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Nearest-neighbor connectedness theory: A general approach to continuum percolation
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We introduce a method to estimate continuum percolation thresholds and illustrate its usefulness by investigat-
ing geometric percolation of noninteracting line segments and disks in two spatial dimensions. These examples
serve as models for electrical percolation of elongated and flat nanofillers in thin film composites. While the
standard contact volume argument and extensions thereof in connectedness percolation theory yield accurate
predictions for slender nanofillers in three dimensions, they fail to do so in two dimensions, making our test
a stringent one. In fact, neither a systematic order-by-order correction to the standard argument nor invoking
the connectedness version of the Percus-Yevick approximation yield significant improvements for either type
of particle. Making use of simple geometric considerations, our new method predicts a percolation threshold of
ρcl2 ≈ 5.83 for segments of length l , which is close to the ρcl2 ≈ 5.64 found in Monte Carlo simulations. For
disks of area a we find ρca ≈ 1.00, close to the Monte Carlo result of ρca ≈ 1.13. We discuss the shortcomings of
the conventional approaches and explain how usage of the nearest-neighbor distribution in our method bypasses
those complications.
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I. INTRODUCTION

The electrical, thermal, and mechanical properties of
polymeric materials can be controlled by the addition of (con-
ductive) nanofillers, producing what may be called functional
nanomaterials. For fillers to strongly affect the properties of
the polymeric host material, a material-spanning network of
connected particles is required. Here, connectivity is defined
in terms of a length scale below which the particles are
able to effectively exchange charge carriers, heat, or other
quantities to be transported. The formation of such a net-
work is a geometrical transition akin to a phase transition,
and the set of conditions for which this occurs is referred
to as the percolation threshold. Commonly used fillers are,
for instance, metallic nanowires and carbon nanotubes [1,2],
whose highly elongated shape is known to be ideal for produc-
ing the required material spanning network at very low filler
fractions [3].

A wide range of possible application areas is currently
under investigation, including mechanical stress sensing,
actuation, energy harvesting, electromagnetic interference
shielding, and optoelectronics in the form of transparent thin
film electrodes [4–10]. In many of these application areas, it
is crucial for the material to have barely crossed over from
an insulating to a conductive state, either in order to keep
the particle loading as low as possible or to maximize the
response to an external stimulus. It stands to reason that a
deeper theoretical understanding of the percolation threshold
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should be conducive to a rational design of novel composite
materials.

Our theoretical understanding of percolation of slender
nanofillers in three-dimensional bulk materials has improved
significantly over the past decades since the pioneering works
of Bug et al. [11] and of Balberg et al. [3], in particular for
particles that interact via a harshly repulsive excluded volume
[12]. This is not the case for percolation of slender particles
in quasi-two-dimensional materials, that is, composite films
of which the height is much smaller than the length of the
filler particles [13,14]. These quasi-two-dimensional materi-
als are often modeled as two-dimensional systems, consisting
of noninteracting fillers that are defined to be connected if
they overlap.

Even for such an ideal model system, applying the com-
mon contact volume argument to pinpoint the percolation
threshold is highly inaccurate in two dimensions, despite it
being asymptotically exact for infinitely slender fillers in three
dimensions. As the contact volume argument neglects direct
connections between more than two neighboring particles,
this approximation is similar in spirit to that of the Onsager
theory for the isotropic-to-nematic phase transition of hard
rodlike particles, which fails to accurately describe the same
phase transition in two dimensions [15,16].

In this article we show that neither a systematic expansion
in increasing powers of the density nor the connectedness
version of Percus-Yevick (cPY) approximation significantly
improve predictions obtained within the second virial ap-
proximation. To remedy this, we propose a method that is
conceptually simple, yet has a significantly improved accu-
racy in predicting the percolation threshold, in particular for
systems in which the percolating cluster contains large loops
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of connected particles. As the method is similar to connected-
ness percolation theory (CPT) but uses the nearest-neighbor
distribution as input, we dub it nearest-neighbor connected-
ness percolation theory (NNCPT).

