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Qubit thermodynamics far from equilibrium: Two perspectives about the nature
of heat and work in the quantum regime
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Considering an entropy-based division of energy transferred into heat and work, we develop an alternative
theoretical framework for the thermodynamic analysis of two-level systems. When comparing these results with
those obtained using the standard definitions of these quantities, we observe the appearance of a different term
of work, which represents the energy cost of rotating the Bloch vector in the presence of the external field that
defines the local Hamiltonian. Additionally, we obtain explicit expressions for the temperature, the heat capacity,
and the internal entropy production of the system in both paradigms. In order to illustrate our findings we study,
from both perspectives, matter-radiation interaction processes for two different systems.

DOI: 10.1103/PhysRevE.103.042105

I. INTRODUCTION

Quantum physics is an intrinsically dynamic theory and
therefore time dependence is essential in its description. Clas-
sical thermodynamics, on the other hand, mostly considers
closed systems that evolve quasiadiabatically [1]. For this rea-
son, when we insert quantum dynamics into thermodynamics
we obtain a quantum version of finite-time thermodynamics,
which is intimately related to the theory of open systems [2].

Heat and work are the basic mechanisms of energy ex-
change between thermodynamic systems. From the classical
point of view, heat is usually defined as the energy flow which
occurs exclusively due to the temperature difference between
the systems. Work, on the other hand, is the energy exchange
which can be measured through the variation of a macroscopic
parameter, such as the volume of the system [1,3–6].

Although for classical thermodynamic systems the classi-
fication of the energy transfers as heat and work is not free
from controversy, the situation is even more complex when
quantum systems are considered. Many nonequivalent defini-
tions of these quantities can be found in the literature [7–13],
so the correct identification of heat and work in that regime
can be considered an open problem.

One of the most extensively considered paradigms regard-
ing these quantities was proposed by Alicki several decades
ago [13]. Defining the internal energy of the system as the ex-
pected value of the local Hamiltonian H in the actual reduced
state ρ,

E = 〈H〉 = tr[Hρ], (1)

thus, an infinitesimal energy change takes the form

dE = tr[dHρ] + tr[Hdρ]. (2)

The first term on the right-hand side of Eq. (2) is the energy
change due to changes in the Hamiltonian of the system, asso-
ciated with some control parameter which can be modified by
the experimenter. Considering the previous discussion about
the classical work made on the system, it is reasonable to

define the infinitesimal of work as

δW = tr[dHρ]. (3)

Thus, in order to ensure the validity of the first law, the
infinitesimal of heat is defined as

δQ = tr[Hdρ]. (4)

Therefore, from this point of view, heat is related to changes
in the density matrix describing the quantum state.

Despite its wide application in several contexts [14,15],
this approach has some weak points. For example, if we
consider two interacting systems with constant local Hamil-
tonians, Eq. (3) imply that, even if work is done on the global
system through a time-dependent Hamiltonian, no work is
done on the individual systems, which is counterintuitive.

In this paper we will explore some consequences of a
recent proposal that claims to resolve these issues [16,17]. It
is based on the hypothesis that the von Neumann entropy is a
valid extension of the thermodynamic entropy in the quantum
regime and on the fact that it depends only on the eigenvalues
λ j of the density matrix ρS [18]:

SvN = −
N∑

j=1

λ j lnλ j . (5)

This implies that the changes in SvN are always accompanied
by changes in the eigenvalues of ρS . However, classically, the
entropy change is proportional to the reversible heat transfer.
These observations suggest that heat could not be related to
changes in the whole density matrix [see Eq. (4)], but only on
its eigenvalues.

The remainder of this paper is organized as follows. In
Sec. II we introduce alternative notions of work and heat
for a generic finite-dimensional quantum system. In Sec. III,
using the above ideas, we develop the complete thermody-
namics for a two-level system and we compare the results
with those which arise from assuming Alicki’s theoretical
framework [19]. As we will see, the simplicity of the two-level
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system allows for a very simple geometric interpretation of
the thermodynamic quantities. In Sec. IV we perform both
thermodynamic analyses for two specific matter-radiation in-
teraction processes. A summary and some conclusions are
presented in Sec. V.

