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Local detailed balance across scales: From diffusions to jump processes and beyond
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Diffusive dynamics in presence of deep energy minima and weak nongradient forces can be coarse grained into
a mesoscopic jump process over the various basins of attraction. Combining standard weak-noise results with
a path integral expansion around equilibrium, we show that the emerging transition rates satisfy local detailed
balance (LDB). Namely, the log ratio of the transition rates between nearby basins of attractions equals the
free-energy variation appearing at equilibrium, supplemented by the work done by the nonconservative forces
along the typical transition path. When the mesoscopic dynamics possesses a large-size deterministic limit, it
can be further reduced to a jump process over macroscopic states satisfying LDB. The persistence of LDB under
coarse graining of weakly nonequilibrium states is a generic consequence of the fact that only dissipative effects
matter close to equilibrium.
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I. INTRODUCTION

Stochastic thermodynamics is establishing itself as a com-
prehensive framework for the description of small systems far
from equilibrium [1–3]. Defining thermodynamic quantities
like heat, work, and entropy at the level of single stochastic
trajectories allows one to derive constraints on their statistics
in the form of fluctuation theorems [4–7], to quantify the cost
of measurements and feedback [8,9], and to bound the preci-
sion [10–16] and speed [17–21] of a process. Notwithstanding
its large domain of applicability, ranging from the quantum to
the biochemical realm, stochastic thermodynamics is limited
by the fact that all nondescribed degrees of freedom need to be
equilibrated and subsumed into thermal baths. This hypothesis
is formally implemented by the condition of local detailed
balance (LDB): the log ratio of the forward and backward
transition rates between two states equals the entropy flow in
the bath causing such transition [22,23]. Crucially, it allows
one to directly construct thermodynamics on top of the state
dynamics, without the need of any further information.

This assumption is arguably very legitimate in those situ-
ations where the stochastic description is fundamental within
the level of complexity it aims to describe. Namely, all driven
degrees of freedom are explicitly described and the coarse-
grained ones are singled out by a large separation in, e.g., time
and length scales. For example, consider a bead dragged (by,
e.g., an optical tweezer) in a fluid described by a Langevin
equation. The dissipation of the hydrodynamic flow field re-
sulting from the bead motion is fully captured by the friction
force and is inconsequential to the molecular degrees of free-
dom of the fluid [24]. Hence, for the driving speeds typically
accessible in experiments, the fluid molecules will remain in
equilibrium behaving as a thermal bath for the bead, so that
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LDB can be safely assumed in the Langevin equation. If in-
stead the bead moves through an active [25] or aging medium
[26], information about the heat dissipated by the nonequi-
librium environment cannot be retained only by a carefully
coarse-grained description of the bead dynamics, for which
the LDB does not hold in general [27]. In the same spirit,
the rotovibrational states of molecules undergoing elementary
chemical reactions in solution come rapidly to equilibrium
with the solvent [28] so that LDB can be used in the chemical
master (resp. rate) equation for the evolution of the numbers
of molecules (resp. concentrations) [29,30]. Zooming out to
a whole chemical network, fast (e.g., enzymatic) reactions
can be adiabatically eliminated [31] but often at the cost
of misestimating their associated dissipation. Indeed coarse
graining them results in nonelementary kinetic equations (e.g.,
Michaelis-Menten, Hill functions) that in general do not re-
spect LDB [32,33].

Therefore, it is important to gain basic understanding of
how the LDB survives (or even emerges [23]) under coarse
graining. In this paper, we first focus on coarse graining the
diffusion in a multiwell potential and nonconservative force
field f . When the temperature T is low enough and f = 0, as
is well known, the equilibrium dynamics can be reduced to
random independent jumps between the potential minima, the
associated rates of which are given by the Arrhenius-Eyring-
Kramers formula [34] and satisfy LDB. For small f , we show
in Sec. II that the coarse graining onto the mesoscopic Markov
jump process remains valid and that the resulting nonequi-
librium transition rates still satisfy LDB. A two-dimensional
bistable system under the action of a shear force is used in
Sec. III to illustrate the theory. In Sec. IV, we discuss the
importance of the order of the limits f → 0 and T → 0 for
the validity of the LDB. We finally outline in Sec. V how the
LDB survives a further coarse graining onto a macroscopic
jump process between a subset of states, when the mesoscopic
dynamics admits a large-size limit. The considerations in this
paper hold when a global small parameter exists that defines a
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proper weak-noise limit. We will not discuss other types of
coarse graining which are often relevant, such as adiabatic
eliminations or lumping (see [35] and references therein), the
thermodynamics of which has also received much attention
[22,36–41], and which may lead to non-Markovian dynam-
ics [42,43], e.g., in case of correlated recrossings between
metastable states [44].

