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Connectedness percolation in the random sequential adsorption packings of elongated particles
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Connectedness percolation phenomena in the two-dimensional packing of elongated particles (discorectan-
gles) were studied numerically. The packings were produced using random sequential adsorption off-lattice
models with preferential orientations of the particles along a given direction. The partial ordering was character-
ized by the order parameter S, with S = 0 for completely disordered films (random orientation of particles) and
S = 1 for completely aligned particles along the horizontal direction x. The aspect ratio (length-to-width ratio)
of the particles was varied within the range ε ∈ [1; 100]. Analysis of connectivity was performed assuming
a core-shell structure of the particles. The value of S affected the structure of the packings, the formation of
long-range connectivity, and the behavior of the electrical conductivity. The effects can be explained by taking
accounting of the competition between the particles’ orientational degrees of freedom and excluded volume
effects. For aligned deposition, anisotropy in the electrical conductivity was observed with the values along
the alignment direction σx being larger than the values in the perpendicular direction σy. Anisotropy in the
localization of the percolation threshold was also observed in finite-sized packings, but it disappeared in the
limit of infinitely large systems.
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I. INTRODUCTION

The random packing of elongated particles onto a plane
is a challenging problem that has been the ongoing focus of
many researchers. The particle shape may affect the pack-
ing characteristics (e.g., packing density and coordination
numbers) [1–3], the aggregation [4], and the gravity- and
vibration-induced segregation [5]. A lot of interest in such sys-
tems continues to be stimulated by practical problems related
to the preparation of advanced materials [6,7] and composite
films [8,9], filled with elongated nanoparticles, e.g., carbon
nanotubes [10] and silicate platelets [11].

For the simulation of random packings, random sequen-
tial adsorption (RSA) models [12,13] are frequently used.
In such models, the particles are deposited randomly and
sequentially onto a two-dimensional (2D) substrate with-
out overlapping. At the so-called “jamming limit,” where
ϕj is the saturated coverage concentration, no more parti-
cles can be adsorbed and the deposition process terminates.
The problems related to the kinetics of 2D RSA, the jam-
ming limit, and the asymptotic behavior of RSA deposition
for elongated particles (ellipses, rectangles, discorectangles,
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and needles) were discussed in detail [14–19]. The saturated
2D RSA packings for different particle shapes, including
disks [20], ellipses [14,21], squares [22], rectangles [23,24],
discorectangles [25,26], polygons [27], sphere dimers, sphere
polymers, k-mers and extended objects [28–30], and other
shapes [31–33] have been studied in detail. Particularly, for
very elongated unoriented particles the saturation coverage
gone to zero when the aspect ratio becomes infinite [16,17].
Moreover, the nonmonotonic dependencies of the values of ϕj

versus the aspect ratio ε have been observed. Similar depen-
dencies have also been observed for saturated RSA packings
of elongated particles in one-dimensional (1D) [34–36] and
three-dimensional (3D) [37–39] systems. The appearance of
maximums of the jamming concentration can be explained by
a competition between the effects of orientational degrees of
freedom and excluded volume effects [37].

The formation of long-range connectivity is the primary
issue to be solved for better understanding of the percola-
tion phenomena of core-shell anisotropic particles in random
packings. Core-shell composite particles consist of an inner
layer of one material (the core) and an outer layer of an-
other material (the shell). Core-shell particles have already
demonstrated promising applications in electrochemical, op-
tical, wearable, and gas adsorptive sensors [40], electrode
materials [41], polymeric composites [42], and drug delivery
applications [43]. The practical significance of the problem
is also related to a need to obtain a description of the be-
havior of the electrical conductivity of composites filled with
elongated core-shell particles, e.g., carbon nanotubes and
fibers, metallic nanorods and nanocables, and other core-shell
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FIG. 1. Examples of RSA packings in the jamming state for discorectangles with aspect ratios ε = 2 (a); ε = 5 (b); and at different
values of the order parameters: S = 0 (random orientation), S = 0.5 (partial orientation), and S = 1 (complete alignment along the horizontal
direction x).

particulates [42,44–53]. In general, the inner material can
be covered partially or fully by a single or multiple outer
layers. By regulation of the shell properties, materials with
enhanced optical, electrical, or magnetic characteristics, and
improved thermal stability or dispersibility can be obtained.
For particles with core-shell structures, their resulting elec-
trical conductivity can reflect the effects of particle ordering,
packing, connectivity rules and the intrinsic properties of the
cores, the matrix, and the interface between the particles and
the matrix (shells).