II. ALTERNATIVE PARADIGM

In this section we briefly explain the ideas behind the alter-
native proposal. First, we note that, in the standard paradigm,
Eqs. (3) and (4) are equivalent to

δW =
∑

j

ρ j jdE j (6)

and

δQ =
∑

j

dρ j jE j, (7)

where {Ej} are the eigenenergies of the system and {ρ j j} their
corresponding probabilities. These expressions are equivalent
to those corresponding to the classical notions of work and
heat for systems with a discrete spectrum. However, it would
be reasonable that quantum features, such as the existence of
coherence between the different eigenstates, play an important
role, which is not covered by the previous description [20,21].

To analyze the problem from a different perspective, we
start by writing the instantaneous spectral decomposition of
the density matrix

ρ =
∑

j

λ j |ψ j〉〈ψ j |, (8)

where {|ψ j〉} are the eigenfunctions and {λ j} the set of cor-
responding eigenvalues. This equation, together with Eq. (1),
allows us to express the internal energy as

E =
∑

j

λ j〈ψ j |H |ψ j〉, (9)

so the infinitesimal energy change is given by

dE =
∑

j

dλ j〈ψ j |H |ψ j〉 +
∑

j

λ jd〈ψ j |H |ψ j〉. (10)

Recalling Eq. (5), it is clear that only the first term on the
right-hand side of Eq. (10) is linked to the entropy change.
Thus, it is the only term which should be considered as heat,
so we define

δQ =
∑

j

dλ j〈ψ j |H |ψ j〉 (11)

and, as a consequence,

δW =
∑

j

λ jd〈ψ j |H |ψ j〉. (12)

Note that in this paradigm, work is related not only to
the possibility of driving the Hamiltonian, but also to the
change in the eigenvectors of the density matrix. Of course,
for thermal equilibrium states, and more generally for any
incoherent state in the energy basis, the Hamiltonian and the
density matrix commute. Thus, λ j = ρ j j , 〈ψ j |H |ψ j〉 = Ej ,

and, as a consequence, both paradigms are equivalent in that
limit.

In the next section we focus on the study of two-level
systems, a case which is interesting in its own right due to
its technological applications and which, due to its simplicity,
allows us to obtain a clear geometrical interpretation of the
thermodynamic quantities.

III. THERMODYNAMIC QUANTITIES FOR TWO-LEVEL
SYSTEMS IN THE BLOCH VECTOR REPRESENTATION

A. Internal energy, heat, and work

A convenient way to visualize the state of a two-level
system is through its Bloch vector

�B = (Bx, By, Bz ), (13)

whose components are, aside from a factor h̄/2, the expected
values of the spin operators Sx, Sy, and Sz,

Bx = 〈Sx〉 = tr(ρS σx ),

By = 〈Sy〉 = tr(ρS σy),

Bz = 〈Sz〉 = tr(ρS σz ),

(14)

where σx, σy, and σz are the Pauli matrices. On the other
hand, aside from an irrelevant scalar multiple of the identity,
a generic Hamiltonian in two dimensions adopts the form

H = −�v · �σ , (15)

where �v can be associated with an effective magnetic field and
�σ is a formal vector whose components are the Pauli matrices.
In terms of the Bloch vector, the density matrix of a two-level
system can be written as

ρ = 1
2 [1 + �B · �σ ]. (16)

Using Eqs. (1), (15), and (16) and the identity

(�a · �σ )(�b · �σ ) = (�a · �b)I + i�σ · (�a × �b), (17)

we obtain the internal energy

E = −�B · �v. (18)

From Eq. (18) we can write an infinitesimal energy change as

dE = −d �B · �v − �B · d�v. (19)

1. Standard framework: Paradigm 1

In the standard framework, work is performed on the sys-
tem only if the Hamiltonian is time dependent. Heat, on the
other hand, is related to changes in the quantum state. This
point of view leads to the natural definitions of infinitesimal
work and heat for a two-level system,

δW = −�B · d�v, (20)

δQ = −d �B · �v, (21)

in such a way that the first law has the same structure as in the
classical case: dE = δQ + δW .