II. COARSE GRAINING THE DIFFUSIVE DYNAMICS

A. Stochastic thermodynamics of diffusion

We consider the Langevin dynamics in Rd � r:

ṙ = −μ∇U (r) + μ f (r)︸ ︷︷ ︸
μF (r)

+
√

2Dξ, (1)

where U (r) is a bounding potential energy, f (r) is a nongradi-
ent force, and ξ is a zero-mean Gaussian white noise (in units
of Boltzmann constant kB equal to 1). The stochastic dynamics
(1) can be described from two other equivalent standpoints.
First, by the Fokker-Planck equation for the probability p(r, t )
that the system is in r at time t

∂t p(r, t ) = −∇ · [μF (r)p(r, t ) − D∇p(r, t )]︸ ︷︷ ︸
j(r,t )

, (2)

where j(r, t ) is the probability current. Second, by the condi-
tional path probability [45]

P[ω|r(0)] = e− 1
4D

∫ t
0 dτ {[ṙ(τ )−μF (r(τ ))]2+2μD∇·F (r(τ ))} (3)

for trajectories ω = {r(τ ) : 0 < τ � t} of length t starting
from the initial condition r(0).

A thermodynamic description can be built on (1) assum-
ing that the mobility μ and the diffusion coefficient D are
connected by the Einstein relation D = T μ. Here, T is the
temperature of the thermal bath providing both a friction force
−ṙ/μ and velocity fluctuations

√
2μT ξ . With this identifi-

cation, the system enjoys LDB: the ratio of probabilities for
a trajectory ω and its time-reversed one ω̃ = {r(t − τ ) : 0 <

τ � t} equals the exponential of the entropy flow into the
thermal bath [2]:

P[ω|r(0)]

P[ω̃|r(t )]
= e

1
T

∫ t
0 dτ ṙ(τ )·F (r(τ )) =: eSe[ω]. (4)

The entropy flow Se = −�U/T + W/T is made of two con-
tributions involving the energy difference between the final
and initial state, �U := U (r(t )) − U (r(0)), and the work
done by the nonconservative force along the path, W [ω] :=∫ t

0 dτ ṙ(τ ) · f (r(τ )).
Equation (4) allows us to define the entropy production

�[ω] by weighting the initial state of the trajectories ω (resp.
ω̃) with the probability solution of (2) at time zero (resp. t),

P[ω]

P[ω̃]
= P[ω|r(0)]p(r(0), 0)

P[ω̃|r(t )]p(r(t ), t )
= eSe+�S =: e�[ω], (5)

and identifying �S := − log p(r(t ), t ) + log p(r(0), 0) as the
difference in the stochastic entropy of the system between the
beginning and the end of the trajectory. For f = 0, any initial
distribution p(r, 0) relaxes in the long time limit to the Gibbs-

Boltzmann distribution

peq(r) = 1

Z
e− U (r)

T , (6)

which is the only stationary solution of (2) corresponding
to zero current jeq(r) = 0 for all r. This state satisfies the
condition of (global) detailed balance, i.e., �[ω] = 0 for all
trajectories ω: the entropy flux in the thermal bath is exactly
compensated by the variation in the system entropy:

Se[ω]| f =0 = −�U/T = log peq(r(t )) − log peq(r(0)). (7)

B. Dynamics in the weak-noise limit

To proceed with the coarse graining, we consider a po-
tential U (r) that has N nondegenerate local minima r̄i, i.e.,
∇U (r̄i) = 0 and HU (r̄i ) > 0, where HU (r) := det[∇∇U (r)]
is the Hessian determinant of U at r. A minimum r̄i can
be separated from nearby minima by distinct saddle points,
labeled by the index ν and located at r (ν)

i . We do not impose
any condition on the functional form of f apart from requiring
its module to be small, in a sense that will be specified later.

