ({μD}) =
∑

(e2iμb − e−2iμb )[h(μ̄A, μb) − h(μb, μ̄A )].

(104)

The sum in (104) is taken over partitions μ̄D → {μ̄A, μb},
where μb is a single rapidity.

V. SCALING LIMIT TOWARDS
THE LIEB-LINIGER MODEL

Now we derive the scaling limit of the formulas of the
previous section, using the scaling rules given in Sec. III C.

A. Local correlation function

As a first step we derive the value of the local correlation
function.

The scaling of the Gaudin matrix is given by

det G ( f )

det GLL
→ 2−K (iε)K (K−1)/2εK det G (e)

det GLL
, (105)

where GLL now is the Gaudin matrix of the Lieb-Liniger
model

GLL
jk = δ jk

[
l +

∑
m

ϕ(p j − pm)

]
− ϕ(p j − pk ) (106)

with

ϕ(p) = 2c

p2 + c2
, (107)

and G (e) coincides with GLL except the first K columns that are
given by

G (e)
jk = (p j )

k−1, k � K, j = 1, . . . , N. (108)

Collecting all factors we obtain

gK = (K!)2
∑

s({pA})
det G (e)

det GLL
. (109)

Here the function s({p}) is given by

s({p}) =
∏
j>k

p j − pk

(p j − pk )2 + c2
, (110)

and the summation runs over the partitions p̄ → { p̄A, p̄C} with
| p̄A| = K . During the derivation we also used CK → K!.

The formula above is completely identical to the earlier
results of [42]; in particular it agrees with Eq. (5.6) of that
work.

B. Energy loss rate

Let us now focus on the scaling limit of the energy loss
amplitude. In this case we expect an additional factor of ε2

according to (65).
We compute the amplitude as

〈{p}|�†K (0)[HLL, �K (0)]|{p}〉
〈{p}|{p}〉 = −(YE ,K + ZE ,K ), (111)

where now YE ,K and ZE ,K are the direct and indirect terms in
the Lieb-Liniger model.

Collecting all factors we find for the direct term

YE ,K = (K!)2
∑

E ({pA})s({pA})
det G (e)

det GLL
, (112)

where summation is taken over partitions p̄ → { p̄A, p̄C},
| p̄A| = K and

E ({pA}) =
∑

p j∈p̄A

(p j )
2. (113)

Regarding the indirect term we get

ZE ,K = K!(K + 1)!
∑

F ({pD})s({pD})
det G (e)

det GLL
, (114)

where summation in (114) is taken over partitions p̄ →
{ p̄C, p̄D}, | p̄D| = K + 1. The matrix G (e) coincides with GLL

except the first K + 1 columns where

G (e)
jl = (p j )

l−1, l = 1, . . . , K + 1, j = 1 . . . N, (115)

and pj ∈ p̄D. The function F ( p̄D) after scaling is given by

F ({pD}) =
∑

p̄D→{ p̄A,pb}
2ipb[ f ( p̄A, pb) − f (pb, p̄A )]. (116)

It is shown in Appendix C that this function is in fact equal
to the constant 2K (K + 1)c. Then we arrive at the simplified
formula

ZE ,K = 2cK[(K + 1)!]2
∑

s({pD})
det G (e)

det GLL
. (117)

The summation here is taken as in (114). We can see that
this expression is proportional to the K + 1-body correlator.
In fact, comparing to (109) we get

ZE ,K = 2cKgK+1. (118)

This result has to be compared to equation (26), which was
obtained from the commutation relation of the field operators.
Indeed, we see that the expected higher local correlation func-
tion emerges at the end of the computation, with the same
prefactor as obtained by (26).
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VI. THERMODYNAMIC LIMIT AND FACTORIZATION

Here we take the thermodynamic limit of the loss ampli-
tudes. We take the infinite volume limit such that the Bethe
rapidities become dense in rapidity space. We introduce the
root density ρ(p), such that the number of rapidities between
p and p + d p becomes Lρ(p)d p in a large volume L.

We do not specify the nature of the equilibrium state; it
can be the ground state with a given particle density, a finite
temperature state, or any other excited state which is relevant
for experiments. Therefore we also introduce the hole density
ρh(p), the total density ρt (p) = ρ(p) + ρh(p) and the filling
fraction

f (p) = ρ(p)

ρt (p)
. (119)

It follows from the Bethe equations that the root and hole
densities satisfy the linear integral equation

ρt (p) = 1

2π
+

∫
d p′

2π
ϕ(p − p′)ρ(p′). (120)

The filling fraction can be use to characterize the equilibrium
states. In the case of the ground state f (p) is such that it is
1 within the Fermi zone |p| � pF and zero otherwise. In the
finite temperature case we have f (p) = (1 + eε(p) )−1, where
ε(p) is the solution of the nonlinear integral equation [75]

ε(p) = p2 − ν

T
−

∫
d p′ ϕ(p − p′) log(1 + e−ε(p′ ) ), (121)

where T is the temperature and ν is the chemical potential. In
quantum quench problems the filling fraction can be some-
times be found using the Quench-Action method; see, for
example, [76–78]. In this work we do not specify f (p); we
leave it as an arbitrary function that enters the final formulas.

