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Effects of turbulent environment and random noise on self-organized
critical behavior: Universality versus nonuniversality
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Self-organized criticality in the Hwa-Kardar model of a “running sandpile” [Phys. Rev. Lett. 62, 1813 (1989);
Phys. Rev. A 45, 7002 (1992)] with a turbulent motion of the environment taken into account is studied with the
field theoretic renormalization group (RG). The turbulent flow is modeled by the synthetic d-dimensional gener-
alization of the anisotropic Gaussian velocity ensemble with finite correlation time, introduced by Avellaneda and
Majda [Commun. Math. Phys. 131, 381 (1990); 146, 139 (1992)]. The Hwa-Kardar model with time-independent
(spatially quenched) random noise is considered alongside the original model with white noise. The aim of the
present paper is to explore fixed points of the RG equations which determine the possible types of universality
classes (regimes of critical behavior of the system) and critical dimensions of the measurable quantities. Our
calculations demonstrate that influence of the type of random noise is extremely large: in contrast to the case of
white noise where the system possesses three fixed points, the case of spatially quenched noise involves four fixed
points with overlapping stability regions. This means that in the latter case the critical behavior of the system
depends not only on the global parameters of the system, which is the usual case, but also on the initial values
of the charges (coupling constants) of the system. These initial conditions determine the specific fixed point
which will be reached by the RG flow. Since now the critical properties of the system are not defined strictly by
its parameters, the situation may be interpreted as a universality violation. Such systems are not forbidden, but
they are rather rare. It is especially interesting that the same model without turbulent motion of the environment
does not predict this nonuniversal behavior and demonstrates the usual one with prescribed universality classes
instead [J. Stat. Phys. 178, 392 (2020)].
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I. INTRODUCTION

Since its introduction, the concept of self-organized crit-
icality (SOC) [1–7] has been a focus of constant attention
and scrutiny [8–11]. In a stark contrast to equilibrium sys-
tems that display critical scaling (long-time and large-distance
asymptotic behavior with universal exponents), when a tun-
ing parameter (e.g., the temperature) approaches a critical
value [12–14], the systems with SOC arrive at the critical
state due to their intrinsic dynamics. This “self-tuning” is
observed in various open nonequilibrium systems with dis-
sipative transport including biological systems [15,16], their
subclass neural systems [17–22], online social network sys-
tems [23–28], and various others. As advanced data analysis
and sophisticated computational methods become more avail-
able, researchers from various fields increasingly turn to the
concept of SOC. For example, in Ref. [29] SOC was used to
explain connection between crop losses and extreme climate
events, while in Ref. [30] crisis behavior in autism spectrum
disorders was analyzed as a self-tuned critical state.

*n.antonov@spbu.ru
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‡p.kakin@spbu.ru

SOC is usually described by discrete models, with dis-
crete space and time evolution. For example, in Ref. [23]
the model of a disordered system of interacting spins was
used to determine the primary mechanism for self-tuning
in a social network for human collaborative knowledge cre-
ation. Nevertheless, universal scaling properties of SOC can
be studied using simplified continuous models for smoothed
(coarse-grained) fields. Indeed, this approach proved to be
fruitful for investigation of critical behavior of various discrete
systems. For example, it was found that the discrete Ising and
Heisenberg models of equilibrium critical behavior belong
to the universality class of the continuous O(n)-symmetric
ϕ4 model; see Refs. [12–14]. A nonequilibrium example is
provided by growth phenomena and fluctuating surfaces [31],
where numerous discrete models are believed to belong to
the universality class of the continuous Kardar-Parisi-Zhang
model [32,33]; for a recent discussion of reaction-diffusion
models see Ref. [34]. The conserved directed-percolation re-
lated to the Manna universality class of SOC is also often
studied by continuous models; see recent papers [35,36].

In papers [37,38], Hwa and Kardar proposed an anisotropic
stochastic differential equation as a continuous model for a
system with SOC. The equation describes evolution of a sand-
pile surface that undergoes changes as new sand enters the
system and triggers avalanches (a “running” sandpile). The
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surface has a flat average slope that determines the preferred
direction for the sand transport.

Let us describe the model. The stochastic equation for the
scalar field h(x) = h(t, x) that denotes a deviation of the sand
profile height from its average value is taken in the form

∂t h = ν⊥0 ∂2
⊥h + ν‖0 ∂2

‖ h − ∂‖h2/2 + f . (1.1)

A unit constant vector n defines the preferred direction, so any
vector x decomposes as x = x⊥ + n x‖ where (x⊥ · n) = 0.
This leads to the appearance of the two spatial derivatives:
a (d − 1)-dimensional gradient ∂⊥ and one-dimensional gra-
dient ∂‖. The former ∂⊥ = ∂/∂xi with i = 1, . . . , (d − 1) is
the derivative in the subspace orthogonal to n, and the latter
is defined as ∂‖ = (n · ∂). The symbol d denotes the spatial
dimension, ∂t = ∂/∂t , ∂2

⊥ = (∂⊥ · ∂⊥), ν‖0 and ν⊥0 are two
diffusivity coefficients, and f (x) is a random noise. Tradition-
ally, the nonlinear term ∂‖h2/2 would have a coupling constant
as a factor. Here the fields and the parameters were rescaled
to make this factor equal to unity (the coupling constant, thus,
appears in the amplitude of the correlator for random noise f ).

Different types of random noise correspond to different
physical systems and, as we will see, lead to completely dif-
ferent critical properties. A white noise fw(x), i.e., a Gaussian
random noise with zero mean and the pair correlation function
of the form

〈 fw(x) fw(x′)〉 = C0 δ(t − t ′) δ(d )(x − x′), C0 > 0, (1.2)

was used in Refs. [37,38]. A generalization of the Hwa-Kardar
model with this noise and the coupling constant that was also
considered to be a random field was proposed and studied in
Ref. [39]. A model similar to (1.1)–(1.2) with the nonlinear-
ity ∝ ∂2

‖ h3 was introduced in Refs. [40,41] and discussed in
relation to erosion of landscapes.1

In addition to (1.2), the authors of Refs. [40,41] studied the
case of the time-independent (spatially quenched) noise with
correlation function

〈 fs(x) fs(x
′)〉 = D0 δ(d )(x − x′), D0 > 0. (1.3)

It turned out that the model [40,41] predicts nontrivial scaling
behavior only for the case of spatially quenched noise (1.3).
Moreover, in this case the nontrivial behavior is nonuniver-
sal [44].

Originally, the noise (1.3) was proposed in Ref. [47] to
reflect the existence of nonerodible (“quenched”) regions of
landscape in the problem of erosion. This choice was mo-
tivated by the experimental results that had revealed that
heterogeneity of the soil is likely the main factor leading to
scaling in erosion [48]. Spatially quenched noise (1.3) and its
more general form that depends on the field h [see Eq. (1.1)]
were also studied in Refs. [49–52]. In particular, the connec-
tion of this noise to nonuniversality in relation to directed
percolation was discussed in Refs. [53–55].

In general, random noise is an essential part of a model. It
incorporates various random processes that affect the system

1It should be noted that such a modification leads to drastic changes
in the RG analysis: the model [40,41] appears renormalizable only in
its extended version that involves infinitely many coupling constants;
see Refs. [42–46] for discussion.

while satisfying underlying symmetries of the problem, e.g.,
the Galilean symmetry. Thus, the choice of noise is one of
the key steps in model construction. Then it is natural to
expect that the change of noise would greatly affect the critical
behavior of the model.

However, the exact effect of the type of noise on the scaling
behavior is difficult to predict. For example, analysis of the
Hwa-Kardar model (1.1) with spatially quenched noise (1.3)
did not reveal any universality classes with unexpected fea-
tures [45,46]. It was shown in Refs. [56,57] that the stochastic
Navier-Stokes equation with temporally correlated noise re-
veals the same scaling properties as if the noise was white
in time. On the other hand, it was recently reported that
temporally correlated noise in the Kardar-Parisi-Zhang model
causes anomalous scaling behavior [58]. So this effect seems
to be an important avenue to explore.

The critical behavior of the system can also be greatly
affected by the turbulent flows present in the environment; see,
e.g., Refs. [59–69]. The advection by the velocity field v(x)
can be introduced by the “minimal” replacement in Eq. (1.1):

∂t → ∇t = ∂t + (v · ∂). (1.4)

Here ∇t is the Galilean covariant (Lagrangian) derivative.
The Hwa-Kardar model (1.1) with turbulent flow was stud-

ied in Ref. [70]. Since the model (1.1) has an intrinsic strong
anisotropy (the preferred direction for the sand transport) it is
natural to use an anisotropic ensemble for velocity statistics,
too. In Ref. [70] the noise was chosen in the form (1.2),
while a d-dimensional generalization of the velocity ensemble
with vanishing correlation time, introduced earlier by Avel-
laneda and Majda [71,72], was employed as velocity statistics.
This ensemble can be considered as an anisotropic version of
the Kazantsev-Kraichnan “rapid-change” ensemble. The latter
attracted enormous attention at the turn of the millennium
within the turbulent community because of the deep insight it
offered into the origins of intermittency and anomalous scal-
ing in fluid turbulence; see Ref. [73] and references therein.

In this paper we try to move ahead by using a more realistic
version of the aforementioned Avellaneda-Majda ensemble
that incorporates finite correlation time. Let us describe it in
detail: following Refs. [71,72] and subsequent works (see also
Refs. [74] and [75–82]) we take the velocity field in the form

v = n v(t, x⊥), (1.5)

where v(t, x⊥) is a scalar function. Thus defined, the veloc-
ity field describes incompressible fluid: the function v(t, x⊥)
does not depend on x‖, therefore, (∂ · v) = ∂‖ v(t, x⊥) = 0.
This velocity ensemble was studied earlier (also in the short-
correlated version) in Refs. [67,83–85] in connection with
the effects of turbulent motion on the dynamic critical be-
havior and in Refs. [86–90] in connection with the problem
of anomalous scaling of passively advected scalar and vector
fields. It can also be viewed as an anisotropic modification of
the ensemble studied in Refs. [91–94] in connection with the
anomalous scaling in fluid turbulence and in Refs. [66–69] in
connection with the effects of turbulent motion on the critical
behavior.