NNCPT uses neither a density expansion nor a closure
relation taken from liquid state theory. Instead, closure is
obtained by geometrical arguments regarding the cluster
structure at short distances, while the behavior at long dis-
tances is obtained by a renormalization-group-type argument.
The method is exact for one-dimensional systems and re-
produces the correct low density limit in higher dimensions.
The computation of the percolation threshold is numerically
simple, and the framework can easily be applied to arbitrary
pair interactions if the corresponding nearest-neighbor distri-
bution is inserted. Thus, our method provides a reliable way
to estimate percolation thresholds for systems where conven-
tional approaches are known to struggle—two-dimensional
ideal particles forming excellent benchmark systems. In the
remainder of this paper, we first apply connectedness perco-
lation theory to ideal line segments and disks testing a virial
expansion and the Percus-Yevick closure. Then we introduce
nearest neighbor connectedness theory and apply it to ideal
line segments and disks.

II. CONNECTEDNESS PERCOLATION THEORY

Given the success of CPT in predicting percolation thresh-
olds of a large class of three-dimensional systems, we begin
by recalling its basic notions and then apply them to the two-
dimensional case: The pair connectedness function P(1, 2) is
defined such that ρ(1)ρ(2)P(1, 2)d1d2 is the probability that
particle 1 and particle 2 are part of a cluster of connected
particles [17]. Here, ρ(1) and ρ(2) are single-particle number
densities, the labels 1 and 2 represent the degrees of freedom
of the particles (including orientations), and d1, d2 are the
corresponding phase space volumes [18]. For P(1, 2), a con-
nectedness equivalent to the Ornstein-Zernike (cOZ) equation
can be obtained:

P(1, 2) = C+(1, 2) +
∫

d3 ρ(3)C+(1, 3)P(3, 2), (1)

where C+(1, 2) is the so-called direct connectedness function.
The mean cluster size S is given by

S = 1 + lim
q→0

ρ〈P̂(q, ϑ12)〉 = lim
q→0

(1 − ρ〈Ĉ+(q, ϑ12)〉)−1,

(2)
where ρ is the average particle number density, the hat indi-
cates a Fourier transform, q denotes the magnitude of the wave
vector, ϑ12 is the relative orientation between the particles,
and the brackets 〈· · · 〉 describe the angular average over the
orientations of both particles. The final expression applies
only for translationally and rotationally invariant distributions
but is independent of particle shape [19]. The percolation
threshold is given by the density ρc for which S diverges.

Hence, we only require C+(1, 2) to calculate the percola-
tion threshold. This direct connectedness function is, however,
typically not known in closed form. The simplest method to
approximate it is to make use of a series expansion in the den-
sity, similar to the virial expansion describing thermodynamic

TABLE I. Percolation threshold ρc obtained from Monte Carlo
simulations [20], the method NNCPT, the virial expansion up to
fourth order, the connectedness Percus-Yevick theory [23], and a
Padé approximant [24] in the mean cluster size for overlapping lines
of length l and disks of area a.

Method Line segments (ρcl2) disks (ρca)

Monte Carlo 5.6372858(6) 1.12808737(6)
NNCPT 5.83 1.00
Second virial π/2 ≈ 1.57 1

4
Third virial
Fourth virial 24.0 (σ = 0.1) 0.326838 . . .

cPY
[2,1]-Padé approximant 3.878 (σ = 10−3) 0.748742 . . .

properties of dispersions [17]

lim
q→0

Ĉ+(q) =
∞∑

n=0

ρnC+
n+2. (3)

To describe percolation of three-dimensional slender particles,
the expansion of Eq. (3) can be truncated after the C+

2 term.
This truncation, known as the second virial approximation of
connectedness percolation theory, corresponds to the assump-
tion that the cluster has a treelike structure, and, as it yields
mean-field critical exponents, can be considered a mean-field
approximation in percolation theory. While believed to be
asymptotically exact for infinitely slender particles in three
dimensions [11], its prediction for two-dimensional line seg-
ments is far less accurate. Using the analytical expression
C+

2 = 2l2/π for line segments of length l yields ρcl2 = π/2,
which deviates by a factor of 3.6 from Monte Carlo simulation
results [20]. The situation is even worse for disks, where the
disparity is a factor of 4.5 (see Table I). To improve upon
this unsatisfactory situation one could, perhaps naively, either
extend the estimate of C+ in an order-by-order fashion, or
make use of the extensive toolbox of closures obtained from
liquid-state theory [17,21].