In order to take the thermodynamic limit of the formulas
of the previous section we apply the methods of [42], which
were based on earlier results in the literature. There are two
key steps in this procedure: the summation over partitions is
turned into a multiple integral, and the ratios of determinants
are expressed using certain auxiliary functions.

Let us consider a summation over partitions p̄ = { p̄A, p̄C},
where | p̄C| = K is fixed, and | p̄A| = N − K is taken to infinity.
We can write simply∑

p̄={ p̄A,p̄C}
· · · −→ LK

K!

∫
d p̄C ρ( p̄C) · · · . (122)

The factor of K! in the denominator cancels the overcounting
of the different permutations of a given p̄C in the multiple
integral.

Let us now investigate the ratios of the determinants. We
apply the standard trick

det G (e)

det GLL
= det[(GLL )−1G (e)]. (123)

The matrices in the numerator are such that they are modified
only in a limited number of elements; thus after multiplication
with G−1 we obtain a matrix which is equal to the identity
except for the rows affected.

In the thermodynamic limit the action of the Gaudin matrix
can be transformed into an integral equation, and we obtain

the result

det[(GLL )−1G (e)] = 1

(2πL)Kρt ( p̄C)
× det I, (124)

where I is a matrix of size K × K with elements given by

I jl = h(l−1)(pC,j ). (125)

Here h(l )(p) are functions that are defined as

h(l )(p) = pl +
∫

d p′

2π
ϕ(p − p′) f (p′)h(l )(p′). (126)

Notice that for l = 0 we have h(0)(p) = 2πρt (p).
Let us now write down the multiple integrals that arise from

the computation. In order to further simplify the formulas we
introduce one more notation:∫

(d p̄) ≡
∫

d p̄ f ( p̄)

(2π )K
=

∫ K∏
j=1

[
d p j

2π
f (p j )

]
. (127)

In this notation the cardinality of the set p̄ is suppressed, but
it is always given in the text.

In the case of the local correlator we get

gK = (K!)
∫

(d p̄) s({p}) det I (128)

with | p̄| = K . The prefactor s({p}) is completely antisymmet-
ric in its variables. After an expansion of the determinant we
can use this property to write

gK = (K!)2
∫

(d p̄) s({p})
K∏

j=1

h( j−1)(p j ). (129)

This agrees with the final result of [42].
For the indirect term the relation (118) was already estab-

lished in a finite volume; the relation clearly holds also in the
TDL. Thus the only remaining task is to take the limit of the
direct term. We get

YE ,K = (K!)2 ×
∫

(d p̄) s({p})E ({p})
K∏

j=1

h( j−1)(p j ). (130)

Using (24) the energy loss rate is eventually given by
d

dt

H

L
= −G(YE ,K + 2cKgK+1). (131)

We have thus obtained the energy loss rate as a sum of a K-
fold and a K + 1-fold integral.

A. Factorization

The multiple integrals can be factorized. Factorization of
the local correlator (129) was already performed in [42]. The
factorization of the direct term (130) is made in Appendix D.
Here we present just the final results, and for the sake of
completeness we also repeat here the results of [42].

The idea of the factorization is to express the multiple
integral as a combination of single integrals. It turns out that
the building blocks for the final formulas are the following
simple integrals:

{n, m} = 1

cn+m+1

∫
d p

(2π )
f (p)pnh(m)(p). (132)

The coupling constant c has the same dimension as the ra-
pidity parameter, thus the quantities {n, m} are dimensionless.
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The addition of the prefactor before the integral is new here; it
was not included in the corresponding formula of [42]. It can
be proven that the following symmetry relation holds [42]:

{n, m} = {m, n}. (133)

Let us now first present the factorized formulas for the local
correlators. In the simplest case we have

g1 = c{0, 0} = N

L
. (134)

For K = 2 we have

g2 = 2c2({0, 2} − {1, 1}). (135)

This result can be obtained simply using the Hellman-
Feynman theorem [39–41].

For K = 3 the result was first found in [41], and it reads

g3 = c3[−4{1, 3} + 3{2, 2} + {0, 4} + {0, 2}
− {1, 1} + 2({0, 1}2 − {0, 0}{1, 1})]. (136)

For K = 4 the result was obtained in [42]:

g4 = 2
5 c4[8({0, 1}2 − {0, 0}{1, 1}) + 32({0, 1}{0, 3} − {0, 0}{1, 3}) + 24({0, 2}{1, 1} − {0, 1}{1, 2})

+ 30({0, 0}{2, 2} − {0, 2}2) + 4({0, 2} − {1, 1}) + 5({0, 4} − 4{1, 3} + 3{2, 2})

+ {0, 6} − 6{1, 5} + 15{2, 4} − 10{3, 3}]. (137)

Let us now turn to the factorization of the direct terms. The computation is presented in Appendix D, and the results are as
follows.

