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Tilted elastic lines with columnar and point disorder, non-Hermitian quantum mechanics, and
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We revisit the problem of an elastic line (such as a vortex line in a superconductor) subject to both columnar
disorder and point disorder in dimension d = 1 + 1. Upon applying a transverse field, a delocalization transition
is expected, beyond which the line is tilted macroscopically. We investigate this transition in the fixed tilt angle
ensemble and within a “one-way” model where backward jumps are neglected. From recent results about directed
polymers in the mathematics literature, and their connections to random matrix theory, we find that for a single
line and a single strong defect this transition in the presence of point disorder coincides with the Baik–Ben
Arous–Péché (BBP) transition for the appearance of outliers in the spectrum of a perturbed random matrix in
the Gaussian unitary ensemble. This transition is conveniently described in the polymer picture by a variational
calculation. In the delocalized phase, the ground state energy exhibits Tracy-Widom fluctuations. In the localized
phase we show, using the variational calculation, that the fluctuations of the occupation length along the columnar
defect are described by fKPZ, a distribution which appears ubiquitously in the Kardar-Parisi-Zhang universality
class. We then consider a smooth density of columnar defect energies. Depending on how this density vanishes
at its lower edge we find either (i) a delocalized phase only or (ii) a localized phase with a delocalization
transition. We analyze this transition which is an infinite-rank extension of the BBP transition. The fluctuations
of the ground state energy of a single elastic line in the localized phase (for fixed columnar defect energies)
are described by a Fredholm determinant based on a new kernel, closely related to the kernel describing the
largest real eigenvalues of the real Ginibre ensemble. The case of many columns and many nonintersecting lines,
relevant for the study of the Bose glass phase, is also analyzed. The ground state energy is obtained using free
probability and the Burgers equation. Connections with recent results on the generalized Rosenzweig-Porter
model suggest that the localization of many polymers occurs gradually upon increasing their lengths.
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I. INTRODUCTION

A. General motivation and overview

Directed elastic lines have been used to model vortex lines
in type II superconductors [1–3], aligned with an external
magnetic field applied along the z axis. Point impurities, such
as oxygen vacancies in high Tc superconductors, provide a
short-range correlated random potential which tends to pin
the vortex lines. Spatially correlated disorder may also arise,
either planar, e.g., from twin boundaries, or columnar, e.g.,
from linear defects such as dislocation lines or damage tracks
artificially created by heavy ion irradiation. In the presence
of columnar disorder along z the vortex lines tend to localize
along the columns leading to the so-called Bose glass phase
(by analogy with the glass phase of interacting bosons [4–6]),
with enhanced pinning and critical currents [7–10].

If the external field is weakly tilted away from the z direc-
tion, the response is zero; i.e., there is a threshold transverse
field needed to tilt the lines (see Fig. 1). This effect is known
as the transverse Meissner effect and has been observed in
experiments in various geometries [11–13]. In the absence

of point disorder, this transition has been described as a
commensurate-incommensurate transition [7,14].

A continuum model for a single directed elastic line (also
called directed polymer) in dimension d = 1 + 1, of coordi-
nates (u(z), z), is defined by the energy

E[u] =
∫ L

0
dz

[
γ

2

(
du(z)

dz

)2

+ U (u(z))

+ V (u(z), z) − H
du(z)

dz

]
. (1)

The first term is the elastic energy cost of deforming the line
away from the z axis, γ being the line tension, U (u) is a
columnar potential, V (u, z) a random potential from point im-
purities. Written here in d = 1 + 1, the model extends to d =
2 + 1, with u(z) → �u(z). It is usually studied at temperature
T , defining the canonical partition sum Z = ∫

Du(z)e− 1
T E[u].

Here H is the transverse part of the magnetic field, and
the term −H

∫ L
0 dz du(z)

dz = −H[u(L) − u(0)] in the energy (1)
tends to tilt the elastic line away from the z axis. In the absence
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FIG. 1. Top: Typical schematic phase diagram for vortex lines in
the presence of columnar defects, as a function of the temperature
T and of the transverse external field H⊥ (noted H in the text).
Inset: Schematic picture of the line configurations (localized along
the columns in the Bose glass phase, and delocalized in the tilted
phase). Bottom: Behavior of the total transverse magnetic induction
B⊥ (proportional to the mean tilt angle of the vortex lines) as a
function of H⊥ at fixed temperature. Hc

⊥ is the critical field above
which the vortex lines begin to tilt.

of external potentials, i.e., for U = V = 0, the preferred slope
of the line is du

dz = tan φ = H/γ ; see Fig. 1.
For V = 0 and H = 0, the model (1) at temperature T

maps onto the quantum mechanics of a particle of posi-
tion u in the potential U (u), described by the Hamiltonian
Ĥ0 = − γ

2 T 2∂2
u + U (u) (Z being its imaginary time path

integral version). When U (u) is a random potential, the eigen-
states of Ĥ0 are localized. The transverse field H acts as a
non-Hermitian perturbation of Ĥ0 and leads to delocalized
states above a certain threshold field, corresponding to tilted
lines [15–18]. For the model (1) it is easily understood by
a simple argument [19]. Consider a localized eigenfunction
of Ĥ0, which decays typically as ∼e−|u|/ξ , ξ being the local-
ization length. Since the H term in (1) is a total derivative,
for H > 0 this eigenfunction becomes ∼e−|u|/ξ− H

T u, which is
normalizable (no macroscopic tilt) for H < Hc = T/ξ . For
H > Hc this localized state (real eigenenergy) ceases to exist
and is replaced by a delocalized state (with complex eigenen-
ergy). Note that the higher energy, less localized states, i.e.,
with larger values of ξ , are the first ones to disappear upon

increasing H . This problem initiated a wave of interest for the
so-called non-Hermitian quantum mechanics, in particular to
study non-Hermitian localization to delocalization transitions,
see, e.g., Refs. [20–24], and population dynamics [25].

The model (1) is extended to many interacting elastic lines
to study the transverse Meissner effect in the Bose glass
phase in d = 2 + 1 [7] or d = 1 + 1 dimension [6,26,27].
Schematically mimicking hard core interactions by Fermi ex-
clusion, the threshold field for delocalization and macroscopic
tilt is reached when the localized eigenstates at the “Fermi
energy” start to disappear. Other situations have been stud-
ied, such as many interacting lines and a single columnar
defect [10,28,29], as well as additional (non-Hermitian) Mott
phases which arise upon commensuration of the number of
lines and columns, or in the presence of an additional periodic
potential [30–32].

The question of the additional effect of point disorder
V (u, z) is of great importance since point impurities are usu-
ally present in the experimental systems. The competition
between extended and point defects was studied in the context
of many interacting lines and many columnar defects in [14].
Weak point disorder was argued to weaken the pinning by the
extended defects, with the possibility that the Bose glass phase
is unstable to point disorder, but only beyond an astronomi-
cally large scale. Strong point disorder was shown to be stable
to weak correlated disorder. The case of a single line and a
single columnar defect (at u = 0) in dimension d = 1 + 1 is
rather subtle. A one-sided version of the model (restricted to
u � 0), natural in the context of wetting, leads to an unbinding
transition [33], studied later in the context of the half-space
Kardar-Parisi-Zhang (KPZ) equation [34–37] and of related
models [38]. However in the full space model it was argued
that the line is always pinned (i.e., localized on the column)
at and below d = 1 + 1 [39–41]. The question is now settled
in the mathematics literature; it is known as the slow bond
problem [42], and it was numerically confirmed [43].

When the columnar defects are strong, the kink energy
Ek , i.e., the energy cost from going from one column to its
neighbor, is large. The polymer spends most of its length on
the columns and the jumps are rare; see Appendix A. It it thus
natural to study the discrete hopping model with N sites in one
dimension,

H = −
∑

j

wR

2
| j + 1〉〈 j| + wL

2
| j〉〈 j + 1|

+ [ε j + η j (t )]| j〉〈 j|, (2)

where wR = weh and wL = we−h are the hopping rates to
the right and the left and the ε j are the on-site attractive
potentials of the columns, which we denote for convenience
in the reminder of this paper

ε j = −a j, (3)

where we often choose the column strength aj positive. The
point disorder is modeled by white noise η j (t ) i.i.d. on each
column. This model without the point disorder has been much
studied [15–18,44–47] and the spectrum (in the complex
plane) has been obtained exactly when the a j are i.i.d. random
variables from a Cauchy distribution [20–22]. In the absence
of columnar disorder the spectrum is concentrated along an
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FIG. 2. Left: Single O’Connell-Yor polymer of total length x with N columnar defects, delocalized over the space. The xi are the position
of the jumps and the occupation length of column i is �i = xi − xi−1. Right: Single O’Connell-Yor polymer localized over the column i, where
the disorder is most favorable ai = amax, and which has a macroscopic occupation length �i = O(x).

ellipse in the complex plane, corresponding to delocalized
states, while in presence of columnar disorder it develops
“wings” on the real axis corresponding to localized states [48].
In these works the boundary conditions at the ends of the chain
of N sites are often chosen periodic.

Since the model (2) is quite difficult to analyze in the
presence of point disorder we will consider the simpler limit
h → +∞, weh → 2, where the lines can only jump to the
right (i.e., wL → 0). In that case the operator H in (2) is the
Markov generator of the so-called O’Connell-Yor polymer
(at finite temperature), which we will study here with free
boundary conditions. Note that this “one-way” limit model,
also called maximally non-Hermitian, was also studied in
Refs. [21] and [22] in the absence of point disorder, and
retains some of the features of the full model (2). In particular,
for Cauchy disorder these works found that there are also
localized states.

Another motivation to study the “one-way” model is that
one expects that near the transition at H = Hc, e.g., just above
it, the lines start tilting and the backward jumps may have
a subdominant effect; see Appendix A. Whether this model
captures some of the universal features of the transition at
H = Hc remains to be understood. In this limit however we
will present very detailed results.

B. Aim of the paper; model and observables

In this paper we study a model of lines (equivalently called
polymers) in d = 1 + 1 in the presence of both columnar and
point disorder, defined on a lattice with N sites and with jumps
only to the right. It is called the O’Connell-Yor (OY) polymer
and corresponds to the one-way limit of the model (2). The

OY model is related to random matrix theory (RMT) and
many results are known in the mathematical context. A first
aim of this paper is to review and translate these results in
the language of localization to delocalisation transitions for
the polymers, and to make them more widely known in the
physics community. In addition we derive some new results,
in particular in the case of continuous distributions of column
strengths a j , or concerning the macroscopic occupation length
of the columns by the lines in the localized regime, little ad-
dressed in RMT; see, e.g., Fig. 2. Although we briefly address
finite temperature, most of our study concerns the ground state
energy, and its sample to sample fluctuations in the various
phases due to point disorder.

The outline is as follows. In this subsection we first define
the model and the observables for a single line. We then recall
the connection to RMT in the simplest case and present a few
immediate consequences for the physics of a single line. In
Sec. II we study in more detail the case of a single line and a
single “active” column (i.e., a1 > 0 and a j 	=1 = 0). For large
N there is a localization to delocalisation transition related
to the Baik–Ben Arous–Péché (BBP) transition in RMT for
the appearance of outliers in the spectrum of a perturbed
random matrix in the Gaussian unitary ensemble (GUE). In
the delocalized phase, the fluctuations of the ground state en-
ergy due to point disorder are described by the Tracy-Widom
distribution. We give a detailed description of the occupation
length of the columnar defect by the line, see Fig. 2, and its
fluctuations, in both phases and near the transition. In Sec. III
we study one line and many columnar defects, in the case of a
smooth density ρ(a) of column strengths. It corresponds to a
perturbation of infinite rank of a GUE random matrix. Only a
few works have addressed infinite rank perturbations [49–51],
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see also [[52], Remark 2] and [[53], Sec. 5.5.4], but not in
the regime of interest here. We show that if ρ(a) vanishes
sufficiently fast near its (finite) upper edge there is a local-
ization transition for the polymer. We obtain the fluctuations
of the ground state energy (for fixed column strengths) in
the localized phase, and around criticality, We show that it
is described by a new one-parameter universal distribution,
reminiscent of the one describing the largest real eigenvalue of
the real Ginibre ensemble of random matrices. In Sec. IV we
extend our study to many lines, first with a few active colum-
nar defects, then with many columnar defects. The latter case
can be studied using free probability and the Burgers equation,
and has connections with the Rosenzweig-Porter model, a toy
model for many-body localization much investigated recently.
We find that many line localizations can occur for sufficiently
long polymers, via an intermediate nonergodic delocalized
phase.

The study in this paper is performed in the fixed tilt angle
ensemble. In Appendix A we discuss the fixed transverse field
H ensemble. We first recall the picture of the tilting transition
for the continuum model (1) of an elastic line. We discuss a
possible realization of the OY model by introducing a periodic
array of columns of various strengths, and discuss the effect
of point disorder.

Appendices B, D, and C recall useful results about the
Dyson Brownian motion and the BBP kernel, and define the
many-line model. Appendices F and E give more details about
a variational calculation and the approach of the transition
from the delocalized phase.

1. Definition of the model for a single line

The O’Connell-Yor polymer model [54], extended to ar-
bitrary drifts, is defined as follows. The directed polymer
path lives only on the columns j = 1, . . . , N and jumps from
column j to j + 1 at a height x j . There are no leftward jumps.
The path is parametrized by the set x = {x j}0� j�N with x0 =
0 < x1 < · · · < xN = x; see Fig. 2. One part of its energy is

E p
N (x) = B1(x1) + B2(x2, x1) + · · · + BN (x, xN−1), (4)

where the Bj (x) are independent unit Brownian motions with
Bj (0) = 0. The Bj (x, x′) = Bj (x) − Bj (x′) represent the total
random energy from point impurity disorder collected along
column j. Note that the end points are fixed at (x, j) = (0, 1)
and (x, N ). In addition, there is a (negative) binding energy
ε j = −a j � 0 to the columnar defects

Ec
N (x) = −

N∑
j=1

a j� j, � j = x j − x j−1, (5)

where � j is the length along column j occupied by the directed
polymer. The a j are also called drifts since they can also be
seen as (minus) the drifts for the Brownian Bj .

The model at temperature T is defined by its canonical
partition sum

ZN (x, T ) =
∫ x

0
dx1

∫ x

x1

dx2· · ·
∫ x

xN−2

dxN−1e−EN (x)/T , (6)

where EN (x) = E p
N (x) + Ec

N (x) is the total disorder energy. Its
free energy is FN (x, T ) = −T lnZN (x, T ), and at T = 0 it

equals the ground state energy defined by the minimization
problem

E0
N (x) = FN (x, T = 0) = min

x
EN (x). (7)

In general FN (x, T ) fluctuates from sample to sample with
respect to the point disorder (the Brownian motions) as well
as the columnar disorder (the ε j = −a j). In this paper we will
study the fluctuations with respect to the Brownian motions,
for fixed values of the columnar strengths a j . Hence we are
interested in the mean value and probability distribution func-
tion (PDF), for a given set of aj . Indeed these observables
allow us to distinguish the various phases. Note that, remark-
ably, one can show that the PDF of FN (x, T ) is invariant by
any permutation of the a j [56].

To study a single line, we will be interested in the limit of
both N and x taken large, with a fixed ratio θ = x/N . Denoting
φ the angle of the polymer with the columns (i.e., with the z
axis) we consider a fixed ratio

tan φ � Nr0

x
= r0

θ
, (8)

where we work in units where the lattice spacing r0 = 1. The
case of small φ corresponds to a field close to the z axis and to
a vortex line almost localized by the columns. The case φ =
π
2 − ψ with ψ small corresponds to another situation (natural
in layered superconductors) where the external field is almost
perpendicular to the columns.

In the presence of columnar disorder ε j = −a j � 0 one
wants to study the possible localization of the directed
polymer along the columns. This can be quantified by the oc-
cupation length � j (defined above) which the polymer spends
on column j. The statistics of this observable is one of the
focuses of this paper, and has not been addressed until very
recently in the mathematics literature [57,58]. As we will see
below the occupation fraction � j/x plays the role of an order
parameter for the localization transition. Its expectation value
can be obtained from the following important relation,

∂ε jFN (x, T ) = −∂a jFN (x, T ) = 〈� j〉T , (9)

in each disorder configuration, i.e., for each realization of
the Brownian motions Bj , where 〈. . . 〉T denotes the thermal
average.

As emphasized above the present study is performed in
the fixed tilt angle φ ensemble. In order to connect to
models such as (1) it is interesting to also consider the
fixed external field H ensemble, where the exit position
of the line, u(x) = N , can fluctuate. These two ensembles
are related by a Legendre transform. Defining f (tan φ) =
limx→+∞ FN=x tan φ (x, T )/x, the free energy per unit length at
fixed H is minφ�0[ f (tan φ) − H tan φ]. This ensemble, and
the connection to elastic line models and to the transverse
Meissner effect physics, is discussed in Appendix A. We argue
that the localization to delocalisation transition which occurs
at tan φc = 1/θc in the fixed angle ensemble may be associated
with a first order jump in the tilt response at H = Hc, and that
the localized phase discussed here for φ < φc, i.e., θ > θc, can
be seen actually as a coexistence region.
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2. Connection to random matrices: Zero temperature

It has been known for some time in mathematics
that the PDF of the optimal energy of the O’Connell-
Yor model (i.e., at zero temperature) is related to the
one of the largest eigenvalues of a random matrix from
the so-called deformed GUE [54,59–64]. Let V be an
N × N random Hermitian matrix drawn from the GUE,
i.e., with measure Z−1 exp(− 1

2 TrV 2)dV , where dV =∏
i dVii

∏
i< j dReVi jdImVi j . With this normalization, the

spectrum of V becomes, in the large-N limit, a semicircle with
support � [−2

√
N, 2

√
N]. Consider the matrix M(x) defined

as

M(x) = x diag(a1, . . . , aN ) + √
x V, (10)

and denote λ1(x) � λ2(x) � · · · � λN (x) its eigenvalues in
decreasing order. Then one has the equality in law for the
ground state energy

E0
N (x) = FN (x, T = 0)

in law= −λ1(x). (11)

This characterizes the fluctuations over the point disorder, and
it is valid for any fixed configuration of the column energies
ε j = −a j , and for any N .

As shown in Refs. [64–66], the equality in law at fixed x
in (11) can be extended to an equality in law as a process in
x (i.e., as random functions of x on both sides) if one replaces√

x V → W (x) where W (x) is the Dyson Brownian motion
(DBM), i.e., a Brownian motion in the space of N × N Her-
mitian matrices; see [67–70] for the definition of the DBM,
and Appendix B.

The formulas (10) and (11) allow us to make a bridge
between the polymer representation and the random matrix
representation. First note that the occupation lengths in the
ground state, denoted �0

j , can be obtained as

∂ε jE0
N (x) = −∂a jE0

N (x) = �0
j (12)

by taking the T = 0 limit of (9). Now, denote ψi, i =
1, . . . , N , the eigenvector associated with λi. A simple per-
turbation theory argument shows that

∂a j λ1(x) = x|ψ1( j)|2 (13)

for each realization of the matrix V . Consider now the average
of (13) over V and compare it with the average of (12) over
the Brownian motions Bj , using (11). One finds for any j and
ε j one has

�0
j

B = x |ψ1( j)|2V
, (14)

where averages over the Brownian motions B and the matrix
randomness V , respectively, are denoted by the corresponding
overbars. Hence the average of the occupation length �0

j of the
polymer on the column j at T = 0 can be related to the mean
overlap with the column j of the eigenvector ψ1 of M(x) with
the largest eigenvalue. In this respect, note that recent studies
address the distribution of the eigenvectors for such ensemble
of random matrices either in the bulk [71], or near the edge
but in the large deviation regime [72]. One would hope to
determine the distribution of |ψ1( j)|2 in the typical fluctuation
regime using (13), or to relate it to the distributions of �0

j
further using (11) and (12); however for this one would need

the knowledge of λi(x) as a process with respect to the ai’s,
which is not currently available. In fact the PDFs of �0

j and
of |ψ1( j)|2 differ in general, despite their means being related
via (14), as seen in an explicit example in Appendix F 3.