In this paper, we shall concentrate on the percolation
effects in 2D RSA packings of discorectangles. A hard-core–
soft-shell structure of particles was assumed and anisotropic
packing with preferential orientation of the particles along a
given direction were considered. The effects of the particle
aspect ratios, orientation ordering, and packing fraction on
the electrical conductivity of the packings together with the
critical thickness of the shells required for a spanning path
through the system were evaluated. The rest of the paper
is organized as follows. In Sec. II, the technical details of
the simulations are described and all necessary quantities are
defined. In order to provide a better understanding in respect
of the precision of the calculations, a range of some test results
are also given. Section III presents our principal findings and
discussions. Finally, Sec. IV summarizes our findings.

II. COMPUTATIONAL MODEL

A discorectangle is a rectangle with semicircles at a pair
of opposite sides. The discorectangles were randomly and se-
quentially deposited until they reached the saturated coverage
concentration ϕj. An optimized RSA algorithm, based on the

tracking of local regions, was used [25,26]. The aspect ratio
(length-to-width ratio) was defined as ε = l/d , where l is the
length of the particle and d is its width. Discorectangles with
ε ∈ [1; 100] were considered.

The degree of orientation was characterized by the order
parameter defined as

S = 〈cos 2θ〉, (1)

where 〈·〉 denotes the average, θ is the angle between the
long axis of the particle and the direction of the preferred
orientation of the particles (x direction).

For generation of the aligned packings, the orientations
of the deposited particles were selected to be uniformly dis-
tributed within some interval such that −θm � θ � θm, where
θm � π/2 [54]. For the selected model of deposition [54] the
order parameter was calculated as [55]

S = sin 2θm

2θm
. (2)

Figure 1 shows examples of the packing patterns in the
jamming state for discorectangles with aspect ratios ε = 2
[Fig. 1(a)] and ε = 5 [Fig. 1(b)]. For random orientation of
particles (θm = π/2) we have S = 0 and for complete align-
ment of particles along the horizontal direction x (θm = 0)
we have S = 1. For intermediate values 0 < S < 1 during the
deposition, some particle orientations may be rejected and
the real order parameter in the deposit may differ from the
preassigned value [26,56].

The dimensions of the system under consideration were
L along both the horizontal (x) and the vertical (y) axes,
and periodic boundary conditions were applied in both direc-
tions. The time was measured using dimensionless time units
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FIG. 2. Coverage concentration ϕ versus the deposition time t for
the RSA packing of random (S = 0) and perfectly aligned (S = 1)
discorectangles with aspect ratio ε = 4 at different values of L/l .
Here, ϕj is the jamming coverage. Inset shows an enlarged portion of
the ϕ(t ) plot near the saturation concentration.

t = n/L2, where n is the number of deposition attempts.
Figure 2 shows examples of the coverage concentration ϕ

versus the deposition time t for the RSA packing of random
(S = 0) and perfectly aligned (S = 1) discorectangles with
aspect ratio ε = 4 at different values of L/l . Similar depen-
dencies were observed for other values of S and ε. The scaling
tests with L/l = 16, 32, 64, and 128 evidenced the good con-
vergence of the data at L/l � 32. In this work, the majority of
calculations were performed using L = 32l and the jamming
coverage was assumed to be reached after a deposition time
of t = L2 × 1010.

The analysis of the connectivity was performed assuming
a core-shell structure of the particles, with particle having
an outer shell of thickness δd [Fig. 3(a)]. Any two particles
were assumed to be connected when the minimal distance
between their hard cores did not exceed the value of δd .
The connectivity analysis was carried out using a list of

near-neighbor particles [57]. The minimum (critical) value
of the relative outer shell thickness δc (hereinafter, the shell
thickness) required for the formation of spanning clusters
in the x or y direction, was evaluated using the Hoshen-
Kopelman algorithm [58].