For K = 1 we have a simple integral, which gives

YE ,1 = c3{0, 2}. (138)

In case K = 2 the answer is given by

YE ,2 = 2c4

3
[2({0, 4} − {1, 3} + {0, 0}{1, 1} − {0, 1}2) + {1, 1} − {0, 2}]. (139)

For K = 3 we find

YE ,3 = c5

10
[28({0, 0}{1, 1} − {0, 1}2) + 84({0, 1}{1, 2} − {0, 2}{1, 1}) + 14({1, 1} − {0, 2}) − 5{0, 4} + 9{0, 6}

+ 90({0, 2}2 − {0, 0}{2, 2}) + 72({0, 0}{1, 3} − {0, 1}{0, 3}) + 50{1, 3} − 24{1, 5} − 45{2, 2} + 15{2, 4}]. (140)

The total rate of the energy loss is given by formula (131),
where the above results for gK and YE ,K have to be substituted.

It is important that in deriving the factorized formulas we
assumed that the integrals in the definition (132) are well
defined. This is certainly true for the ground states and the
finite temperature states. However, in certain nonequilibrium
situations the root distribution function can acquire algebraic
tails, making the single integrals ill defined. In these cases an
appropriate cut-off procedure is needed; we leave this ques-
tion to future work.

B. Numerical evaluation

In this paper we contain ourselves with the derivation of
the exact results, and we leave the numerical analysis of con-
crete cases to a future work. Nevertheless let us make some
comments about the numerical methods.

Our factorized results are expressed using the building
blocks (132) which use the auxiliary functions (126). These
are the same objects that appeared in the previous work [42],
where it was already demonstrated that they can be computed
very efficiently. The auxiliary functions are found by solving
a simple linear equation, and the objects (132) are simple
integrals over them. Therefore the quantities {n, m} can be
computed with arbitrary numerical precision. The input to
this numerical procedure is the filling fraction f (p), which

enters the linear equations (126). The steps of this numerical
procedure are standard by now, and publicly available codes
can also be used as an aid [79].

VII. DISCUSSION

In this work we treated the atomic losses in the repul-
sive Lieb-Liniger model. We explained that the losses of the
canonical charges can be computed via the q-boson model,
which serves as a lattice regularization of the problem. In the
concrete computation we considered the energy loss, which
we expressed as a sum of two multiple integrals. The final
formula is (131), which uses (129) and (130). The multiple
integrals are factorized explicitly for K = 1, 2, 3, and the for-
mulas are presented in Sec. VI A.

Our work leaves a number of open questions: Is it possi-
ble to compute explicit formulas for the losses of the higher
moments? What types of integral formulas can we expect? Is
it always possible to factorize the multiple integrals? Is there
a deeper algebraic structure behind the factorization? Can we
expect to find the time derivative of the full root density, per-
haps in some approximative scheme such as a large coupling
expansion? At present we do not know the answer to these
questions, but we wish to give some comments about them.

It is clear from the structure of our computation, that in
principle all conserved charges can be treated in the q-boson
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model. Even though we do not have an asymptotic inverse in
this model, the higher charges can be expressed from products
of transfer matrices, thus they can be treated within ABA. We
expect multiple integral formulas with an increasing number
of integrals as we move to higher and higher charges. It is
not clear whether there should be any pattern in the resulting
formulas: it is possible that the higher charges need to be
treated on a case by case basis, making the approach imprac-
tical. Nevertheless we believe that the next charge I2 could
be treated with reasonable effort: this charge can be obtained
with the insertion of two transfer matrices, leading to more
complicated but still manageable formulas. It is very natural
to expect that from I2 we would the fourth moment of the root
distribution in the Lieb-Liniger model; this can be seen easily
on the level of one-particle eigenvalues, after performing a
careful scaling procedure, and subtracting some lower order
terms.

Regarding factorization it is quite likely that all expected
multiple integrals can eventually be factorized. However, at
present there is no algebraic theory for this procedure. Based
on the results of this work and [42], and also on experience
with the Heisenberg chain, it is very likely that factorization
needs to be performed on a case-by-case basis, and there
will not be any closed formulas applicable to all the higher
moments.

Summarizing these expectations, the search for the time
derivative of the full root density is indeed quite challenging.
An alternative approach would be to perform a systematic
large coupling expansion of the quantities treated in this work,
which could perhaps lead to the time derivatives of all the mo-
ments. We note that in the case of K = 1 the leading term of
such an expansion was already given in [34]. Our results could
be used as a benchmark for such a large coupling expansion: It
is relatively easy to expand the multiple integrals into powers
of 1/c, in order to facilitate future comparisons.