The amplitude velocity coefficient v(t, x⊥) has Gaussian
distribution with zero mean and prescribed pair correlation
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function

〈v(t, x⊥) v(t ′, x′
⊥)〉

=
∫

dω

2π

∫
k>m

dk
(2π )d

eik(x−x′ )−iω(t−t ′ ) Bv (ω, k), (1.6)

where

Bv (ω, k) = 2πδ(k‖) B0
k5−d−(ξ+η)
⊥

ω2 + (α0ν⊥0k2−η

⊥ )2
. (1.7)

Here k⊥ = |k⊥|, while the infrared (IR) regularization in the
form of the sharp cutoff k⊥ > m is chosen for convenience.
Other parameters besides m in Eqs. (1.6)–(1.7) include the
constant positive amplitude factor B0, a new parameter α0

needed for dimensional consistency, and two arbitrary expo-
nents ξ and η. The role of the exponent ξ could be understood
from the asymptotic law of the one-dimensional velocity en-
ergy spectrum:

E(k⊥) ∼ kd−2
⊥ B0

∫
dω

2π

k5−d−(ξ+η)
⊥

ω2 + (α0ν⊥0k2−η

⊥ )2
= B0

2α0ν⊥0
k1−ξ

⊥ .

(1.8)

The exponent η, on the other hand, appears in the dispersion
law

ω(k⊥) ∼ k2−η

⊥ . (1.9)

The notation z = 2 − η is sometimes used in the literature
instead; see, e.g., Ref. [72].

The specific choice of the velocity correlation func-
tion (1.6), (1.7) can be justified by connection with the
stochastic Navier-Stokes equation [86]. The substitution (1.5)
“kills” the nonlinearity in the Navier-Stokes equation:
(v · ∂) vi = ni v(t, x⊥) ∂‖v(t, x⊥) = 0. The equation becomes
linear and, thus, determines a Gaussian distribution known
as the Ornstein-Uhlenbeck process [95,96]. An appropriate
power-like choice of the effective viscosity coefficient and the
correlation function of the stirring force leads to the correla-
tion function (1.6), (1.7). For a more detailed discussion; see
Sec. 9 in Ref. [86].

In contrast to the rapid-change model, where the corre-
lation function depends on time as δ(t − t ′) and does not
depend on the frequency ω, our choice (1.6)–(1.7) has a power
dependence on ω. This means that it is a colored noise with
finite correlation time. Depending on α0 and B0 it allows
for two special cases interesting on their own. The limit
α0 → 0 at fixed B0/α0 corresponds to the case of a “frozen” or
“quenched” velocity field that does not depend on time. The
correlator (1.6) then turns into Bv ∼ δ(ω)k3−d−ξ . The limit
α0 → ∞ at fixed B0/α

2
0 returns us to the vanishing correla-

tion time (“rapid-change” case) where 〈v(t, x⊥) v(t ′, x′
⊥)〉 ∼

δ(t − t ′)/kd−1+ξ̃

⊥ and ξ̃ = ξ − η. The exponent 0 < ξ̃ < 2 is,
in a sense, a Hölder’s exponent that indicates “roughness”
of the velocity field. A smooth velocity is associated with
the “Batchelor limit” ξ̃ → 2 while the most realistic ve-
locity corresponds to the Kolmogorov values ξ̃ = 4/3 and
η = 4/3 [73]. Thus, the Kolmogorov values of the exponents
ξ and η are 8/3 and 4/3, respectively.

In the present paper, we study two models of SOC
with a field theoretic RG approach. The first model con-
sists of the stochastic equation (1.1) with white in-time
noise (1.2) subjected to turbulent stirring (1.4)–(1.7). The
second model differs from the first one only in the choice of
random noise in the equation (1.1); i.e., spatially quenched
noise (1.3) is used instead of white noise (1.2). As we
will see, the obtained results are completely different. Both
models can be reformulated as quantum field theories, so
their possible large-scale, long-distance asymptotic regimes
are associated with IR attractive fixed points of the RG
equations.

There are two different ways to organize this paper. On
the one hand, we analyze two specific models and obtain
specific results, so it is possible to present these two models
separately, i.e., in series. On the other hand, we want to stress
how the type of the noise affects the results; for this reason
it is more convenient to present two models in parallel. We
chose the latter way. What is the most interesting is that
there are no significant differences between the two models
even in the obtained β functions: for both models they are
very similar to each other, and it is impossible to predict
the essential difference in the following analysis at a first
glance. In our opinion, this is the most interesting issue from
theoretical viewpoints, and, thus, we chose the organization
of the paper that highlighted it. We hope that we will not
cause too much inconvenience to the reader with the use of
repeating symbols for different cases: since the starting equa-
tion (1.1) and some others are the same for both models, this is
unavoidable.

Consequently, the paper is organized as follows. In Sec. II
the field theoretic formulations of the models are presented
and Feynman diagrammatic techniques are introduced. In
Sec. III renormalization of the models (divergent Green
functions, renormalized actions, and constants Z needed for
multiplicative renormalization) is discussed. Section IV is
devoted to the RG equation, RG functions, and IR attractive
fixed points related to them. In Sec. V the critical scaling be-
havior and critical dimensions in different scaling regimes are
discussed. Section VI is reserved for conclusions. The main
result is that the pattern of the fixed points and their regions of
stability for the model with spatially quenched noise is much
more complicated than their counterparts for the model with
white noise.

Appendixes A and B contain some details of the calcu-
lations. Since it is a technical point, we do not discuss any
details of the calculations in the main text; herewith, it may be
useful or interesting at some point to see them.

II. FIELD THEORETIC FORMULATION OF THE MODELS

Beginning here, every section is organized as follows: we
start with the model that involves white noise (1.2), which we
refer to as Model 1 in the text. Then we consider the model
with spatially quenched noise (1.3); this model is referred to
as Model 2.

According to the general theorem, any stochastic differen-
tial equation of the type (1.1)–(1.3), first-order in the time
derivative, is equivalent to a field theoretic model with cer-
tain action functional S(�); see, e.g., Refs. [97–103] and the
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monographs [13,14].2 This equivalence means that statistical
averages of random quantities in the initial stochastic problem
coincide with functional averages with the weight expS(�).3

This idea appears to be very fruitful and allows one to ap-
ply the well-known techniques of quantum field theory, like
Feynman diagrammatic techniques, renormalization and the
RG equation, operator product expansion, etc., to problems of
statistical physics.

A. Model 1: The model with white noise

The action functional S(�) mentioned above for the
stochastic problem (1.1), (1.2), (1.4), and (1.6) involves the
extended set of fields � = {h′, h, v} and reads

S(�) = 1
2 h′D0 h′ + h′{−∂t h − v ∂‖h + ν⊥0 ∂2

⊥h

+ ν‖0 ∂2
‖ h − ∂‖h2/2} + Sv. (2.1)

Here h′ is the auxiliary (response) field and all the integrations
over x = {t, x}, and summations over the vector indices are
implied; for instance,

1

2
h′D0 h′ = 1

2

∫
dt dx h′(t, x) h′(t, x). (2.2)

The term Sv describes the Gaussian averaging over the veloc-
ity field v:

Sv = 1

2

∫
dt dx⊥dx′

⊥ v(t, x⊥) B̃−1
v (x⊥ − x′

⊥) v(t, x′
⊥),

(2.3)
where B̃−1

v is the kernel of the linear operation B−1
v which is

the inverse operation for Bv in (1.7).
The Feynman diagrammatic technique for the theory (2.1)

involves four bare propagators. The velocity propagator 〈vv〉0

is defined in (1.6). The other four propagators that contain
the height field h and response field h′ in the frequency-
momentum representation read

〈hh〉0 = D0

ω2 + ε2(k)
, 〈hh′〉0 = 〈h′h〉∗0 = 1

−iω + ε(k)
,

〈h′h′〉0 = 0, (2.4)

where we denote ε(k) = ν‖0 k2
‖ + ν⊥0 k2

⊥.
The nonlinear terms −h′∂‖h2/2 and −h′(v∂‖)h define the

vertices Vh′hh and Vh′vh. It is convenient to define the corre-
sponding coupling constants g0 and w0 by the relations

D0 = g0 ν
3/2
‖0 ν

(dL−1)/2
⊥0 , B0 = w0 ν‖0 ν2

⊥0, (2.5)

where dL is logarithmic dimension of the model. Then, canon-
ical dimension analysis (see Sec. III for details) gives g0 ∼
�−ε and w0 ∼ �−ξ−η, where � sets the smallest length scale in
the problem (ultraviolet cutoff) and ε = 4 − d . The parameter
α0 ∼ �−η should be considered alongside the coupling con-
stants. Indeed, although it is not an expansion parameter in

2It is essential here that the interaction term depends only on
the fields and their spatial derivatives of arbitrary order at a single
moment t .

3In fact, the main idea of this formalism dates back to the seminal
works of Onsager and Machlup on irreversible stochastic pro-
cesses [104,105].

the perturbation theory, the RG function will depend on its
renormalized analog.

B. Model 2: The model with spatially quenched noise

Now let us turn to Model 2. As the previous one, it can
be reformulated as a field theory of the set of three fields � =
{h′, h, v}. The action functional has the same form as Eq. (2.1)
with the only difference being that the first term now reads

1

2
h′D0 h′ = 1

2

∫
dt dt ′

∫
dx h′(t ′, x) D0 h′(t, x) (2.6)

with the double integration over the time variables.
As Model 1, Model 2 also involves five bare propagators.