To calculate the electrical conductivity σ , two approaches
was used. Within the first one (m model), the 2D plane
was covered by a supporting square mesh of size m × m
[Fig. 3(b)]. The mesh cells with centers located at the core,
shell, or pore parts were assumed to have electrical conduc-
tivities of σc, σs, and σm, respectively. Then each cell was
associated with a set of four resistors and the system was
transformed into a random resistor network (RRN)) (for more
details see Appendix A). Note that calculations at large values
of m provided better accuracy, but required significantly more
computing resources. Therefore, the effects of the values m
(m = 1024, 2048, 4096) on the calculated values of σ were
also checked in some calculations. This approach has been
used for the values of the aspect ratios up to 20. To calcu-
late the electrical conductivity of the RRN the Frank-Lobb
algorithm based on the Y -� transformation was applied [59].
More detailed information on the calculation of the electrical
conductivity can be found elsewhere [60,61].

For larger values of the aspect ratio (slender-rod limit),
other approach (the t model) was used. The electrical con-
ductivity of the substrate was ignored (σm = 0). Within this
approach, discorectangles were treated as zero-width rods
with the electrical conductivity σc. The electrical conductance
between any two points (say, i and j) belonging to the same
rod is inverse proportional to the distance li, j between these
points (see, e.g., [62,63]). The electrical conductivity between
any two rods with overlapping shells is proportional of the
width of the conduction channel (maximal width of the over-
lapping) and inverse proportional to its length (the effective
distance between their cores) Gs

i j = σsdi/le. The effective dis-
tance may be estimated as

le = 2δddi − A

di
,

where A is the area of the overlapping shells and di is the
distance between the two intersection points of the outer

FIG. 3. Approaches to description of the connectivity analysis (a) and calculation of electrical conductivity (b) of the RSA packing of
discorectangles on a 2D substrate. A core-shell structure of the particles was assumed. Intersections of the particle cores were forbidden. For
the connectivity analysis, each particle was assumed to be covered by a soft (penetrable) shell of thickness δd . To calculate the electrical
conductivity σ , a discretization approach with a supporting mesh was used. The mesh cells with centers located at the cores, shells, or pores
parts were assumed to have electrical conductivity of σc, σs, and σm, respectively. (c) For larger values of the aspect ratio (slender-rod limit),
discorectangles were treated as zero-width rods with the electrical conductivity σc. (d) Example of a transformation of slender rods into a RRN.
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perimeters of these shells [see Figs. 3(c) and 3(d) and
Appendix B for details of overlapping calculations]. In the
particular case of parallel or perpendicular rectangles with the
core-shell structure, this approach provides exact values of
the electrical conductance. In the case of arbitrary oriented
discorectangles with the core-shell structure, this approach
provides approximate values of the electrical conductance.

Then, Kirchhoff’s current law was applied to each junction,
and Ohm’s law used for each circuit between two junctions.
The resulting set of equations was solved to find the total
conductance of the RRN. More detailed information on the
calculation of the electrical conductivity can be found else-
where [62,63].

Large contrasts in electrical conductivities were assumed,
σc � σs � σm. We let σc = 1012, σs = 106, and σm = 1 in
arbitrary units. In this case, resistance of shells give the main
contribution in the electrical resistance of the system under
consideration, while resistance of cores has negligible con-
tribution. For each given value of ε and S, the computer
experiments were repeated using from 10 to 1000 independent
runs. The error bars in the figures correspond to the standard
deviations of the means. When not shown explicitly, they are
of the order of the marker size.

III. RESULTS AND DISCUSSION

A. Connectivity

For a discorectangle, the critical shell thicknesses δc,x and
δc,y correspond to the formation of percolation clusters in
the x and y direction, respectively. For isotropic system with
S = 0, the values of δc,x and δc,y coincide, i.e., δc,x = δc,y. For
anisotropic systems with S �= 0, these values may be different.
At a fixed value of shell thicknesses δ, the critical coverages
ϕc,x and ϕc,y, required for the formation of percolation clusters
in the x and y directions, respectively, can be also defined.