It would be interesting to consider the attractive Lieb-
Liniger model as well. In that model the fundamental particles
can form bound states of arbitrary size. This might seem
like a serious complication as opposed to the repulsive case,
however, certain properties of that model are actually simpler.
We expect to find relatively simple string-charge relations and
also asymptotic inverse operators for the transfer matrices.
We note that already for quantum quenches it was found that
the attractive case displays simpler properties: for example,
in the quench from the Bose-Einstein condensate state the
root densities were found to be polynomials [77,78] as op-
posed to the special functions that appear in the repulsive case
[76].

It is desirable to compare our present results to those of
[43,44], which treated the local correlations of the 1D Bose
gas using a nonrelativistic limit of the sinh-Gordon model.
There the K-body correlator is expressed using a different
family of auxiliary functions, such that a practical and closed
form result is found for all K . Thus no factorization was
needed in [43,44], and this is a considerable advantage over
the earlier approaches. If the methods of [43,44] could be
extended to treat the particle losses, then this could perhaps
lead to more compact exact formulas.

Finally, it would be interesting to compare our formulas to
the numerical results of [34].

We believe that our methods could be generalized to other
models, for example, to the integrable two-component Bose
gas. A direct application of the present ideas will be possible,
if a two-component version of the q-boson model is formu-
lated. As far as we know such a lattice model has not yet been
established, but we believe it is within reach of the standard
methods.

We hope to return to these open questions in a future work.
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APPENDIX A: SIMILARITY TRANSFORMATION

The existing literature dealing with scalar products and cor-
relation functions, and in particular Slavnov’s seminal work
[80] uses an R-matrix, which is not identical to (30), and
which is given by

R̃(u − v) =

⎛
⎜⎜⎜⎜⎝

f (u, v) 0 0 0

0 1 g(u, v) 0

0 g(u, v) 1 0

0 0 0 f (u, v)

⎞
⎟⎟⎟⎟⎠, (A1)

up to multiplicative normalization. It can be seen that the
difference between (30) and (A1) is not a similarity (or gauge)
transformation. Instead it is given by a linear transformation

R̃1,2(u) = G1G−1
2 R1,2(u)G1G−1

2 , (A2)

where Gj with j = 1, 2 is a linear operator given for both
spaces by

G = qSz/2 =
(

q1/4

q−1/4

)
. (A3)

Note that both R(u) and R̃(u) preserve the U (1) charge,
thus

R12(u)G1G2 = G1G2R12(u), (A4)

and similarly for R̃(u). It can be shown using this identity that
the Yang-Baxter relation (32) holds for R(u) if and only if it
holds for R̃(u). The computation consists of mere substitution
and commuting through the appropriate factors.

In the main text it is stated that the Lax operator (28)
satisfies the RLL relation (29) with the R-matrix (30). This
exchange relation can be checked by direct computation.

Similar to the relation (A2) let us also construct a new Lax
operator. Let

L̃ j (u) = GaqNj/2Lj (u)GaqNj/2. (A5)

The Lax operator also conserves the U (1)-charge:

LjGaq−Nj/2 = Gaq−Nj/2Lj . (A6)

Using this property it can be shown that the L̃ j (u) operators
satisfy the RLL relation (29) with the R-matrix (A1).

An important observation is that in (A5) the effect of the Ga

factors is easily canceled with a shift in the rapidity parameter:

L̃ j (u − η/2) = qNj/2Lj (u)qNj/2. (A7)
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The R-matrix depends only on the rapidity differences; thus
the operators L̃ j (u − η/2) also satisfy the RLL relation
with the R-matrix (A1).

Let us now construct a monodromy matrix using the de-
formed and shifted Lax operators:

T̃ (λ) = L̃L(λ − η/2) · · · L̃1(λ − η/2). (A8)

Making use of (A7) it is seen that

T̃ (λ) = qN/2T (λ)qN/2, (A9)

where T (λ) is the monodromy matrix defined in (33) and

N =
L∑

j=1

Nj, (A10)

and we used that the Nj commute with the q-boson operators
at site k for every k �= j.

The relation (A9) holds for every matrix element of the
monodromy matrix separately. These relations can be used
to relate the scalar products computed with the two different
conventions. It is easy to see that the proportionality factors
between Bethe states depend only on the particle number and
not the rapidities; thus for any two sets λ̄ and μ̄ we have

〈0|C(λ̄)B(μ̄)|0〉
〈0|C(μ̄)B(μ̄)|0〉 = 〈0|C̃(λ̄)B̃(μ̄)|0〉

〈0|C̃(μ̄)B̃(μ̄)|0〉 . (A11)

This is guaranteed by the relations (A9).
The ratio of scalar products on the r.h.s. above can be com-

puted with the Slavnov determinant, because the operators
involved satisfy the exchange relations given by the R-matrix
(A1). This is the R matrix which was used in [80]. On the
other hand, the equality tells us that we can use the same
formulas also in our construction, given that we consider such
normalized scalar products.