For the order-by-order approach, we use the known an-
alytical expression for the third hard-body virial coefficient
B3 for line segments [22], which can be linked to C+

3 by
C+

3 = −3B3. Truncating after C+
3 produces two imaginary and

hence unphysical predictions for the percolation threshold.
Higher order terms can be obtained by Monte Carlo inte-
gration. Truncating after C+

4 l−6 = (0.00548 ± 0.00002) we
obtain two imaginary roots and one real root, ρcl2 = 24.0 ±
0.1. Hence, going up to fourth order does not provide any im-
provement upon the second virial approximation. Moreover,
the mean cluster size S obtained within the third and the fourth
virial approximation produces a nonmonotonic function of the
scaled density (see Fig. 1). S even becomes smaller than unity,
indicating negative connectivity probabilities and highlighting
the problems with the virial expansion. The same happens for
overlapping disks (see Table I).

Rather than adding virials, we next invoke the cPY closure
[25]. If expressed in terms of a diagrammatic expansion of
the pair connectedness function, all diagrams representing
the second and third virials are contained exactly, but higher
order ones are incomplete [26,27]. For the thermodynamic
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FIG. 1. Mean cluster size of overlapping line segments in two
dimensions. The third and fourth virial approximations give non-
monotonic curves, and the cPY prediction does not diverge for
densities below ρl2 = 17.

properties of hard particles, these diagrams turn out to be
unimportant. However, as we shall see, they are important in
the context of percolation in systems in which the percolating
cluster contains large loops.

The cPY closure needs to be solved self-consistently in
conjunction with the cOZ equation. We tackle this numeri-
cally using a rotational invariant expansion (see Supplemental
Material [28]). We iterate the governing set of equations by
a modified Picard iteration [29,30] for all densities up to the
one where the iterations no longer converge and percolation
is achieved. As shown in Fig. 1, there is neither a percolation
threshold for line segments nor for disks [23].

Hence we suggest that methods borrowed directly from
liquid state theory must be inherently inaccurate when ap-
plied to percolation problems. We attribute the failure of these
methods to ignoring loop correlations involving very large
numbers of particles. To test for the occurrence of such loops,
we carried out a simulation, in which we dropped line seg-
ments on the plane randomly with positions and orientations
drawn uniformly. We then identified all clusters of intersecting
line segments and counted the loops in the backbone of each
cluster. In Fig. 2 we show a snapshot at a density just below

FIG. 2. Left: Simulation snapshot at ρl2 = 5.0; the largest con-
nected cluster is marked in red. Right: Backbone of the network
connecting two rods within the largest cluster. Colors correspond to
different non-nodal components. Some of these contain large loops,
hence a virial expansion of the direct connectedness function is
expected to fail.

FIG. 3. Left: Construction of the pair connectedness function in
NNCPT. Right: Effective treatment of the union of a segment and its
nearest neighbor as weighted disks: the hatched disk represents the
nearest neighbor; the large transparent disks form the surface A1∪3

with the exception of the dark disk, which is blocked by the nearest-
neighbor condition.

the percolation transition. On the right we show the structure
of the backbone of the largest cluster. The various non-nodal
components (i.e., sections where no single particle lies on all
paths between the end points) are colored differently. Large
loops consist of many particles, and can therefore not be
captured by a low order expansion, as the nth coefficient C+

n
in the truncated virial expansion describes loops consisting of
at most n particles. This suggests that a different theoretical
approach is needed altogether that we suggest next.

III. NEAREST-NEIGHBOR CONNECTEDNESS
PERCOLATION THEORY

In contrast to the work by Coniglio et al. [17], we construct
the pair connectedness function P(1, 2) iteratively by going
from particle 1 to its nearest neighbor (particle 3 in Fig. 3).
If particle 1 is not connected to its nearest neighbor, it cannot
be part of any connected cluster. If it is connected, we treat
the union of both particles as a “new particle 1” and repeat
the process until we reach particle 2. Thus P(1, 2) can be
written as

P(1, 2) = f +(1, 2)+[1− f +(1, 2)]
∫

d3ω+(1, 3)P(3, 2|3n1).