There are many interesting consequences of the result (11);
some will be explored in this paper, and others can be already
stated here.

(i) In the absence of columnar disorder, a j = 0, the matrix
M(x) = √

x V has the same one point distribution at fixed x
as the Dyson Brownian motion W (x). Hence the statistics of
λ1(x) is known in the limit of large N , which implies that

FN (x, T = 0)
in law= −2

√
Nx − χ2

N1/6

√
x, (15)

where χ2 is distributed according to the GUE Tracy-Widom
distribution [73]. Furthermore, as discussed in the paragraph
below (11), λ1(x) evolves as a function of x as the largest
eigenvalue of the DBM. At large N , and in a window of values
of x of width of order δx ∼ x/N1/3, it can be approximated as
follows (see Appendix B 4),

FN (x + δx, T = 0)
in law= −2

√
N (x + δx) − A2

(
N1/3δx

2x

)
N1/6

√
x,

(16)

where z 
→ A2(z) is the so-called Airy2 process, a univer-
sal random function introduced in [74] in the context of a
discrete growth model. It is a continuous stationary process
(i.e., statistically invariant by translation) with a slow decay
of correlations 1/z2. All its multipoint correlations are known
and can be expressed as Fredholm determinants [75]. For δx =
0, (16) recovers (15) since A2(0) = χ2; i.e., the one point
distribution of the Airy2 process is the GUE Tracy-Widom
distribution.

(ii) In the presence of columnar disorder, the problem maps
onto determining the largest eigenvalue of the so-called de-
formed or spiked GUE. Study of that problem was pioneered
in physics by Brezin and Hikami [76–80] and in mathematics
by Johansson [81] and Tracy and Widom [82,83]. It can be
reformulated in terms of the Dyson Brownian motion as fol-
lows. Upon redefining xa j = b j , the matrix M(x) in (10) can
be interpreted, for fixed values of b j , as performing a DBM in
x, with initial condition λ j (x = 0) = b j ; see Appendix B.

Various initial conditions have been studied in the equiv-
alent random matrix models with sources [84]. These also
admit interesting representations as noncrossing random
walks, also called watermelons [82,85,86], and DBM with
wanderers [87].

The simplest case occurs for a single attractive columnar
defect, ε1 = −a1 < 0 and a j�2 = 0. From (10) it corresponds
to a rank-one perturbation of the GUE matrix

√
xV . This was

studied in a celebrated work by Baik, Ben Arous, and Péché
for spiked covariance matrices [88] and spiked GUE matri-
ces [89]. In Ref. [89] it was shown that the largest eigenvalue
λ′

1 of the deformed GUE matrix M ′ = diag(π1, {0}) + V√
N

exhibits two phases:
(i) If π1 < 1, λ′

1 = 2 + N−2/3χ2.
(ii) If π1 > 1, λ′

1 = π1 + 1
π1

+ N−1/2N (0, σ 2) with σ 2 =
1 − 1

π2
1
.

042120-5



KRAJENBRINK, LE DOUSSAL, AND O’CONNELL PHYSICAL REVIEW E 103, 042120 (2021)

Here N (m, σ 2) denotes a Gaussian random variable with
variance σ 2 and mean m. The correspondence with our nota-
tions leads to π1 = √ x

N a1 and λ1 = √
Nxλ′

1. Thus, using (11),
this predicts the following leading behavior for the free energy
of the polymer at T = 0:

(a) If the column is weak, i.e., a1 <

√
N
x , equivalently θ <

θc = 1
a2

1
(or tan φ > tan φc = a2

1, i.e., large angle from the z

axis), then the rank-one perturbation (the columnar defect) has
little effect; i.e., the largest eigenvalue of M(x) still behaves
as λ1(x) � 2

√
Nx at large N and the result (15) for the ground

state free energy still holds.

(b) If the column is strong, i.e., a1 >

√
N
x , equivalently θ >

θc = 1
a2

1
(or tan φ < tan φc = a2

1, i.e., small angle from the z

axis), then the largest eigenvalue of M(x) detaches from the
Wigner semicircle and becomes an outlier. This leads to

FN (x, T = 0) � −
(

a1x + N

a1

)
+

√
NN

(
0, θ − 1

a2
1

)
.

(17)

As we discuss below, this BBP transition corresponds to a first
order localization transition of the polymer on the columnar
defect, which has some features of a freezing transition.

In the next section we will analyze in more detail this
transition, and extract in particular information about the oc-
cupation length. This will prepare us to study the case of many
columnar defects in the following section.

II. SINGLE LINE, SINGLE COLUMNAR DEFECT,
ZERO TEMPERATURE

Let us consider now in more detail the case of a single line
and a single column with an attractive potential ε1 = −a1 � 0
(which with no loss of generality we can choose in posi-
tion j = 1). All other potentials are set to ε j = −a j = 0 for
j 	= 1. We first present a variational calculation based on the
polymer picture. In a second stage we recall the kernel which
describes the largest eigenvalue of the matrix M(x) and study
the phases using Fredholm determinants.

A. Approach by a variational calculation

We now obtain a physical derivation of the localization
transition of the polymer, when a finite fraction of the length
of the columnar defect becomes occupied. We first discuss the
two phases and then the critical region.

1. Description of the two phases

For a single columnar defect, of energy ε1 = −a1 � 0, the
ground state energy E0

N (x) is given by the following variational
problem,

E0
N (x) = min

�1∈[0,x]
[B1(�1) − a1�1 + GN−1(�1, x)], (18)

where

GN−1(�1, x) = min
�1<x2<···<xN−1<x

N∑
i=2

Bi(xi, xi−1), (19)

FIG. 3. Occupation fraction �0
1/x at zero temperature for a single

columnar defect as a function of θ = x
N = 1/ tan φ. It undergoes a

first order localization transition at the critical value θ = θc = 1
a2

1
.

where x1 = �1 is the occupation length of the first column,
and xN = x the total length. As before, from (11), GN−1(�1, x)
for fixed �1 and x is distributed as the largest eigenvalue
of

√
x − �1 times an (N − 1) × (N − 1) GUE matrix. When

varying �1 at fixed x it varies as the largest eigenvalue of a
Dyson Brownian motion evolving during time x − �1. Hence,
for large N , the contribution of GN−1 is the sum of a determin-
istic part and a subdominant fluctuating part,

GN−1(�1, x) = −2
√

N (x − �1) + O

(
(x − �1)1/2

N1/6

)
, (20)

where for now, to determine the phases, we do not need to
specify in more detail the fluctuating part in (20) (it will be
important only near the transition). Similarly, to leading order,
we can neglect the Brownian contribution B1(�1) in (19), as
well as the fluctuation term. This leads to the estimate

E0
N (x) � min

�1∈[0,x]
[−a1�1 − 2

√
N (x − �1)]. (21)

The optimal occupation length �0
1 of the first column is thus

obtained to leading order as

�0
1 �

(
x − N

a2
1

)
+

= x

(
1 − θc

θ

)
+
, (22)

where (x)+ = max(0, x), θ = x
N , and θc = 1/a2

1 is the critical
angle; see Fig. 3. We see that a finite fraction of the column is
occupied if and only if

a1 = −ε1 >

√
N

x
, (23)

which corresponds to the localized phase θ > θc. Our re-
sult (22) coincides, using the occupation length–overlap
connection given in (14), with the result for the overlap for
the BBP transition obtained in [90]. In the localized phase the
ground state energy is, to leading order,

E0
N (x) � −

(
a1x + N

a1

)
= −Na1(θ + θc), (24)
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and, at the transition θ = θc, it reaches the value E0
N (x) �

−2Nθc = −2 N
a1

.
It is easy to also obtain the leading fluctuations of the

ground state energy in the localized phase. The leading fluc-
tuating part of E0

N (x) is clearly B(�0
1), which is a Gaussian

random variable with variance equal to �0
1 = N (θ − 1

a2
1
) =

N (θ − θc) in full agreement with (17). Note that from (20)
we see that the fluctuations originating from the delocal-
ized segment of the polymer of length x − �1, i.e., the term
GN−1(x, �1) in (18), is only of order O(N1/3), hence sub-
leading as compared to the O(N1/2) Gaussian fluctuations
originating from the point disorder along the localized seg-
ment of length �0

1. The fluctuations of �0
1 are more subtle and

we show, see (40) below, that in the localized phase there are
KPZ-like fluctuations of order N2/3 � �0

1 = O(N ) around the
value given in (22).

If a1 <

√
N
x , that is, θ < θc, the minimum in (21) is attained

at �0
1 = 0 and we then recover the results in the delocalized

phase of Eqs. (15) and (16).
The above results are in agreement with the predictions

from the BBP transition summarized in the previous subsec-
tion. In fact a related calculation was given in [[88], Sec. 6]
for a fully discrete polymer model (last passage percolation
on the square lattice) which in that case involves Wishart
random matrices. These arguments provide an intuitive way to
obtain the transition criterion for spiked random matrices for
various ensembles. In the context of polymers this variational
calculation, as we show below, allows us to also explore the
fluctuations around the localization transition.

Note that the variational calculation can be extended to
several columns located at different positions, and one can
verify the property of invariance with respect to permutation
of the columns; see Appendix F 1.

2. Fluctuations in the critical region

We can now refine the variational calculation to obtain the
critical regime near the transition θ ≈ θc. That region will be
defined by

θ = x

N
= θc

(
1 + δ

N1/3

)
(25)

with δ = O(1). In that region, as we will see, the optimal
occupation length �0

1 will fluctuate but with a typical magni-
tude O(N2/3), corresponding to a vanishing occupied fraction
�0

1/x ∼ N−1/3 � 1.
Let us go back to (18) and use the estimate (16) with δx =

−�1:

E0
N (x) � min

�1∈[0,x]

[
B1(�1) − a1�1 − 2

√
N (x − �1)

−
√

x − �1

N1/6
A2

(
−N1/3�1

2x

)]
. (26)

We see that if we want the argument of the Airy2 process A2 to
be of order unity, we need indeed to choose �1 ∼ N2/3; hence
we will define the reduced length �̂1 by setting

�1 = 2xN−1/3�̂1 = 2N2/3θ�̂1. (27)

FIG. 4. Half-Brownian motion with drift w as the initial con-
dition h(x, t = 0) of the Kardar-Parisi-Zhang equation (31). The
fluctuations of the height at large time h(0, t ) relate to those of the
ground state energy of the polymer (29) at the localization transition.

We can now insert (25) and (27) into (26) and expand at large
N . We find

E0
N (x) = −2

√
Nx + N1/3

a1
min
�̂1�0

[
√

2B(�̂1) − δ�̂1 + �̂2
1

−A2(−�̂1)] + O(1), (28)

where B(s) is a Brownian motion obtained from B1(s) by the
rescaling (27). Hence we find that the ground state energy in
the critical region behaves as

E0
N (x) � −2

√
Nx − N1/3

a1
υδ, (29)

where the random variable υδ is defined by the variational
problem

υδ = max
z�0

[
√

2B(z) + δz + A2(z) − z2], (30)

where B and A2 are statistically independent, and we have
used that the process A2(−z) is statistically identical to A2(z).
The PDF of this random variable appears in the problem of
KPZ growth with a “half-Brownian” initial condition [91,92]
which we now briefly recall. Consider for instance the KPZ
equation [93] for the growth of the height field h(x, t ) as a
function of time t ,

∂t h = ∂2
x h + (∂xh)2 +

√
2ξ (x, t ), (31)

where ξ (x, t ) is a space-time white noise. Denote hw(x, t )
the solution with initial condition hw(x, t = 0) = [B(x) −
wx]�(x) + w0x�(−x) [where �(x) is the Heaviside func-
tion] which is represented in Fig. 4, in the limit where w0 →
+∞. The random variable υδ defined by (30) appears in
the large time limit, hw=−δ/(2t1/3 )(0, t ) = − t

12 + υδt1/3, where
it is standard from the KPZ literature to scale the drift w

with the observation time, as w = −δ/(2t1/3). The localized
phase of the polymer problem, δ > 0, corresponds to w < 0,
leading to a Gaussian distribution in the limit δ → +∞. The
delocalized phase, δ < 0, corresponds to w > 0, leading to
the GUE Tracy-Widom distribution for δ → −∞, i.e., υ−∞ =
A2(0) = χ2. The PDF of υδ for any δ was obtained in [91,92]
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and it was observed there that it coincides with the critical
BBP distribution; see Sec. II B 3. This is expected from the re-
lation of the polymer problem to the Baik–Ben Arous–Péché
transition described in Sec. I B 2.

Interestingly, we now obtain a new distribution if we study
the occupation length �0

1 in the ground state. Indeed the PDF
of �0

1 is given by

�0
1

2N2/3/a2
1

in law= arg max
z�0

[
√

2B(z) + δz + A2(z) − z2]. (32)

To our knowledge this distribution is not known exactly. We
can study two limits:

(i) Limit δ → −∞: The side of the delocalized phase.
The argmax is obtained for small values of z in (32), so we
set z = y/δ2. One can then approximate the Airy process by
a Brownian motion since [94] A2( y

δ2 ) − A2(0) �
√

2
|δ| B̃(y) as

δ → −∞, where B̃ is a Brownian motion independent of B.
Hence we find

�0
1

2N2/3/a2
1

in law= 1

δ
arg max

y�0
[2B(y) − y]. (33)

We can now use the known result that the PDF of the time
of the maximum ω of a Brownian motion of variance σ 2 and
negative drift −μ, with μ > 0, defined as

ω = arg max
y�0

[σB(y) − μy], (34)

is given by (e.g., [[95], Chap. IV, item 32], or taking the limit
T → +∞ in [96] or [[97], Eq. (30)]; see also Appendix F 3)

Pμ,σ (ω) = μ

σ

√
2

πω
e− μ2ω

2σ2 − μ2

σ 2
erfc

(
μ

√
ω√

2σ

)
. (35)

Hence we find, setting σ = 2 and μ = 1, that for δ → −∞,

�0
1 � 2N2/3

a2
1

ω

δ2
, (36)

where ω is a positive random variable distributed with
p(ω)dω = P1,2(ω)dω.

It is shown in Appendix F 3 that inside the delocalized
phase far from the critical region, i.e., for θ < θc, the occupa-
tion length fluctuates as �0

1 = O(1) with the same distribution
characterized by ω, scaled by an amplitude which diverges as
∼1/(θc − θ )2 at the transition, and which matches smoothly
with the result (36) in the critical regime, i.e., for δ = O(1).

(ii) Limit δ → +∞: The side of the localized phase. To
study that limit let us rewrite in an equivalent way the argmax
in (32) by defining

z = δ

2
+ z̃. (37)

We can rewrite

�0
1

2N2/3/a2
1

in law= arg max
z̃�−δ/2

[
√

2B(z̃) + A2(z̃) − z̃2],

(38)

where we have used (i) that the A2 process is statistically
invariant by translation (ii) that B( δ

2 + z̃) − B( δ
2 ) is equiva-

lent in process to a two-sided Brownian B(z̃) for z̃ � −δ/2.

In the limit δ → +∞ we see that it becomes a (two-sided)
optimization over the real axis,

�0
1

2N2/3/a2
1

in law= arg max
z̃∈R

[
√

2B(z̃) + A2(z̃) − z̃2]. (39)

The PDF of the right-hand side was obtained in [98], where
it was shown that it equals fKPZ, a function introduced
in [99,100] to describe the two space-time point stationary
correlations of the Burgers velocity field, associated with the
KPZ height field. It also describes the midpoint distribution of
a directed polymer in a stationary regime as obtained in [101].
Hence we obtain that for δ → +∞

�0
1 � 2N2/3

a2
1

(
δ

2
+ ω

)
= x

(
1 − θc

θ

)
+ 2N2/3

a2
1

ω, (40)

where ω is a real random number distributed with p(ω)dω =
fKPZ(ω)dω. We recall that fKPZ(ω) is an even function of ω

with cubic exponential decay at large value of the argument
|ω| → +∞,

fKPZ(ω) � e−0.295|ω|3 , (41)

and standard deviation 0.714 and fourth moment 0.733 [99].
Using the definition (25), we notice that the first term

in (40) is precisely the leading estimate of �0
1 in the local-

ized phase obtained in (22). Hence our result (40) matches
smoothly the critical region with the localized phase. We thus
discover that inside the localized phase there are nontrivial
KPZ-like fluctuations of the occupation length around its typ-
ical value x(1 − θc

θ
).

Using (18) and the estimate (16) (with x → x − �1), one
can indeed check that these fluctuations are described by fKPZ

in the whole localized phase; i.e., the result (40) in the form
�0

1 � x(1 − θc
θ

) + 2N2/3

a2
1

ω, where ω is distributed with fKPZ,
holds for any θ > θc.

In conclusion we have found that the fluctuations of the
occupation length around its typical value are of the order
N2/3 inside the localized phase, and up to and including the
transition. In the delocalized phase these fluctuations are of
order O(1).

B. Approach using a Fredholm determinant

We now perform the calculation of the ground state energy
and its fluctuations using the method of Fredholm determi-
nants. The manipulations follow the analysis of the BBP
transition in RMT in [89] and [88], expressed here in the
language of the polymer. Although they are classical they
allow us to prepare the ground for the generalization to an
infinite rank perturbation in the next section.

1. Kernel at any N

A classical calculation [81,88,89] obtains the cumulative
distribution function (CDF) of the largest eigenvalue λ1(x)
of the matrix M(x) in (10) for an arbitrary set of a j , j =
1, . . . , N , as a Fredholm determinant

P (λ1(x) � �) = Det(I − KN )L2(�,+∞), (42)
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FIG. 5. Integration contours in the integrals HN and JN in (44).

where the kernel KN (v, v′) is given for v, v′ ∈ [�,+∞[ by

KN (v, v′) =
∫ +∞

0
dr HN (v + r)JN (v′ + r) (43)

along with

HN (v) =
∮

dz

2iπ
ev(z−q)−xz2/2

N∏
j=1

1

z − a j
,

JN (v) =
∫

iR+ε

dz

2iπ
e−v(z−q)+xz2/2

N∏
j=1

(z − a j ), (44)

where q is introduced for convergence purpose (it does not
change the value of the Fredholm determinant). The contour
in HN (v) is taken to enclose all {a j}’s counterclockwise. The
contour in JN (v) is chosen such that ε > max j a j , and passes
to the right of the contour for HN (v); see Fig. 5. For more de-
tails on the kernel (43) and its derivation see [[81], Proposition
2.3 and Eq. (2.18)], [[78], Eq. (3.19)], and [[89], Proposition
1.3].

Note that the functions HN , JN , and the kernel KN are
invariant under permutations of the aj , which shows the prop-
erty mentioned in the introduction.

We first use this result to study the ground state energy in
the case of a single active column a1 > 0 and a j>1 = 0. The
general case will be studied in Sec. III. We recall that we focus
on the limit of large x, N at fixed θ = x/N and determine the
asymptotic form of the kernel KN in that limit. We start with
the delocalized phase.