APPENDIX B: ACTION OF ψ AND ψ†
1

1. Homogeneous limit for the action of ψ1

Using the standard steps from [48] we find that the action of a single C operator is given by

C(ξ )B(μ̄)|0〉 =
N∑

k=1

[
d (ξ )a(μk )Xk + a(ξ )d (μk )X̃k

]
B(μ̄k )|0〉 +

∑
j<k

[a(μ j )d (μk )Yjk + d (μ j )a(μk )Yk j] × B({μ̄ jk, ξ})|0〉, (B1)

where

Xk = g(ξ, μk ) f (μ̄k, μk ) f (ξ, μ̄k )e−2ηN+η, X̃k = g(μk, ξ ) f (μk, μ̄k ) f (μ̄k, ξ )e−2ηN+η, (B2)

and

Yjk = g(ξ j, μk )g(μ j, ξ ) × f (μk, μ j ) f (μk, μ̄ jk ) f (μ̄ jk, μ j )e
−2ηN+η. (B3)

Using now

lim
ξ→−i∞

g(μ, ξ ) ∼ −2e−|ξ |eiμi sin(iη), lim
ξ→−i∞

f (μ, ξ ) ∼ e−η, (B4)

it is easy to obtain from (B1) and (B2)–(B3) the following action of a single operator ψ1:

ψ1|{μ}〉 = χe−(N−1)η
∑

j

a(μ j )e
iμ j f (μ j, μ̄ j )|{μ j}〉. (B5)

The multiple action is found by iterative procedure. Let us consider the double action of ψ , then

ψ2
1 |{μ}〉 = χ2e−(2N−3)η

∑
j

a(μ j )e
iμ j f (μ j, μ̄ j ) ×

∑
j �=k

a(μk )eiμk f (μk, μ̄ jk )|{μ jk}〉. (B6)

Let us rewrite the double sum in (B6) as a sum over partition of ū → {ūA, ūC} with |ūA| = 2, then

ψ2
1 |{μ}〉 = χ2e−(2N−3)η

∑
ū→{ūA,ūC}

a(μ̄A )eiμ̄A f (μ̄A, μ̄C) ×
∑

ūA→{u j ,uk}
f (u j, uk )|{μC}〉. (B7)

We can compute the last sum over partition explicitly. Indeed,∑
x̄A→{x1,x2}

f (x1, x2) = eη + e−η. (B8)

Similarly, in a general case

ψK
1 |μ̄〉 = χ2e−(2N−3)η

∑
μ̄→{μ̄A,μ̄C}

a(μ̄A )eiμ̄A f (μ̄A, μ̄C) ×
∑

μ̄A→{μ̄i,μ̄ii}
f (μ̄i, μ̄ii )|{μC}〉, (B9)
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with |μ̄i| = 1, |μ̄ii| = K − 1 it can be checked that∑
μ̄A→{μi,μ̄ii}

f (μ̄i, μ̄ii ) = (eKη + · · · + e−Kη ). (B10)

Thus in the case of ψK
1 |{μ̄}〉 we have a common factor(

χK
K−1∏
s=1

eηs

)
e−ηNK

[2 sinh(η)]K

K∏
�=1

(1 − e−2η�) = χK

[2 sinh(η)]K
eη[K (K+1)/2−NK]

K∏
�=1

(1 − e−2η�). (B11)

Here we used 2 sinh(η)
∑k

�=1 e−2�η = eη(1 − e−2kη ). Thus we arrive at (75).

2. Scalar product

Here we compute the scalar products relevant to the main computation. As explained in Appendix A, the normalized scalar
products can be obtained using the known formulas in the literature that use the R-matrix as given by (A1). Additional factors of
q which arise in the unnormalized scalar products eventually cancel.

The scalar product of an eigenvector 〈{μC}| and an arbitrary vector |{μB}〉 of form (42) is given by [80]

〈{μC}|{μB}〉 = d (μ̄B)d (μ̄C )�′
g(μ̄C )�g(μ̄B) × h(μ̄B, μ̄C ) det M({μB}|{μC}), (B12)

where d (v) = e−iLv , a(v) = eiLv , r(v) = a(v)/d (v), and the corresponding matrix is given by

M({μB}|{μC}) = t
(
μB

k, μ
C
j

) + t
(
μC

j, μ
B
k

)
r
(
μB

k

)h
(
μ̄C, μB

k

)
h
(
μB

k, μ̄
C
) , j = 1, . . . , N, k = 1, . . . , N. (B13)

Here we also used the function

t (μ, λ) = g(μ, λ)/h(μ, λ). (B14)

Note that in the limit μ̄C → μ̄B the matrix M becomes identical to the Gaudin matrix (80).
Using the definition (72) the action of ψ

†K
1 can be presented as

〈{μ}|ψ†K
1 |{μC}〉 = χ−K lim

ξ̄→i∞
[eiξ̄ (L−1)〈{μ}|{ξ, μC}〉]. (B15)

Here |μ̄C| + K = |μ̄|. We take the limits such that we first send ξ1 → · · · ξK → ξ and afterwards we take ξ → i∞. In the
homogeneous limit ξi → ξ j the determinant of M becomes zero, while the prefactor becomes singular. A finite limit is reached,
whose value needs separate treatment.