(4)

Here, f + denotes the probability that particles 1 and 2 are
directly connected. ω+ is the probability density to encounter
the nearest neighbor of 1 in the phase space volume d3, while
also being connected to it. (ω+ differs from f +, as f + refers
to any connection, while ω+ only refers to the connection
with the nearest neighbor. Both functions need to be defined
suitably for a given particle geometry) P(3, 2|3n1) is the con-
ditional probability that 3 and 2 are part of the same cluster,
given that 3 is the nearest neighbor of 1.

Compared to Eq. (1), Eq. (4) bears the disadvantage that it
connects two different types of probability. We hence define
the ratio

c(3, 2|3n1) := P(3, 2|3n1)

P(3, 2)
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and obtain our alternative to the cOZ equation, the nearest-
neighbor connectedness equation

P(1, 2) = f +(1, 2) + [1 − f +(1, 2)]

×
∫

d3 ω+(1, 3)c(3, 2|3n1)P(3, 2). (5)

Here, f + is a known function, which depends on the specific
geometry of the problem, while P, ω+, and c are in general
not known. However, in contrast to the direct connected-
ness function in Eq. (1), which involves an infinite sum of
arbitrarily complicated diagrams, the nearest-neighbor distri-
bution ω+ can be approximated or even determined exactly
using thermodynamic correlation functions, and a closure for
Eq. (5) can be obtained c based on geometric considerations.
Moreover, if we assume c to be independent of particle 2,
Eq. (5) is reduced to a convolution. Close to percolation
this is a reasonable assumption, because irrespective of the
distance between particle 2 and particle 3, what matters for
P(3, 2) is whether they are part of the percolating cluster. For
one-dimensional systems this statement is actually exact [31].
Once the problem is simplified in this way, the remaining task
is to find the density at which the integral over the complete
integral kernel exceeds one.

IV. RESULTS AND DISCUSSION

We now apply NNCPT to freely penetrable line segments.
The relative position of two segments with respect to each
other is given by their orientations and their center-to-center
distance r12. The connectivity criterion, which determines
whether two segments intersect each other, is invariant un-
der rotations of the whole system. Thus, in place of two
orientational degrees of freedom, we only need to account
for the relative orientation ϑ12. Using translational invariance
of the connectivity criterion, we are free to choose segment
1 as centered in the origin parallel to the x axis. We need
to specify f +, ω+, and c. f +(r12, ϑ12) is 1 if the segments
intersect each other and zero if they do not. To specify ω+, we
define as the nearest neighbor the segment which intersects
segment 1 closest to its center. ω+ can be expressed as a
function of the intersection point t along segment 1. Note that
if a segment intersects at a point t , the center position of the
nearest neighbor completely defines its orientation. The center
of a segment 3, r3, which intersects segment 1 at position t ,
can be anywhere within a circle of diameter l around t with
uniform probability. As a consequence, the nearest-neighbor
distribution becomes an exponential evenly distributed on
a disk:

ω+(r3, t ) = 4

π l2
�

(
l

2
− |r3 − t|

)
2

π
ρl exp

(
−4ρl

π
|t |

)
,

(6)

with the number density of segments ρ, t the projection of t
on the x axis, and � the Heaviside function. Notice that we
fixed the orientation of segment 1 so that ω+ depends only on
t and not on t .

The last function to specify is c, which measures how much
the probability of a connection between segments 3 and 2 is
influenced by the existence of segment 1. This probability

is the result of two competing effects. On the one hand,
two segments together offer more phase space than a single
one for other segments to connect to. On the other hand, a
portion of this phase space is blocked by the condition that
3 is the nearest neighbor of 1. We argue that close to the
percolation threshold, the only relevant difference between a
single segment and two intersecting segments is their surface
in phase space. If we choose c as a function of the surface
in phase space, it apparently does not depend on segment 2
anymore—our first approximation—but still on the detailed
microscopic arrangement of segments 1 and 3. Equation (5)
thus reads

P(r12, ϑ12) = f +(r12, ϑ12) + [1 − f +(r12, ϑ12)]

×
∫ l/2

−l/2
dt

∫
dr3ω

+(r3, t )c(r3, t )P(r32, ϑ32).