Figure 4(a) shows examples of the critical shell thickness
δc versus the inverse systems size 1/L at different values of ϕ.
Here, L(= 16l, 32l, 64l, 128l ) is the size of the system. The
data are presented for aspect ratio of ε = 4 for completely dis-
ordered (S = 0, dashed lines) and completely aligned (S = 1,
solid lines) packings. Increase in ϕ resulted in a decrease of δc

and the minimum values of δc were observed at the jamming
coverage (ϕ = ϕj ≈ 0.557 for ε = 4). For S = 0, the data
along the x and y directions almost coincide. However, for
finite-sized aligned systems (S �= 0), the value of δc,y always
exceeded the value of δc,x, and both these values exceeded
the value δc for isotropic systems. Figure 4(b) shows similar
examples of the critical coverage ϕc versus the value of L−1/ν

at different fixed values of shell thickness δ. Here, ν = 4
3 is

the 2D correlation length percolation exponent [64]. The data
on the critical coverage ϕc also demonstrated the presence
of percolation anisotropy for the finite-sized aligned systems
(S �= 0). Similar percolation anisotropy was observed in finite-
sized discrete systems with aligned rods (k-mers) and the
finite-size effects were also more pronounced for systems
with aligned rods [60,65,66]. Thus, it can be concluded that
anisotropies observed in the behavior of the critical shell
thickness δc and the critical coverage ϕc are finite-size scal-
ing effects and that they disappear in the limit of L → ∞.
Moreover, the scaling behaviors of the value δc for completely

FIG. 4. Scaling dependencies of the critical shell thickness δc at
different values of particle coverage ϕc (a) and of the critical particle
coverage ϕc at different fixed values of shell thickness δ (b). The data
are presented for an aspect ratio of ε = 4 for completely disordered
(S = 0, dashed lines) and completely aligned (S = 1, solid lines)
packings. For S = 0 the data along the x and y directions almost
coincide. Here, L(= 16l, 32l, 64l, 128l ) is the size of the system.
ν = 4

3 is the 2D correlation length percolation exponent [64].

disordered (S = 0) and of the average value of δc = (δc,x +
δc,y)/2 for aligned (S �= 0) packings were fairly insignificant
for L/l � 32. Therefore, in this work, the averaged values
of δc and ϕc in both directions were always used and all
connectivity analysis tests were performed using L/l = 32.

Figures 5 and 6 demonstrate examples of the critical shell
thickness δc (Fig. 5), and the critical coverage ϕc (Fig. 6),
versus the aspect ratio ε for completely disordered S = 0 (a)
and completely aligned S = 1 (b) packings. For completely
disordered systems (S = 0) maximums on the δc(ε) [Fig. 5(a)]
and ϕc(ε) [Fig. 6(a)] curves, at some values of εmax, were
observed. The positions of these maxima were controlled by
the values of ϕ [Fig. 5(a)] and δ [Fig. 6(a)].

The observed maxima in the percolation characteristics
δc and ϕc may reflect the internal structure of the RSA
packings of elongated particles. In particular, maxima in the
jamming coverage ϕj versus the ε dependencies were also ob-
served for disordered packings and could be explained by the
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FIG. 5. Critical shell thickness δc versus the aspect ratio ε at
different coverages ϕ for completely disordered S = 0 (a) and com-
pletely aligned S = 1 (b) packings.

competition between the effects of orientational degrees of
freedoms and excluded volume effects. The jamming limit
decreased with ε [26], and for elongated particles in the vicin-
ity of percolation packings, terminations of the curves δc(ε)
[Fig. 5(a)] and ϕc(ε) [Fig. 6(a)] at some critical values of ε

were observed.
These maxima became less pronounced for partially

aligned systems, and they completely disappeared for com-
pletely aligned S = 1 packings [Figs. 5(b) and 6(b)]. For the
case of S = 1, the values of δc [Fig. 5(b)] and ϕc [Fig. 6(b)]
grew with increasing values of ε, and for relatively small shell
thickness δ, the termination of ϕc(ε) was observed when the
values of ϕc exceed the jamming coverage ϕj.

B. Intrinsic conductivity

The concept of intrinsic conductivity is useful for de-
scription of the behavior of the electrical conductivity in the
limiting case of an infinitely diluted system. For randomly
aligned and arbitrarily shaped particles with electrical conduc-

FIG. 6. Critical coverage ϕc versus the aspect ratio ε at different
shell thickness δ for completely disordered S = 0 (a) and completely
aligned S = 1 (b) packings.

tivity σp suspended in a continuous medium with electrical
conductivity σm, the generalized Maxwell model gives the
following virial expansion [67,68]:

σ

σm
= 1 + [σ ]ϕ + O(ϕ2), (3)

where

[σ ] = d ln (σ/σm)

dϕ

∣∣∣∣
ϕ→0

(4)

is called the intrinsic conductivity, and ϕ is the coverage
concentration. The value of the intrinsic conductivity [σ ] can
depend upon the electrical conductivity contrast 	 = σp/σm,
the particle’s aspect ratio ε, the order parameter S, and a
spatial dimension.