2. Delocalized phase

In the delocalized phase one anticipates that at large N ,
λ1 − μN = O(N1/3), where μ is to be determined later. Hence
we rewrite the function HN and JN in (44) as

HN (μN + σN1/3) =
∮

dz

2iπ
e−Nϕ(z)+zσN1/3

,

JN (μN + σN1/3) =
∫

iR+ε

dz

2iπ
eNϕ(z)−zσN1/3

, (45)

where, using a j = a1δ j1,

ϕ(z) = −μz + θ
z2

2
+ ln z + 1

N
ln

(
1 − a1

z

)
. (46)

Here and below we omit the factor q from (44) since it plays
no role in the results. Let us first examine the function JN (z),
for which the integration contour obeys Re(z) > a1. The first
two derivatives read

ϕ′(z) = −μ + θz + 1

z
+ 1

N

(
1

z − a1
− 1

z

)
, (47)

ϕ′′(z) = θ − 1

z2
+ 1

N

(
1

z2
− 1

(z − a1)2

)
. (48)

We now look for a degenerate saddle point z = z∗ such that
ϕ′(z∗) = 0 and ϕ′′(z∗) = 0. Inside the delocalized phase one
can neglects the 1/N terms in (47) and one finds that

z∗ = 1√
θ
, μ∗ = 2

√
θ. (49)

Hence we choose μ = μ∗. Since one must have z∗ > a1, this
is possible only until the transition point

θ < θc = 1

a2
1

. (50)

One can now expand around the saddle point up to the third
order and write

ϕ(z) = ϕ(z∗) + 1

3

( z

z∗ − 1
)3

+ O

(
(z − z∗)4,

1

N

)
. (51)

Performing the change of variable

z = z∗(1 + yN−1/3) (52)

and inserting into (45) we obtain

JN (μN + σN1/3) � z∗N−1/3eNϕ(z∗ )−z∗σN1/3
Ai(z∗σ ), (53)

where

Ai(w) =
∫

iR+ε

dy

2iπ
e

y3

3 −yw (54)

and the neglected terms are subdominant at large N . One can
show [88,89] that the counterclockwise contour integral for
the function HN (μN + σN1/3) is dominated by the same sad-
dle point at z = z∗. This leads to an expression for HN (μN +
σN1/3) which is identical to (53) (taking into account the
reversal of the contour) but with a prefactor e−Nϕ(z∗ )+z∗σN1/3

;
see Fig. 6. Putting these expressions together in (43) and
rescaling r → rN1/3/z∗ one obtains

KN (μN + σN1/3, μN + σ ′N1/3) � z∗

N1/3
KAi(z

∗σ, z∗σ ′)
(55)

in terms of the Airy kernel

KAi(v, v′) =
∫ +∞

0
dr Ai(v + r)Ai(v′ + r). (56)
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FIG. 6. Contour reversal: The original contour for HN is on the
left of q, as in Fig. 5. The reversal is performed by a rotation around
q of angle π followed by a reversal of orientation of the contour.
This leads to the contour on the right. This allows to have the same
contours for HN and JN asymptotically (near the saddle point) leading
to the formula in the text.

We have discarded a factor ez∗N1/3(σ−σ ′ ) which is immaterial in
the Fredholm determinant. From (42) we now obtain that

−E0
N (x) = λ1(x) = μ∗N + N1/3

z∗ χ2 = 2
√

xN + √
xN−1/6χ2,

(57)
where P (χ2 � s) = F2(s) = Det(I − KAi)L2(s,+∞). This is the
standard result in the delocalized phase.

3. Critical region

As θ → θc = 1
a2

1
the saddle point z∗ of the previous cal-

culation moves to a+
1 . Hence one cannot neglect the term

1
N ln(1 − a1

z ). It is now more convenient to leave it outside the
exponential

JN (μN + νN1/3) =
∫

iR+ε

dz

2iπ

(
1 − a1

z

)
eNϕ0(z)−zνN1/3

(58)

with

ϕ0(z) = −μz + θ
z2

2
+ ln z (59)

and ε > a1. There is a similar expression for HN with a con-
tour which encloses a1 counterclockwise. The critical regime
is defined by

θ = 1

a2
1

+ τN−1/3 (60)

which is consistent with (25) obtained via the variational
calculation, with the correspondence in notations τ = θcδ.

Let us again denote z∗ = 1√
θ

the degenerate point where
ϕ′

0(z∗) = 0 and ϕ′′
0 (z∗) = 0. Its position is now

z∗ = 1√
θ

= a1 − τa3
1

2
N−1/3. (61)

One performs again the change of variable z = z∗(1 +
yN−1/3), and one obtains

JN (μN + νN1/3) = z∗

a1
N−1/3eNϕ0(z∗ )−z∗σN1/3

Aib1 (z∗ν) (62)

with

Aib1 (w) =
∫

iR+ε′

dy

2iπ
(y − b1)e

1
3 y3−wy,

where ε′ > b1 and b1 = τa2
1

2 , which can be checked to also
equal b1 = limN→+∞ N1/3(a1 − 1√

θ
)/a1. A very similar ex-

pression holds for HN ,

HN (μN + νN1/3) = a1z∗N−1/3e−Nϕ0(z∗ )+z∗σN1/3
Aib1 (z∗ν),

(63)
taking into account the reversal of the contour, see Fig. 6,

Aib1 (w) =
∫

iR+ε′

dy

2iπ
1

−y − b1
e

1
3 y3−wy,

where ε′ < −b1. Putting these expressions together in (43)
and rescaling r → rN1/3/z∗ one obtains from (43)

KN (μN + σN1/3, μN + σ ′N1/3) � z∗

N1/3
KBBP,b1 (z∗σ, z∗σ ′)

(64)
in terms of the rank-1 BBP kernel

KBBP,b1 (v, v′) =
∫ +∞

0
drAib1 (v + r)Aib1 (v′ + r). (65)

This is a particular case of the general rank-m BBP kernel
recalled in the Appendix D. In particular (65) is identical
to (D2), upon simple integrations. Hence one obtains, us-
ing (42), the ground state energy and its fluctuations in the
critical region as

−E0
N (x) = λ1(x) = μ∗N + N1/3

z∗ χBBP,b1 (66)

= 2
√

xN + √
xN−1/6χBBP,b1 , (67)

where [102]

P (χBBP,b1 � �) = Det(I − KBBP,b1 )L2(�,+∞) (68)

is the CDF of the BBP random variable. Comparing with
Sec. II A 2 we see that χBBP,b1 = υδ with b1 = δ/2. As dis-
cussed there, this random variable, and the kernel (65), also
describes the half-Brownian initial condition for the KPZ
class [[91], Formula (6.23)].

4. Localized phase

In the localized phase θ > θc = 1/a2
1, there is no condi-

tion to determine z∗; hence we will choose z∗ = a1. We start
with (58) and we choose μ = μ∗ so that ϕ′

0(z∗) = 0. Now the
second derivative does not vanish and the rescaling involves
now N1/2. This gives values for μ∗ and z∗ different from those
in the delocalized phase,

μ∗ = (θ + θc)a1, ϕ′′
0 (z∗) = θ − θc. (69)

Note that the interpretation is that the occupation of the col-
umn a1 is θ − θc. We insert the Taylor expansion of ϕ0(z)
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around z = z∗ = a1 inside formula (58), and change integra-
tion variable as z = a1 + y√

N (θ−θc )
, and obtain

JN (μN + ν[(θ − θc)N]1/2)

� eNϕ0(z∗ )−z∗[(θ−θc )N]1/2

N (θ − θc)a1

∫
iR+ε

dy

2iπ
y e

y2

2 −yν, (70)

where the higher orders in the Taylor expansion are subdomi-
nant at large N . Similarly,

HN (μN + ν[(θ − θc)N]1/2)

� a1e−Nϕ0(z∗ )+z∗[(θ−θc )N]1/2
∫

�

dy

2iπ
1

y
e− y2

2 +yν, (71)

where � passes to the right of zero and goes upward (it
encircles zero). Putting these expressions together in (43) and
rescaling r → r[(θ − θc)N]1/2 one obtains

KN (μN + σ [(θ − θc)N]1/2, μN + σ ′[(θ − θc)N]1/2)

� [(θ − θc)N]−1/2
∫ +∞

0
dr

×
∫

�

dw

2iπ
1

w
e− w2

2 +w(σ+r)
∫

iR+ε

dy

2iπ
ye

y2

2 −y(σ ′+r).

(72)

Explicit calculation, using the residue at w = 0 from the first
integral and Gaussian integration from the second, gives

KN (μN + σ [(θ − θc)N]1/2, μN + σ ′[(θ − θc)N]1/2)

� [2π (θ − θc)N]−1/2e− (σ ′ )2

2 . (73)

This leads to

λ1(x) = (θ + θc)a1N + N1/2N (0, θ − θc) (74)

= xa1 + N

a1
+ N1/2N

(
0, θ − 1

a2
1

)
, (75)

in agreement with (17).
Note that this is generalized in [89] to the case of m

columns equal to a1. The power factors in the integrals in (72)
generalize to y → ym and w−1 → w−m. One then obtains the
kernel associated with an m × m GUE random matrix, i.e.,
Eqs. (43) and (44) with N = m and a j = 0.

III. SINGLE LINE, MANY COLUMNAR DEFECTS,
ZERO TEMPERATURE

In this section we study the OY model with a single line
or polymer and many columnar defects at T = 0, specifically
with a continuum distribution of energies ε j = −a j described
by a density ρ(a). We assume that in the limit N → ∞ the
number of columns with energies aj ∈ [a, a + da] is ρ(a)da,
with

∫
daρ(a) = 1. We will assume that this density has an

upper (right) edge ae, where it vanishes for a → a−
e as

ρ(a) ∼ A(ae − a)2k+ 1
2 , (76)

with ρ(a) = 0 for a > ae. We also assume that there are no
columns with a j > ae. We recall that we are interested in
the limit x, N → +∞ with θ = x/N fixed and for a given
configuration of the ai.

It is convenient for the analysis below to assume the fol-
lowing convergence at large N : for Re(z) > maxi ai,

N∑
j=1

ln(z − a j ) � N
∫

�

da ρ(a) ln(z − a) + o(N1/3), (77)

where � is the support of ρ. Although this condition appears
a bit restrictive (it excludes the case of i.i.d. random variables
ai), we believe it is simply a technical restriction and does not
impact our main results [103].

We can now define the rate function for the many columns
case as

ϕ(z) = −μz + θ
z2

2
+

∫
�

da ρ(a) ln(z − a), (78)

so that the functions HN and JN from (44) become, at large N
(setting for simplicity the convergence factor q = 0)

HN (v + μN ) =
∮

dz

2iπ
evz−Nϕ(z),

JN (v + μN ) =
∫

iR+ε

dz

2iπ
eNϕ(z)−vz. (79)

We start by studying the extensive part of the ground state
energy, and then we proceed to obtain its fluctuations.

A. Ground state energy

In this section we determine the ground state energy,
FN (x, T = 0) = E0

N (x), to leading order in N as a function
of the angle θ [equivalently the position of the edge of the
spectrum of M(x) in (10)]. It reads

E0
N (x) � −μN, μ = μ(θ ). (80)

To determine μ we study the integrals in (79) setting v = 0,
and look for a saddle point at large N .

The critical points of the rate function (78) are defined as
the solutions of ϕ′(z∗) = 0, i.e., with Re(z∗) > ai,

−μ + θz∗ +
∫

�

da
ρ(a)

z∗ − a
= 0. (81)

For finite N this is a polynomial equation of degree N + 1
and studying the graph of the function one finds that there is
a unique real solution z∗ in the interval ]ae,+∞[. Since we
have two unknowns, z∗ and μ, we need an extra condition.
This extra condition is the degeneracy condition given by the
condition that ϕ′′(z∗) = 0, i.e.,

θ −
∫

�

da
ρ(a)

(z∗ − a)2
= 0. (82)

There are thus two cases; see Table I. Either
(i) the following integral diverges,∫

�

da
ρ(a)

(ae − a)2
= +∞, (83)

which happens if k � 1/4, and there is always a solution
to (82), in which case there is only a delocalized phase.

(ii) Or, the integral in (83) is finite, which happens for k >

1/4; then there exists a critical angle θc < +∞ such that

∀ θ < θ̃c, ∃(z∗, μ) such that ϕ′(z∗) = ϕ′′(z∗) = 0 (84)
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TABLE I. Existence and nature of the phases for a single line and a continuous column density which vanishes near its upper edge
as ρ(a) ∼ (ae − a)2k+ 1

2 . The delocalized phase with Tracy-Widom fluctuations of the ground state energy always exists. “Airy” means that
critical fluctuations are described by the new one-parameter distribution described in (123)–(126).

Nature of the transition Existence of localized phase Exponent of μ − μe vs θc − θ

k � 1
4 No transition No ∅

k ∈] 1
4 , 3

4 [ Anomalous Yes 4k+1
4k−1 ∈ ]2, +∞[

k > 3
4 Airy Yes 2

and θc is determined by

θc =
∫

�

da
ρ(a)

(ae − a)2
, k > 1/4. (85)

For θ < θc this is a delocalized phase, while for θ > θc it is a
localized phase, as we will discuss below.

In the delocalized phase, the ground state energy is given
by E0

N (x) � −μN , with μ the solution of (81) where z∗ is the
unique root of (82) in the interval ]ae,+∞[.

In the localized phase, θ > θc, the saddle point freezes at
z∗ = ae, with now ϕ′′(z∗) = θ − θc, which plays the role of an
order parameter for this freezing transition. The ground state
energy is now given by FN (T = 0) � −μN with μ = μ(θ )
determined from (81) as

μ(θ ) = aeθ +
∫

�

da
ρ(a)

ae − a
= (θ − θc)ae + μ(θc) (86)

and grows ballistically as a function of θ = x/N in the lo-
calized phase, consistent with the fact that a long enough
polymer, i.e., with x > xc = Nθc, is localized on columns of
energy −ae (their localized length is x − xc). In fact in both
phases one has

dμ(θ )

dθ
= z∗. (87)

It is important to note that upon approaching the transition
from inside the delocalized phase there are two cases, leading
to different critical behaviors; see Table I.

(a) If the following integral is finite,∫
�

da
ρ(a)

(ae − a)3
< +∞, (88)

i.e., k > 3/4, then z∗ − ae vanishes linearly at the transition

z∗ − ae � θc − θ

2
∫
�

da ρ(a)
(ae−a)3

. (89)

From (87) one also has μ − μ(θc) � −(θc − θ )ae near the
transition. In addition, defining μe(θ ) = (θ − θc)ae + μ(θc)
the continuation to the delocalized phase of the formula valid
in the localized phase one finds for θ < θc

μ(θ ) − μe(θ ) � − (θc − θ )2

4
∫
�

da ρ(a)
(ae−a)3

; (90)

i.e., z∗ − ae vanishes linearly iff
∫
�

da ρ(a)
(ae−a)3 < +∞ which is

the case if k > 3/4.
(b) If the integral (88) diverges, i.e., for 1/4 < k < 3/4,

the transition is in a different, anomalous, universality class.

Indeed one finds in that case (see Appendix E for details)

z∗ − ae ∼ (θc − θ )
2

4k−1 , μ(θ ) − μe(θ ) � −(θc − θ )
4k+1
4k−1 .

(91)
The behavior of the fluctuations of the ground state energy in
this new universality class is at present open. Below, we will
only study the critical region in the case k > 3/4.

These results are summarized in Table I, and for some
choice of ρ(a), plotted in Fig. 7.

B. Occupation length

Let us now discuss the occupation length of the columnar
defects in the ground state in both phases. In the case of
a continuum distribution of column strength the occupation
length becomes a measure. Let us define �(a) such that the
total occupation length of columns in any interval [a−, a+] is
given by ∫ a+

a−
�(a)da =

∑
j

�0
j �(a− < a j < a+). (92)

To obtain �(a) we can use Eq. (12) in the ground state, which
gives that �0

j � N∂a j μ, together with the expression of μ given
above from (81) and (82). This leads to N∂a j μ = 1

(z∗−a j )2 . We
thus obtain the following:

(i) In the delocalized phase �(a)da is a continuous measure
given by

�(a)da = N
ρ(a)da

(z∗ − a)2
,

∫
�

�(a)da = Nθ = x, (93)

where z∗ is the solution of Eq. (82). Since z∗ > ae, this mea-
sure is bounded everywhere.

(ii) In the localized phase, the occupation length measure,
in the large-N limit, exhibits a smooth part for a < ae, and an
atomic part at a = ae,

�(a)da = N
ρ(a)da

(ae − a)2
+ (x − xc)δ(a − ae)da. (94)

Using (85) we see that∫ a−
e

�(a)da = Nθc = xc < x. (95)

The occupation length measure is plotted for illustration in
Fig. 7 for some choice of ρ(a).

In summary, the localization transition here is a “conden-
sation” on the (few) columns of lowest energy very close
to the edge a = ae. The existence of this transition requires
that the density ρ(a) vanishes sufficiently fast near the edge,
k > 1/4 (see Table I); in other words it requires an “elitist”
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FIG. 7. Results for the model (96) for α = 2 and β = 3, corresponding to k = 3/4. Top left: The density ρ(a) of column strengths a. Top
right: The occupation length measure �(a)da/x normalized to unity (defined in the text) plotted as a function of a for various angles θ . The
localized phase corresponds to θ > θc and the expected delta function peak in Eq. (94) is represented for clarity as a narrow half-Gaussian with
the same weight. Bottom left: Plot of the saddle point z∗ = dμ(θ )/dθ as a function of θ (in the two phases). Its value freezes at z∗ = ae at the
localization transition. Bottom right: (Minus) the ground state energy per column μ(θ ) as a function of θ . The dashed line is the result in the
delocalized phase θ < θc. The solid line is the result in the localized phase for θ > θc and its continuation for θ < θc denoted μe(θ ) in the text.

population of columns. If there are too many columns near the
edge, the overwhelming competition between them results in
a delocalized phase only. A workable example of this situation
is given in Appendix F 2.

Application. A nice tractable example is provided by a beta
distribution of column strengths with parameters (α, β ):

ρ(a) = �(α + β )

�(α)�(β )

aα−1(ae − a)β−1

aα+β−1
e

1[0,ae]. (96)

The correspondence with the decay exponent (76) of the
density at the upper edge is β = 2k + 3

2 . We consider the
case β > 2, which corresponds to k > 1/4 such that there is
a localization transition. Using the above formula one finds
that all integrals can be evaluated in terms of hypergeometric
functions. One finds the critical point and the ground state
energy per column

θc = 1

a2
e

(
1 + α

β − 1

)(
1 + α

β − 2

)
, (97)

μ(θc) = 1

ae

(
1 + α

β − 1

)(
2 + α

β − 2

)
. (98)

The results are plotted in Fig. 7 for α = 2 and β = 3, which
corresponds to k = 3/4, the limiting case between the Tracy-
Widom and anomalous localized phase. It is interesting to
note that for β → +∞ one recovers from (97) the results of a
single column for θc and μ(θc).

C. Fluctuations of the ground state energy

Let us go back to Eqs. (79). To study the fluctuations of
the ground state energy we set v = νNβ , with as yet unknown
β, and study JN (μN + νNβ ) and HN (μN + ν ′Nβ ). As in the
previous section we consider the saddle point at z = z∗, such
that ϕ′(z∗) = 0, where ϕ(z) is given in (78). We can generally
perform an expansion of the rate function ϕ(z) around z∗ as

ϕ(z∗ + w) = ϕ(z∗) + 1
2ϕ′′(z∗)w2 + 1

6ϕ(3)(z∗)w3 + · · · ,

(99)
where the successive derivatives, obtained from (78), read

ϕ′′(z∗) = θ −
∫

�

da
ρ(a)

(z∗ − a)2
,

ϕ(3)(z∗) = 2
∫

�

da
ρ(a)

(z∗ − a)3
. (100)

The same value of z∗ is chosen in both JN and HN ; hence the
first term in (99) cancels out in the product and we can ignore
it and write

HN (μN + νNβ ) =
∮

dw

2iπ
eνNβw− N

2 ϕ′′(z∗ )w2− N
6 ϕ(3) (z∗ )w3+···,

JN (μN + νNβ ) =
∫

iR+ε

dw

2iπ
e

N
2 ϕ′′(z∗ )w2+ N

6 ϕ(3) (z∗ )w3−νNβw+···.