The propagator 〈vv〉0 is still defined in (1.6); another four
propagators in the frequency-momentum representation read

〈hh〉0 = 2πδ(ω) D0

ε2(k)
, 〈hh′〉0 = 〈h′h〉∗0 = 1

−iω + ε(k)
,

〈h′h′〉0 = 0, (2.7)

where ε(k) is defined by linear part of Hwa-Kardar equation
and, therefore, is the same as for Model 1; see Eq. (2.4).

As before, the theory involves two vertices related to the
interaction terms and three coupling constants: g0 and w0 de-
fined by (2.5) and α0. From canonical dimension analysis (see
Sec. III) it follows that g0 ∼ �−ε̃, w0 ∼ �−ξ−η, and α0 ∼ �−η

with ε̃ = 6 − d .

III. RENORMALIZATION OF THE MODELS

Ultraviolet (UV) divergences are determined through
canonical dimensions analysis (“power counting”); see, e.g.,
Refs. [12–14]. Let us briefly detail the process. First, one
needs to find canonical dimensions of the fields and param-
eters of the theory. The strongly anisotropic dynamic theories
like Model 1 and Model 2 have three independent scales:
the timescale T and two length scales (in the corresponding
subspaces) L⊥ and L‖. Thus, a quantity F is described by three
canonical dimensions:

[F ] ∼ [T ]−dω
F [L⊥]−d⊥

F [L‖]−d‖
F .

The total canonical dimension dF is a sum of the dou-
bled frequency dimension dω

F and the momentum dimensions
d⊥

F and d‖
F : dF = d⊥

F + d‖
F + 2 dω

F . The free theory relation
∂t ∝ ∂2

⊥ ∝ ∂2
‖ explains the factor 2.

As each term of the action (2.1) is completely dimension-
less (∼[T ]0[L⊥]0[L‖]0), the canonical dimensions can be eas-
ily calculated; the normalization conditions d⊥

k⊥ = −d⊥
x⊥ = 1,

d‖
k⊥ = −d‖

x⊥ = 0, dω
k⊥ = dω

k‖ = 0, dω
ω = −dω

t = 1 are assumed.

A. Model 1: The model with white noise

The canonical dimensions for Model 1 are presented in
Table I. The parameter μ is the renormalization mass, i.e., the
reference momentum scale defined by its canonical dimen-
sions [14].

From Table I it follows that the model is logarithmic (all
the coupling constants are dimensionless, or, in other words,
all the interactions are marginal in the sense of Wilson) at
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TABLE I. Canonical dimensions of the fields and the parameters in Model 1; ε = 4 − d .

F h′ h D0 ν‖0 ν⊥0 v B0 α0 g0 w0 μ, m

dω
F −1 1 3 1 1 1 3 0 0 0 0

d‖
F 2 −1 −3 −2 0 −1 −2 0 0 0 0

d⊥
F d − 1 0 1 − d 0 −2 0 ξ + η − 4 η ε ξ + η 1

dF d − 1 1 4 − d 0 0 1 ξ + η η ε ξ + η 1

ε = ξ = η = 0, where ε = 4 − d . Thus, these three expo-
nents will serve as the expansion parameters in the RG theory.

Once canonical dimensions are found, the UV divergences
can be analyzed. The UV divergence index of an arbitrary 1-
irreducible Green function � = 〈� · · · �〉1−ir is given by the
expression

δ� = d + 2 − Nh′ dh′ − Nh dh − Nv dv |ε=ξ=η=0, (3.1)

where Nh, Nh′ , Nv are the numbers of the corresponding fields
in the function �.

If δ� is a nonnegative integer, then the function � may con-
tain superficial UV divergences. Table I and expression (3.1)
gives

δ� = 6 − 3Nh′ − Nh − Nv. (3.2)

There are additional considerations that should be taken
into account when analyzing UV divergences. First, since both
vertices Vh′hh and Vh′vh allow to move derivative ∂‖ onto the
field h′ the real index of divergence reads

δ′
� = δ� − Nh′ . (3.3)

Moreover, all 1-irreducible Green functions without response
field h′ involve closed circuits of retarded propagators 〈h′h〉0

and, thus, vanish [14]. So Nh′ � 1.
The Galilean symmetry usually forbids some of the coun-

terterms allowed by power counting and, therefore, reduces
the number of counterterms. However, the correlation func-
tion (1.6) does not contain the Dirac function δ(t − t ′)
necessary for Galilean symmetry. This lack of symmetry may
result in some “interesting physical pathologies” [106]. In the
present case, though, due to the strong anisotropy of the the-
ory (2.1) and incompressibility of the velocity, the action (2.1)
is invariant under the following Galilean transformations:

h(t, x) → h(t, x + u t ), h′(t, x) → h′(t, x + u t ),

v(t, x) → v(t, x + u t ) − u, (3.4)

where u = n u, which can be verified by direct substitution.
Expression (3.4) means that the scalar velocity changes as
v(t, x⊥) → v(t, x⊥) − u and x⊥ remains unchanged in all of
the fields in (3.4). This symmetry can be viewed as a residue
of the full-scale Galilean symmetry that survived the substitu-
tion (1.5) made in the Navier-Stokes equation.4

In our case this observation forbids counterterms for 1-
irreducible functions with the field v, namely, 〈h′v〉1−ir with
δ� = 2, 〈h′hv〉1−ir with δ� = 1, and 〈h′vv〉1−ir with δ� = 1.

4We stress that in the isotropic version, the Gaussian velocity en-
semble with a finite correlation time is not Galilean covariant; for a
discussion see, e.g., [86,91,92,106].

Moreover, there are two types of graphs for function
〈h′hh〉1−ir with δ� = 1: the one with propagator 〈vv〉 inside
the core (integrand) and the one without. The former is triv-
ially equal to zero, while the core of the graphs of the latter
fully coincides with similar cores for the function 〈h′hv〉1−ir .
This means that the Galilean symmetry, in fact, forbids the
possible counterterm for function 〈h′hh〉1−ir , too.

Taking all of the above into account, we can ascertain that
only one counterterm has to be considered which is h′∂2

‖ h that
appears from the 1-irreducible function 〈h′h〉1−ir with δ� = 2.
This means that Model 1 is renormalizable, and renormalized
action reads

SR(h, h′, v) = 1
2 h′D h′ + h′{− ∂t h − v ∂‖h + ν⊥∂2

⊥h

+ Zν‖ ν‖ ∂2
‖ h − ∂‖h2/2} + Sv. (3.5)

This renormalization can be reproduced by multiplicative
renormalization of the parameters

g0 = με gZg, w0 = μζ+η w Zw, α0 = α μη,

ν‖ 0 = ν‖ Zν‖ , ν⊥ 0 = ν⊥. (3.6)

Here g, w, etc., are renormalized counterparts of the bare
parameters g0, w0, etc.; μ is the renormalization mass, an
additional parameter of the renormalized theory (see, e.g.,
Refs. [13,14]). Due to the fact that there is only one coun-
terterm, the fields h, h′, and v are not renormalized, and the
following relations hold true:

Zg = Z−3/2
ν‖ , Zw = Z−1

ν‖ .

The renormalization constant Zν‖ can be calculated in the
double series in g and w. In the minimal subtraction (MS)
scheme all the renormalization constants have the forms “Z =
1+ only poles in ε, ξ and their combinations.” The leading-
order (one-loop) calculation gives

Zν‖ = 1 − 1

2α (1 + α)

w

ξ
− 3

16

g

ε
(3.7)

with the corrections of higher orders in g and w. Here and
below we redefined the coupling constant g → gSd/(2π )d

where Sd = 2πd/�(d/2) is the area of the unit sphere in the
d-dimensional space; the same redefinition is also true for the
second coupling constant w. Details of the calculations can be
found in Appendix A.

B. Model 2: The model with spatially quenched noise

Now let us turn again to Model 2. Canonical dimensions
for Model 2 are presented in Table II. The only difference
between the two sets of canonical dimensions is the dimension
of the parameter D0, which leads to a different dimension of
the coupling constant g0. This in turn leads to the shift of the
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TABLE II. Canonical dimensions of the fields and the parameters in Model 2; ε̃ = 6 − d .

F h′ h D0 ν‖0 ν⊥0 v B0 α g0 w0 μ, m

dω
F −1 1 4 1 1 1 3 0 0 0 0

d‖
F 2 −1 −3 −2 0 −1 −2 0 0 0 0

d⊥
F d − 1 0 1 − d 0 −2 0 ξ + η − 4 η ε̃ ξ + η 1

dF d − 1 1 6 − d 0 0 1 ξ + η η ε̃ ξ + η 1

logarithmic dimension of the model: now all of the couplings
are dimensionless at ε̃ = ξ = η = 0 where ε̃ = 6 − d .

The UV divergence index of an arbitrary 1-irreducible
Green function � is given by Eq. (3.1) and reads

δ� = 8 − 5Nh′ − Nh − Nv. (3.8)

The spatially quenched noise (1.3) destroys Galilean sym-
metry (3.4), which is true for Model 1. This fact can be
checked directly: the term (2.6) is not invariant under the
transformations (3.4). Thus, in contrast to Model 1, we have
to deal with all five types of divergent functions: 〈h′h〉1−ir ,
〈h′v〉1−ir , 〈h′hv〉1−ir , 〈h′hh〉1−ir , and 〈h′vv〉1−ir .