Figure 7(a) demonstrates examples of intrinsic conductiv-
ities [σ ] versus the order parameter S. The data are presented
in the x and y directions for discorectangles with different
aspect ratios ε. These dependencies were obtained using a
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FIG. 7. Examples of intrinsic conductivities [σ ] versus the order
parameter S. The data are presented along the x and y directions for
discorectangles with aspect ratios ε = 2, 4, 10 (a). Dependencies of
the parameters [σ ]0, κ [see Eq. (5)] versus ε (b).

mesh parameter of m = 4096 over 1000 independent runs.
The observed [σ ] versus S relationships were almost linear:

[σ ] = [σ ]0(1 ± κS), (5)

where [σ ]0 is the intrinsic conductivity for the isotropic
system with S = 0, κ is the anisotropy coefficient, and the
signs + or − correspond to the x or y directions, respectively.

Therefore, the intrinsic conductivity [σ ]x along alignment
direction x exceeded value [σ ]y in the perpendicular direction,
hence, symmetric behavior with the same anisotropy coeffi-
cients κ was observed.

Figure 7(b) presents values of [σ ]0 and κ versus the aspect
ratio ε. The intrinsic conductivity for the isotropic system
[σ ]0 increased with ε. Note that similar behavior has been
predicted theoretically for randomly aligned ellipses (S = 0)
[67,68]

[σ ] = (	2 − 1)(1 + ε)2

2(1 + ε	)(	 + ε)
. (6)

FIG. 8. Normalized intrinsic conductivity [σ ]/[σ ]∞ in the x and
y directions versus the inverse mesh size 1/m at different aspect ratios
ε = 4, 20, and S = 1. Here, the value of [σ ]∞ corresponds to the
intrinsic conductivity in the limit of m → ∞.

For 	 � 1, this equation gives [see dashed line in Fig. 7(b)]

[σ ] = 1 + 1

2

(
ε + 1

ε

)
. (7)

The anisotropy coefficient κ also increased with ε. It presum-
ably tends to the unit in the limit ε � 1.

Figure 8 illustrates the effect of mesh size m on the pre-
cision of [σ ] determination at two values of the aspect ratio

FIG. 9. Electrical conductivity σ versus the difference dϕ =
|ϕ − ϕσ | for RSA packings of disks (ε = 1) at different shell thick-
nesses δ. Here, the value of ϕσ was identified from the concentration
at the percolation jump for each independent run, with calculations
being carried out using a mesh size of m = 1024. Dashed lines
corresponds to the classical exponents s = t ≈ 4

3 [64].
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FIG. 10. Electrical conductivity σ versus the difference |ϕ − ϕσ |
for RSA packings of discorectangles with different values of aspect
ratios ε for a fixed shell thickness of δ = 0.2 for completely disor-
dered S = 0 (a) and completely aligned S = 1 (b) packings. Here,
the value of ϕσ was identified from the concentration at the perco-
lation jump for each independent run, with the calculations being
performed using a mesh size of m = 1024. Dashed lines correspond
to the classical exponents s = t ≈ 4

3 [64].

ε. The observed [σ ] versus the inverse mesh size 1/m were
almost linear: [σ ] = [σ ]∞(1 + a/m), where [σ ]∞ and a are
the fitting parameters. The data evidenced that estimation
errors of [σ ] increased with increasing value of ε reaching
about 2% for ε = 20 and m = 1024.

C. Electrical conductivity

For each independent run the electrical conductivity σ dis-
played a jump at some percolation concentration ϕσ . Figure 9
presents σ versus the difference dϕ = |ϕ − ϕσ | for RSA pack-
ings of disks (ε = 1) at the different shell thicknesses δ = 0.2
and 0.8.