(101)
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1. Localized phase

Consider now the localized phase. From the previous
section we choose z∗ = ae. Hence the second derivative in
the expansion in (101) is ϕ′′(z∗) = θ − θc > 0. We can thus
rescale the integration variable w by N−1/2 and choose β = 1

2 .
In the large-N limit the higher order terms in the expansion
can be neglected. The saddle point integral reads

JN (μN + νN1/2) � 1

N1/2

∫
iR

dw

2iπ
e

θ−θc
2 w2−νw (102)

= 1√
2π (θ − θc)N

e− ν2

2(θ−θc ) . (103)

The same result (103) holds for HN since, under rescaling, the
contour opens to be parallel to the imaginary axis.

The kernel (43) then becomes, after rescaling r → N1/2r,

KN (μN + ν ′N1/2, μN + νN1/2)

= N1/2
∫ +∞

0
dr

× HN (μN + (ν ′ + r)N1/2)JN (μN + (ν + r)N1/2)

= 1

2π (θ − θc)
√

N

∫ +∞

0
dr e− (ν′+r)2

2(θ−θc ) − (ν+r)2

2(θ−θc ) (104)

= 1

4π2
√

N (θ − θc)
e− (ν−ν′ )2

4(θ−θc ) Erfc

(
ν ′ + ν

2
√

θ − θc

)
. (105)

Hence, defining the kernel

T (x, y) = 1

π

∫ ∞

0
du e−(x+u)2

e−(y+u)2
, (106)

upon rescaling, we find that the ground state energy in the
localized phase fluctuates as

−E0
N (x) = λ1(x) = μN + N1/2

√
2(θ − θc) ω, (107)

where μ = μ(θ ) was obtained in (86) and ω is a random
variable whose CDF is given by the Fredholm determinant,

P (ω � s) = Det(I − T )L2(s,+∞). (108)

Although this distribution is, to our knowledge, novel, the
kernel T (x, y) already appeared in the study of the largest real
eigenvalue of the real Ginibre ensemble [104–107]. More pre-
cisely the kernel which appears there is T (x, y) + g(x)G(y),
where g(x) = 1√

2π
e−x2/2 and G(y) = ∫ y

−∞ g(x)dx. The asymp-
totics are obtained as

P (ω � s) �s→+∞ 1 − e−2s2

16πs2
�s→−∞ e− ζ (3/2)√

2π
|s|

, (109)

combining in the second case [[105], Eqs. (1.9) and (1.11)].
We note that to obtain this result we have (i) assumed

that θc is finite, i.e., that
∫
�

da ρ(a)
(ae−a)2 < +∞ (equivalent to

the existence of a localized phase) which holds for k > 1/4,
and (ii) neglected, after rescaling, the higher derivatives in
the saddle point. To be more precise one can check that the

condition for the above analysis to work is that for fixed w

lim
N→+∞

N
∫

�

daρ(a)

[
ln

(
1 + wN−1/2

ae − a

)

− wN−1/2

ae − a
+ 1

2

(
wN−1/2

ae − a

)2]
= 0, (110)

which is weaker than the condition of the existence of the third
derivative ϕ′′′(z∗).

2. Delocalized phase

Consider now the delocalized phase, θ < θc. Then one can
choose z∗ > ae so that ϕ′′(z∗) = 0. The saddle point will then
be of cubic type. One now rescales w → wN−1/3 and chooses
β = 1

3 so that the function JN in (101) takes the form

JN (μN + νN1/3) = 1

N1/3

∫
iR+ε

dz

2iπ
e

ϕ(3) (z∗ )
6 z3−νz

=
(

2

Nϕ(3)(z∗)

)1/3

Ai

(
21/3

ϕ(3)(z∗)1/3
ν

)
.

(111)

Similarly one finds that HN (μN + ν ′N1/3) is also given
by (111).

The kernel (43) then becomes, after rescaling r → N1/3r,

KN (μN + ν ′N1/3, μN + νN1/3)

=
(

2

Nϕ(3)(z∗)

)1/3

KAi

(
21/3

ϕ(3)(z∗)1/3
ν,

21/3

ϕ(3)(z∗)1/3
ν ′
)

.

(112)

Hence we find Tracy-Widom fluctuations for the ground state
energy at leading order,

−E0
N (x) = λ1(x) = μN +

(
N

ϕ(3)(z∗)

2

)1/3

χ2. (113)

We recall that to obtain the coefficients μ and ϕ(3)(z∗) we
must first find z∗ as a function of θ from the second equation
and then insert its value in the first and third equations of the
parametric system,

μ = θz∗ +
∫

�

da
ρ(a)

z∗ − a
,

θ =
∫

�

da
ρ(a)

(z∗ − a)2
,

ϕ(3)(z∗) = 2
∫

�

da
ρ(a)

(z∗ − a)3
. (114)

3. Critical region

We now study the critical region between the localized and
delocalized phases, near θ ≈ θc. We assume that k > 3/4 so
that θc < +∞ and

ϕ(3)(ae) = 2
∫

�

da
ρ(a)

(ae − a)3
< +∞. (115)

To be able to describe the critical region starting from the lo-
calized phase, we choose z∗ = ae. We also impose ϕ′(ae) = 0
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by choosing

μ = μe(θ ) = θae +
∫

�

da
ρ(a)

(ae − a)
, (116)

so that the first derivative is zero. In (101) we choose β = 1/3
and obtain

J (μN + νN1/3)

=
∫

iR+ε

dz

2iπ
e

N
2 (θ−θc )(z−ae )2+ N

6 ϕ(3) (ae )(z−ae )3−νN1/3z+···,

(117)

where we used that ϕ′′(ae) = θ − θc. Here � is an appropriate
contour parallel to the imaginary axis where the integral con-
verges (see below). It is clear from (45) that in order to balance
the quadratic and cubic terms, the critical region is defined at
large N as

θ − θc = τN−1/3, (118)

where τ is fixed. We write z = ae + wN−1/3 and obtain

JN (μN + νN1/3) � N−1/3
∫

iR+ε

dw

2iπ
e

1
2 τw2+ 1

6 ϕ(3) (ae )w3−νw,

(119)
where, after the rescaling, the higher order derivatives can be
(naively) neglected. Note that this integral is convergent only
for τ � 0, which we assume for now.

Let us recall the useful formula, for any a ∈ R∗, which we
use here for b � 0,

∫
iR+ε

dz

2iπ
ea z3

3 +bz2+cz = e
2b3

3a2 − bc
a

|a|1/3
Ai

(
b2

|a|4/3
− csgn(a)

|a|1/3

)
,

(120)
using the definition of the Airy function (54) and shifting the
integration contour.

Hence we find for τ � 0

JN (μN + νN1/3) �
(

2

Nϕ(3)(ae)

)1/3

e
τ3

3ϕ(3) (ae )2
+ τν

ϕ(3) (ae )

× Ai

(
τ 2

22/3ϕ(3)(ae)4/3
+ 21/3ν

ϕ(3)(ae)1/3

)
.

(121)

One can show that HN is given by the same formula, us-
ing contour reversal and orientation reversal [see discussion
around (54)]. It amounts to using the same formula (120) with
(a, b, c) → (−a, b,−c), which leaves it invariant.

This leads to the kernel in the form

K (μN + ν ′N1/3, μN + νN1/3)

� 1

N1/3

(
2

ϕ(3)(ae)

)2/3

e
2 τ3

3ϕ(3) (ae )2

∫ +∞

0
dr e

τ (ν+ν′+2r)
ϕ(3) (ae )

× Ai

(
τ 2

22/3ϕ(3)(ae)4/3
+ 21/3

ϕ(3)(ae)1/3
[ν ′ + r]

)

× Ai

(
τ 2

22/3ϕ(3)(ae)4/3
+ 21/3

ϕ(3)(ae)1/3
[ν + r]

)
.

(122)

Hence the final result is as follows. For τ � 0, i.e., on the
localized side of the critical region, the ground state energy
fluctuates to leading order as

−E0
N (x) = λ1(x) = μN +

(ϕ(3)(ae)

2
N
)1/3

χ, (123)

where the CDF of the random variable χ is given by the
following Fredholm determinant,

P (χ � s) = Det(I − Kτ̃ )L2(s,+∞), (124)

where the dimensionless parameter τ̃ measures the distance to
criticality,

τ̃ = N1/3(θ − θc)

21/3ϕ(3)(ae)2/3
, (125)

and the kernel Kτ̃ is given for τ̃ � 0 as

Kτ̃ (v, v′)

= e
4
3 τ̃ 3

∫ +∞

0
dreτ̃ (v+v′+2r)Ai(v + r + τ̃ 2)Ai(v′ + r + τ̃ 2).

(126)

One now notes that for τ̃ = 0, this kernel recovers simply
the Airy kernel Kτ̃=0 = KAi. This indicates that for τ̃ < 0, on
the delocalized side, one should instead choose, as usual to de-
scribe the Tracy Widom phase, z∗ such that ϕ′′(z∗) = 0. Hence
for τ̃ < 0, the result (113) holds; i.e., the fluctuations are GUE
Tracy-Widom, χ = χ2. It is quite remarkable that there is
no precursor of the transition in the leading fluctuations of
the ground state energy on the delocalized side (fluctuations
remain Tracy-Widom all the way to τ̃ = 0), while their CDF
varies continuously on the localized side.

The above kernel Kτ̃ (v, v′) interpolates between the Airy
kernel for τ̃ = 0 and the kernel T in (106), which describes
the fluctuations in the localized phase. It happens as follows.
In the limit τ̃ → +∞ one can use in (126) the asymptotics of
the Airy function for large positive argument

Ai(z) ∼ 1√
4πz1/4

e− 2
3 z3/2

(127)

and obtain, expanding up to quadratic order in the exponential,

Kτ̃ (v, v′) →
τ̃→+∞

1√
4τ̃

T
(

v√
4τ̃

,
v′

√
4τ̃

)
. (128)

We thus find that in this limit the random variable χ in (123)

χ →
√

4τ̃ ω, (129)

where ω is the random variable in (107); hence given the
definition of τ̃ in (125) we find that (123) and (107) match
deep in the localized side of the transition.

D. Additional relations to RMT: Ground state energy as a
function of the polymer end point position

One can ask how the ground state energy E0
N (x), for a

polymer of length x and fixed entry point position on the
first column j = 1, depends on the choice of the exit point
position j = N . This is asking about E0

N (x) at fixed x, as a
process in N (in the same disorder environment). It is indeed
important to study how the ground state responds to a small
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FIG. 8. Representation of the principal minors Mn of the
matrix M.

perturbation (here moving the end point by one unit). Indeed,
glassy systems often have broadly distributed, intermittent
response, i.e., rare but large response called avalanches.

It turns out that this question is also related to random
matrices. More precisely, for a given configuration of the point
disorder, i.e., the Brownian motions Bj (x), and the column
strengths, the a j , the joint PDF (JPDF) of −E0

N−1(x) and
−E0

N (x) is the same as the JPDF of the largest eigenvalue λ
(N )
1

of an N × N GUE random matrix and of λ
(N−1)
1 , the largest

eigenvalue of its N × N minor matrix (obtained by erasing
one line and one column).

It is known that E0
N (x), as a process in N , is identical to

the so-called minor GUE process [59], which is determinantal
(i.e., all its correlations are given by determinants involving
a kernel) and that these properties extend in the presence of
drifts, in relation to the deformed GUE minor process [108].

Let us recall the properties of the deformed GUE minor
process described in Ref. [108]. Define the nth principal minor
(top left) as shown in Fig. 8,

Mn = [M(x = 1)]n = [diag(a1, . . . , aN ) + V ]n, (130)

where V is the same GUE matrix as in (10).
For simplicity we consider here a polymer of fixed length

x = 1 but arbitrary x is easily obtained by rescaling. We de-
note the eigenvalues of Mn as λ(n) = (λ(n)

1 , . . . , λ(n)
n ). Note that

here we ordered them in increasing order.
A first result is the transition probability. Suppose the

eigenvalues with N − 1 columns are known, called μ =
(μ1, . . . , μN−1). Then the JPDF of the (λ1, . . . , λN ) satisfy
[[108], Theorem 1]

Pμ(λ) = Cμ�N (λ)e
∑N

i=1(aN λi− λ2
i
2 )1μ�λ, (131)

where the normalization constant Cμ =
e−a2

N /2√
2π�N−1(μ)

e
∑N−1

i=1
1
2 μ2

i −aN μi . Here μ � λ stands for the
interlacing property λ1 � μ1 � λ2 � · · · � λn, since an
important property of the eigenvalues of a matrix and of its
largest minor is that they are interlaced. Another property is
that the JPDF of the complete interlacing set of eigenvalues is
given by [[108], Corollary 1]

P(λ(1), . . . , λ(n), . . . , λ(N ) ) (132)

= �N (λ(N ) )(2π )−N/2e− 1
2

∑N
n=1 a2

n

N∏
n=1

e− 1
2 (λ(N )

n )2+aN λ(N )
n

× e
∑N

n=1(an−an+1 )
∑n

i=1 λ
(n)
i 1λ(n)�λ(n+1) . (133)

In order to perform actual calculations it is useful to note
that the deformed GUE minor process is a so-called extended
determinantal process. The definitions and the explicit expres-
sion for its extended kernel K (n1, x; n2, y) ≡ Kn1,n2 (x, y) are
given in [[108], Theorem 3]. It is an extended version of the
kernel (43), for different values of N .

The standard formula for a determinantal process then
allows us to write the joint CDF of minus the ground state
energies for two polymer end point positions at N1 and N2, i.e.,
of λ(N1 )

n = −E0
N1

and λ(N2 )
n = −E0

N2
with N2 < N1, as a matrix

Fredholm determinant,

P
( − E0

N1
< s1,−E0

N2
< s2

)
= Det

(
I − Ps1 KN1,N1 Ps1 −Ps1 KN1,N2 Ps2

Ps2 KN2,N1 Ps1 I − Ps2 KN2,N2 Ps2

)
, (134)

where Ps(x) = �(x − s) is the projector of [s,+∞[. We will
not attempt here to analyze this formula, but in principle it can
be done along similar lines to those in this paper.

IV. MANY LINES, ZERO TEMPERATURE

In this section we explore the problem of several inter-
acting elastic lines in the same columnar and point impurity
disorder. The “solvable” case studied here corresponds to
imposing an infinite hard core repulsion between the lines,
enforced by a noncrossing condition. In Ref. [7] a hard core
repulsion between the lines was also considered, leading to
the prediction of a “Bose glass” phase. In the absence of point
disorder, it was implemented in a heuristic way by filling the
lowest energy columns (also called the best localized states)
one by one, very much like noninteracting fermions, until
reaching a “Fermi energy.” In the case of a commensuration
between the number of lines and of (active) columns it was
predicted that one can reach a “Mott insulator” phase.

Here we describe exact results in the presence of point
disorder, for the “one-way” model with many lines. Since
it neglects all jumps backward this model is a priori more
relevant to describe the delocalization transition away from
the Bose glass which occurs upon tilting the lines (see Fig. 5
in [14] and Fig. 1). The results described below also assume
that the end points of the lines are closely packed on neigh-
boring columns. In practice, it means that the entry and exit
positions of the flux lines are constrained within a narrow
region. That could be enforced in experiments by inducing
channels where the superconductivity, i.e., the critical field
Hc1 and/or the vortex core energy, is locally reduced. Note
that inside the sample the lines will expand and form a limit
shape. This is similar to the limit shape of a set of nonin-
tersecting random walks, also called watermelons, but here
in the presence of a columnar and point disorder. For usual
watermelons the shape can be inferred from the connection
with the DBM and the GUE, as a semicircle with a time-
varying width, while in presence of disorder much less is
known (see discussion of related problems and continuum
limits in [109–111]). Note that some properties for more gen-
eral end point configurations have also been obtained [112].
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FIG. 9. Left: Three lines (M = 3) in the O’Connell-Yor polymer model (i.e., constrained not to cross) of length x with N columnar defects,
in the phase where they are delocalized over the space. Right: Three lines localized over the column i where the disorder is most favorable.
The total occupation length of column i, Li, is the sum of the occupation lengths of each line.

A. Relation to RMT

The relation between the O’Connell-Yor polymer at T = 0
and the deformed GUE extends to several noncrossing poly-
mers. Consider now M � 1 O’Connell-Yor polymers which
see the same N � M columns, with energies ε j = −a j , and
the same Brownian impurity disorder defined on each col-
umn, Bj (x), j = 1, . . . , N . The polymers are furthermore
constrained not to intersect. If one denotes 0 < x(k)

j < x the
successive jump positions of polymer k = 1, . . . , M, they are
thus constrained by an interlacing condition (see the definition
of the model in Appendix C 2).

The boundary conditions are the following. The polymer
end points at x = 0 are in column positions j = 1, . . . , M.
The end points at x are in column positions j = N − M +
1, . . . , N . This is illustrated in Fig. 9. Note that as a conse-
quence there is a global “tilt” of the lines by an angle φM such
that

tan φM = N − M

x
= 1

θM
. (135)

The total energy to be minimized is the sum of the en-
ergies

∑M
k=1 E (k)

N of each polymer. Let us call E0
N,M (x) the

minimum energy (ground state energy) under the above
constraints (nonintersection and boundary conditions). The
theorem states that [64,108]

E0
N,M (x)

in law= −
M∑

α=1

λα (x), (136)

where λ1(x) > λ2(x) > . . . > λM (x) are the M largest eigen-
values of the deformed N × N GUE matrix M(x) defined
in (10).

It turns out that the joint PDF of these eigenvalues λ j (x) for
the matrix M(x) at fixed value of x is known explicitly, so we
indicate it here. As shown in [79,81], the symmetrized joint
PDF of the λ j (x) (i.e., here with no ordering), j = 1, . . . , N ,
is given by

Px({λ}) = 1

(2πxN )N/2

�N (λ)

�N (a)
det(e−(λi−xa j )2/2x )1�i, j�N ,

(137)

where the Vandermonde determinant is defined with the fol-
lowing convention �N (λ) = ∏

1�i< j�N (λi − λ j ). This JPDF
has a determinantal form, with a kernel given in [[81], Propo-
sition (2.3) and formula (2.18)]. This result is the starting
point for obtaining the formula (42) and (43) for the PDF of
the largest eigenvalue max j λ j (x) [which above and below is
denoted λ1(x)].

Again, as for the case M = 1, one can show that (136)
holds as a process in x, replacing

√
xV → W (x) the Hermitian

Brownian motion [64]. Again the {λi(x)}i=1,...,N form a deter-
minantal point process and its extended kernel is known [116]
following earlier works [81,83], and can be found in explicit
form in, e.g., [[122], Proposition 2.1] and in [[129], Eq. (1.13)]
(see also [117]).

From the above property (136) we see that if M is fixed
and N becomes large (i.e., few lines, many columns) one is
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probing the edge of the spectrum of the matrix M(x). By
contrast if M and N grow with a fixed ratio, one is probing
the bulk of the spectrum. We will study both cases below.

One can define the total occupation length of a given col-
umn j by all lines as Lj = ∑M

k=1 �k
j where �k

j = xk
j − xk

j−1
is the occupation length of column j by the kth line. These
occupation lengths satisfy the sum rule

∑N
j=1 Lj = Mx. The

optimal total occupation length, denoted L0
j , can again be

obtained as a derivative of the ground state energy

−∂a jE0
N,M (x) = L0

j =
M∑

k=1

�k,0
j , (138)

where �k,0
j denote the corresponding values in the ground

state.
Note that there is again a nontrivial property of permuta-

tion invariance of the column strengths aj (see remark after
Theorem 8.3 of [64]).

Finally, note that the model can also be solved at fi-
nite temperature [119,120] for M noncrossing O’Connell-Yor
polymers, which define a hierarchy of partition sums.