The leading order of the path probability (3) in the weak-
noise limit,

P[ω|r(0)] �
T →0

e− 1
4μT

∫ t
0 dτ [ṙ(τ )−μF (r(τ ))]2 =: e

1
T A f [ω], (8)

can be written as the exponent of an action A f the depen-
dence of which on f is explicitly indicated. The most likely
trajectories are found by extremizing the action in (8). This is
most easily done by switching from the present Lagrangian
picture to the Hamiltonian one. To this end, we perform a
Hubbard-Stratonovich transformation of (8), i.e., we intro-
duce for all τ ∈ [0, t] the auxiliary (momentum) variables
p(τ ) ∈ Rd which can be removed by a functional Gaussian
integration:

e
1
T A f [ω] =

∫
Dp e

∫ t
0 dτ[−μT p2(τ )−ip(τ )·(ṙ(τ )−μF (r(τ )))]

=
∫

Dp e
1
T

∫ t
0 dτ [−ṙ·p+H (r,p)], (9)

where Dp is the appropriately normalized functional measure
[46]. In the last step we changed variable ipT → p and de-
fined the Hamiltonian

H (r, p) = μp2 + μp · F (r). (10)

Extremizing the transformed action gives the equations of
motion

ṙ = μF + 2μp, (11)

ṗ = −μJ · p, (12)

where J := ∇F is the Jacobian matrix of F . Note that solving
(11) for p and plugging into (12) we would go back to the
Lagrangian picture:

r̈ = μ2

2
∇F 2 + μṙ · J − μJ · ṙ. (13)

The last two terms in (13) vanish only for f = 0 when J
becomes the (symmetric) Hessian matrix of U . A first class
of solutions of (11) is obtained by setting p = 0. This gives
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the Langevin equation (1) at T = 0, which we call the deter-
ministic (or noiseless, or relaxational) dynamics. To identify
a second class of solutions we note that all fluctuating tra-
jectories that pass arbitrarily close to the fixed points of the
deterministic dynamics ẋ = F , i.e., approach the manifold
p = 0, are characterized by H = 0. This follows from setting
p = 0 in (10) and recalling that H is a constant of motion.
For f = 0, the condition H = 0 yields the solution p = μ∇U
(in addition to p = 0) for initial conditions in a neighborhood
of r̄i, which inserted in (11) gives the fluctuating trajectory
ṙ = μ∇U .

We then define the basin of attraction Bi as the set of initial
conditions r(0) for which the deterministic dynamics

ṙ↓ = −μ∇U (r↓) (14)

has the long time solution limt→∞ r↓(t ) = r̄i. This time-
dependent solution r↓(t ) of (14) nullifies the equilibrium
action Aeq := A f | f =0, i.e., Aeq|r↓ = 0. This means that in the
limit T → 0 and for f = 0 it corresponds to the most probable
trajectory with initial condition r(0) and final condition r̄i. The
time-reversed trajectory solution of

ṙ↑ = μ∇U (r↑) (15)

also maximizes Aeq (which takes the value of the Arrhenius
factor Aeq|r↑ = − ∫

dr↑ · ∇U = −�U ) and corresponds to
the most likely fluctuating path leading from r̄i to r(0), called
the instanton [47–51]. The definition of coarse-grained states
only in terms of the potential U , and not of the entire force
field F , will be a posteriori motivated.

The resulting picture is the following: Under the assump-
tions that T → 0 and f → 0 the dynamics consists of rare
excursions along r↑ out of the basins of attraction Bi ⊂ Rd

relative to the minima r̄i, followed by fast intrawell relaxations
along r↓ and negligibly small fluctuations around the minima.
Namely, the diffusion process (1) is well approximated by a
jump process with transition rates k(ν)

ji that are the inverse
mean escape time from the domain Bi to Bj through the saddle
point at r (ν)

i [52,53]:

1

k(ν)
ji

:= inf
{
t � 0 : r(t ) = r (ν)

i

}
. (16)

Note that k(ν)
ji is zero if i and j cannot be reached from

the unstable manifolds of the saddle ν. The Fokker-Planck
equation (2) is thus coarse grained accordingly into the master
equation

d

dt
	i(t ) =

∑
ν

N∑
j=1

[
k(ν)

i j 	 j (t ) − k(ν)
ji 	i(t )

]
, (17)

for the occupation probability 	i(t ) := ∫
Bi

dr p(r, t ) of the
basin Bi [54].