FIG. 11. Electrical conductivity σ versus the difference |ϕ − ϕσ |.
The data are presented for discorectangles with an aspect ratio
ε = 10 and a shell thickness of δ = 0.3, for completely aligned
S = 1 RSA packings. Here, the value of ϕσ was identified from
the concentration at the percolation jump for each independent run,
with the calculations being performed using mesh sizes of m = 1024
and 2048. Moreover, above the percolation threshold, the electrical
conductivity obtained within the t model is also presented. Dashed
lines correspond to the classical exponents s = t ≈ 4

3 [64].

In order to check for the possible nonuniversality of the
percolation exponents, the critical conductivity indices s and
t were estimated from the scaling relations for the electri-
cal conductivities just below, σ ∝ (dϕ)−s, and above, σ ∝
(dϕ)t , the percolation threshold [64]. The classical values for
2D percolation are s = t ≈ 4

3 . Obtained data evidenced the
satisfactory correspondence of the percolation exponents to
the classical universality. Below the percolation threshold the
difference between the curves for δ = 0.2 and 0.8 evidently
reflected the effects of the shell thickness on the value of
ϕσ . Above the percolation threshold, such effects were in-
significant. Figure 10 compares σ versus the difference dϕ =
|ϕ − ϕσ | dependencies, for RSA packings of discorectangles
(ε = 4) at a fixed value of δ = 0.2 for completely disordered
S = 0 (a) and completely aligned S = 1 (b) packings. For
aligned packings, a significant anisotropy in the electrical
conductivity was observed and the values along the alignment
direction σx, significantly exceeded the values in the perpen-
dicular direction σy. Importantly, the obtained data for the
mesh sizes of m = 1024 and 2048 were approximately the
same within data errors.

Figure 11 compares the electrical conductivity σ versus
the difference dϕ = |ϕ − ϕσ | for fairly long discorectangles
(ε = 10). The data are presented at a fixed value of δ = 0.3
for completely aligned (S = 1) RSA packings at two values
of m. The observed behavior for ε = 10 was similar to that
seen with ε = 4 [Fig. 10(b)]. Above the percolation threshold
(ϕ > ϕσ ) the effect of m was insignificant. However, below
percolation threshold (ϕ < ϕσ ) the electrical conductivities
estimated at m = 1024 were systematically smaller compared

042113-7



NIKOLAI I. LEBOVKA et al. PHYSICAL REVIEW E 103, 042113 (2021)

FIG. 12. Electrical conductivity σ versus the difference |ϕ − ϕσ |.
The data are presented for discorectangles with the aspect ratios ε =
50, 100 and a shell thickness of δ = 0.8 for completely disordered
S = 0 and completely aligned S = 1 RSA packings. Here, the value
of ϕσ was identified from the concentration at the percolation jump
for each independent run. Dashed lines correspond to the exponents
t ≈ 2.3 and t ≈ 4

3 [64].

to those estimated at m = 2048. Above the percolation thresh-
old, the electrical conductivities obtained within m model and
t model demonstrate similar behavior.

Finally, Fig. 12 compares the electrical conductivity σ

versus the difference dϕ = |ϕ − ϕσ | for long discorectangles
(ε = 50, 100). The data are presented at a fixed value of δ =
0.8 for completely disordered S = 0 and completely aligned
(S = 1) RSA packings. The results have been obtained within
the t model.

For completely disordered systems (S = 0), obtained data
evidenced the correspondence of the percolation exponents
to the classical universality t ≈ 4

3 . However, for completely
aligned RSA packings (S = 1), significant anisotropy in
electrical conductivity and deviations from the classical uni-
versality were observed. In the direction of alignment x, the
exponents t ≈ 2.3 were observed for the both ε = 50 and
100 values. In the perpendicular direction y, the exponents
closer to the classical universality value t ≈ 4

3 were observed.
The similar nonuniversal values of the critical conductivity
exponents were observed for systems of penetrable sticks and
nanowires [69–75]. Particularly, t transitions from ≈1 to ≈2
were observed in nanowire-to-junction resistance dominated
networks [75]. The effects of widthless stick alignment on
the percolation critical exponents were also observed. In our
case, for impenetrable very elongated particles with core-shell
structure, the change in the critical exponent may reflect the
changes in the morphology of conducting paths in the net-
works with a change in coverage.