In the same time, since the propagator 〈hh〉0 in Eq. (2.7) is
proportional to δ(ω), Model 2 has an additional feature that
leads to a reduction of counterterms: when a diagram involves
n � 2 inner lines 〈hh〉0, it with necessity has (n − 1) delta
functions of external frequencies δ(�i ) as factors. Each factor
contributes dδ(�i ) = −2 to the divergence index while being
unrelated to the momenta divergence. Thus, the real index of
divergence has an additional term 2(n − 1) and reads

δ′′
� = δ� − Nh′ + 2(n − 1). (3.9)

The possible “dangerous” function of such type is 〈h′h′〉1−ir .
It has formal index of divergence δ� = −2, but the one-loop
approximation contains the graph with two lines 〈hh〉0. This
allows for a possibility that the integral over momenta has
a logarithmic divergence. However, the situation is safe due
to the two vertices Vh′hh, which are responsible for the term
−Nh′ in Eq. (3.9). Thus, the real index of divergence for this
function δ′′

� = −2, and we have no problems with it.
One more nontrivial observation for this model is worth

mentioning. Usually when we state that a Green function
is divergent, we actually mean that there are divergences of
the integrals over momenta, i.e., divergences of the Feynman
graphs itself. But integrals over momenta are just a core of
the Green functions: they should be contracted with external
projectors, propagators, or fields. If transverse vector fields
are involved, such a contraction may lead to an unexpected
vanishing of the result.

Let us consider the function 〈h′v〉0 whose index of diver-
gence is δ′′

� = 1, so, according to the dimensional analysis,
we should account for it in the renormalization procedure.
However, owing to the vertex factor Vh′hh, each graph for
this function is proportional to an external momenta p‖. This
feature along with the property ∂‖ v(t, x⊥) = 0 [see Eq. (1.5)]
leads to the fact that 〈h′v〉0 = 0 after the contraction of the
core of the graph with the external “tails” h′ and v.

The same observation also holds for the function 〈h′vv〉0:
each graph contains two external momenta and the Green
function itself involves two vector fields v. Thus, this function
also vanishes, along with the corresponding counterterm.

The similar observation is no longer true for the function
〈h′hv〉0: there are still two external momenta, but the Green
function itself involves only one vector field v. This means
that some nontrivial divergent part survives the contraction.

The functions that contain four or more fields have a nega-
tive real index of divergence δ′

� and, therefore, are not needed
for the renormalization procedure from general requirements.

Taking all of the above into account, we can ascertain that
three counterterms have to be considered, which are h′∂2

‖ h,
h′v ∂‖ h, and h′∂‖h2, which appear from the 1-irreducible func-
tions 〈h′h〉1−ir , 〈h′hv〉1−ir , and 〈h′hh〉1−ir correspondingly.
Thus, Model 2 is multiplicatively renormalizable, and renor-
malized action reads

S(h, h′, v) = 1
2 h′D h′ + h′{−∂t h − Zv v ∂‖h + ν⊥∂2

⊥h

+ Zν‖ ν‖ ∂2
‖ h − Zh ∂‖h2/2} + Sv. (3.10)

This procedure can be reproduced by multiplicative renormal-
ization of the fields h → h Zh, h′ → h′ Zh′ , v → v Zv and the
parameters

g0 = με̃ gZg, w0 = μζ+η w Zw, α0 = αμη,

ν‖ 0 = ν‖ Zν‖ , (3.11)

where g, w, etc., are renormalized counterparts of the bare
parameters and μ is the renormalization mass. The viscosity
ν⊥ 0 remains the same: ν⊥ 0 = ν⊥. The relations

Zh′ = Z−1
h , Zg = Z2

h Z−3/2
ν‖ , Zw = Z2

v Z−1
ν‖ (3.12)

result from the absence of renormalization of the other terms
in (3.10).

Three independent constants Zν‖ , Zv , and Zh can be cal-
culated in the double series in g and w. In the leading order
(one-loop approximation) and MS scheme they read

Zv = Zh = 1 + 1

6

g

ε̃
; Zν‖ = 1 − 1

2α (1 + α)

w

ξ
− 2

3

g

ε̃
.

(3.13)

Details of the calculations can be found in Appendix B.

IV. RENORMALIZATION GROUP, FIXED POINTS, AND
SCALING REGIMES

The relation between the initial action functional and the
renormalized one S(�, e0) = SR(Z��, e, μ), where e is the
complete set of parameters, yields the fundamental RG dif-
ferential equation whose coefficients are the so-called β and
γ functions (also referred to as RG functions). They are
defined as

βq = D̃μq, γF = D̃μ ln ZF , (4.1)
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where F denotes any quantity (a field or a parameter) with
nontrivial renormalization constant ZF and q = {g,w, α} is
any of the coupling constants. Here and below Dx = x∂x

for any variable x and D̃μ = μ∂μ at fixed bare parameters
ν‖0, ν⊥0,w0, g0, α0.

The analysis of the RG equations shows that the long-time,
large-scale asymptotic behavior of a given model is governed
by the IR attractive fixed points q∗. In our case, the coordi-
nates of the fixed points q∗ = {g∗,w∗, α∗} are found from the
equations

βg(g∗,w∗, α∗) = 0, βw(g∗,w∗α∗) = 0,

βα (g∗,w∗, α∗) = 0. (4.2)

The point is IR attractive (or IR stable) if the real parts of all
the eigenvalues λi of the matrix

�i j = ∂βi

∂g j

∣∣∣∣
g∗,w∗,α∗

(4.3)

are positive. This follows from the analysis of the asymptotic
behavior of the system of ordinary differential equations for
the invariant (“running”) coupling constants in the vicinity of
a given fixed point:

Dsqi = βi(q j ), (4.4)

whose solution as s = k/μ → 0 (IR limit) reads

qi(s, q) ∼= q∗
i +

∑
i

ci sλi . (4.5)

Here ci are some constants, λi are the eigenvalues of the
matrix (4.3), and q = {qi} is the set of the coupling constants.

Alternatively, the first-order system of differential equation
(a dynamical system) (4.4) gives rises to the possibility of
numerical simulation of the RG flow. Such a simulation allows
one to check the obtained analytical results. Below we present
the results of such simulations for Model 2: since it has the
most interesting and entangled pattern of the RG flows, it is
very desirable to compare the results of the analytical analysis
with the outcome of numerical simulations.

A. Model 1: The model with white noise

As there is only one nontrivial independent renormaliza-
tion constant in Model 1, all the β functions can be expressed
through the only anomalous dimension γν‖ :

βw = −w (ξ + η − γν‖ ), βg = −g
(
ε − 3

2 γν‖
)
,

βα = −α η. (4.6)

From Eq. (3.7) it follows that

γν‖ = w

2α (1 + α)
+ 3g

16
(4.7)

with corrections of higher orders in g and w implied. This
leads to the following system of β functions:

βw = w

[
−ξ − η + w

2α(1 + α)
+ 3g

16

]
,

βg = g

[
−ε + 3w

4α(1 + α)
+ 9g

32

]
, βα = −αη. (4.8)

It should be noted that the functions βg and βw in Eq. (4.6)
satisfy the exact relation

w βg − 3gβw/2 = gw [−ε + 3(ξ + η)/2] (4.9)

as a consequence of the fact that both of them involve the same
anomalous dimension γν‖ . Thus, Eqs. (4.2) are not satisfied for
arbitrary values of the exponents ε, ξ , and η unless one of the
coordinates g∗ or w∗ is equal to zero (cf. Ref. [91] for the
isotropic case).

The analysis of the system (4.8) reveals two groups of
the fixed points arranged according to the value of α∗. The
two possible values of α∗ are α∗ = 0 and 1/α∗ = 0. The
first case describes a frozen (or “quenched”) velocity field,
while the second corresponds to the “rapid-change ensem-
ble” with vanishing correlation time; see the comments below
Eqs. (1.7)–(1.9).

Let us start with the former: α∗ = 0, λα = −η. It is then
convenient to replace the coupling constant w with the new
one w′ = w/α with the corresponding β function

βw′ = βw

α
− w

βα

α2
= w′

(
−ξ + w′

2
+ 3g

16

)
, (4.10)

which remains finite at α → 0.
The relation (4.9), therefore, becomes

w′ βg − 3gβw′/2 = gw′ (−ε + 3ξ/2), (4.11)

and the system (4.8) with the replacement (4.10) allows the
following three possible solutions.

Point (1a) with coordinates w′∗ = 0, g∗ = 0 and the eigen-
values of the matrix (4.3) λ1 = −ε, λ2 = −ξ . At this fixed
point, all the interactions are irrelevant and the model is free
(Gaussian). It is IR attractive for ε < 0, η < 0, and ξ < 0.

Point (2a) with coordinates w′∗ = 0, g∗ = 32ε/9; the cor-
responding eigenvalues are λ1 = 2ε/3 − ξ and λ2 = ε. This
point is IR attractive in the area η < 0, ε > 0, ξ < 2ε/3. Since
w∗ = 0, turbulent motion of the environment is irrelevant in
this regime, and IR behavior of the model is completely de-
termined by the universality class of the original Hwa-Kardar
model (1.1).

Point (3a) with the coordinates w′∗ = 2ξ , g∗ = 0; the cor-
responding eigenvalues are λ1 = 3ξ/2 − ε and λ2 = ξ . This
point is IR attractive when η < 0, ξ > 0, ξ > 2ε/3. Since
g∗ = 0, the nonlinear term in Eq. (1.1) is IR irrelevant in the
sense of Wilson and does not affect the leading terms of the
IR asymptotic behavior.

It is left to note that the functions βg and βw′ become
proportional when ξ = 2ε/3, which leads to a straight line of
the fixed points in the plane (g,w′) (or, in other words, to a
single degenerate fixed point), with both g∗ �= 0 and w′∗ �= 0.
They are arbitrary; only a certain combination can be found in
a unique way from the system (4.8). As a consequence, one of
the eigenvalues is equal to zero.