C. Calculation of the transition rates ratio

To set up a proper expansion valid for weak noise and small
forcing, we provisionally rescale the temperature T = εT T ′
and the nonconservative field f = ε f f ′(r), explicitly intro-
ducing the small adimensional parameters ε f  εT  1, with
the quantities T ′ and f ′(r) being of order O(1). At leading

order in 1/εT , the transition rate k(ν)
ji is given by the probability

of reaching the saddle r (ν)
i in infinite time starting from the

attractor r̄i [53]:

k(ν)
ji = lim

t→∞ p(r (ν)
i , t |r̄i, 0) = pi(r)|r=r(ν)

i
, (18)

where p(r (ν)
i , t |r̄i, 0) is the solution of (2) with initial condi-

tion p(r, 0) = δ(r̄i ) in the limit T → 0. Note that the end point
of the transition probability in (18) can be any position along
the deterministic trajectory leading from the saddle r (ν)

i to the
minimum r̄i, since this additional relaxation has zero action.
The long time limit in (18) entails that the weak-noise transi-
tion probability converges to the (quasi-)stationary probability
within the basin of attraction Bi � r, denoted pi(r) [55]. To
obtain k(ν)

ji , we write pi(r) as an integral over solutions of (1)
starting from the local equilibrium peq,i(r(0)) and ending in r
after an infinite relaxation time:

pi(r) = lim
t→∞

∫
Dω peq,i(r(0))P[ω|r(0)]δ(r(t ) − r). (19)

The probability peq,i is the local weak-noise approximation of
the equilibrium distribution (6),

peq,i(r) �
√

HU (r̄i)

(2πT ′εT )d
e− 1

T ′εT
[U (r)−U (r̄i )] r ∈ Bi, (20)

corresponding to a Gaussian approximation for the par-
tition function Z in Bi. We then expand the path prob-
ability P[ω|r(0)] in (8) keeping only terms up to order
O(1/εT , ε f /εT ):

P[ω|r(0)] � Peq[ω|r(0)]

[
1 + ε f

2T ′εT

∫ t

0
dτ (ṙ + ∇U ) · f ′

]
.

(21)

Here, Peq[ω|r] := P[ω|r]| f =0 = e
1
T Aeq [ω] is the equilibrium

path probability starting from r.
Plugging (21) into (19) and using the reversibility of the

equilibrium paths, as given by Eq. (7), we integrate over time-
reversed trajectories ω̃ (which we rename ω). This results in
fixing the initial position, r(0) = r, and reversing the sign of
the velocity:

pi(r) � lim
t→∞

∫
Dω peq,i(r(0))δ(r(0) − r)

× Peq[ω|r(0)]

[
1 + ε f

2T ′εT

∫ t

0
dτ (−ṙ + ∇U ) · f ′

]

= peq,i(r)

[
1 − ε f

T ′εT

∫ ∞

0
dτ 〈ṙ · f ′〉eq

]
(22)

� peq,i(r)e− ε f
T ′εT

∫ ∞
0 dτ 〈ṙ· f ′〉eq , (23)

where 〈. . . 〉eq := ∫
Dω . . . Peq[ω|r]. To get rid of the product

∇U · f ′ and obtain (22), we used the identity∫ t

0
dτ 〈ṙ · f ′〉eq = −

∫ t

0
dτ 〈∇U · f ′〉eq, (24)

which follows from expanding the normalization condition∫
DωP[ω|r] = 1. Namely, integrating both sides of (21) over
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all trajectories that start in r(0) = r and consistently neglect-
ing higher orders than O(ε f /εT ), we obtain

1=
∫
DωPeq[ω|r]︸ ︷︷ ︸

=1

+ ε f

2T ′εT

∫
DωPeq[ω|r]

∫ t

0
dτ (ṙ + ∇U ) · f ′

which gives (24).
To evaluate (23), we use the fact that εT is small and thus

a saddle point approximation can be carried out. Therefore,
the average in (23) is dominated by a single trajectory, i.e.,
the relaxation trajectory r↓(t ), solution of (14), leading from
r to the minimum r̄i, and the associated action Aeq of which
is zero:∫ ∞

0
dτ 〈ṙ · f ′〉eq =

∫ r̄i

r
f ′ · dr↓ e

Aeq[r↓ (t )]
εT T ′︸ ︷︷ ︸
=1

= −
∫ r

r̄i

f ′ · dr↑.