It is clear that only the first term in each of the first K columns of (B13) will survive, since the second term contains the factor
r(ξ ) = e2iLξ → 0 at ξ → i∞. Rewrite the first K columns of M as the series w.r.t. z = e|ξ |:

t (ξp, μ j ) = 4i2 sin2(iη)

z2
pa jb j[1 − (zpa j )−2][1 − (zpb j )−2]

= i2 sin2(iη)
4

z2
pa jb j

∑
�,n

(a jzp)−2�(b jzp)−2n. (B16)

Here we denote zp = e−iξp , a j = eiμ j and b j = eiμ j+η. We expand (B16) in the Taylor series w.r.t. z2
p around some point z:

4i2 sin2(iη)
∑

k

1

k!

(
z2

p − z2
)k × ∂k

∂
(
z2

p

)k

[∑
�,n

a−2�−1
j b−2n−1

j z−2(n+l+1)
p

]
. (B17)

In order to keep the columns of determinant linearly independent we take in the first K columns and extract factor (z2
p − z2)kz−2k

p
(k = 1, . . . , K) from the each column. This factor in the limit z1 → z2 → · · · → zK → ∞ cancels with the factor �g(z̄) such
that

K∏
k=1

(
z2 − z2

p

)k
/z2k

p �g(z̄) = [2i sin(iη)]K (K−1)/2. (B18)

The limit in the determinant can be also taken. Extracting form each column z2(�+n+1)
p and taking the homogeneous limit z1 →

z2 → · · · → zK → z (and further z = eξ → ∞) we get that the total order is ξ−K (K+1). We have in each column a−2k−2
j e−(2n+1)η,

k = � + n, and a different power of k should be taken in each column otherwise the columns will be dependent again (in the
kth column we keep only the kth power of eμ j since all lower powers can be canceled by subtraction of linear combination of
different columns), thus we need to take in the first column � = n = 0, in the second � + n = 1, in the third n + � = 2, etc. Then
the determinant can be written as

det M({μC, ξ}|{μ}) = det M̃({μC}|{μ})e−ξK (K+1), k = 1, . . . , K, (B19)
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with matrix elements of M̃({μA}|{μ}) are given by

M̃ jk = Cke−2ikμ j

k∑
�=1

e−2�η, M̃ jk = t (μp, μ j ) + t (μ j, μp)r(μp)
h(μ̄, μp)

h(μp, μ̄)
, (B20)

where Ck = 4e−η(−1)k−1i2 sin2(iη).
On the other hand, the prefactor of the determinant gives at the corresponding order zK2

:

h(μ̄A, ξ̄ )h(μ̄C, ξ̄ )g(μ̄C, ξ̄ ) → h(μ̄A, ξ̄ )eηNK → (−z)K2
[2i sin(iη)]−K2

eηKN eiKμ̄A . (B21)

Thus collecting all powers of z = eξ from (B19) and (B21), extracting factors Ck from the first K columns of the determinant
and taking into account the additional power of sin(iη) from (B18) we obtain the following behavior of the scalar product:

lim
ξ̄→i∞

〈{μ}|{ξ, μC}〉= eiKμ̄A

K∏
k=1

(
1 − e−2kη

) eηKN

[2 sinh(η)]K (K−1)/2 d (μ̄)d (μ̄C)�g(μ̄)�g(μ̄C) h(μ̄, μ̄C) det M̃({μC}|{μ})d (ξ̄ )e−ξK ,

(B22)

where

M̃ jk = e−2ikμ j , k = 1, . . . , K,

M̃ jk = G jk, k = K + 1, . . . , N. (B23)

Above we also used the equality 2 sinh(η)
∑k

�=1 e−2�η = eη(1 − e−2kη ).
Note now, that the definition (72) can be written as

ψ
†
1 = χ−1 lim

ξ→i∞
{[d−1(ξ )B(ξ )]eξ }, (B24)

thus factor d (ξ̄ )e−ξK from (B22) cancels with the ξ -dependent factors in (B24). Hereby we observe the cancellation of all
singular factors in the formula for the action of the field ψ

†
1 .