Now let us turn to the rapid-change case of α∗ → ∞,
λα = η. As before, it is convenient to pass to new variables
which are finite when α → ∞, namely, x = 1/α and w′′ =
w/α2. The corresponding β functions are

βx = x η, βw′′ = w′′
(

−ξ + η + w′′

2
+ 3

16
g

)
. (4.12)
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FIG. 1. Regions of stability of the fixed points for Model 1 at
α∗ = 0, η < 0 in the plane (ε, ξ ). Each sector corresponds to the
values of the parameters for which one of the points (1a), (2a), or
(3a) is IR attractive.

Thus, all these fixed points have the coordinate x∗ = 0, and
the corresponding eigenvalue is λx = η. From Eq. (4.12) it
follows that the set of the fixed points (1b), (2b), and (3b) at
x∗ = 0 is completely the same as the set (1a), (2a), and (3a)
for α∗ = 0 after the replacement ξ → ξ̃ = ξ − η is made in
the previously obtained expressions. The relation similar to
Eq. (4.9) is also true; thus, there is a line of fixed points for
the case x∗ = 0, too. Now the corresponding relation for the
exponents reads ξ − η = 2ε/3.

It remains to consider the case η = 0. Then the function βα

vanishes for any given α, with the corresponding eigenvalue
λα = −η = 0. The nontrivial fixed point still exists if ξ =
2ε/3. In this case it is determined by the condition γ ∗

ν‖ = ξ ;
see Eqs. (4.7) and (4.8). Herewith, the parameters g∗, w∗, and
α∗ cannot be determined independently.

The general pattern of stability is shown in Fig. 1. The
straight lines denote borders of the stability regions (areas
where the points are IR attractive); the white and different
shades of gray denote each region. The Kolmogorov values
of the exponents ξ = 8/3, η = 4/3 lie either in the stability
region of the fixed point (2b) (the universality class of the
Hwa-Kardar model) or in the stability region of the fixed point
(3b) (the universality class of the rapid change ensemble)
depending on whether ε is bigger or smaller than 2, respec-
tively. This means, that if d � 3, point (3b) corresponds to the
Kolmogorov values; if d = 2, Kolmogorov values lie on the
borderline between two regions (see Fig. 2).

B. Model 2: The model with spatially quenched noise

Unlike Model 1, Model 2 involves several renormalization
constants, namely, three. This leads to a drastic difference be-
tween the patterns of the RG fixed points and, hence, possible
IR scaling regimes.

The β functions now read (we recall that ε̃ = 6 − d)

βw = −w(ξ + η + γw ), βg = −g(ε̃ + γg), βα = −αη,

(4.13)

FIG. 2. Regions of stability of the fixed points for Model 1 at
α∗ → ∞, η > 0 in the plane (ε, ξ − η), which is used instead of
the space (ε, ξ ) in Fig. 1. Each sector corresponds to the values
of the parameters for which one of the points (1b), (2b), or (3b) is
IR attractive. The positions of the fixed points with the Kolmogorov
value ξ − η = 4/3 are shown for d = 2 (K1) and d = 3 (K2).

with two independent anomalous dimensions γg and γw.
From Eqs. (3.12) and (3.13) it follows that in the one-loop

approximation they have the form

γw = − w

2α (1 + α)
− g, γg = − 3w

4α(1 + α)
− 4g

3
. (4.14)

Thus, the system of β functions analogous to (4.8) now reads

βw = w

[
−ξ − η + w

2α(1 + α)
+ g

]
,

βg = g

[
−ε̃ + 3w

4α(1 + α)
+ 4g

3

]
, βα = −αη. (4.15)

The following stage is the analysis of the fixed points
and their stability regions. It reveals an essential difference
between the patterns of IR asymptotic regimes in the two
models.

So far, the RG analysis of the two models was almost
identical. Indeed, they have the same number of coupling
constants, and they are both multiplicatively renormalizable
(although with a different number of needed counterterms).
They have different logarithmic dimensions, but it is possible
to perform the RG analysis near the corresponding logarith-
mic dimension and then return to the physical values by an
appropriate choice of ε or ε̃. What is more, the set of the
β functions (4.15) looks very similar to the set (4.8). Nev-
ertheless, the analysis of the expressions (4.15) leads to an
essentially different pattern of RG flows than those obtained
in the previous subsection.

Let us discuss the fixed points for Model 2. As before,
there are only two possibilities for α: α∗ = 0 and 1/α∗ → 0.
Thus, the first case can be IR attractive only if η < 0, while
the second one can be attractive if η > 0. In this sense, the
situation is completely the same as that for Model 1, including
the substitution ξ → ξ̃ = ξ − η in the obtained expressions.
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For this reason, below we will consider in detail only the case
α∗ = 0.

After the suitable replacement w′ → w/α, the new β func-
tion reads

βw′ = w′
(

−ξ + w′

2
+ g

)
. (4.16)

The system (4.15)–(4.16) possesses four different solutions.
The fixed points (1a), (2a), and (3a) are the natural counter-
parts to the same-denoted points in Model 1; point (4a) has no
analog and is completely new.

Point (1a) has the coordinates w′∗ = 0, g∗ = 0. The eigen-
values of the matrix (4.3) are λ1 = −ε̃, λ2 = −ξ . This
Gaussian point is IR attractive for ε̃ < 0, η < 0, ξ < 0.

Point (2a) has the the coordinates w′∗ = 0, g∗ = 3ε̃/4. The
corresponding eigenvalues are λ1 = 3ε̃/4 − ξ and λ2 = ε̃.
The point is related to the universality class of the pure Hwa-
Kardar model without turbulent advection and is IR attractive
for η < 0, ε̃ > 0, ξ < 3ε̃/4.

Point (3a) has the coordinates w′∗ = 2ξ and g∗ = 0. The
corresponding eigenvalues are λ1 = 3ξ/2 − ε̃ and λ2 = ξ .
This point corresponds to the regime in which the nonlinearity
of the Hwa-Kardar equation is irrelevant; it is IR attractive if
η < 0, ξ > 0, ε̃ < 3ξ/2.

The completely new point (4a) has the coordinates

w′∗ = 12ε̃ − 16ξ, g∗ = 9ξ − 6ε̃. (4.17)

Its eigenvalues read

λ1,2 = −ε̃ + 2ξ ±
√

−5ε̃2 + 13ξ ε̃ − 8ξ 2. (4.18)

The analysis of Eqs. (4.18) reveals two possible cases: the
square root is either fully real (case A) or complex with both
real and imaginary parts (case B). The presence of imaginary
parts in eigenvalues means that if this point is IR attractive
(i.e., the real parts of the eigenvalues are positive), it is a spiral
attractor instead of a simple node attractor.

Case A corresponds to the two areas of the values
of the system parameters: ε̃ > 0, 5ε̃/8 < ξ < 2ε̃/3, and
ε̃ > 0, 3ε̃/4 < ξ < ε̃. Case B also corresponds to the two
areas: ε̃ > 0, ε̃/2 < ξ < 5ε̃/8 and the large area which is pa-
rameterized by conditions ε̃ > 0, ξ > ε̃ and ε̃ < 0, ξ > ε̃/2.
It is very interesting that we see a gap in the region of stability
of these points; moreover, it is intriguing that the area related
to the node attractor lies beyond the area of spiral attractor.

Another surprising fact is that the borders of the gap in
the stability region of point (4a) completely coincide with
the upper and lower borders of stability regions of points
(2a) and (3a) which are defined by their own (independent)
eigenvalues. It is also very interesting that even the gap of
point (4a) is a stability region of two fixed points.

Moreover, the stability region of one of the nontrivial fixed
points lies in the area ε̃ < 0, ξ < 0. We have never before met
a system with such a feature.

The general pattern of stability is shown in Fig. 3. The
straight lines denote borders of the stability regions (areas
where the points are IR attractive); the white and different
shades of gray denote each region. The subscripts “R” and “C”
near point (4) denote the type of the root in Eqs. (4.18) and,
therefore, the type of the attractor. Designation 4R corresponds
to the node attractor; designation 4C corresponds to the spiral

FIG. 3. Regions of stability of the fixed points for Model 2 at
α∗ = 0, η < 0 in the plane (ε̃, ξ ). Each sector corresponds to the
values of the parameters for which some of the points (1a), (2a),
(3a), or (4a) are IR attractive. Notations like (2 + 4) stand for the
sectors where some regions overlap. Designation 4R corresponds to
the part of the stability region of point (4a) where it is a simple node.
Designation 4C corresponds to the part where it is a spiral fixed point
(an attractive focus).

attractor. Points (1), (2), and (3) do not have such variants and,
therefore, have no subscripts.

The main reason for this drastic difference between the
results obtained for Model 1 and Model 2 is the absence
of the relation like (4.9) in Model 2. This is, in its turn, a
consequence of there being more than one independent renor-
malization constant Z in the model. It opens the possibility for
a fixed point with both g∗ �= 0 and w′∗ �= 0 to exist. Therefore,
it was natural to expect the set of fixed points in Model 2
to be more interesting and rich than the set in Model 1.
Nevertheless, one could hardly expect the obtained picture of
fixed points to be so complicated and to consist of points with
overlapping stability regions that even have gaps in them.5

This result is really surprising; nothing at the start of the
analysis of the system (4.15) indicated that the result was to
be expected.

Overlaps between the stability regions of different fixed
points have an important implication for the universality of
system’s asymptotic behavior. Universality means that the be-
havior depends only on the global characteristics of the system
like spatial dimension d and values of ξ and η. But if several
fixed points share a stability region, then the RG flow may
reach either one of them depending on the initial values of the
coupling constants. This dependence can be interpreted as a
loss of universality (universality violation).

The Kolmogorov values of the exponents are ξ = 8/3,
η = 4/3, and the corresponding stability region depends on ε̃.