(25)

Thanks to the reversibility of equilibrium dynamics, (25) can
also be seen as the work performed by the nongradient force
along the instanton, i.e., the most likely fluctuating path from
the minimum r̄i to r. Therefore, retaining terms up to order
O(1/εT , ε f /εT ) and using (20), (21) can be approximated by

pi(r) � peq,i(r)e
1
T

∫ r
r̄i

f ·dr↑

=
√

HU (r̄i )

(2πT )d
e[−U (r)+U (r̄i )+

∫ r
r̄i

f ·dr↑]/T r ∈ Bi, (26)

where we reabsorbed the bookkeeping parameters εT and ε f .
Eventually, plugging (26) into (18), we obtain the ra-

tio between the transition rates involving nearby basins of
attraction:

k(ν)
ji

k(ν)
i j

= e[−U (r̄ j )+U (r̄i )−T (Si−S j )+W (ν)
ji ]/T . (27)

In the LDB (27), two thermodynamic objects appear which
pertain to the coarse-grained description. First, the entropy of
the coarse-grained state i

Si := − 1
2 log HU (r̄i ), (28)

which is (up to an irrelevant constant shift) the Shannon
entropy of the equilibrium probability (6) under a Gaussian
approximation around the minimum r̄i. Note that (28) ap-
pears as well in the Eyring-Kramers formula for the transition
rate at f = 0 [34], but its correspondence to the coarse-
grained entropy of the state is rarely appreciated. Second, the
jump bias

W (ν)
ji :=

∫ r(ν)
i

r̄i

f (r↑) · dr↑ +
∫ r̄ j

r(ν)
i

f (r↓) · dr↓, (29)

which is the work done by f along the most probable path
from r̄i to r̄ j through r (ν)

i , i.e., the instanton to the saddle point
followed by the relaxational dynamics. Equation (27) is the
coarse-grained analog of (4), with the only difference that the
energy of the diffusive dynamics is replaced by the free energy
of the discrete states:

Fi := U (r̄i ) − T Si. (30)

r̄1

r(1)

r̄2

r(2)

y

x

FIG. 1. Contour plot of the potential energy (31) with the shear
force field f of the main text superimposed. Thanks to the parity
symmetry, the local detailed balance can be verified by compar-
ing the transition rates out of the basin of attraction of only one
minimum.

III. ILLUSTRATIVE EXAMPLE

To exemplify our result, we consider the dynamics (1) in
R2 � r = (x, y) with the double-well potential

U (x, y) = 0.1(x2y2 − 10x2 + x4 + y4 − 4.5y2 + 0.1x4y4)

(31)

and the nonconservative force f (x, y) = (ε f y, 0) which repre-
sents a shear of intensity ε f (see Fig. 1). The symmetric poten-
tial has N = 2 minima, r̄1 � (2.24, 0) and r̄2 � (−2.24, 0),
connected by two saddle points r (1) = (1.5, 0) and r (2) =
(−1.5, 0) (see Fig. 1). Since (1) is invariant under a parity
transformation r �→ −r, the LDB (27) can be evaluated fo-
cusing only on the transition rates out of one minimum, say
r̄1, through the saddle points r (1) and r (2), namely,

k(1)
12

k(1)
21

= k(2)
21

k(1)
21

= eW (2)
21 /T = e2

ε f
T

∫ ∞
0 y↑(t )ẋ↑(t )dt . (32)

Here, x↑(t ) and y↑(t ) are the components of the instanton
starting from r̄1 and ending in r (2), which equal by symme-
try the relaxation path from r (2) to r̄2. The formula (32) is
expected to hold for W (2)

21  T  U (r (2) ) − U (r̄1). However,
the comparison with the results of numerical integrations of
(1) shows (see Fig. 2) the qualitative agreement with the the-
ory even at moderate values of noise strength and shear work,
[U (r (2)) − U (r̄1)]/T � 10 and W (2)

21 /T � 0.4, respectively.
This example indicates that the assumptions we employed in
our derivations are only sufficient but may not be necessary at
all in many specific cases. In particular, the global smallness
of the nonconservative field f might be nonessential and could
possibly be replaced by a local condition (e.g., in a neighbor-
hood of the most probable trajectories) of weak forcing.

IV. DISCUSSION OF THE WEAK FORCING CONDITION

Our derivation hinges on the formal conditions of weak
noise and weak forcing in the form ε f  1, εT  1, and
ε f /εT  1. Physically, as shown in the previous example,
these requirements correspond to a small thermal energy with
respect to the energy barrier, i.e., T  U (r (ν)

i ) − U (r̄i ), and a
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comparatively smaller nonconservative work, i.e., W (ν)
ji  T .