B. Few lines and few columnar defects:
Independent BBP transitions

Suppose first that there are only a fixed and finite number
n of active columns, with a1 > a2 > . . . > an, and all other
a j>n = 0. One can ask how the system of M lines will localize
on these n columns.

Using the above relation (136) we see that this problem
corresponds to a rank-n perturbation of an N × N GUE ma-
trix. It is known that as N → +∞, there are in that case
n successive and distinct BBP transitions as θ = x/N is in-
creased from 0 (see [[90], Theorem 2.1 and Sec. 3.1] with
the correspondence σ → √

Nx and θi → xai). They occur
successively at θ = θ (i)

c = 1/a2
i , i = 1, . . . , n. For θ < θ (1)

c
the density of eigenvalues λi(x) is given by the semicircle law
with an upper edge at 2

√
xN . At the first transition the largest

eigenvalue detaches from the semicircle, at the second transi-
tion the second largest eigenvalue detaches, and so on. Thus
one has, to leading order in N (up to subleading fluctuations),

λi(x) �
{

2
√

xN, θ < 1/a2
i ,

aix + N
ai

, θ > 1/a2
i .

(139)

These transitions are “decoupled” from each other as long as
the column strengths verify |ai − ai+1| � N−1/3.

Let us consider now a fixed number of lines M, which
remains finite as N → +∞. From (136) and (139) the ground
state energy (to leading order in N) reads

−E0
N,M (x) � N

[
2M

√
θ+

min(M,n)∑
i=1

ai

(√
θ− 1

ai

)2

+

]
, (140)

where we recall that (x)+ = max(x, 0). The second deriva-
tive of the free energy as a function of θ will thus have the
form of a staircase, with a jump at each transition point θ =
θc(ai ). The total occupation length of each active column i =
1, . . . , n in the ground state is obtained from differentiation

according to (138) to leading order in N as, for i � min(M, n),

L0
i =

M∑
k=1

�k,0
i �

(
x − N

a2
i

)
+

= N

(
θ − 1

a2
i

)
+
, (141)

and L0
i = 0 for i > min(M, n). This coincides with the re-

sult for the single line, single column problem (22). Hence
the total occupation length of a given column is completely
independent of the values of the other column strength ai’s
(as long as all strengths are distinct). One can also define the
effective number of active columns for a given θ , i.e., the
number of columns where localization occurs (that is, those
which have a macroscopic occupation, L0

i /N > 0 at large N),
as n(θ ) = ∑min(n,M )

i=1 �(θ − 1
a2

i
) which is always smaller or

equal to M. Note that the sum of the occupation lengths of the
macroscopically occupied columns is smaller than the total
length,

min(n,M )∑
i=1

L0
i �

min(n,M )∑
i=1

N

[
θ − 1

a2
i

]
+

< Mx =
N∑

i=1

L0
i . (142)

This is because each of the other columns has occupation
length L0

j = O(1); these sum up to the remainder. In the case
of a single line M = 1, the PDF of the O(1) occupation length
was obtained in Appendix F 3 in the simpler case where all
a j = 0.

If the positions of the n active columns are permuted
among N , the ground state energy is unchanged but the actual
optimal configuration of the polymers, i.e., the set of �k,0

i ,
is different. The constraint however is the total occupation
lengths for each column if given by the above formula (141)
(for ai any of the active columns).

Finally, if instead the active columns are all close in en-
ergies, within a1 − an ∼ N−1/3, there is a single localization
transition, described by the M largest eigenvalues of the rank
n deformed GUE, that is, upon rescaling, by the M largest
points of the determinantal point process described by the
kernel BBPn recalled in Appendix D.

C. The limit M, N → ∞ with a fixed “density” r = M
N

In the limit M, N → ∞ with a fixed “line density” r = M
N

one can calculate the leading term in the ground state en-
ergy. We consider the case of a continuous density of column
strengths ρ(a). First one obtains the density of eigenvalues of
M(x) to leading order, from free probability. Let us define the
scaled matrix, from (10),

M̃(x) = M(x)

x
= M(x)

θN
= diag(a1, . . . , aN ) + √

τ Ṽ ,

τ = 1

θ
, θ = x

N
, (143)

where Ṽ = V/
√

N is a GUE matrix with the semicircle
density νsc(y) = 1

2π

√
4 − y2, and we recall that we study

N, x → +∞ with θ fixed. We introduce the variable τ =
1/θ which is more convenient. The eigenvalues of M(x)
are thus λi(x) = Nθλ̃i(x), where λ̃i(x) are the eigenval-
ues of M̃(x). Their density in the large-N limit, ντ (λ̃) =
limN→+∞ 1

N

∑N
i=1 δ(λ̃ − λ̃i(x)), is determined by the free
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additive convolution (see [121,123] and references therein),

ντ = ρ � νsc,τ , (144)

where νsc,τ (y) = 1
2πτ

√
4τ − y2. Let us define Gτ (z) as the

Stieljes transform of the density ντ (λ̃),

Gτ (z) = lim
N→+∞

1

N

N∑
i=1

1

z − λ̃i(x)
=

∫ +∞

−∞
dλ̃

ντ (λ̃)

z − λ̃
, (145)

from which the density can be extracted as

ντ (λ̃) = − 1

π
Im G(λ̃ + i0+) = 1

π
Im G(λ̃ − i0+). (146)

Then, (143) and (144) imply that Gτ (z) satisfies the Burgers
equation,

∂τ Gτ (z) = −Gτ (z)∂zGτ (z), (147)

see Appendix B, of solution [70,121,123–126], [[127], Theo-
rem 5], which obeys for z ∈ C+

Gτ (z) =
∫

�

daρ(a)

z − τGτ (z) − a
. (148)

For τ → 0, equivalently for θ → +∞, one can neglect
the term τGτ (z) inside the denominator of (148) and the
corresponding initial condition of the Burgers equation is
Gτ=0(z) = ∫

�
da ρ(a)

z−a , i.e., ντ=0 = ρ, and the spectrum of
M̃(x) is given by the {ai}, the strengths of the columnar de-
fects, i.e., as clear from (143). In the opposite limit τ → +∞,
equivalently θ → 0 [a limit equivalent to choosing ρ(a) →
δ(a)], Eq. (148) becomes Gτ (z)[z − τGτ (z)] = 1 and the so-
lution takes the form

Gτ (z) � 1√
τ

Gsc

(
z√
τ

)
(149)

in terms of the resolvant associated to the unit semicircle
density [128]

Gsc(z) = 1

2

(
z − z

√
1 − 4

z2

)
. (150)

Note that (148) can be written as Gτ (z) = G0(w) with, equiv-
alently, z = w + τG0(w) or, w = z − τGτ (z).

As discussed in Appendix B, the scaled eigenvalues λ̃i

perform a Dyson Brownian motion as a function of the param-
eter τ = 1/θ . This is valid for any N , and leads to the above
equations at large N . The initial condition is λ̃i = ai at τ = 0,
and at large τ the density converges to the semicircle shape.

One can ask how the density ντ evolves between these two
limits. We will assume again that the columnar defect energies
have a density ρ(a) with a soft right edge ae where it vanishes
as in (76), i.e., ρ(a) = A(ae − a)2k+ 1

2 , with ρ(a) = 0 for a >

ae. In [123] it is proved that ντ (λ̃) vanishes at its edge with the
same exponent as long as

τ < τc,
1

τc
= θc =

∫
�

da
ρ(a)

(ae − a)2
. (151)

This corresponds to the localized phase for θ > θc, that we
have studied by other methods in Sec. III A with exactly the
same value for θc in (85) (there we focused on the largest

eigenvalue λ̃1). More precisely in [[123], Theorem 1.3] it
is shown that, denoting λ̃e = λ̃e(τ ) the upper edge of ντ ,
one has

ντ (λ̃) � A
( τc

τc − τ

)2k+3/2
[λ̃e(τ ) − λ̃]2k+1/2, (152)

λ̃e(τ ) = ae + τ

∫
�

da
ρ(a)

ae − a
, τ = 1

θ
. (153)

The position of the edge is exactly what was found in
Sec. III A from the study of the largest eigenvalue λ1, i.e.,
for the single line problem M = 1, with the correspondence
λ̃e(τ ) = μ(θ )/θ � λ1/(Nθ ), where μ(θ ) is given in (86)
in the localized phase and recalling that τ = 1/θ . The re-
sults (152) are established in [123] for integer k � 1, but in
view of our results in Sec. III A it is reasonable to conjecture
them to be valid for any real k > 1/4, so that the integral
in (151) converges and τc > 0 (i.e., so that there is a localized
phase for a single line).

At criticality τ = τc, Ref. [[123], Theorem 1.4. (d)] states
that the semicircle shape holds near the edge,

ντ (λ̃) � 1

πτ
3/2
c

√
g
|λ̃e(τc) − λ̃|1/2, (154)

where

g =
∫

�

da
ρ(a)

(ae − a)3
. (155)

Note that this parameter g is identical to the one defined
in (115), i.e., g = 1

2ϕ(3)(ae) in the study of the localization
transition for a single line M = 1. There it was assumed
to be finite, equivalent to the convergence of the integral
which holds for k > 3/4, and implied a critical regime for the
fluctuations of λ1 (equal to minus the ground state energy) in-
terpolating between the Tracy-Widom distribution and a new
distribution. Again we can conjecture that the above results at
criticality, shown in [123] for integer k � 1, extend to any real
k > 3/4.

In conclusion, we see that the localization transition ob-
tained for a single line M = 1 shows up in the many line
problem M > 1 as a transition in the behavior of the density of
eigenvalues λ̃i near its upper edge: it vanishes with the same
exponent 2k + 1/2 as the column strengths in the (single-line
localized) phase θ > θc, and with the semicircle exponent 1/2
in the (single-line delocalized) phase θ < θc.

We can now apply these results to make predictions about
the ground state energy for a fixed density r = M/N of lines
versus columns. One introduces the “Fermi” level λ̃ f as the
solution of the equation∫ λ̃e

λ̃ f

dλ̃ ντ (λ̃) = r = M

N
, (156)

where we recall that λ̃e is the upper edge of the eigenvalue
density ντ (λ̃) of the matrix M̃(x) = M(x)/x. The ground state
energy of the system of M lines is then given for large N , with
r = M/N fixed, as

−E0
N,M (x) � θN2

∫ λ̃e

λ̃ f

dλ̃ λ̃ ντ (λ̃), (157)
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where we recall that ντ (λ̃) is determined from solving (148)
and (146) and λ̃ f from (156). Using the above results one finds
the following:

(i) In the (single-line localized) phase τ < τc, i.e., θ > θc,
one has, to leading order for small r = O(1), from (152),

λ̃e − λ̃ f � ak

(
1 − θc

θ

)
× r

1
2k+ 3

2 , (158)

with ak = (
2k+ 3

2
A )

1
2k+ 3

2 . This leads to the small r = O(1) ex-
pansion of the ground state energy

−E0
N,M (x) � θN2

[
λer − bk

(
1 − θc

θ

)
× r

2k+ 5
2

2k+ 3
2

]
, (159)

with bk = 1
2k+ 5

2
(2k + 3

2 )
2k+ 5

2
2k+ 3

2 A
− 1

2k+ 3
2 . The first term linear in

r corresponds to independent lines, and the second, singular
term arises from the nonintersection constraint (i.e., the inter-
actions between the lines).

(ii) At criticality τ = τc = 1
θc

, one finds, from (154),

λ̃e − λ̃ f �
(

3

2
π

√
g

) 2
3 1

θc
× r2/3, (160)

leading to the small r = O(1) expansion of the ground state
energy at the critical point

−E0
N,M (x) � θN2

[
λer − 2

5

(
3

2

) 5
3

(π
√

g)
2
3

1

θc
× r5/3

]
.

(161)
We have not attempted to study the crossover near criticality
between (159) and (161).

(iii) Inside the (single-line delocalized) phase τ > τc, i.e.,
θ < θc, the density of states vanishes as a semicircle and
again one has λe − λ f ∼ r2/3 and E0

N,M + θN2λer ∝ N2r5/3.
In the limit τ � 1, i.e., θ � 1, the density converges to the
semicircle, ντ (y) � νsc,τ (y) = 1

2πτ

√
4τ − y2, which leads to

λ̃e � 2
√

τ and

λ̃e − λ̃ f �
(

3π

2

) 2
3 1√

θ
r2/3,

−E0
N,M (x) � N2

[
2
√

θr− 2

5π

(
3π

2

) 5
3

θ3/2 × r5/3

]
. (162)

Note that from Eqs. (148), (146), (156), and (157) one
could in principle access, using (12), the total occupation
lengths Li in the ground state. We have not attempted that
calculation.

Another case of great interest is when there are two fami-
lies of columnar defects such that the support of ρ(a) consists
of two intervals, separated by a gap. It is known in the context
of the deformed GUE random matrix M(x) that there is
usually a critical value τc = 1/θc at which the gap of ντ (λ̃)
closes, and such that the two half supports merge for τ > τc,
i.e., θ < θc. The behavior around that point is quite nontrivial;
for a recent review see [129]. In Refs. [123] and [51] there are
results concerning the case where the support of ρ(a) has an
interior singular point a∗ where the density vanishes. If ρ(a)

vanishes as |a − a∗|κ with κ > 1, this singular point survives
for τ < τc, while if κ < 1 it immediately disappears. These
critical phenomena can be explored in the present problem,
by varying the filling r = M/N and the tilt angle of the lines
[we recall that at large N , θ � x/N , and θM = x/(N − M ) �
θ/(1 − r)]. One needs to vary r near the critical filling where
one of the half supports is fully occupied and the other empty.
It would be of great interest to see whether it gives some
description of the Mott insulator phase predicted in [7], in
the presence of point disorder and upon tilting the lines near
the critical transverse field. Note that the stability of a band
insulator for the two-way model in the presence of columnar
disorder was studied in [32].

D. The Rosenzweig-Porter model and fractal delocalization of
interacting lines

1. The generalized Rosenzweig-Porter model

The problem studied here is closely related to the so-called
generalized Rosenzweig-Porter (GRP) model recently studied
in physics [130–133] and mathematics [71,134–136]. The
GRP model is a cousin of the Anderson models on the Bethe
lattice and on the random regular graph, themselves stud-
ied [137] as simpler settings for investigating the many-body
localization transition [138]. In particular the GRP allows us
to investigate the existence of a nonergodic delocalized phase,
or bad metal, predicted in this context [137,138]. These phases
are also of great interest for glassy quantum dynamics in
models such as the quantum random energy model [139], with
applications to quantum computing [140,141].

The GRP model studied in [71,130,131,134–136] is de-
fined by the deformed GUE matrix

H = diag(a1, . . . , aN ) +
√

t

Nγ /2
V, (163)

where the GUE matrix V has the same distribution as in (10).
The ai are i.i.d. random variables drawn from a distribu-
tion ρ(a) with a compact support. The connection with (10)
and (143) is thus

H = M̃(x) = M(x)

x
, x = Nγ

t
, τ = tN1−γ . (164)

The GRP model is studied for N → +∞ at fixed t and ρ(a),
equivalently for τ = O(N1−γ ). Note that some works consider
instead V as drawn from the Gaussian orthogonal ensemble
(GOE), but there are no important differences in the main
features discussed below.

The case γ = 1 is thus the same as studied until now
in this paper, with the correspondence t = τ = 1/θ ; see
also [76,142–144]. As we discussed above, at large N the
mean eigenvalue density of H , ντ , interpolates from ρ(a) at
small τ to a semicircle at large τ , as described by (146) and the
self-consistent equation (148) or the Burgers equation (147).
If ρ(a) vanishes fast enough near its upper edge, it retains its
shape for τ < τc and exhibits a transition to a semicircle shape
at τ = τc, i.e., θ = θc.

It is thus not surprising that for γ < 1 at large N , which
corresponds to τ � 1, the spectrum of H is a semicircle,
while for γ > 1, i.e., τ � 1, is it exactly ρ(a) [131,134–136].
However the transition in the local spectral correlations of H
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between the Wigner-Dyson statistics and the Poisson statistics
takes place at a different value, γ = 2. If γ > 2, i.e. τ � 1/N ,
the local level statistics falls into the Poisson class. On the
other hand, if γ < 2, i.e., τ � 1/N , the local level statistics
falls into the Wigner-Dyson class [136,145,146].

The most interesting case is 1 < γ < 2, i.e., 1/N � τ �
1 (see Fig. 10). Although the mean density of H is ρ(a),
the local level statistics is Wigner-Dyson. It was conjectured
in [130] that the eigenvectors are delocalized, but only in N2−γ

sites close in energy, leading to a “fractal dimension” for the
eigenstates. The mass of each eigenfunction was predicted to
spread to a large number of sites, which nevertheless form a
vanishing fraction of the entire volume, the “sites” {1, . . . , N}.
This phase was called a nonergodic delocalized phase. It
was then proved in [134] (for GOE matrices, T there being
τ here) that each normalized eigenfunction ψα delocalizes
across a set of approximately Nτ ∼ N2−γ � 1 sites for which
ai is closest to λ. More precisely these sets are such that
|λ̃α − ai| is of order N1−γ ; hence they contain ∼τN ∼ N2−γ

sites, on which |ψα (x)|2 � Nγ−2 = (Nτ )−1. Hence they are
maximally delocalized on these sites. In [131], DBM and
perturbative arguments were used to explain why the abrupt
transition in the local statistics does not contradict the grad-
ual transition in the degree of eigenfunction localization, by
arguing that the statistics retain a Poissonian character on
mesoscopic scales greater than τ . Other results concerning
the eigenvalue statistics can be found in [147,148] and near
the edge in [129,149]. Note that as γ → 2, and for γ > 2, the
eigenstates become localized on one site, while as γ → 1 they
become fully delocalized over the N sites.

Some of these properties can be understood using the
DBM [131,134–136]. As recalled in Appendix B, from (B5)
the eigenvalues λ̃i of H expressed as functions of τ satisfy the
standard β = 2 DBM,

dλ̃i = 1

N

∑
j 	=i

dτ

λ̃i − λ̃ j
+ 1√

N
db̃i(τ ) (165)

= 1

Nγ

∑
j 	=i

dt

λ̃i − λ̃ j
+ 1

Nγ /2
dbi(t ), (166)

with initial condition λ̃i(0) = ai, and bi and b̃i are i.i.d. Brow-
nian motions. The DBM expressed in the variable t thus has
parameters a = N−γ and b = N−γ /2.

The resolvant expressed as a function of t , Ĝt (z) =
1
N

∑N
i=1

1
z−λ̃i

obeys

∂t Ĝt (z) = − 1

Nγ−1
Ĝt (z)∂zĜt (z) − 1

N
1+γ

2

∂zηz,t (167)

with Cov(ηz,tηz,t ) = −δ(t − t ′) Ĝt (z)−Ĝt (z′ )
ẑ−ẑ′ . Note the misprint

in the amplitude of the noise in Eq. (18) in [131]. The re-
solvant Gτ (z) = Ĝt (z) as a function of τ also obeys (167), but
with γ = 1.

From the DBM equation (165) it is clear that at very
short times τ the eigenvalues λ̃i remain close to their starting
points ai. As long as they have not moved by more than the
typical interparticle distance ∼1/N [since ρ(a) has a com-
pact support of order unity] they simply perform independent
diffusion λ̃i − ai � (τ/N )1/2. Equating both scales one sees

FIG. 10. Sketch of the different phases of the generalized
Rosensweig-Porter (GRP) model in terms of the spectral density
and the level statistics in the bulk. There are two crossovers: (i) at
γ = 1 from a delocalized phase to a delocalized nonergodic phase
where the order parameter is the spectrum density, and (ii) at γ = 2
from the delocalized nonergodic phase to a standard localized
phase where the order parameter is the local level statistics. The
critical region associated with the phase transition studied in
Sec. III C 3, which occurs at the edge of the spectrum near γ =
1 + O(1/N1/3 ln N ), is also indicated schematically.

that it corresponds to τ = O(1/N ), i.e., γ = 2, and it is thus
natural to expect local Poisson statistics below that time and
Wigner Dyson above, when the neighboring particles start
interacting to avoid collisions. Then it takes a much longer
time τ = O(1) to reach a steady state at the global scale, and
for the density to change from ρ(a) to the semicircle, which
corresponds to the transition γ = 1. More detailed arguments
using eigenvectors are required to understand the nature of
these regimes [71,131,134–136].