5It is important to note that not only stability region of the “new”
point 4 intersects with the regions of other fixed points but that there
are also overlaps between stability regions of points 2 and 3. In
Model 1 stability regions of the similar points have no such overlaps.
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FIG. 4. Regions of stability of the fixed points for Model 2 at
α∗ → ∞, η > 0 in the plane (ε̃, ξ − η), which is used instead of the
space (ε̃, ξ ) in Fig. 3. Each sector correspond to the values of the
parameters for which some of the points (1b), (2b), (3b), or (4b) are
IR attractive. Similarly to Fig. 3, notations like (2 + 3) stand for the
sectors where the stability regions overlap. The positions of the fixed
points with the Kolmogorov value ξ − η = 4/3 are shown for d = 2
(K1), d = 3 (K2), and d = 4 (K3).

As such, the Kolmogorov values may relate to either of the
following regions: the area where both fixed points (3b) and
(4b) are IR attractive, the area where both (2b) and (3b) are IR
attractive, the area where both (2b) and (4b) are IR attractive,
or the area where only (2b) is IR attractive. However, at
η = 4/3 the wedges in Fig. 3 are very small, and most of the
regions are unattainable for integer values of d . The result of
this is that for every ε̃ > 8/3, i.e., for d � 3, the Kolmogorov
values belong to the stability region of the fixed point (2b).
If ε̃ = 2, i.e., if d = 4, the Kolmogorov values lie on the
borderline between two regions: the region where both fixed

points (2b) and (4b) are IR attractive and the region where
both points (2b) and (3b) are IR attractive (see Fig. 4).

The obtained results look rather complicated, so we used
dynamical equations (4.4) for direct numerical simulation of
the RG flows. We carefully checked each stability region and
obtained full agreement with the analytical analysis. In Figs. 5
and 6 two sample RG flows are presented for interesting
values α = 0, ε̃ = −4, ξ = −1 and α = 0, ε̃ = 4, ξ = 2.4,
where two IR attractive fixed points (a node and a focus) exist
simultaneously. The arrows on the lines designate a direction
towards the IR limit s = k/μ → 0.

V. CRITICAL SCALING AND CRITICAL DIMENSIONS

The renormalized Green functions GR satisfy the RG equa-
tion in the leading order of IR asymptotic behavior when
the substitution q → q∗ is made. This is a consequence of
expressions (4.5); q is the set of three coupling constants. As
a result, the RG equation reads(

Dμ −
∑

i

γ ∗
i Di +

∑
�

N�γ ∗
�

)
GR = 0, (5.1)

where γ� and γi are anomalous dimensions of the fields
and the parameters that require renormalization, respectively.
Since the values of anomalous dimensions at a fixed point γ ∗

�

and γ ∗
i are constants, Eq. (5.1) is a differential equation with

constant coefficients and, therefore, is an equation of the same
type as differential equations for canonical scale invariance.
The solution of the system of equations that includes Eq. (5.1)
together with the equations for canonical scale invariance
gives us critical dimension �F of an IR relevant quantity F (a
field or a parameter); see Ref. [14]. Since we have two spatial
(momentum) scales while for both models renormalization
constants Zν‖ �= 0 and Zν⊥ = 1, this dimension reads [67,86]

�F = d⊥
F + �‖d‖

F + �ωdω
F + γ ∗

F ; �‖ = 1 + γ ∗
ν‖/2,

�ω = 2. (5.2)

FIG. 5. RG flow in Model 2 for α = 0, ε̃ = −4, ξ = −1. The numbers indicate the fixed points (1a), (2a), (3a), and (4a). The fixed point
(1a) is a node attractor while the fixed point (4a) is a spiral attractor.
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FIG. 6. RG flow in Model 2 for α = 0, ε̃ = 4, ξ = 2.4. The numbers indicate the fixed points (1a), (2a), (3a), and (4a). The fixed point
(2a) is a node attractor while the fixed point (4a) is a spiral attractor.

The factor 1/2 in expression for �‖ is due to canonical dimen-
sion d‖

ν‖ = −2; since γν⊥ = 0, the critical dimension of the
frequency �ω is simply equal to 2. As usual, dF are canonical
dimensions (see Tables I and II) and γ ∗

F is corresponding
anomalous dimension taken at the fixed point. The normal-
ization condition �⊥ = 1 is used.

Depending on the values of η, ξ , and ε or ε̃, RG flow
reaches certain fixed point. Substitution of the fixed point co-
ordinates (g∗, w∗, and α∗) into Eqs. (5.2) leads to expressions
for the critical dimensions that correspond to the possible
scaling regimes of the system.

Calculation of critical dimensions is the final goal of the
general scheme: they appear in the pair correlation function
of the field h in the following way:

〈h(t, x) h(0, 0)〉  r−2�h
⊥ F (t/r�ω

⊥ , r‖/r�‖
⊥ ) (5.3)

and allow direct comparison with experiments. Here
r⊥ = |x⊥|, r‖ = x‖, and F is a scaling function of critically
dimensionless arguments.

A. Model 1: The model with white noise

The functions βg and βw involve the same anomalous di-
mension γν‖ [see relation (4.9)] in Model 1, so the value of γ ∗

ν‖
and the critical dimensions are found exactly despite the fact
that coordinates of the fixed points are found only in one-loop
approximation. This nontrivial fact reminds us of a similar
observation in the stochastic NS equation [107–109], where
all the anomalous dimensions can be found exactly without
any practical calculation of the renormalization constants.

Indeed, if one of the coupling constants (say, w) is neces-
sary equal to zero at fixed point, it follows from Eqs. (4.6)
that γ ∗

ν‖ = 2ε/3. Since Eqs. (4.6) follow directly from the
definitions of β and γ functions, they are exact. Therefore,
the value of γ ∗

ν‖ obtained above is also exact. Nevertheless, it
is necessary to calculate Feynman graphs to check the stability
regions of different fixed points (i.e., to find the derivatives of
β functions at the fixed points).

Critical dimensions for the trivial points (1a) and (1b)
coincide with each other and read

�h′ = d − 1 = 3 − ε, �h = �v = �‖ = 1. (5.4)

Critical dimensions for the fixed points (2a) and (2b) also
coincide with each other and read

�h′ = 3 − ε

3
, �h = �v = 1 − ε

3
, �‖ = 1 + ε

3
. (5.5)

Critical dimensions for the fixed points (3a) and (3b) are not
the same and read

�h′ = 3 − ε + ξ, �h = �v = 1 − ξ

2
,

�‖ = 1 + ξ

2
for point (3a), (5.6)

�h′ = 3 − ε + ξ − η, �h = �v = 1 − ξ − η

2
,

�‖ = 1 + ξ − η

2
for point (3b). (5.7)

As it should be, the results for the fixed point (2b) agree
with those obtained in Ref. [37].6 The results for all three
points (1b), (2b), and (3b) that correspond to the rapid-change
velocity ensemble agree with those obtained in Ref. [70].7

One important remark is in order here. For the Kazantsev-
Kraichnan rapid-change ensemble the diagram D1 (see
Appendix A for details) involves an indeterminacy, which
in Ref. [70] was tacitly understood as 1/(2π )

∫
dω/[−iω +

ε(k)] = 1/2; cf. also Refs. [86,110]. This resolution is
justified by the physical meaning of the pair correlation func-
tion (1.6)–(1.7) and in the theory of stochastic equations is
known as the Stratonovich prescription [95,96]. As applied
to field-theoretic formulations, the most detailed and compre-
hensive discussion of the issue is given in Refs. [111–113].

6One has to identify z = �ω/�‖, ζ = 1/�‖, and χ = −�h/�‖.
7Here, one has to identify ξ from [70] with ξ − η in Eqs. (5.7);

moreover, there are misprints in Ref. [70] in expressions for �h′ .
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Thus, the model studied in Ref. [70] is indeed a special case
of the present model in the limit α0 → ∞ at the fixed B0/α

2
0 ;

cf. Ref. [86].

B. Model 2: The model with spatially quenched noise

In Model 2 there is no exact relation between βg and βw;
therefore, all of the results (both coordinates of the fixed
points and the critical dimensions) imply corrections in ε̃,
ξ , and η of second order and higher [except the critical di-
mensions for points (3a) and (3b); see below]. Moreover,
since the fields h, h′, and v have nontrivial renormalization
constants, now we should take into account the corresponding
anomalous dimensions. From Eqs. (3.12) and (3.13) it follows
that they read

γh = γv = −g

6
, γh′ = g

6
. (5.8)

Critical dimensions for the trivial points (1a) and (1b) are
still very simple and read

�h′ = 5 − ε̃, �h = �v = �‖ = 1. (5.9)

Critical dimensions for points (2a) and (2b) are

�h′ = 5 − 3ε̃

8
, �h = �v = 1 − 3ε̃

8
, �‖ = 1 + ε̃

4
.

(5.10)

Since the differences between Eqs. (4.15) (for Model 2)
and Eqs. (4.8) (for Model 1) are presented only in the parts
that contain the coupling constant g, the coordinates of the
fixed points (3a) and (3b) (which satisfy the case g∗ = 0) co-
incide for both models. Owning to this fact and Eqs. (5.8), the
only difference in the critical dimensions for points (3) in both
models is due to their canonical parts, which are connected
with the logarithmic dimensions d = 6 for Model 2 and d = 4
for Model 1. Thus, the critical dimensions for points (3a) and
(3b) are

�h′ = 5 − ε̃ + ξ, �h = �v = 1 − ξ

2
,

�‖ = 1 + ξ

2
for point (3a), (5.11)

�h′ = 5 − ε̃ + ξ − η, �h = �v = 1 − ξ − η

2
,

�‖ = 1 + ξ − η

2
for point (3b). (5.12)

Like in Model 1, these results are exact; see Appendix B for
details.