(7)

Finally, we eliminate the angular dependencies. We interpret
each line segment as a weighted disk, i.e., smeared out
over all possible orientations. The contact function f +(1, 2)
becomes the overlap of two disks with center separation r12

reproducing the correct angular average f +(r12) :=
〈 f +(1, 2)〉ϑ (r12 ). In order to construct c, we consider the
combination of two disks as a single disk with a new diameter
that offers the same phase space surface, A3 = π l2, as
the union of both disks (see Fig. 3). The surface A1∪3(t )
of two disks at center-to-center separation t is given by

A1∪3(t ) = π (l2 − t2) + 2l2 arcsin
( t

2l

)
+ t

2

√
4l2 − t2.

Note that a disk of radius t is blocked on account of the
nearest-neighbor constraint resulting in −πt2. Recall that the
potential center positions of a nearest neighbor intersecting at
t are homogeneously distributed on a disk of diameter l . For
each t we choose this disk as the weighted disk representing
the nearest neighbor. The effective diameter thus depends only
on |t |:

c(|t |) := leff (|t |)
l

=
(

A1∪3(|t |)
A3

)1/2

. (8)

Referring to Eq. (4), we account for the existence of segment
1 by resizing segment 3 to an effective length leff and make
segment 3 the new segment 1. The newly formed segment is
subjected to the same nearest-neighbor distribution as before;
only the boundaries of the t integral change. The substitution
t ′ = t l reveals that c as defined in Eq. (8) has the desired
effect:

P(r12) = f +(r12) + [1 − f +(r12)]

×
∫ 1/2

−1/2
dt ′l

∫
dr3ω

+(r3, lt ′)c(l|t ′|)P(r32). (9)

Analogously to CPT, the percolation threshold is given by the
smallest density that satisfies

0 = 1 −
∫

dr3

∫ 1/2

−1/2
dt ′ω+(r3, lt ′)leff (l|t ′|), (10)
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yielding ρcl2 ≈ 5.83, which is very close to the result of
Monte Carlo simulations (cf. Table I). A good approxima-
tion of the mean cluster size can be computed as well (see
Fig. 1). Detailed information is given in the Supplemental
Material. For intermediate densities, the NNCPT prediction
slightly deviates from the simulation results. Our choice of
c(|t |) is density independent and designed to yield a good
approximation for the percolation threshold. However, the
correct kernel c(3, 2|3n1) depends on the density. A good
approximation of c(3, 2|3n1) at the percolation threshold is
therefore expected to be less good for different densities. The
divergence of the mean cluster size is characterized by the
mean-field critical exponent γ = 1 if c does not depend on the
density. This offers a different angle for interpreting critical
exponents and outlines a way to improve on our closure.
Usage of the nearest-neighbor distribution, however, provides
the correct low density limit.

We can use the same closure to treat the percolation of
ideal disks of area a and find ρca ≈ 1.00 which is also close
to the simulation results [20]. The good agreement between
NNCPT and simulation hinges on the fact that the nearest-
neighbor construction describes loop structures in the cluster
backbone implicitly, not explicitly as CPT. Moreover, NNCPT
avoids an explicit density expansion by comprising all in-
formation on thermal correlations between particles in the

nearest-neighbor distribution. This is particularly important
if the critical density is as large as for ideal line segments.
Furthermore, NNCPT bears the advantage that the kernel
c(3, 2|3n1) can be directly observed in simulations delineat-
ing a straightforward approach to assess the accuracy of the
approximations made.

V. CONCLUSIONS

To summarize, we have introduced an alternative method
to calculate continuum percolation thresholds. As two-
dimensional systems are particularly challenging for standard
methods of percolation theory, we have studied geometrical
percolation of ideal line segments and disks in two dimen-
sions and have shown that our method provides accurate
predictions. The method can straightforwardly be applied to
interacting and polydisperse systems in three dimensions as
well. We therefore expect it to be of use in the design of
composite materials.
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