The order in which we apply these conditions, i.e., first ex-
panding in ε f and only later in εT , is crucial. This can be
inspected by comparing with [50], where the local weak-noise
stationary distribution

pi(r) =
√

Hφi (r̄i )

(2πT )d
e− 1

T [φi (r)−φi (r̄i )]+
∫ ∞

0 dtμ∇·�(r↑
f (t )), (33)

valid for r ∈ Bi, was derived taking into account subexponen-
tial corrections and arbitrarily large f . In (33), φi is the so
called quasipotential obtained by evaluating the action A f in
(3) on the forced instanton r↑

f (t ), i.e., the path starting in r̄i and
ending in r ∈ Bi which maximizes A f ; � := (∇φi + F ) is the
drift field tangent to the level sets of φi; Hφi (r̄i ) is the Hessian
determinant of φi in r̄i.

In our approach, the first expansion in ε f  1 of the tra-
jectory probability, leading to (23), allows us to discard any
nonequilibrium contribution to the instanton. This is equiva-
lent, when taking the second expansion in εT  1, that is the
saddle point approximation (25), to replace r↑

f (t ) with r↑(t )

in the calculation of φi and �(r↑
f (t )) in (33). This yields the

quasipotential

φi(r) = U (r) − ε f

∫ r

r̄i

f ′ · dr↑, (34)

which implies Hφi = HU + O(ε f ), � = O(ε f ), and so
our Eq. (26).

Note that if we exchanged the order of the limits or we
included higher order terms in ε f , we would not be able to
obtain the LDB for the log ratio of the transition rates with-
out additional assumptions. On one hand, φi and log Hφi (r̄i)
would still represent a local potential for the dynamics [56]
and a Gaussian approximation of the Shannon entropy of
state i, respectively. But, on the other hand, ∇ · � would
not have any straightforward thermodynamic interpretation.
In fact, � can be written as either the (local) orthogonal

decomposition of F = −∇φi + �, i.e., ∇φi · � = 0, or the
leading order of the stationary velocity in probability space,
i.e., �(r) = limεT →0 j(r)/p(r) [50,57]. It remains to be seen
whether these dynamic and probabilistic viewpoints entail any
corresponding thermodynamic notion.

We conclude noting that a straightforward extension ex-
ists to the case of potentials U (r, λ(t )) that depend on time
through a prescribed protocol λ(t ) [58,59]. The variations
of U should take place on time scales much larger than the
largest equilibration time within basins, preserve the num-
ber N of minima, and be consistent with the assumptions
of weak noise, i.e., U (r (ν)

i , λ(t )) − U (r̄i, λ(t )) � T for all i
and t . Under this condition, the escape events take place in
a fixed force field, and the variations of the potential happen
quasistatically while the system fluctuates in a minimum r̄i.
Thus, our derivation can be replicated as is and the LDB (27)
acquires a parametric dependence on time through U (r, λ(t )).

V. TOWARDS A THERMODYNAMIC PATH
THROUGH SCALES

The approach outlined in this paper is suitable to be repli-
cated whenever (17) can be further coarse grained onto a more
reduced set of states. This often happens when an additional
large parameter exists that induces a new strong separation
of time scales through a new weak-noise limit (see Fig. 3).
Consider the case of a large state space, N → ∞, so that a
continuous variable R = i/N can be introduced. If the mi-
croscopic energy U is such that the nonzero transition rates
behave asymptotically as k(ν)

ji ∼ k(ν)(R) with k(ν)(R) of or-
der O(N ), the stationary probability scales as N	i = ρ(R) ∼
e−Nψ (R) and thus concentrates on the minima I = 1, . . . , M of
the quasipotential ψ (R) [60], which at zero forcing equals the
free-energy “density” F(R) = limN→∞ Fi/N . The long time
dynamics is a Markov jump process between such minima
with transition rates KJI estimated in analogy with (18) as

KJI = ρI (R)|R=R(ν)
I

. (35)
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FIG. 2. Left: The ratio of transition rates as function of the work over temperature W (2)
12 /T , predicted by the theory (solid) and measured

by numerical solutions of (1) obtained by the Heun scheme with μ = 1 and T = 0.2. For each ε f ∈ [0, 0.03], the time-dependent log ratio
of the number of transition events across the two saddles was averaged over 104 trajectories with at most 105 time steps of size �t = 10−2.
The procedure is repeated n � 10 times to obtain n long-time averages, the mean of which is taken to represent k(1)