Note that the above analysis deals with eigenstates in the
bulk. Very near the upper edge of the spectrum of H it may be
a bit different. Indeed, one cannot find N2−γ columns too close
to the edge, more precisely when a > ae − δa where N2−γ �
N

∫ ae

ae−δa ρ(a)da � N (δa)2k+3/2. Hence the eigenstates near
the edge should localize on fewer columns.

Remark. For γ = 1 we studied in Sec. III C 3 the transition
near the edge (for M = 1, i.e., for the largest eigenvalue), at
θ = θc. From (118) the critical region is defined by the scaling
variable u = N1/3(θ − θc) = O(1) (denoted by the letter u to
avoid confusion). We note that this critical region can also be
explored in the GRP model, at fixed t = 1/θc, if one chooses,
as N becomes large,

γ = 1 + u

θc

1

N1/3 ln N
, (168)

which is equivalent to θ = Nγ−1

tc
� θc + uN−1/3.

2. From the eigenvectors to the polymers

Let us go back to the polymer picture, using the rela-
tion (136) between the ground state energies of M polymers or
lines and the M largest eigenvalues of H . The GRP model cor-
responds to polymers with x = Nγ /t = O(Nγ ), equivalently
an “angle” variable tan φ = 1

θ
= N

x = τ = tN1−γ at fixed t
and N large. Thus γ > 1 corresponds to very long polymers,
i.e., very small angle φ, which tend to be more localized along
the columns, while γ < 1 corresponds to large angles which
lead to delocalization.
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One should distinguish between the localization of the
eigenstates ψα , α = 1, . . . , N , of H , which states how the
normalized measure |ψα ( j)|2 tends to concentrate on a few
sites (i.e., columns) j, and the localization of the M polymers
on the columns, measured by the total occupation length L0

j =∑M
k=1 �k,0

j of each column j in the ground state. There are
however connections between the two. Indeed a perturbation
theory argument as in (13) shows that each eigenvalue λ̃α of
H (here ordered as a decreasing sequence) obeys

∂a j λ̃α = |ψα ( j)|2 (169)

for each realization of the matrix V (and any given set of {ai}).
We can now combine this with (138) and (136) and obtain the
relation between the averages over respectively the Brownian
point disorder (indicated by B) and the GUE matrix V

L0
j

B =
M∑

k=1

�k,0
j

B
= x

M∑
α=1

|ψα ( j)|2V
, (170)

which generalizes (14). It is valid for any j and for any given
set of {ai}. We recall that �k

j is the occupation length along
column j of the polymer starting at column i = k and ending
at column i′ = N − M + k. Equation (170) implies that the
change in the mean occupation length in the ground state,

when adding one polymer, is given by L0
j

B|M − L0
j

B|M−1 =
x|ψM ( j)|2V

. It does not imply however a relation between

�k,0
j

B
and |ψk ( j)|2V

because the joint distributions of the �k,0
j

B

also depend on the number of polymers M.
For a single polymer M = 1 we already know from

Sec. III A that for γ = 1 there is a localization transition of
the polymer at θ = θc [if ρ(a) vanishes fast enough at ae].
The polymer visits all columns with the occupation length
measure �(a)da given in (94), which for θ > θc develops
a delta peak on the few best columns at the edge a = ae.
From (170), i.e., (14), it indicates that ψ1, the eigenstate of
H with the largest eigenvalue, is localized on one or a few
O(N0) sites or columns for θ > θc, and delocalized for θ < θc.
As one increases M the eigenstates of highest eigenvalues
are successively “filled.” Presumably for finite M = O(1) the
picture is similar to M = 1 with localized eigenstates near the
edge.

When M increases such that M/N = r = O(1), the above
results about the eigenvectors in the bulk of the GRP model
at large N apply. Let us give some qualitative arguments.
For γ < 1, i.e., θ � 1, the eigenvectors are fully delocalized
so that typically |ψα ( j)|2 = O(1/N ). From (170) one thus
surmises that the Lj are all of order xM/N and the set of
M polymers are delocalized. For γ > 2, i.e., θ ∼ Nγ−1 � 1,
the eigenvectors ψα are typically localized on a single site or
column, say jα . From (170) one expects that the Ljα = O(x)
for α = 1, . . . , M, and that the set of M polymers are well
localized on the best columns. For 1 < γ < 2, i.e., the non-
ergodic phase, 1 � θ � N , adding an extra polymer leads
to a reorganization of the total occupation lengths Lj given

by |ψM ( j)|2V
; i.e., this excitation is localized on N2−γ sites

around |λM − a j | ∼ N1−γ . Hence it is reasonable to expect
that the set of lines are again localized, but on a macroscopic
set of columns. The above heuristic arguments assume that

the typical and average |ψα ( j)|2 behave in a similar way, and
it would be interesting to make them more rigorous.

In conclusion, when the number of polymers is M = O(N ),
we can learn from the GRP model in the bulk. We see that
because of the (noncrossing) interactions the set of polymers
tends to be more easily delocalized. It seems that the polymer
localization transition which, as we found, occurs for a single
(or a few) polymers for x ∼ N , i.e., θ = x

N = θc = O(1), now
requires much longer polymers. The nature of the transition
changes significantly. For tan φ = O(1) the set of M = O(N )
polymers are delocalized. For tan φ � 1 they start to localize,
but the polymer localization occurs gradually. For N � x ∼
Nγ � N2, one can say that the set of M = O(N ) polymers
are localized but in the weaker sense, related to the nonergodic
phase of the GRP, and excitations are delocalized on subsets
of N1−γ sites. One then expects to recover the linear response
when varying H or tan φ on scales N1−γ . For γ � 2, i.e.,
tan φ � 1/N , they are fully localized.

V. SOME KNOWN RESULTS AT FINITE TEMPERATURE

We finish this paper by mentioning a few available re-
sults at finite temperature for the single polymer OY model
M = 1. The free energy is FN (x, T ) = −T lnZN (x, T ) where
ZN (x, T ) is defined in (6). First let us note that the rescaling
x → xT 2 and a j → a jT in the partition function (6) leads to
the relation

FN (x, T, {a}) = TFN (x/T 2, 1, {aT }) − 2(N − 1)T ln T .

(171)
Exact results for the free energy at T > 0 and its fluctua-

tions were obtained in [119,150,151]. Let us discuss now the
results of [120,152] in the presence of drifts aj which corre-
spond to columnar defects. They reproduce the ones discussed
in Secs. I B 2 and II in the T → 0 limit.

Consider a single active columnar defect a1 > 0 and
a j>1 = 0 and ask about the localization transition. We again
consider the limit x, N → +∞ with θ = x/N fixed. Let us
denote t∗ the unique positive solution of

ψ ′(t∗) = x

T 2N
= θ

T 2
, (172)

where ψ (t ) = d
dt ln �(t ) is the digamma function, and denote

c = [− 1
2ψ ′′(t∗)]1/3 a temperature dependent constant. Then,

it was shown in [152] that in the region where

a1T < t∗, (173)

the following asymptotics holds at large N for the free energy:

FN (x, T, a1) � −T N

[
θ

T 2
t∗ − ψ (t∗) + 2 ln T

]

− c T N1/3χ2. (174)

The region delimited by (173) thus corresponds to the delo-
calized phase, where the free energy exhibits Tracy-Widom
fluctuations. When one approaches the boundary of this phase,
more precisely in the critical region near the transition defined
by [153]

a1T = t∗ + b1

c
N−1/3, (175)
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with a fixed value of b1, the following asymptotics for the free
energy holds [152]:

FN (x, T, a1) � −T N

[
θ

T 2
t∗ − ψ (t∗) + 2 ln T

]

− cT N1/3χBBP,b1 , (176)

where χBBP,b1 is the BBP random variable, distributed accord-
ing to the BBP(b1) distribution (of CDF F1(x; b1) in [[88],
Definition 1.3]) which we recalled in (68) when we studied
T = 0. Hence we see that the critical behavior of the delo-
calization or localization transition at finite temperature is the
same as for T = 0.

One recovers the results for T → 0 as follows. Using the
small-t behavior ψ (t ) � − 1

t , we obtain that as T → 0 for a
fixed θ one has

t∗ � T/
√

θ. (177)

In the delocalized phase θ < θc = 1/a2
1, this leads to

FN (x, T, a1) � −2N
√

θ − N1/3
√

θχ2 (178)

recovering (57), equivalently (15). The critical region is de-
fined by taking the limit T → 0 of (175), using c � 1/t∗ �
1/(a1T ) which leads to a1 = 1√

θ
+ a1b1N−1/3, equivalent to

the T = 0 definitions in (25) and (60) (with δ = 2b1 = τa2
1).

In that region one obtains

FN (x, T, a1) � −2N
√

θ − N1/3
√

θχBBP,b1 , (179)

which recovers the T = 0 result (67).
Although there are no results for the localized phase, the

methods in [152] can be used to investigate this phase as well.
In the case where there is a finite number k of columns with
strictly negative energies ε j = −a j within the critical region,
the above result generalizes with the replacement [152] with
the rank-k BBP distribution, χBBP,b; see Appendix D.

At finite temperature for a single line there is another
interesting regime: in a different scaling limit, x ∼ √

N , one
obtains the continuum directed polymer, i.e., the model in (1),
equivalent to the KPZ equation, as (in the absence of drifts)

ZN (
√

τN + x̃, T = 1) ∼ ZKPZ(τ, x̃). (180)

The case of many noncrossing lines at finite temperature
can also be investigated. One interesting question is whether
there is phase transition as a function of temperature.

VI. CONCLUSION

In this paper we have analyzed results originating from
random matrix theory in the context of the localization to de-
localisation of polymers and lines in d = 1 + 1 dimension in
the presence of both columnar and point disorder. The central
solvable model that we revisited is the O’Connell-Yor (OY)
polymer for either one line or M > 1 lines, in the presence of
N columns of arbitrary strengths a j . At zero temperature this
model has a direct connection to the deformed GUE random
matrices and to the Dyson Brownian motion. An immediate
consequence, that we have explored in detail, is that for one
line and one column there is a localization to delocalisation
phase transition in the universality class of the BBP spiked

random matrix transition. In the localized phase the occupa-
tion length of the column by the line is macroscopic. We have
developed a variational calculation to calculate the occupation
length in the localized phase and across the transition, which
led to new results for its fluctuations. We found that these
fluctuations are of order N2/3 and described in the localized
phase by the distribution fKPZ, which appears ubiquitously in
the KPZ class.

We have recalled and then extended classical methods us-
ing Fredholm determinants, which allowed us to solve the case
of one line and many columns with a continuous distribution
of column strengths ρ(a). We have found that if ρ(a) vanishes
sufficiently fast near its upper edge, there is a localization to
delocalisation transition. We have shown that this transition
belongs to a new universality class (hence the same applies
for spiked random matrices with a full rank perturbation). We
have shown that the fluctuations of the ground state energy in
the localized phase are nontrivial, at variance with the usual
BBP case where they are Gaussian. We have obtained the
universal distribution for these fluctuations and those in the
critical region. It is expressed in terms of a Fredholm de-
terminant involving a new one-parameter kernel. This kernel
is reminiscent of the one appearing in the elliptic Ginibre
ensemble.

In the case of many nonintersecting lines with specific
(packed) boundary conditions, we could use some known
results about the OY model. The case of a few active columns
and a few lines was discussed and leads to superpositions of
BBP type transitions. In the case of a thermodynamic number
of lines r = M/N > 0, we calculated the ground state energy.
It exhibits a change of behavior in the very dilute limit r → 0,
but no true phase transition at fixed angle θ = x/N and r > 0.
As we argued, based on known results on the generalized
Rosenzweig-Porter (GRP) model, full polymer localization on
the columns occurs for long polymers, x ∼ Nγ with γ � 2,
and only partial localization occurs for 1 � γ < 2. The lat-
ter case is related to the celebrated “nonergodic” delocalized
phase of the GRP model. Translated to the polymer side of the
model, it suggests that the polymers delocalize over subsets of
∼N2−γ columns, retaining some glassy features.

Many other interesting questions remain such as the
crossover from finite-rank to infinite-rank perturbation (in the
RMT context), the fluctuations of the ground state energy
as a function of the column strengths a j (we have worked
here for a fixed set of a j). We have also unveiled transitions
with an anomalous critical behavior quite different from the
Tracy-Widom or Airy family, which we were not able to
analyze. Although our discussion focused on zero temperature
we analyzed the existing results at T > 0 in the case of one
line and one (or a few) columns. The conclusion there was
that temperature does not change the universality class of the
T = 0 localization to delocalisation transition. It would be
interesting to generalize the present study with many columns,
and possibly many lines, in the case of finite temperature,
where the thermal effects are expected to be more subtle.

In a broader context, the results in this paper concern a
one-way model of a polymer or line (i.e., which can jump
only to the right) in d = 1 + 1. One expects on heuristic
grounds that this model could serve as some kind of approxi-
mation of the more general two-way model [such as (2) in the
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introduction, or the continuum model (1)] near its delocal-
ization (i.e., tilting) transition (e.g., in the presence of an
applied field) since left jumps may be subdominant there.
Such one-way models have been investigated in the context
of non-Hermitian localization but not in the presence of point
disorder. In Appendix A we have presented a first step in
that direction, by studying the OY model in the fixed trans-
verse field ensemble H (rather than the fixed angle ensemble)
where the tilt angle can fluctuate. We have presented some
connections to the models of elastic lines discussed in the
introduction which exhibit a tilt angle transition at H = Hc

and the transverse Meissner effect. Although more details
remain to be understood, it appears, roughly, that for a single
line the localization to delocalisation transition which occurs
at tan φc = 1/θc in the fixed angle ensemble is naturally asso-
ciated with a first order jump in the tilt response at H = Hc,
and that the localized phase discussed here for φ < φc, i.e.,
θ > θc, can be seen as a coexistence region. In the many line
case, the fact that the polymer localization occurs gradually
on scales x ∼ Nγ as γ varies within 1 � γ � 2 suggests that
the Bose-glass transition at Hc is (i) continuous since for any
fixed tan φ = N/x the system is delocalized, and has (ii) non-
trivial features for vanishingly small angle scales φ ∼ N1−γ .
It remains an outstanding question whether some universal
property of this transition in the presence of point disorder
(for one or many lines) may be captured by the present model,
for which many analytical results have been obtained.
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APPENDIX A: FIXED H ENSEMBLE AND
MODEL OF VORTEX LINES

In this Appendix we discuss a possible realization of the
polymer model of the text in the context of vortex lines.
We focus on a single line. We first recall in an elementary
way the tilting transition (transverse Meissner effect) for an
elastic line, upon an applied field H . Then we apply the re-
sults obtained for the one-way model to investigate the tilting
transition and the localization to delocalisation transition in
the presence of columnar and point disorder.

1. Single columnar defect

Let us consider the model (1) for a single continuum vortex
line (without point disorder V = 0) and a single columnar de-
fect modeled by a local potential well U (u) centered at u = 0
of depth −U0 as in Fig. 11 (left). The line enters at u(0) = 0
(which is fixed) and exits at u(x) = u f > 0. The tilt, i.e.,
the mean angle with the z axis, is φ with t = tan φ = u f /x.
Since the line consists of a pinned segment of length � and a
depinned segment of length x − � the ground state energy is
approximately

E0 � −U0x + min
0���x

[
U0(x − �) + γ u2

f

2(x − �)
− Hu f

]
.

(A1)

Consider first the fixed angle φ ensemble discussed in this
paper (setting H = 0). Minimizing (A1) over �, one finds that
the depinned fraction of the line is 1 − �0

x = √
γ /(2U0) tan φ.

This solution is valid for φ < φc with tan φc = √
2U0/γ . For

φ � φc the line is fully depinned with �0 = 0, and E0 =
γ u2

f /(2x). The first solution is an analog of the localized phase

FIG. 11. Left: Elastic line of length x, ending in u(x) = uf , in the presence of a columnar defect studied in (A1). At T = 0, for a fixed tilt
angle φ with the z axis, the line is partially depinned when tan φ = uf /x < tan φc. This is the localized phase (analog to the one discussed in
the text for the OY model) where the pinned and depinned segments coexist. The tilt angle of the depinned segment is also φc. Right: Cartoon
of a series of kinks of width δxk and energy Ek , for an elastic line with a positive tilt angle in the periodic or disordered columnar model which
mimics the OY model, as studied in (A5).

042120-24



TILTED ELASTIC LINES WITH COLUMNAR AND POINT … PHYSICAL REVIEW E 103, 042120 (2021)

FIG. 12. Left: Free energy f0(tan φ) as a function of the tilt angle φ with the z axis, in two cases: (i) Top: It is linear along a segment
[0, φc], as in (A2). (ii) Bottom: It is slightly curved. The slope at the origin is Hc indicated in dashed. Right: Corresponding tilt angle versus H
curve in the fixed H ensemble. (i) Top: The tilt exhibits a first order jump at Hc, from φ = 0 to φ = φc. (ii) Bottom: The tilt raises sharply at
Hc but continuously, and φc = 0; see Eq. (A14).

as defined in the text, and the second of the delocalized phase
(although for quite different models, and there is no point
disorder here). The energy at fixed angle is

E0

x
= f0(tan φ)

�
{−U0 + √

2γU0 tan φ, tan φ <
√

2U0/γ ,
γ

2 (tan φ)2, tan φ >
√

2U0/γ .
(A2)

In the fixed H ensemble the energy is given by minimizing
minφ�0[ f0(tan φ) − H tan φ] over tan φ, i.e., by the Legendre
transform of f0. It gives here

tan φ =
{

0, H < Hc = √
2U0/γ ,

tan φc + H−Hc
γ

= H
γ
, H > Hc = √

2U0/γ .

(A3)

Hence there is a tilting transition at Hc (and transverse
Meissner effect for H < Hc), a generic feature in presence
of columnar disorder. Since f ′

0(t ) is generically increasing,
it happens when f ′

0(0) > 0, so that there is no solution to
the minimization equation H = f ′

0(t ) for H < Hc = f ′
0(0).

However there is a second feature in the model (A1); i.e.,
the tilt angle φ jumps from 0 to a finite value φc at Hc.
This first order jump of the tilt angle was also obtained
in the finite temperature T > 0 version of the model (1), using
the mapping to non-Hermitian quantum mechanics (h̄ playing
the role of T ) [16,154]. In that language the localized state
(around the column) disappears at H � Hc and is replaced by
a pair of eigenstates (with complex conjugated energies) with
finite imaginary current (analog to the tilt). This was shown

for some solvable cases like the delta potential. In the above
T = 0 estimate (A2), f0(t ) is linear on an interval, leading to
a jump in the Legendre transform. This calculation however
can be made in a more exact manner (see Appendix A 4) and
one finds that if U (u) is smooth near its minimum f0(t ) is
not exactly linear and the jump is rounded into a very steep
smooth curve with singularity [see, e.g., (A14) below]

tan φ ∼ �(H − Hc)

| ln(H − Hc)| ; (A4)

i.e., φc vanishes. The (partially localized) optimal configura-
tion at small fixed angle will still look like in Fig. 11 (left), the
line being simply slightly shifted with respect to u = 0. These
two cases (jump or no jump) are illustrated in Fig. 12.