The critical dimensions for the fully nontrivial points (4a)
and (4b) read

�h′ = 5 − ξ

2
, �h = �v = 1 − ξ

2
,

�‖ = 1 + ε̃ − ξ for point (4a), (5.13)

�h′ = 5 − ξ − η

2
, �h = �v = 1 − ξ − η

2
,

�‖ = 1 + ε̃ − ξ + η for point (4b). (5.14)

The above expressions show that the critical dimensions
of the fields h and v coincide with each other, and, what is

more, coincide for points (3) and (4) (a and b, respectively).
This coincidence looks intriguing for two reasons: first, the
answers for fixed points (3) are exact, while the answers
for points (4) admit higher-order corrections in ξ 2 and η2.
Second, in contrast to the coincidence of critical dimensions
for points (3) in the two different models [see Eqs. (5.6)–(5.7)
and (5.11)–(5.12)], the algebraic manipulations that lead to the
same results for points (3) and (4) in Model 2 are essentially
different. Therefore, the equality between the critical dimen-
sions at different points may be just an artifact of the one-loop
approximation or may be manifestation of some underlying
physics.

VI. CONCLUSION

In this paper we apply the field theoretic renormalization
group to two models of self-organized nearly critical systems
of statistical physics. In the spirit of Hwa and Kardar, both
problems are described by the continuous (coarse-grained)
stochastic differential equations, subjected to a random noise.
In the first case, random noise is taken to be white in time
and in space, while in the second case the noise is “spatially
quenched,” that is, white in space and time-independent.

Both models are intended to describe the effects of turbu-
lent environment on the critical behavior of the initial systems.
The environment motion is described by the d-dimensional
generalization of the Avellaneda-Majda ensemble [71,72]
with a finite correlation time and strong anisotropy, conformed
with that of the Hwa-Kardar model.

The quantities of interest are the critical dimensions of the
fields and parameters, related to the asymptotic forms of the
(measurable) correlation functions like (5.3). Those dimen-
sions are determined by IR attractive fixed points. Thus, our
ultimate goal is to identify the sets of fixed points and their
regions of IR stability for the models under study. Our analysis
shows that, despite the fact that the models look very similar
to each other (even in the expressions for the β functions), the
resulting patterns of the fixed points are drastically different.

While for the white-noise case the picture obtained is
more or less typical for that kind of models, i.e., there are
several fixed points with neither gaps nor overlaps between
their stability regions, the picture for the model with spatially
quenched noise seems to be much more complicated. It con-
tains overlaps between regions of stability of different fixed
points. From the physics point of view, this feature may be
interpreted as a loss of universality: now the critical dimen-
sions depend not only on global characteristic of the system
like space dimension d and the values of the exponents ξ and
η that characterize the velocity statistics, but also on the ini-
tial values of the coupling constants. These initial conditions
determine which of the possible fixed points is reached by the
RG flow.

It is interesting that spatially quenched noise is widely
used in various models but does not lead to such complicated
behavior as a rule. Moreover, the stochastic Hwa-Kardar equa-
tion with spatially quenched noise without the turbulent field
v does not display such interesting properties; see Ref. [46].
Instead, this choice of random noise only shifts the logarith-
mic dimension of the model, while in the present case we
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observe different behavior with gaps and overlaps between the
stability regions.

The stability regions of the fully nontrivial points (4a)
and (4b) for which both the Hwa-Kardar nonlinearity and
turbulent advection are relevant appear to have gaps. In some
cases [85,114,115], such gaps are completely “vacant,” i.e.,
there are no other IR attractive fixed points for the corre-
sponding values of the parameters. The critical behavior in
those cases remains unclear. In the present case, however, the
gaps are covered with the stability regions of points (2a)–(3a)
and (2b)–(3b), respectively, so there is no area with unknown
critical behavior.

Although we used the velocity ensemble with finite corre-
lation time, the possible nontrivial types of the IR behavior
reduce to only the two limiting cases: the rapid-change be-
havior and the frozen (time-independent) case. This feature
is rather typical, being observed in many different models
before; see, e.g., Refs. [56,57,86,88,90,93] and the review
paper [116]. However, fixed points with finite correlation time
were encountered in other models due to the presence of
compressibility, e.g., in Refs. [92,94].

Another remarkable fact is that the model with white noise
possesses only three IR attractive fixed points with always at
least one coupling constant equal to zero, while the model
with spatially quenched noise involves four IR attractive fixed
points including the one for which both the couplings are
nontrivial.8

We may conclude that the interplay between random noise
with different statistics and the turbulent advection can lead to
essentially different patterns of the fixed points, their regions
of stability, and character of the RG flows. Comparison of the
models with different velocity ensembles may reveal which
ingredients of the formulation of those problems are responsi-
ble for such complicated behavior.

It is also worth noting that the systems of differential
RG equations like (4.4) provide real examples of dynamical
systems [117,118]. So far, all the known systems like these
demonstrated typical kinds of asymptotic behavior: fixed
points, manifolds of fixed points, attractive circles. Strange
attractors were sought but had never been found [119]. The
nonequilibrium models provide a huge variety of dynami-
cal systems, and, hopefully, the intrinsic relation between
field theoretical models and corresponding dynamical systems
(described by the RG equations for invariant variables) will
eventually be established.

In particular, it would be especially interesting to consider
the Hwa-Kardar model coupled to the velocity field v(x)
described by the nonlinear stochastic Navier-Stokes equation
with various types of external force. In any of those cases,
the model acquires an additional viscosity coefficient and one
more field, namely, the response field v′; thus, a much more
intricate and sophisticated types of asymptotic behavior may
be expected.

Alternatively, it can be instructive to compare models with
the same velocity ensemble and different noise statistics. It

8To be precise, such point exists for the white-noise case, but only
for the special choice ξ = 2ε/3.

is also tempting to consider generalized noise statistics that
interpolates between the two limiting cases (1.2) and (1.3).

However, the RG analysis of such full-scale problems is
clearly a very difficult and cumbersome task. As a preliminary
step, the isotropic Kazantsev-Kraichnan ensemble can be em-
ployed. The Hwa-Kardar model (1.1) with white noise (1.2)
coupled to that ensemble was studied in Ref. [120]. It was
shown that coupling of anisotropic system and isotropic flow
leads to rather surprising results: in particular, some dimen-
sionless ratio of diffusivity coefficients acquires a nontrivial
dimension in certain fixed-point limits.

The work on those more realistic and more complicated
systems remains for the future and is partly in progress.
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APPENDIX A: CALCULATION DETAILS OF MODEL 1

This Appendix contains detailed calculations of the
diagrams defining the renormalization constant Zν‖ (see
Sec. III A). All the calculations are performed in the analytical
(ξ and η) and dimensional (ε) regularization and MS scheme.

Since the model we deal with involves only one divergent
function 〈h′h〉1−ir , only two one-loop graphs needed to be
calculated:

(A1)

Here and below the straight line corresponds to the field h,
the dashed line corresponds to the field h′, and the wave line
corresponds to the velocity field v. The propagator functions
and vertices are defined in Sec. II A.

Let us start with the graph D1. An analytical expression for
it reads

D1 = −2πB0

∫
dω

2π

dd k
(2π )d

δ(k‖)
k5−d−(ξ+η)
⊥

ω2 + (α0ν⊥0k2−η

⊥ )2

× p‖(p‖ − k‖)

−iω + ε(p − k)
, (A2)

where ε(k) is denoted in Eq. (2.4), p is an external mo-
menta, and p‖ = (p · n). Since d� = 2 for this function, we
are looking for the term proportional to p2

‖. Owing to this fact,
after trivial integration over k‖ and after integration over the
frequency ω one obtains

D1 = −B0 p2
‖

1

2α0ν
2
⊥0

∫
k⊥>m

dd−1k⊥
(2π )d−1

k5−d−(ξ+η)
⊥

k2−η

⊥ (α0k2−η

⊥ + k2
⊥)

.

(A3)
The integration over the internal momenta k⊥ can be simpli-
fied in the MS scheme, in which all the anomalous dimensions
are independent of the regularizators like ξ and η. Hence, we
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may choose them arbitrarily with the only restriction that our
diagrams have to remain UV finite [93]. The most convenient
way is to put η = 0. Thus, after the integration one obtains

D1 = −p2
‖

B0

2α0(α0 + 1)ν2
⊥0

Sd−1

(2π )d−1

m−ξ

ξ
, (A4)

where Sd−1 is the area of the unit sphere in the (d − 1)-
dimensional space.

The analytical expression for the graph D2 reads

D2 = −D0

∫
dω

2π

dd k
(2π )d

p‖(p‖ − k‖)

[ω2 + ε2(k)][−iω + ε(p − k)]
.

(A5)
Since now we do not have δ(k‖) in our integrand, expansion
of expression (A5) over p‖ gives us two terms. First, the one
referred to as I1 reads

I1 = −D0 p2
‖

∫
dω

2π

dd k
(2π )d

1

[ω2 + ε2(k)][−iω + ε(k)]
.