IV. CONCLUSION

Numerical studies of two-dimensional RSA deposition of
aligned discorectangles on a plane were carried out. The

resulting partial ordering was characterized by the order pa-
rameter S, with S = 0 for random orientation of the particles
and S = 1 for completely aligned particles in the horizontal
direction x. Analysis of connectivity was performed assum-
ing a core-shell structure of the particles. The values of the
aspect ratio ε and order parameter S significantly affected
the structures of the packings, the formation of long-range
connectivity, and of the behavior of the electrical conductivity.
The observed effects probably reflect the competition between
the particles’ orientational degrees of freedom and the ex-
cluded volume effects [38]. For aligned systems, different
anisotropies in intrinsic conductivity, long-range connectivity,
and the behavior of electrical conductivity were observed. For
example, a significant anisotropy in electrical conductivity
was observed and the values in the alignment direction σx

were larger than the values in the perpendicular direction σy.
For aligned finite-size systems, the percolation thresholds in
the x and y directions were different. However, these differ-
ences disappeared in the limit of infinitely large systems.
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APPENDIX A: DESCRIPTION OF M MODEL FOR
CALCULATION OF ELECTRICAL CONDUCTIVITY

The mesh cells (sites) with centers located at the core, shell,
or pore parts were assumed to have electrical conductivities of
σc, σs, and σm, respectively. Each cell was associated with a
set of four resistors. The electrical conductivities of the whole
bonds between two similar sites were calculated as σc, σs,
and σm when the both sites were located at the core, shell, or
pore parts, respectively (Fig. 13). For bonds located between
different sites, there are only three possible combinations of
the electrical conductivities of the entire bonds between core
and shell sites σcs, pore and shell sites σms, and core and pore
sites σcm. The electrical conductivities of the entire bonds
were calculated as σcs = 2σcσs/(σc + σs) (between core and
shell sites), σms = 2σmσs/(σm + σs) (between pore and shell
sites), and σcm = 2σcσm/(σc + σm) (between core and pore
sites).

APPENDIX B: WAY OF CALCULATING
THE AREA OF INTERSECTION OF THE TWO

DISCORECTANGLES (STADIA)

Calculating the area of intersection of the two discorectan-
gles (stadia) is used in the notation explained in Fig. 14.

Functions of the boundaries are presented in Table I.
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FIG. 13. Representation of the mesh square lattice with de-
posited discorectangle. The centers of the mesh cells were located
at the cores, shells, or pores parts. Each cell was associated with a
set of four resistors. The electrical conductivities of the whole bonds
between two similar sites were σc, σs, and σm. For bonds located
between different sites, there are only three possible combinations
of the electrical conductivities of the entire bonds between core and
shell sites σcs, pore and shell sites σms, and core and pore sites σcm.

Intersection of a circle (x − x1)2 + (y − y1)2 = r2 and a
line Ax + By + C = 0 is

d =
√

r2 − (Ax1 + By1 + C)2

A2 + B2
.

If the radical expression �0, then there are no intersections
or there is only tangency, and we return an empty set of
additional points. Otherwise, the intersection points are

x = B2x1 − ABy1 − CA

A2 + B2
± dB√

A2 + B2
.

FIG. 14. Explanation of the notation used. (x1, y1) ∈ R2,
α1 ∈ [−π/2, π/2), (x2, y2) ∈ R2, α2 ∈ [−π/2, π/2) [d = 2r,
l = 2(r + a)].

Intersection of the two circles

(x − x1)2 + (y − y1)2 = r2

and

(x − x2)2 + (y − y2)2 = r2,

D = (x2 − x1)2 + (y2 − y1)2

is the square of the distance between the centers of the
circles. If D � 2r, then there are no intersections or the cir-
cles are tangent, and we return an empty set of additional
points.

Otherwise, the intersection points are

x = x1 + x2

2
± (y2 − y1)

√
r2

D
− 1

4
.

Intersection of the two lines A1x + B1y + C1 = 0 and A2x +
B2y + C2 = 0 is D = A1B2 − A2B1.

If D = 0, then there are no intersections or the lines co-
incide, and we return an empty set of additional points.
Otherwise, the intersection points are

x = B1C2 − B2C1

D
,

S =
∫

[min(F 1
+, F 2

+ ) − max(F 1
−, F 2

− )]+

is the master equation, where (x)+ = max(x, 0). We define the
function min (F 1

+, F 2
+ ).