Note that in the OY model studied in the text for a single
active column, there is also a localized phase for θ > θc, i.e.,
φ < φc (with some different, unrelated value for φc) where a
finite fraction of the column is occupied. While in (A1) it is
simply the (trivial) elastic energy of a free depinned segment
which is in competition with the columnar energy, in the
OY model the competition is with the point disorder energy.
Although the competition has a different origin we note that
in both cases the tilt angle of the segment which is depinned
from the column is precisely φc.

(i) For (A1) it follows since at the optimum: u f

x−�0 =√
2U0/γ = tan φc.
(ii) For the OY model it can be seen in (22): N

x−�0 =
1/θc = tan φc.

Some of the above considerations extend to the many col-
umn cases. Jumps in the tilt angle were also observed for
model (2) [with η j (t ) = 0]. As discussed in Sec. III B, in the
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fixed tilt angle ensemble the signature of the localized phase in
this case is that the occupation length density �(a) acquires a
delta function peak on the best columns. Below we will see an
analog phenomenon for the model (1) at T = 0 in the absence
of point disorder.

The OY model does not contain “free space” elastic energy.
To connect to the elastic line model (1) one must introduce
there a columnar potential U (u) with a lattice structure. Elas-
tic deformations occur as kinks, and one can then define an
extension of the OY model in the fixed H ensemble (with fluc-
tuating N) by adding the additional energy term (Ek − H )r0N .
Let us describe it in more detail.

2. Periodic columnar potential

Consider now the model (1) in the presence of a periodic
potential U (u) of period r0 which is nearly zero in between
the columns and has a depth of order Umin = −U0 at each
column location. We first assume the absence of point disorder
V (u, z) = 0. Let us recall that φ such that tan φ = (N−1)r0

x �
Nr0

x = 1/θ is the angle of the line with the z axis. In the
presence of a macroscopic tilt, i.e., φ, θ > 0, we want to ap-
proximate this model by the lattice polymer model of the text
with all column energies identical εi = −U0, L = x, u(0) = 0,
and u(x) = u f = (N − 1)r0.

In the continuum model the jumps from column to column
occur as kinks, whose shape is obtained by the minimization
of the energy function (1) for a single jump, and depend on
U (u) and γ ; see Fig. 11 (right). Its precise shape can be
calculated (see Appendix A 4 below) but is not important here:
if U (u) has a single scale r0, dimensional estimates show that
the “kink energy” cost is Ek ∼ r0

√
γU0 and the “kink width”

(i.e., its length along x) is δxk ∼ r0
√

γ /U0. The analogy with
the OY lattice model is closest when the kink width is “small”
so that the jump can be considered as almost instantaneous: it
is much smaller than the mean interkink distance, whenever
δxk � x/N , i.e., 1/θ � tan φ � √

U0/γ . The ground state
energy per unit length for a fixed tilt angle is

E0

x
� f0(tan φ) − H tan φ, f0(tan φ)

�
⎧⎨
⎩

−U0 + Ek
r0

tan φ, tan φ �
√

U0
γ

,

γ

2 (tan φ)2, tan φ �
√

U0
γ

,
(A5)

where the convex function f0(t ) can be calculated from Ap-
pendix A 4 below, but its asymptotics are easy to obtain,
as indicated. In the first regime the minimum energy con-
figuration is made of N well separated kinks, i.e., one has
Nδxk � x, while in the second regime the line spends little
time on the columns and one obtains the usual elastic energy
[as in the absence of U (u)]. The general form of (A5) is quite
similar to (A2), leading to a similar behavior in the fixed
H ensemble [when u(L) is free to move]. The minimization
of (A5) over the angle leads to φ = 0 for H < H0

c = Ek
r0

and
a tilting transition at H0

c (with transverse Meissner effect for
H < H0

c ). For large H − H0
c one can use the asymptotics of

f0 and tan φ � H−H0
c

γ
. The precise form of the curve of the

optimal tan φ versus H − H0
c is obtained by studying in more

detail the minimization equation f ′
0(tan φ) = H . Depending

on U (u) it leads to either a jump in φ, or, for a smooth
potential, a singularity of the form (A4) [see (A14) below].

Note that this “delocalization transition” for a periodic
potential U (u) in d = 1 exists only at T = 0. For any finite
T > 0 the eigenstates in the associated quantum mechanics
for H = 0 are Bloch waves; hence they are delocalized and
there is no localized phase. For a localized phase to exist one
needs quenched disorder in the column strength, i.e., a random
potential U (u); see below.

We now use the results of the present paper on the one-way
OY model. Let us first continue with the above model of a
periodic U (u) and add point disorder. It is difficult to estimate
when the effect of backward jumps can be neglected. As an
attempt, consider the insertion of a kink-antikink pair (which
costs an energy 2Ek) of size (i.e., the separation) xp between
two forward kinks. The typical energy gain from the point
disorder by forming this pair is 2σ

√
xp [here σ measures the

strength of the point disorder; i.e., the Brownian motions in
the effective OY are now taken as Bj (x) → σBj (x)]. Compar-
ing the gain and the cost one sees that it becomes favorable
to create such an excitation in the ground state if xp > x∗

p =
E2

k /σ 2. If x∗
p is itself larger than the mean interkink distance

x/N , then such defects may not be favored, which leads to
the condition (i) tan φ � tan φ0 = r0σ

2/E2
k . For φ � φ0 the

ground state is unstable to backward jumps [155].
Let us assume that the kink energy Ek is large, equivalently

the point disorder is weak, so that φ0 � 1. In the presence of
point disorder we must now minimize, approximately,

E0

x
� f0(tan φ) − 2

σ√
r0

√
tan φ − H tan φ, (A6)

where we used the result (15). Examining the minimization
equation, H = f ′

0(t ) − σ√
r0t with t = tan φ, we see that now

there is no transition. In fact there is a solution, φ = φ0 > 0
even at H = 0, where φ0 � 1 was defined above. This is not
too surprising: the point disorder favors the wandering of the
line and in d = 1 + 1 we expect that it overcomes at large
scale the effect of the periodic potential (a bit as T > 0 does).
In the OY model the only way to wander that is by tilting.
The spontaneous tilt is an artifact of the one-way model, and
φ ∼ φ0 � 1 is precisely the region where we cannot use it
because in the two-way model kink-antikink pairs will pro-
liferate [from condition (i) above]. However, we can use it
for φ = O(1). From the minimization equation, we find that,
in the whole region H � H0

c = Ek/r0, tan φ ≈ σ 2

r0(H0
c −H )2 , and

crossover for H � H0
c to a tilt response nearly identical to the

one in the absence of point disorder.

3. Columnar disorder on top of periodic

Let us now smoothly deform the above periodic potential
so that the local minima remain at positions u = jr0 but with a
random value U ( jr0) = U0 − a j , introducing columnar disor-
der, so as to mimic the OY model with drifts. Let us consider
the case of a single active column a1 > 0, a j 	=1 = 0. From
the results in Secs. I B 2 and II and restoring units, the energy
to minimize is either given by (A6) if tan φ > a2

1r0/σ
2 or, if
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tan φ < a2
1r0/σ

2, it is given by [from (17)]

E0

x
� f0(tan φ) − a1 − σ 2

a1r0
tan φ − H tan φ,

tan φ < a2
1r0/σ

2. (A7)

The minimization equation is now H = f ′
0(t ) −

min( σ 2

a1r0
, σ√

r0t ), with t = tan φ. Let us recall that from (A5)

f ′
0(0) = Ek/r0 = H0

c and f ′
0(t ) � γ t for t � √

U0/γ . We see
that now there is a threshold field

Hc = H0
c − σ 2

a1r0
= Ek

r0

(
1 − σ 2

a1Ek

)
, (A8)

provided Hc > 0, that is, a1 > σ 2/Ek . For H < Hc the min-
imum is at φ = 0 and there is a true localized phase, with
zero tilt, i.e., with transverse Meissner effect. For H > Hc

the tilt angle versus field curve can be obtained from the
minimization equation. Since for small φ the disorder term
in (A7) is linear in tan φ we expect a similar behavior to that
in the two previous subsections: either a jump from φ = 0
to φ = φc, or, for a smooth potential, a sharp but slightly
smoothed jump of amplitude φc, with tan φc = a2

1r0/σ
2. In the

fixed φ ensemble (which can handle both cases), for φ < φc

the line occupies a finite fraction �0/x = O(1) of the single
active column (this fraction being unity for φ = 0), and this
fraction vanishes at the delocalization transition at φ = φc

[where φc is the value of φ = φ(H ) at H = Hc in the fixed
H ensemble]. These arguments are of course quite heuristic
and it would be of great interest to analyze these observables
in more detail.

Note that in the localized phase, the macroscopic segment
of the line along the active column a1 is stable to a large size
single kink-antikink pair, since its energy cost is now 2Ek +
a1xp − ωσ

√
xp, where ω a Gaussian random variable. These

pairs are never favorable for large xp and if Ek � σ 2/a1 they
are never favorable at any scale xp [156].

4. Exact solution for an elastic line in
a columnar potential at T = 0

Here we study a single elastic line, described by the
model (1), in a general potential U (u) at T = 0 and in the ab-
sence of point disorder, following closely the analysis in [157]
and adding a few remarks and results useful in the present
context. This method allows us to determine the function f0(t )
introduced in the previous subsections. For fixed end points,
the minimization equation

E0[u f , x,U, γ ]

= min
u(z),u(0)=0,u(x)=u f

∫ x

0
du

[
γ

2

(
du(z)

dz

)2

+ U (u(z))
]
(A9)

has the solution

E0[u f , x,U, γ ] = √
γ

∫ u f

0
du

ε + 2U (u)√
2[ε + U (u)]

= −εx + √
γ

∫ u f

0
du

√
2[ε + U (u)],

(A10)

where ε is determined by the condition

√
γ

∫ u f

0
du

1√
2[ε + U (u)]

= x, (A11)

and the optimal u(z) is the solution of γ d2u
dz2 = U ′(u), i.e.,

of the classical mechanics problem in the inverted po-
tential −U (u), at total “energy” ε, thus determined by√

γ
∫ u(z)

0 du 1√
2(ε+U (u))

= z. In the fixed H ensemble, where
u f is free [we keep u(0) = 0], one minimizes E0 − Hu f over
u f . This is equivalent to optimize over ε, which leads to
H = √

γ
√

2[ε + U (u f )]. There may be multiple solutions to
this equation, and a more useful equation will be given below.

Periodic potential. Consider first the periodic potential
U (u) described above. Let us start with u f = r0 and x →
+∞, which leads to the standard “kink energy” Ek for an
ideal jump between 2 columns. In that case ε = −Umin = U0

and E0 = −U0x + Ek with Ek = √
γ

∫ r0

0 du
√

2[U0 + U (u)].
Let us consider now u f = (N − 1)r0 + δu f where 0 < δu f <

r0. One can rewrite exactly (A10) and (A11) by replacing∫ u f

0 du → (N − 1)
∫ r0

0 du + ∫ δu f

0 du. We are interested in the
limit where both x, N are large, with a fixed tilt angle t =
tan φ � Nr0/x, for which one obtains

1

t
�

√
γ

r0

∫ r0

0

du√
2[ε + U (u)]

,

E0 − Hu f

x
� −ε + t

√
γ

r0

∫ r0

0
du

√
2[ε + U (u)] − Ht .(A12)

The minimization over t = tan φ leads to

H =
√

γ

r0

∫ r0

0
du

√
2[ε + U (u)], (A13)

which is different from the result H = √
γ
√

2[ε + U (δu f )]
obtained if one takes the derivative with respect to δu f . This is
because there are multiple extrema and one should minimize
over both N (choose the column) and δu f (fine structure inside
one column). Equation (A13) corresponds to the former, and
together with (A12) determines t = tan φ as a function of H
(the δu f then adjusts to be at a local minimum). As tan φ → 0
one has ε → U0 and one recovers the small φ estimate for
f0(t ) in (A5). For large tan φ one has ε � |U (u)|,U0 and
one can neglect the potential U (u) altogether, and one finds
E0 � εx with ε � γ

2 (tan φ)2 recovering the second estimate
for f0(t ) in (A5).

The Eq. (A13) determines ε as a function of H . Since
ε � U0 = −Umin, there are no solutions to (A13) for H <

Hc where Hc =
√

γ

r0

∫ r0

0 du
√

2[U0 + U (u)] = Ek/r0, a signa-
ture of the tilting transition at Hc. The precise behavior
of the tilt angle (jump or no jump) depends on the exact
form of the potential. If ε in (A12) is a constant equal
to −U0, the energy is exactly linear and a jump occurs.
For a smooth potential U (u) = −U0 + U2u2 one obtains

r0/
√

ε̃ = sinh( r0
t

√
2U2
γ

), where ε̃ = (ε − U0)/U2. Hence at

small angle, ε̃ � 4r2
0 exp(− 2r0

t

√
2U2
γ

). We can use the general

relation dH
dε

= 1
t from (A13) and (A12). Integrating we find
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for H > Hc

H − Hc � 4Ũ2

t
exp

(
−2

t

√
2Ũ2

γ

)
,

t = tan φ � 2
√

2Ũ2/γ∣∣ ln
(H−Hc

4Ũ2

)∣∣ (A14)

and φ = 0 for H < Hc, where Ũ2 = r2
0U2 is an energy scale

(per unit length) characteristic of the local curvature of the
well near its minimum. The jump in the tilt angle is smoothed
on this scale.

Random potential. Consider now U (u) a random poten-
tial. If ergodicity applies for large x and u f at fixed angle
θ = x/u f = 1/t with t = tan φ, it means that we can replace
the translational averages over the potential U (u) by disorder
averages noted 〈. . . 〉U . To mimic the notations in the OY
model, we can introduce the one-point density ρ(a) of mi-
nus the potential a = −U , as ρ(a) = 1

u f

∫ u f

0 duδ(U (u) + a) =
〈δ(U (u) + a)〉U . We assume that this density has an upper
edge ae = −Umin. The above equations then lead to the system
of equations

θ = √
γ

∫
da

ρ(a)√
2(ε − a)

,

E0

x
= −ε + √

γ
1

θ

∫
daρ(a)

√
2(ε − a) − H

θ
,

H = √
γ

∫
daρ(a)

√
2(ε − a), (A15)

where ε > ae = −Umin is determined from the first equation
as a function of θ . The first two of these equations are rem-
iniscent of the system (81) and (82) for the OY model at
fixed tilt angle, with the identification z∗ = ε and μ = E0

N .
They are of course different since the models are different
(here an elastic line without point disorder and there a dis-
crete one-way model with point disorder). The last equation
in (A15) leads to a tilting transition in the fixed H ensem-
ble at Hc = √

γ
∫

daρ(a)
√

2(ae − a). For H < Hc the tilt
angle is zero, and one cannot use Eqs. (A15) (one cannot
use the ergodicity). For H � Hc the behavior of the tilt an-
gle depends on how ρ(a) vanishes near its upper edge ae.
For ρ(a) ∼ (ae − a)2k+1 there is a finite jump from φ = 0 to
φc with 1/ tan φc = θc = √

γ
∫

da ρ(a)√
2(ae−a)

which is finite for
k > −1/2, and one has the critical behavior [157] θ − θc ∝
φ − φc ∝ (H − Hc)max(1,2k+1) in the delocalized phase. As
k → 0 the jump in φ vanishes and for k = 0 (which corre-
sponds to the smooth potential) one finds again a behavior
similar to (A14) with φc = 0, θc = +∞.

Note that for k > 0, as in (94) and (93), one can define an
occupation length measure which acquires a delta contribution
for φ < φc,

�(a) =
{

N ρ(a)√
ε−a

, φ > φc,

N ρ(a)√
ae−a

+ (x − Nθc)δ(a − ae), φ < φc,

(A16)
so that

∫
da �(a) = x.

APPENDIX B: DYSON BROWNIAN MOTION AND
AIRY PROCESS

1. DBM without drift and the Gaussian β ensemble

Consider W (x) a Hermitian Brownian motion in x, or
Brownian motion in the space of N × N Hermitian matrices.
The stochastic evolution equation for the process of the eigen-
values λi(x), i = 1, . . . , N , of W (x), i.e., the Dyson Brownian
motion, reads

dλi(x) = a
∑
j 	=i

dx

λi(x) − λ j (x)
+ b dbi(x), (B1)

where bi(x) are N independent unit Brownian motions. This
is the nonstationary DBM. We have introduced two arbitrary
parameters a, b so that (B1) is actually the β-DBM; the case
β = 2 relevant for Hermitian random matrices corresponds to
a = b2 (the general case is β = 2a/b2; see below). The choice
made here in the text is a = b = 1, which corresponds to a
choice of normalization for W (x). Here we define W (0) = 0,
i.e., λi(0) = 0 (see below for nonzero initial condition). In
the large-N limit, the density of eigenvalues normalized to
unity corresponding to (B1) is a semicircle with the edges at
±2

√
Nax.

Let us also recall the stationary version of the DBM, or
Orstein-Uhlenbeck version, which can be obtained from the
nonstationary one via a Lamperti transformation. Defining
�i(X ) = λi (x)√

x
and performing the “time change” x = ecX one

finds that

d�i(X ) = −1

2
c�i(X )dX + ac

∑
j 	=i

dX

�i(X ) − � j (X )

+ b
√

c dbi(X ), (B2)

where bi(X ) are are N independent unit Brownian motions
in X . The stationary JPDF of the �i(X ) is, for any N , the
equilibrium measure

P0(�) = 1

ZN

∏
1�i< j�N

|�i − � j |βe− 1
2b2

∑
i �

2
i , β = 2a

b2
,

(B3)
where ZN is a normalization. For large N , the density has
a semicircle shape with the edges at ±2

√
aN ; see Fig. 13.

Note that to recover the DBM associated with the Gaussian
β ensemble with support at equilibrium [−2, 2] one would
choose instead a = 1

N and b2 = 2
βN .

The equilibrium solution (B3) for the stationary DBM also
provides the x-dependent JPDF P(λ, x) for the nonstationary
DBM in (B1) with initial condition λi(0) = 0, via the simple
scaling P(λ, x) = x−N/2P0(λ/

√
x).

Note that the probability that the DBM remains below a
barrier λ1(t ) < W

√
t for all t < x decays as t−βc (N,W ), where

βc(N,W ) was calculated in [158]. This thus has a direct trans-
lation for the polymer model with ai = 0 in terms of events
such that the ground state energy remains larger than −W

√
t

for all t < x.
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FIG. 13. Semicircular law with support [−2
√

Na, 2
√

Na].

2. DBM with initial condition and the deformed
Gaussian unitary ensemble

Consider now M(x) defined as

M(x) = diag(c1, . . . , cN ) + W (x), (B4)

and denote now λi(x) the eigenvalues of M(x). Then the
λi(x) follow the DBM evolution equation (B1) with initial
conditions λi(0) = ci. For a fixed x, the eigenvalues of M(x)
have the same law as the law at time x of a standard DBM with
initial condition c1, . . . cN . It is given by (137) with a j = c j/x.

Note that the DBM for β = 2 is equivalent to N Brownian
walks conditioned not to cross until infinite time [68,158,160].
In the text we have chosen ci = xai. That case can equivalently
be seen as N Brownian motions all started at zero, conditioned
never to intersect, and with drifts ai in the time interval [0, x].
Indeed the formula (137) has a simple interpretation. The
determinant containing the ai’s is the expression of the Karlin-
McGregor formula [159] for nonintersecting paths on [0, x],
which is still valid in the presence of particle-dependent drifts
(as can be seen in the simplest way from the path integral for-
mula [161]). The second determinant, i.e., the Vandermonde
�N (λ), arises from the nonintersection conditioning for all
later times.