Thus, finally we arrive at

〈{μ}|ψ†K
1 |{μC}〉 = χ−K eiKμ̄A

K∏
k=1

(1 − e−2kη )eηKN × �g(μ̄)�g(μ̄C)

[2 sinh(η)]K (K−1)/2 h(μ̄, μ̄C) det M̃({μC}|{μ}). (B25)

APPENDIX C: COMPUTATION OF THE FUNCTION F

Here we consider the function F ({p}) defined in (116). It is easy to see that this function is in fact a constant. First note that
F ({p}) is a symmetric function of the rapidities in p̄. Thus in order to prove that F ({p}) is a constant it is enough to prove that
it does not depend on one of the variables. Let us consider the poles of (116). The function has simple poles w.r.t. some fixed
variable pk at points p1, p2, . . . . Let us calculate residues at these poles. We rewrite F ({p}) in the following form:

F ({p}) =
∑

[ f ( p̄k, pb) f (pk, pb) − f (pb, pk ) f (pb, p̄k )]2ipb + 2i[ f ( p̄, pk ) − f (pk, p̄)]pk, (C1)

where summation in the first term is taken over partitions p̄ → { p̄A, pb}, pb �= pk and we write separately the term with pb = pk .
We explicitly write in the first term f ( p̄A, x) = f ( p̄k, x) f (pk, x) where the notation p̄k = p̄A \ pk is used. Taking the residue of
F ({p}) at pk = ps for arbitrary s �= k (note that in the sum in F ({p}) only one term with pb = ps survives) we arrive at

Res
pk=ps

F ({p}) = 2ic[ f ( p̄k, ps) + f (ps, p̄b)]ps − 2ic[ f ( p̄k, ps) + (ps, p̄k )]ps = 0. (C2)

Thus F ({p}) does not have a pole w.r.t. pk at ps for arbitrary k �= s. Also it is easy to see that residue of F ({p}) at infinity is zero.
Then we conclude that F ({p}) is a constant.

This constant can be found by recursion. Let us denote by FK the value of this constant, which refers to the evaluation on the
set with | p̄| = K + 1. It can be checked that the initial condition is F1 = 4c. For the value of FK let us take the p1 → ∞ limit of
the formula. Let us separate the terms and write

FK = lim
p1→∞

K+1∑
j=2

2ip j[ f ( p̄ j,1, p j ) f (p1, p j ) − f (p j, p̄ j,1) f (p j, p1)] + lim
p1→∞ 2ip1[ f ( p̄1, p1) − f (p1, p̄1)]. (C3)

The first terms can be found using the limit

lim
u→±∞ f (u, x) = 1. (C4)
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The second term can be found by using the subleading con-
tributions in the f functions. Finally we obtain the recursion

FK = FK−1 + 4cK. (C5)

The solution of this equation with the given initial condition
is FK = 2K (K + 1)c.

APPENDIX D: FACTORIZATION

Here we consider the factorization of multiple integrals
given by Eq. (130). For convenience we omit here some of
the prefactors and factorize the multiple integrals of the form

JK =
∫

(d p̄) s({p})E ({p})
K∏

j=1

h( j−1)(p j ), (D1)

where the short notation for the integrals was defined in (127).
We will see that the factorized expressions become combina-
tions of the quantities {n, m} defined in (132).

Before turning to the details, let us explain the key idea of
the factorization, as it was first laid out in [42]. The goal is
to manipulate the rational functions in the integrand such that
a certain degree of separation is achieved. We intend to write
the integrand as sums of terms of the type

. . .
1

(p j − pk )2 + c2
h(l )(pk ), (D2)

where j, k and l are arbitrary indices, and the dots stand for
a product of further h(m) functions and an arbitrary rational
function of the rapidities, such that this product does not
depend on pk . In such a case the integral over pk can be
performed using the definition (126), by noting that

1

(p j − pk )2 + c2
= 1

2c
ϕ(p j − pk ). (D3)

After such a step the number of integrals (and thus the number
of variables) is reduced by one. In the next step further alge-
braic manipulations might be required, but the process can be
repeated with the same strategy. Eventually one ends up with
the simple integrals given by (132).

At present there is no algebraic theory behind this pro-
cedure, and the computation need to be performed on a
case-by-case basis.

1. K = 1

For K = 1 we have a simple integral given by

J1 =
∫

d p f (p)p2h(0)(p). (D4)

Using the definition (132) this is equal to c3{0, 2}.

2. K = 2

Consider now the case K = 2:

J2 =
∫

(d p̄)
(p2 − p1)

(
p2

1 + p2
2

)
(p2 − p1)2 + c2

h(0)(p1)h(1)(p2). (D5)

We write the rational factors of the integrand as

(p2 − p1)
(
p2

1 + p2
2

)
(p2 − p1)2 + c2

= 1

3

{
2
(
p3

2 − p3
1

) + c2(p1 − p2)

(p1 − p2)2 + c2
− (p1 − p2)

}
. (D6)

Now we can perform the integrals separately, using the
definitions of the auxiliary functions. After the manipulations
described above we obtain

J2 = c4

6
[2({0, 4} − {1, 3}) + {1, 1} − {0, 2}

+ 2({0, 0}{1, 1} − {0, 1}2)]. (D7)

3. K = 3

Let us consider now the case K = 3. We use the following
expansion:

3∏
i< j

p j − pi

(p j − pi )2 + c2

3∑
k=1

p2
k =

∑
σ∈P

(−1)[P ]D(pσ1 , pσ2 , pσ3 ),

(D8)
where the sum is taken over the permutations of spectral pa-
rameters, [P ] denotes the parity of permutations and D(x, y, z)
is defined as

D(x, y, z) = z3 − z2y + zc2/3

[(z − y)2 + c2][(y − x)2 + c2]
. (D9)

The equality (D8) can be checked by direct computation.