(A6)

After integration over ω one obtains

I1 = −p2
‖

D0

4

∫
dd k

(2π )d

1(
ν‖0 k2

‖ + ν⊥0 k2
⊥
)2 . (A7)

To preform integration in Eq. (A7) it is convenient to pass
to the new variables l‖ = ν

1/2
‖0

k‖ and l⊥ = ν
(d−1)/2
⊥0

k⊥, which
adsorb viscosity coefficients. Thus, expression for I1 reads

I1 = −p2
‖

D0

4ν
1/2
‖0

ν
(d−1)/2
⊥0

∫
dd l

(2π )d

1

l4
, (A8)

where l2 = l2
‖ + l2

⊥. Substituting the value of the logarithmic
dimension d = 4 − ε one finally obtains

I1 = −p2
‖

D0

4ν
1/2
‖0

ν
3/2
⊥0

Sd

(2π )d

∫
l>m

dl

l1+ε

= −p2
‖

D0

4ν
1/2
‖0

ν
3/2
⊥0

Sd

(2π )d

m−ε

ε
. (A9)

To write the second term in Eq. (A5) referred to as I2 we
should use expansion

1

ε(k) + ε(p − k)
= 1

2ε(k)

[
1 + ν‖0 p‖k‖ + ν⊥0 (p⊥ · k⊥)

ε(k)

]
+ O(p2). (A10)

Using the fact that only terms even in k give nonzero contri-
butions one obtains

I2 = p‖
D0

4

∫
dd k

(2π )d

k‖[ν‖0 p‖k‖ + ν⊥0 (p⊥ · k⊥)](
ν‖0 k2

‖ + ν⊥0 k2
⊥
)3 . (A11)

After the same replacement of the variables as the one we used
in Eq. (A7) the expression for I2 takes the form

I2 = p‖
D0

4ν
1/2
‖0

ν
(d−1)/2
⊥0

∫
dd l

(2π )d

p‖l2
‖ + l‖(p⊥ · l⊥)

l6
. (A12)

In order to integrate over the vector l we need to average our
expression over the angles∫

dl f (l ) = Sd

∫
l>m

dl ld−1 〈 f (l )〉, (A13)

where 〈· · · 〉 is the averaging over the unit sphere in the d-
dimensional space. In the particular case of two indices it
reads 〈

lil j

l2

〉
= δi j

d
. (A14)

For the second term in Eq. (A12) this gives∫
dd l

(2π )d

l‖(p⊥ · l⊥)

l6
=

∫
dd l

(2π )d

linil j p j⊥
l6

= Sd

d
δi jni p j⊥

∫
l>m

dl

l4
= 0, (A15)

where the last equality follows from the fact that δi jni p j⊥ =
n j p j⊥ = 0.

The first term in Eq. (A12) is nonzero and after substitution
d = 4 − ε gives

I2 = p2
‖

D0

4ν
1/2
‖0

ν
3/2
⊥0

∫
dd l

(2π )d

nin j lil j

l6

= p2
‖

D0

16ν
1/2
‖0

ν
3/2
⊥0

Sd

(2π )d

m−ε

ε
. (A16)

Combining expressions for I1 and I2 one finally obtains

D2 = −p2
‖

3

16

D0

ν
1/2
‖0

ν
3/2
⊥0

Sd

(2π )d

m−ε

ε
. (A17)

The one-loop approximation for the 1-irreducible Green
function 〈h′h〉1−ir reads

〈h′h〉1−ir = iω − ν‖0 p2
‖0

− ν⊥0 p2
⊥0

+ �, (A18)

where � is the self-energy operator and is represented by
the sum of the graphs D1 and D2. Combining this expression
with (A4) and (A17) and taking into account definitions of the
coupling constants [see Eqs. (2.5)] one immediately obtains
the renormalization constants Zν‖ and Zν⊥ ; see Eq. (3.7).

APPENDIX B: CALCULATION DETAILS OF MODEL 2

This section contains detailed calculations of the diagrams
defining the renormalization constants Zν‖ , Zh, and Zv (see
Sec. III B). Since we deal with three divergent Green functions
in Model 2, namely, 〈h′h〉1−ir , 〈h′hv〉1−ir , and 〈h′hh〉1−ir , we
have to calculate both two- and three-tailed graphs.

Let us start with two-tailed graphs which enter the same
expansion for function 〈h′h〉1−ir as Eq. (A18):

〈h′h〉1−ir = iω − ν‖0 p2
‖0

− ν⊥0 p2
⊥0

+ �. (B1)

The graphs D̃1 and D̃2, the sum of which represents the
self-energy operator � (here and below graphs with a tilde
denote graphs for Model 2), are depicted by the same figures
as shown in Eqs. (A1). Moreover, the only difference between
two models in Feynman rules is in the expression for the
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propagator 〈hh〉0 (see Sec. II B), which does not enter the
expression for D̃1. Thus,

D̃1 = D1 = −p2
‖

B0

2α0(α0 + 1)ν2
⊥0

Sd−1

(2π )d−1

m−ξ

ξ
. (B2)

The analytical expression for the graph D̃2 reads

D̃2 = −D0

∫
dω

2π

dd k
(2π )d

2πδ(ω)

ε2(k)

p‖(p‖ − k‖)

−iω + ε(p − k)
. (B3)

Integration of Eq. (B3) over the frequency is trivial and gives

D̃2 = −D0

∫
dd k

(2π )d

1

ε2(k)

p‖(p‖ − k‖)

ε(p − k)
. (B4)

The general logic of the integration of expression for D̃2 is
absolutely the same as in the previous section for the graph
D2 [see Eqs. (A5)–(A17)]: we have to extract the term O(p2)
from the expression p‖(p‖ − k‖)/ε(p − k) and then perform
integration over the vector k taking into account ε̃ = 6 − d .
Therefore, we will omit these algebraic steps and write di-
rectly the final result:

D̃2 = −p2
‖

2

3

D0

ν
1/2
‖0

ν
5/2
⊥0

Sd

(2π )d

m−ε̃

ε̃
. (B5)

By combining expressions (B2) and (B5) and substituting
them into Eq. (B1) one immediately obtains the renormaliza-
tion constants Zν‖ and Zν⊥ ; see Eqs. (3.13).

Now let us consider the graphs that correspond to the func-
tion 〈h′hh〉1−ir . Using our Feynman rules we may construct
six graphs:

(B6)

Let us start with the last one, the graph D̃8. The analytical
expression for it reads

D̃8 = 2π i3B0

∫
dω

2π

dd k
(2π )d

δ(k‖)
k5−d−(ξ+η)
⊥

ω2 + (
α0ν⊥0k2−η

⊥
)2

× (p‖ + q‖)(p‖ + q‖ + k‖)(k‖ + q‖)

[−iω + ε(p + k)][−iω + ε(p + q + k)]
. (B7)

Here p and q are external momenta, and k is momentum of
integration. Since the divergence index for this graph d� = 1,

we are looking for the terms proportional to p1 or q1. Ex-
pression (B7) has a factor (p‖ + q‖) from the very beginning,
therefore, we may immediately put p = q = 0 in all the other
coefficients. This observation together with δ(k‖) presented in
the r.h.s. of Eq. (B7) leads directly to the fact that D̃8 = 0.

The same feature is true also for the graphs D̃6 and D̃7.
The fact that divergent parts of all three graphs containing the
velocity propagator 〈vv〉0 are equal to zero leads to indepen-
dence of the renormalization constant Zh from the coupling
constant w. Moreover, this effect holds true in all orders of
perturbation theory: in any multiloop graph of such type we
may choose the same direction of momenta flow as we chose
in Eq. (B7).

Despite the fact that we consider Green function 〈h′hh〉1−ir

now, let us mention here that the function 〈h′hv〉1−ir does not
have graphs similar to D̃6–D̃8. The reason for this is that we
simply do not have a vertex with two fields v in our Feynman
rules. Therefore, Zv also does not have dependence on the
coupling constant w in all orders of perturbation theory.

This feature of the model has a great consequence for
the critical dimensions at fixed points (3a) and (3b), which
correspond to the case g∗ = 0, w∗ �= 0. Since γ ∗

v = γ ∗
h = 0

in all orders of perturbation theory at these points, criti-
cal dimensions found in the one-loop approximation [see
Eqs. (5.11)–(5.12)] are, in fact, exact. The situation is similar
to Model 1. The difference is that we do not have any relation
like Eq. (4.9) in Model 2 from which this fact would follow
obviously; moreover, critical dimensions in Model 2 are exact
only for points (3a) and (3b), whereas for all other scaling
regimes they have corrections in ε̃, ξ , and η of second order
and higher.

Divergent parts of other three graphs are nonzero.
The analytical expression for the graph D̃3 reads

D̃3 = −i3D0

∫
dω

2π

dd k
(2π )d

2πδ(ω)

ε2(k)

× (p‖ + q‖)(p‖ + q‖ + k‖)(k‖ + q‖)

[−iω + ε(p + k)][−iω + ε(p + q + k)]
. (B8)

After trivial integration over the frequency ω, the term propor-
tional to (p‖ + q‖) takes the form

D̃3 = i(p‖ + q‖)D0

∫
dd k

(2π )d

k2
‖

ε4(k)
. (B9)

Using the same techniques as we described above, from
Eq. (B9) one immediately obtains

D̃3 = i(p‖ + q‖)
1

6

D0

ν
1/2
‖0

ν
5/2
⊥0

Sd

(2π )d

m−ε̃

ε̃
. (B10)

The graphs D̃4 and D̃5 are equal to each other and differ from
D̃3 only by the sign. Thus,

D̃4 = D̃5 = −i(p‖ + q‖)
1

6

D0

ν
1/2
‖0

ν
5/2
⊥0

Sd

(2π )d

m−ε̃

ε̃
. (B11)

The symmetry coefficients for the diagrams D̃1–D̃8 are all
equal to 1.
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The one-loop approximation for the 1-irreducible Green
function 〈h′hh〉1−ir reads

〈h′hh〉1−ir = Vh′hh + D̃3 + D̃4 + D̃5. (B12)

From Eqs. (B10)–(B12) one immediately arrives at the
renormalization constant Zh; see Eqs. (3.13). Since the graphs
containing the propagator 〈vv〉0 vanish, the constant Zh coin-

cides with its counterpart in the model without the turbulent
environment [46].

In the end of this section we turn to the graphs correspond-
ing to the function 〈h′hv〉1−ir . The only difference between
them and graphs D̃3–D̃5 for the function 〈h′hh〉1−ir is the
presence of the external field v instead of the field h. The cores
of the graphs are the same. Thus, Zv = Zh.
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