In the text we have also introduced in (143) the eigenvalues
λ̃(x) = λ(x)/x of the matrix M̃(x) = M(x)/x. The Eq. (143)
can be interpreted as a process in x, and its right-hand side as
a process in the variable τ = N/x as

M̃(x) = diag(a1, . . . a j ) + W̃ (τ ), (B5)

where we have replaced
√

τ Ṽ → W̃ (τ ), where W̃ (τ ) is a
Hermitian Brownian motion in τ , with parameters a = b2 =
1/N . Hence the process τ → λ̃(x = N/τ ) is a DBM with
initial conditions at τ = 0 given by the {ai} [which is the final
condition for the process x → λ̃(x)].

3. Resolvent of the Dyson Brownian motion and
the Burgers equation

The DBM λi(x) is often studied using the resolvent gx(z) =
1
N

∑N
i=1

1
z−λi (x) . Using Ito’s rule, the stochastic equation (B1)

leads to [denoting λi(x) simply as λi]

dgx(z) = 1

N

∑
i

dλi ∂λi

1

z − λi
+ b2dx

2N

∑
i

∂2
λi

1

z − λi
. (B6)

After standard manipulations, i.e., ∂λi ≡ −∂z,
1
N

∑
i 	= j

1
λi−λ j

1
z−λi

= 1
2 [Ngx(z)2 + ∂zgx(z)], one obtains

∂xgx(z) = −1

2
aN∂zgx(z)2 + 1

2
(b2 − a)∂2

z gx(z) − b√
N

∂zηz,x,

(B7)
where ηz,xdx = 1√

N

∑
i

dbi (x)
z−λi

is Gaussian of correlator

Cov(ηz,xηz′,x′ ) = −δ(x − x′) gx (z)−gx (z′ )
z−z′ . Note that for β = 2

one has a = b2 and the diffusion term is absent. Consid-
ering for instance the Gaussian β ensemble with support
[−2

√
x, 2

√
x], i.e., the choice a = 1

N and b2 = 2
βN , it is clear

that in the large-N limit (for fixed β) all terms on the right-
hand side of (B7) except the first one are subdominant in
N . In the text, to study the β = 2 DBM of the λ(x), we
choose instead a = b = 1, but the conclusion remains (it is
a simple change in scale); i.e., at large N one has ∂xgx(z) =
−Ngx (z)∂zgx(z)2.

In the text of the paper we study a regime where x = Nθ

with θ = O(1). We can thus define λi = N λ̂i where λ̂i =
O(1). Then if one defines ĝθ (ẑ) = 1

N

∑
i

1
ẑ−λ̂i

we have gx(z) =
1
N ĝθ (ẑ = z/N ) which leads to

∂θ ĝθ (ẑ) = −ĝθ (ẑ)∂ẑ ĝθ (ẑ) − 1

N
∂ẑη̂ẑ,θ , (B8)

with Cov(η̂ẑ,θ η̂ẑ,θ ) = −δ(θ − θ ′) ĝθ (ẑ)−ĝθ (ẑ′ )
ẑ−ẑ′ . The rescaled pro-

cess θ → λ̂i is thus a β = 2 DBM with a = b2 = 1
N .

On the other hand, from the discussion around (B5) we
see that the process τ → λ̃i(x = N/τ ) is also a β = 2 DBM
with the same parameter a = b2 = 1

N . Its resolvant Gτ (z) =
1
N

∑N
i=1

1
z−λ̃i (x)

thus also satisfies Eq. (B7) with these param-
eters; i.e., it satisfies the same equation as (B8) with gθ (ẑ)
replaced by Gτ (z). This is true for any N , and for large N it
yields Eq. (147) of the text. This is quite remarkable since the
process τ → λ̃i(x = N/τ ) is the “time-inverted” process of
the DBM process θ → λ̂i. The fact that it is also a DBM with
the same parameters originates from the following property,
which we quote with slightly different notations:

Time inversion of the Dyson Brownian motion. Let t →
μi(t ), t � 0, a DBM (B1) (with parameters a, b), and initial
condition μi(0) = 0. Then τ → ρi(τ ) = τμi(1/τ ), τ � 0, is
also a DBM with the same parameters and the same initial
condition ρi(0) = 0.

For N = 1 and μ1(t ) = b(t ) a Brownian motion, this prop-
erty is well known as the time inversion of the Brownian [[95],
Sec. IV. 2] (the same property extends to a Bessel process of
any index [162]). If μ1(t ) = b(t ) + at is a Brownian with a
drift, the property is that ρ1(τ ) = τμ1(1/τ ) is a Brownian
(without drift) started at a, i.e., ρ1(τ = 0) = a. One can then
use the fact that the β = 2 DBM is equivalent to a collection of
N Brownians conditioned to never cross, and one sees that the
property immediately carries through. Note that this property
extends to any β. For N = 2, since the sum is a Brownian
motion (BM), and the difference is an independent Bessel
process, it follows from [162].
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Note that under the Lamperti transformation discussed
above this property of the nonstationary DBM becomes sim-
ply the time reversal of the stationary DBM, i.e., that the
process T → �i(−T ) is an identical copy of the stationary
DBM �i(T ).

4. Convergence to the Airy process

In this section we recall how the process x 
→ λ1(x) of the
largest eigenvalue of the matrix M(x) studied in the text can
be described, as a random function, by the Airy2 process. We
will make connection and use the properties of the Airy2 pro-
cess with respect to the stationary DBM given in Ref. [163].
In Ref. [163] the stationary Hermitian BM for a Hermitian
matrix M(X ) was considered,

dM(X ) = − 1

N
M(X )dX + 1√

N
dB(X ), (B9)

where X is the Lamperti variable (the same as in
Appendix B 1), with dBi j (X )dBkl (X ) = dX

2 (δikδ jl + δilδ jk ).
Note that M(X ) = M(x)√

N
where M(x) obeys Eq. (1.6) in [163]

(with X ≡ t). One easily sees that the eigenvalues �i(X ) of
M(X ) satisfy (B2) with c = 1

N , a = b = 1. As claimed there,
at large N one has the following convergence of the largest
eigenvalue [noted �1(X )] of the DBM to the Airy2 process:

�1(X + δX ) � 2
√

N + N−1/6A2

(
δX

N2/3

)
. (B10)

We can now perform the Lamperti mapping in reverse,
λ(x) = √

x�( ln x
c ), and we obtain, upon expanding to leading

order in the fluctuations,

λ1(x + δx) � 2
√

N (x + δx) + √
xN−1/6A2

(
δx

cxN2/3

)

= 2
√

N (x + δx) + √
xN−1/6A2

(
N1/3 δx

2x

)
,

(B11)

which holds for large N in the scaling region in x, N, δx where
the argument of A2 is of order O(1). Note that if we set x =
N1/3 and δx = 2s, this is consistent with [[166], Theorem 5.3].
The result is more general and the convergence to the extended
Airy2 point process holds for all eigenvalues.

APPENDIX C: O’CONNELL-YOR POLYMER MODELS

1. Stochastic equation

Let us for completeness give the stochastic evolution equa-
tion for the free energy of the OY model. In the OY model
(minus) the free energy FN (t ) satisfies the Ito evolution

dFN (t ) = eFN−1(t )−FN (t )dt + aN dt + dBN (t ). (C1)

One can define the partition sum zN (t ) = e−αt eFN (t ) which,
using Ito rule, satisfies

dzN (t ) = [
zN−1(t ) + (

1
2 − α

)
zN (t )

]
dt

+ zN (t )[aN dt + dBN (t )], (C2)

FIG. 14. Interlacing property of the jumping positions x(k)
i .

with z0(t ) = 0 [equivalently dF1(t ) = dB1(t )]. The initial
condition studied here is zN (0) = δN1. Convenient choices for
α are α = 1/2 or α = 3/2.

2. Definition of the many line model

The O’Connell-Yor model with M lines, extended to ar-
bitrary drifts, is defined as follows. One consider M paths
π1, . . . , πM which live only on the columns j = 1, . . . , N .
The paths are noncrossing. Their starting points are on
columns 1, . . . , M and their end points are on columns N −
M + 1, . . . , N . The path πk jumps from column j to j + 1 at
x(k)

j . There are no backward jumps, i.e., from j → j − 1. One
has

x(k)
k−1 = 0 < x(k)

k < · · · < x(k)
N−M+k = x, k = 1, . . . , M.

(C3)
The noncrossing conditions on the paths furthermore imply
that the paths starting upward must jump before, hence

x(k)
j < x(k+1)

j−1 < x(k+1)
j , j = 1, . . . , N − M + 1. (C4)

The set of paths is now parametrized by x =
{x(k)}0� j�N−M+1,1�k�M and one defines its total
energy as

EN,M (x) =
M∑

k=1

N−M+k∑
j=k

[
Bj

(
x(k)

j , x(k)
j−1

) − a j
(
x(k)

j − x(k)
j−1

)]
.

(C5)
Finally the optimal energy, i.e., the ground state energy for the
system of M lines, is

E0
N,M (x) = min

x
EN,M (x), (C6)

where the minimum is over all allowed configurations.
Figure 14 shows the interlacing condition obeyed by the x(k)

j .

APPENDIX D: BAIK–BEN AROUS–PÉCHÉ KERNEL

It is useful to recall the formula for the BBP kernel men-
tioned in the text, which describes a rank-m perturbation, in
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the critical regime. Let b = (b1 � · · · � bm) ∈ Rm,

KBBP,b(v, v′) = 1

(2iπ )2

e2iπ/3∞∫
e−2iπ/3∞

dw

eπ i/3∞∫
e−π i/3∞

dz
1

z − w

ez3/3−zv

ew3/3−wv′

×
m∏

k=1

z − bk

w − bk
. (D1)

Note that for m = 1, the kernel reads

KBBP,b1 (η, η′) = KAi(η, η′) + Ai(η)
∫ +∞

0
duAi(η′ + u)eb1u.

(D2)

APPENDIX E: GROUND STATE ENERGY: CRITICAL
BEHAVIOR AT THE LOCALIZATION TRANSITION

Here we give details on the derivation of some of the results
displayed in Sec. III A. We recall that θ = x/N and that the
transition from the delocalized phase to localized phase occurs
at θ = θc where θc is given by (85). We assume that the density
ρ(a) vanishes fast enough, i.e., k > 1/4 in (76), so that this
transition exists. We are interested in the ground state energy
per column μ = − limN→+∞ 1

N E0
N and its dependence as a

function of θ , μ(θ ). Let us denote

μe(θ ) = (θ − θc)ae + μ(θc), (E1)

which, according to (86), is the energy per column in the lo-
calized phase for θ > θc, but can be defined from (E1) for any
value of θ . We want to calculate the difference μ(θ ) − μe(θ )
in the delocalized phase, which by definition vanishes in the
localized phase (hence provides an order parameter). To this
aim we must first calculate z∗, and we focus now on the region
near the transition θ → θ−

c . Let us define

b = ae − a, z∗ − ae = ε, (E2)

and subtract (82) and (85) and rearrange. We obtain

θc − θ = ε

∫ +∞

0
db

2b + ε

b2(b + ε)2
ρ(ae − b), (E3)

and we recall that ρ(ae − b) � Ab2k+1/2. We see that if k >

3/4 the integral J3 = ∫ +∞
0 db 1

b3 ρ(ae − b) converges and one
finds θc − θ ∼ 2J3ε leading to the linear behavior (89). How-
ever, for 1/4 < k < 3/4, J3 diverges and the critical behavior
changes. At small ε the leading behavior of the right-hand side
of (E3) is obtained by rescaling b → εb leading to

θc − θ � ACkε
2k−1/2,

Ck =
∫ +∞

0
db

2b + 1

b2(b + 1)2
b2k+1/2

= −π

cos(2πk)

1 + 4k

2
, (E4)

where the integral is convergent for 1
4 < k < 3

4 . Hence we

obtain z∗ − ae ∼ [(θc − θ )/ACk]
2

4k−1 as given in (91), and by
integration using (87)

μ(θ ) − μe(θ ) � −4k − 1

4k + 1
ACk

(
θc − θ

ACk

) 4k+1
4k−1

. (E5)

APPENDIX F: MORE ON THE VARIATIONAL
CALCULATION

1. Single active column in the bulk to leading order:
Test of the permutation invariance

Let us consider the case of a single active column in
position j = n, εn = −an < 0, and all other a j = 0. Let us
determine the ground state energy E0

N (x) and the occupation
length �0

j to leading order in N at large N . In that case one
must minimize

E0
N (x) = min

xn−1<xn∈[0,x]
[Bn(xn) − Bn(xn−1) − an(xn − xn−1)

+ Gn(0, xn−1) + GN−n(xn, x)], (F1)

where Gm(y, z) = min
y=x1<x2<···<xm−1<xm=z

m∑
i=2

Bi(xi, xi−1) repre-

sents the ground state energy of a segment of polymer with no
active column, and is defined in (19). For the simplest applica-
tion of the variational calculation we now assume that n ∼ N
as N → ∞. We use that Gm(y, z) � −2

√
m(z − y) + o(m) at

large m. One can neglect the fluctuations and other subleading
terms and obtain to leading order in N

E0
N (x) � min

xn−1<xn∈[0,x]
[−an(xn − xn−1)

− 2
√

nxn−1 − 2
√

(N − n)xn]. (F2)

One finds that the minimum is attained for

x0
n−1 = n

a2
n

, x0
n = x − N − n

a2
n

. (F3)

Hence the occupation length is �0
n = x0

n − x0
n−1 = (x − N

a2
n
)+,

i.e., it is the same (with an → a1) as for the case n = 1 studied
in the text, see Eq. (22), and the energy

E0
N (x) � −

(
anx + N

an

)
(F4)

is also the same as for n = 1. The above is valid in the
localized phase, an >

√
N
x . The simple argument is thus in

agreement with the general property of invariance by permu-
tation of the columns.

2. Two macroscopic groups of columns

Let us turn to another interesting example where N1 = N p
columns have the same ε j = −a1 and N2 = N (1 − p) have
ε j = −a2. Then denoting X the total length in the region a1

one obtains to leading order in N

E0
N (x) = − max

0<X<x
[a1X − GN1 (0, X ) + a2(x − X )

− GN2 (X, x)] (F5)

� − max
0<X<x

[a1X + 2
√

pNX + a2(x − X )

+ 2
√

(1 − p)N (x − X )]. (F6)

With no loss of generality we can choose a2 = 0 and a1 > 0,
and study

E0
N (x) � −N max

0<X̃<θ
[a1X̃ + 2

√
pX̃ + 2

√
(1 − p)(θ − X̃ )],

(F7)
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where X̃ = X/N and θ = x/N . The minimization equation is
√

1 − p√
θ − X̃

−
√

p√
X̃

= a1. (F8)

Since the derivative of the left-hand side is increasing from
] − ∞,+∞[ there is always a unique root X̃ ∈ [0, θ ] which,
reported in (F7), gives the ground state energy as a function of
a1 and θ . There is thus no localization phase transition in that
case. This is because one is looking here at the largest eigen-
value of the matrix M(x). However it is known that there can
be a phase transition in the middle of the spectrum (see [129]
for references), which is thus relevant for the M = O(N ) line
problem.

3. Delocalized phase: Distribution of the occupation length

Preliminary remark. Let us define the positive random
variables v, ω and their scaled versions ṽ, ω̃ as

v = σ 2

μ
ṽ = max

y�0
[σB(y) − μy],

ω = σ 2

μ2
ω̃ = arg maxy�0[σB(y) − μy]. (F9)

The JPDF of v and ω is known. One has [[95], Chapter IV,
item 32] the Laplace transform

E[e−rṽ−sω̃] = 2√
2s + 1 + r + 1

, (F10)

which leads to the JPDF and the marginals, with ṽ > 0,

ω̃ > 0,

P(ṽ, ω̃) =
√

2

π

ṽ

ω̃3/2
e− (ṽ+ω̃)2

2ω̃ ,

P(ω̃) =
√

2

πω̃
e− ω̃

2 − Erfc

(√
ω̃

2

)
, P(ṽ) = 2e−2ṽ,

(F11)

which gives the formula of the text (35). Note that the PDF
of the value of the maximum, v, is simply an exponential
distribution of parameter 2μ.

Let us now ask what is the distribution of the occupation
length in the delocalized phase. Let us start with the case
where all a j = 0 and focus on the first column. The calcula-
tion has similarities with the one in Sec. II A 2, but is different.
Using the estimate (16) with δx = −�1, one has [anticipating
that �1 = O(1)]

�0
1 = arg min�1∈[0,x][B1(�1) + GN−1(�1, x)] (F12)

� arg min�1∈[0,x]

[
B1(�1) − 2

√
N (x − �1)

−
√

x

N1/6
A2

(
−N1/3�1

2x

)]
(F13)

� arg min�1∈[0,x]

[
B1(�1) + 1√

θ
�1 + B̃(�1)

]
(F14)

= arg min�1∈[0,x]

[√
2B(�1) + 1√

θ
�1

]
, (F15)

where in the first equation of the last line the second term
comes from the expansion of the second one in the line above,
and the Brownian motion B̃(�1) comes from the usual estimate
of the Airy process near zero. Hence using the preliminary
remark above we find that the occupation length has the same
distribution as was found in the text in (36) in some limit of
the critical regime [but here with a different scale O(1)],

�0
1 � 2ω̃ θ = 2ω̃

x

N
, P(ω̃) =

√
2

πω̃
e− ω̃

2 − Erfc

(√
ω̃

2

)
.

(F16)
We note that E[ω̃] = 1

2 and hence

�0
1

B = x

N
, (F17)

which is consistent with all columns having the same mean
occupation length in that case. Although we will not do it in
detail, it is clear that the same variational formula with two
Brownians on each side will arise if one looks at any other
column, with the same result.

It is more difficult to study the same question in the pres-
ence of many active columns, e.g., when all aj are nonzero, in
the delocalized phase. However in the case of a single active
column it is easy to obtain the result. One can indeed extend
the above calculation to the case where a1 > 0 and all other
a j�2 = 0. It amounts to adding the term −a1�1 into (F16) and
we see that it simply changes 1√

θ
→ 1√

θ
− a1 in the last line;

this leads to

�0
1 � 2θ

(1 − a1

√
θ )2

ω̃, (F18)

which is valid for θ < θc = 1
a2

1
, i.e., in the delocalized phase. It

shows how the occupation length diverges upon approaching
the transition from the delocalized phase side.

If we now get closer to the transition and set θ
θc

= 1 + δ
N1/3 ,

we find

�0
1 � 8N2/3

a2
1δ

2
ω̃, (F19)

which perfectly agrees with the result obtained in (36), using
that ω there equals 4ω̃. The two regimes, (i) inside the de-
localized phase where �0

1 = O(1), and (ii) inside the critical
regime where �0

1 = O(N2/3), thus match very smoothly, with
the same random variable ω̃.

Remark. Consider now the overlap |ψ1( j)|2, whose mean
value is related to the average occupation length via Eq. (14).
Consider the case where all aj = 0, where M(x) is a GUE
matrix. The PDF of the overlap can be obtained remembering
that for the GUE, the eigenvectors are independent from the
spectrum and are uniformly distributed on the unit sphere
of CN . As N → +∞, the real and imaginary parts of their
components become independent Gaussians, hence

|ψ1( j)|2 in law= u2
j + v2

j

2N
in law= 1

2N
χ, χ = χ2

β=2,

P(χ ) = 1

2
e−χ/2�(χ ), (F20)

where u j, v j are independent standard Gaussians and the nor-
malizing factor is determined from the mean of the constraint
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∑N
j=1 |ψ1( j)|2 = 1. Hence at large N the overlap |ψ1( j)|2 is

1/(2N ) times a chi-square χ2
β distributed random variable

with a parameter β = 2 (see Refs. [164,165] for more de-
tails). It is useful to recall the Laplace transform E[e−zχ2

β ] =

1

(1+2z)
β
2

for z > 0. Since E[χ ] = 2 one finds that |ψ1( j)|2V =
1
N which is consistent with (14) and �0

j

B = x
N . However we see

explicitly that the PDFs of N |ψ1( j)|2 and of �0
j in (F16) are

different.
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