Applying this expansion we perform the integration over the first variable in each term:∫
(d p̄)

p3
3 − p2

3 p2 + c2 p3/3

[(p3 − p2)2 + c2][(p2 − p1)2 + c2]
h(0)(p1)h(1)(p2)h(2)(p3) + perm .

= 1

2c

∫
(d p̄)

p3
3 − p2

3 p2 + c2 p3/3

(p3 − p2)2 + c2
[h(0)(p2) − 1]h(1)(p2)h(2)(p3) + perm . (D10)

In the second line perm stand for analogous terms, with the appropriate replacements.
It can be seen that the terms proportional to h(0)(pi )h(1)(p j )h(2)(pk ) for i, j, k = 1, . . . , 3 disappear, and the remaining terms

are

J3 = J (a)
3 + J (b)

3 + J (c)
3 (D11)
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with

J (a)
3 = − 1

2c

∫
(d p̄) h(1)(p2)h(2)(p3)

(
p3

3 − p3
2

) + (
p2

2 p3 − p2
3 p2

) + c2(p3 − p2)/3

(p3 − p2)2 + c2
, (D12)

J (b)
3 = 1

2c

∫
(d p̄) h(0)(p1)h(1)(p2)

2
(
p2

2 p3
1 − p2

1 p3
2

) + c2
(
p1 p2

2 − p2
1 p2

)
/3

(p1 − p2)2 + c2
, (D13)

and

J (c)
3 = 1

2c

∫
(d p̄)

p1 p3
3 − p3

1 p3

(p1 − p3)2 + c2
h(0)(p1)h(2)(p3). (D14)

Now the problem of the factorization of (D12)–(D14) is reduced to the factorization of integrals

K (sr)
αβ =

∫
dx dy

xαyβ − xβyα

(x − y)2 + c2

h(s)(x)h(r)(y)

cα+β+s+r
, (D15)

with α, β = 1, . . . , 4, r, s = 0, . . . , 2. Note that we introduced factors of c in the denominator so that each K (sr)
αβ is dimensionless.

Regarding J (a,b,c) we have

J (a)
3 = c5

4

[
2K (23)

12 + {2, 4} − {1, 5} + 1

3
({2, 2} − {1, 3})

]
, J (b)

3 = c5

2

(
1

3
K (12)

12 − 2K (12)
23

)
, J (c)

3 = c5

2
K (13)

13 . (D16)

For the rational functions appearing in the double integrals above we perform the following manipulations:

xy2 − x2y

(x − y)2 + 1
= 1

3
(x − y) + 1

3

(y − x) + (y3 − x3)

(x − y)2 + 1
, (D17)

xy3 − x3y

(x − y)2 + 1
= 1

2
(x2 − y2) + 1

2

(y2 − x2) + (y4 − x4)

(x − y)2 + 1
, (D18)

x2y3 − x3y2

(x − y)2 + 1
= 2/15(x − y) + 2/5(x2y − y2x) + 1/5(x3 − y3) + 2/15(y − x) + 1/3(y3 − x3) + 1/5(y5 − x5)

(x − y)2 + 1
. (D19)

Here the variable x is be understood as the dimensionless combination x = p/c, with some p, and similarly for y.
This separation of terms leads to the results

K (12)
12 = 1

6 ({0, 4} − {1, 3} + {0, 2} − {1, 1} + 2{0, 1}2 − {0, 0}{1, 1}), (D20)

K (23)
12 = 1

6 [{2, 4} − {1, 5} + {2, 2} − {1, 3} + 2({2, 1}{1, 0} − {1, 1}{2, 0})], (D21)

K (13)
13 = 1

4 [2({0, 2}2 − {2, 2}{0, 0}) + {0, 4} − {2, 2} + {0, 6} − {2, 4}], (D22)

and

K (12)
23 = 1

30 [4({0, 1}2 − {0, 0}{1, 1}) + 3{0, 6} − 3{1, 5} + 12({0, 2}{1, 1} − {0, 1}{1, 2})

+ 2({0, 2} − {1, 1}) + 5({0, 4} − {1, 3}) + 6({0, 3}{0, 1} − {1, 3}{0, 0})]. (D23)

Substituting the equations (D20)–(D23) to (D16) and finally into (D11) gives the final answer for J3. The direct term for the
energy loss is given by YE ,3 = (3!)2J3, and this leads to formula (140).
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