We need to take the two lists (already ordered ascending)
x0(F 1

+ ), . . . , xk (F 1
+ ) (k = 1, 3) and x0(F 2

+ ), . . . , xm(F 2
+ ) (m =

1, 3), combine them into one (ascending list), and remove
from this list all values smaller than max [x0(F 1

+ ), x0(F 2
+ )] and

all values larger than min [xk (F 1
+ ), xm(F 2

+ )].
Let us get an ordered list t0, . . . , tn. For each [ti, ti+1]

(0 � i < n), the explicit analytical form of functions F 1
+, F 2

+ is
uniquely determined. To determine functions on an interval, it
is enough to look in which interval of the domain of definition
of functions F 1

+, F 2
+ lies the middle of this segment. Then, we

determine the intersection points, if any. If these intersection
points are in this interval, then we add them, but we do not
change the analytical functions.

After the procedure of dividing the region by intersection
points, we can set the function min (F 1

+, F 2
+ ). On each interval

of two functions, we leave only one, the value of which is
less in the middle of the interval. We define the functions
max (F 1

−, F 2
− ) and [min (F 1

+, F 2
+ ) − max (F 1

−, F 2
− )]+:

S =
∫

[min(F 1
+, F 2

+ ) − max(F 1
−, F 2

− )]+

is the result of taking a definite integral over each interval and
summing the results∫

(
√

r2 − (x − a)2 + b) dx

= x − a

2

√
r2 − (x − a)2

+ r2

2
arctan

(
x − a√

r2 − (x − a)2

)
+ bx,

042113-9



NIKOLAI I. LEBOVKA et al. PHYSICAL REVIEW E 103, 042113 (2021)

TABLE I. Functions of the boundaries.

x y(x) Equations in canonical form

Function of the upper boundary of the ith stadium F i
+, when αi ∈ (−π/2, π/2):

x0(F i
+) = xi − a cos αi − r √

r2 − (x − xi + a cos αi )2 + yi − a sin αi (x − xi + a cos αi )2 + (y − yi + a sin αi )2 = r2

x1(F i
+) = xi − a cos αi − r sin αi

(x + r sin αi − xi ) tan αi + yi + r cos αi x sin αi − y cos αi + r − xi sin αi + yi cos αi = 0
x2(F i

+) = xi + a cos αi − r sin αi √
r2 − (x − xi − a cos αi )2 + yi + a sin αi (x − xi − a cos αi )2 + (y − yi − a sin αi )2 = r2

x3(F i
+) = xi + a cos αi + r

Function of the upper boundary of the ith stadium F i
+, when αi = −π/2:

x0(F i
+) = xi − r √

r2 − (x − xi )2 + yi + a (x − xi )2 + (y − yi − a)2 = r2

x1(F i
+) = xi + r

Function of the lower boundary of the ith stadium F i
−, when αi ∈ (−π/2, π/2):

x0(F i
−) = xi − a cos αi − r

−
√

r2 − (x − xi + a cos αi )2 + yi − a sin αi (x − xi + a cos αi )2 + (y − yi + a sin αi )2 = r2

x1(F i
−) = xi − a cos αi + r sin αi

(x − r sin αi − xi ) tan αi + yi − r cos αi x sin αi − y cos αi − r − xi sin αi + yi cos αi = 0
x2(F i

−) = xi + a cos αi + r sin αi

−
√

r2 − (x − xi − a cos αi )2 + yi + a sin αi (x − xi − a cos αi )2 + (y − yi − a sin αi )2 = r2

x3(F i
−) = xi + a cos αi + r

Function of the lower boundary of the ith stadium F i
−, when αi = −π/2 :

x0(F i
−) = xi − r

−
√

r2 − (x − xi )2 + yi − a (x − xi )2 + (y − yi + a)2 = r2

x1(F i
−) = xi + r

∫
(−

√
r2 − (x − a)2 + b) dx

= −x − a

2

√
r2 − (x − a)2

− r2

2
arctan

(
x − a√

r2 − (x − a)2

)
+ bx,

∫
(ax + b) dx = ax2

2
+ bx.
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