12 /k(1)
21 . Error bars denote

the standard deviation. Inset: An instance of the log ratio of the number of transition events across the two saddles as a function of time
for ε f = 0.02. The solid line indicates the long-time average. Right: Projection on the x axis of a typical transition path from simulations at
ε f = 0.01 (dots) and the equilibrium instanton x↑(t ), i.e., the solution of (15) (solid), employed in the calculation of (32).
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f

U(r)

r

T → 0

1 Ni j

kji

N → ∞
RI J

KJI

FIG. 3. Schematic representation of consecutive coarse-graining
levels. Diffusion in a rouged energy landscape superimposed to a
small nonconservative force f behaves at low temperatures as a
Markov jump process with transitions rates k ji between the nearby
basins of attraction of the energy minima. For a large number of
attractors N the state space becomes again continuous. Nevertheless,
if transition rates scale as N another weak-noise limit exists that
singles out a further reduced set of states with Markovian transition
rates KJI .

Here ρI (R) is the local stationary solution of the (weak-noise)
continuous-space limit of (17), i.e., the solution of

0 =
∑

ν

[
k(ν)

(
R − ε(ν)

N

)
ρ

(
R − ε(ν)

N

)
− k(ν)(R)ρ(R)

]

�
N→∞

∑
ν

[(eε(ν)·∂Rψ (R) − 1)k(ν)(R)] (36)

where ε(ν) equals the distance between i and j if connected
by the saddle ν, and zero otherwise. Equation (36) is a time-
independent Hamilton-Jacobi equation for the position R and
momentum ∂Rψ (R) [48,60]. This is very analogous to what
was discussed in Sec. II for low-temperature diffusion. Note
that (36) cannot be consistently expanded in a power series
in ε(ν) and thus truncated as a Fokker-Planck equation unless
ε(ν) is infinitesimal and

∑
ν ε(ν)k(ν) and

∑
ν ε(ν)2

k(ν) are of the
same order [61].

As already done for the diffusive dynamics, (35) can be
obtained by expanding around equilibrium (i.e., W (ν)

ji = 0

for all i, j, and ν) the path integral for the trajectory ω =
{(i(τ ), ν(τ )) : 0 < τ � t},

P[ω|i(0)] =
(∏

α

kν(tα )
i(tα ) i(t−

α )

)
e
∫ t

0 dτ
∑N

j=1 k ji(τ ) (37)

where tα labels the transition times [62], and by taking
the leading order in N . Repeating the very same steps of
Eqs. (19)–(26) with (3) replaced by (37) leads to the LDB

KJI

KIJ
= KJI

KIJ

∣∣∣∣
W (ν)

i j =0

eWJI /T (38)

where WJI = limN→∞ 〈∑α W ν(tα )
i(tα ) i(t−

α )δ(R(0) − I )〉. The
nonequilibrium correction in (38) is the (mean) work along
the most probable trajectory connecting the macrostate I
to J , which are minima of the free energy F(R). Such path
can be more easily found by a path integral representation
of the probability (37) [48]. It is formally analogous to
the nonequilibrium correction in (27) since in both cases
a first order expansion around equilibrium for the (local)
stationary probability of states was performed, which is
universally determined by the dissipative part of the dynamics
[63,64]. This suggests that LDB should persist whenever
nonconservative forces are small on the scale we wish to
apply the coarse graining.

VI. CONCLUSIONS

In this paper we have showcased a general method to
coarse grain a diffusive dynamics with weak noise and small
nonconservative forces into a jump process that satisfies local
detailed balance. The method extends to master equations
corresponding to determinist dynamics in the zero-noise limit,
thanks to the universality of the first order expansion around
equilibrium. The important next step is to generalize this ap-
proach to finite forcing f (resp. W (ν)

ji ) where reduced states
i (resp. I) are genuine nonequilibrium ones, which require
continuous dissipation to be sustained. Namely, they emerge
as local minima of the quasipotential φ (resp. ψ) and cannot
be anticipated by the sole knowledge of an underlying energy
U (r) (resp. free energy Fi) [65]. In order to describe the
thermodynamics of transitions between them we expect to
give up the LDB unless special conditions are met, i.e., to
renounce the idea that thermodynamics is fully determined by
the state dynamics, and to derive coarse-grained dynamical
equations for the entropy production and other thermody-
namic observables.
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