From this point of view, the work is zero when the effective
magnetic field is constant in time or when its change is orthog-
onal to the Bloch vector, i.e., orthogonal to the instantaneous
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magnetization. Conversely, heat is zero when the Bloch vector
is constant in time, i.e., the system is in equilibrium, and also
when its change is orthogonal to the effective magnetic field.
This situation includes the special case in which the qubit
evolves unitarily.

2. Alternative treatment: Paradigm 2

To analyze the problem from this perspective, we first note
that the eigenvalues of ρS can be written as

λ± = 1

2
± B

2
, (22)

where B is the modulus of the Bloch vector. Therefore, con-
sidering Eq. (5), we can write the von Neumann entropy of the
qubit as

SvN

kB
= −

(
1 + B

2

)
ln

(
1 + B

2

)
−

(
1 − B

2

)
ln

(
1 − B

2

)
.

(23)

We note that in the case of two-level systems, the entropy
depends only on B, so its changes are linked solely to changes
in B. Thus, from the point of view according to which heat is
associated with the energy exchange responsible for entropy
change, we conclude that δQ is different from zero if and only
if B changes.

If we write the energy of the system [Eq. (18)] as

E = −BB̂ · �v, (24)

where B̂ is a unit vector in the direction of �B, the energy
change can be partitioned as

dE = −dB(B̂ · �v) − Bd (B̂ · �v). (25)

As a result of the previous considerations and since only the
first term contributes to the entropy change, we define the heat
and work exchanged in this second approach as

δQ ≡ −dB(B̂ · �v) (26)

and

δW ≡ −Bd (B̂ · �v). (27)

It is interesting to consider in detail these expressions.
From Eq. (27) we notice that the work done on the system
is the product of the modulus of the magnetization B and the
infinitesimal change in the projection of the effective magnetic
field on the direction of the magnetization,

δW = −Bd (|�v| cos θ ), (28)

where θ is the angle between v̂ and B̂. Thus, in this framework,
work can be performed on the system even if the Hamiltonian,
i.e., �v, is fixed, provided that B̂ changes in such a way that
the angle between both vectors is not constant in time. In
particular, work is extracted from the system, δW � 0, when
the Bloch vector changes in such a way that B̂ · �v increases
in time, i.e., when �B tends to align itself with the effective
field �v.

On the other hand, there are two kind of processes for
which no heat is exchanged: (i) isoentropic processes, for
which B is constant, and (ii) processes for which B̂ ⊥ �v along
the process. This situation includes states that encompass all

possible entropy values, as long as the point representing the
reduced state in the Bloch sphere moves on a plane orthogonal
to the effective magnetic field. The states located on this
plane are the statistical mixtures of the cat states (SMCS) of
the instantaneous Hamiltonian and all of them possess zero
energy, so if the system transits among these states the work
exchanged is also zero.

Regarding the sign of the heat, it is clear that if the an-
gle θ between B̂ and �v satisfies θ < π/2, the injection of
heat into the system, δQ > 0, implies an increase in en-
tropy. Conversely, if θ > π/2, injection of heat leads to an
entropy decrease. This suggests that temperatures associated
with states in the upper hemisphere of the Bloch sphere take
positive values, while those in the other hemisphere have
opposite sign. This point will be studied in detail in the next
section.

3. Discussion

The relation between heat and work in the first paradigm,
Q and W , and in the second, Q and W , can be obtained as
follows. From Eq. (27),

δW = −Bd (B̂ · �v) = −BdB̂ · �v − BB̂ · d�v, (29)

and since −BB̂ · d�v = −�B · d�v = δW we obtain

δW = δW − BdB̂ · �v. (30)

Similarly, the relation between the heats exchanged in both
paradigms is

δQ = δQ + BdB̂ · �v. (31)

Equation (30) can be written as

δW = δW + δW ′, (32)

where

δW ′ = −BdB̂ · �v. (33)

We notice that the work associated with an infinitesimal
process in paradigm 2 adds, to the standard contribution δW
due to Hamiltonian driving, the additional term δW ′, which is
related to the time variation of the density matrix eigenvectors
in Eq. (12). Choosing the z axis in the direction of �v and
expressing dB̂ in spherical coordinates,

dB̂ = dθ êθ + sin θdϕêϕ, (34)

we find that

δW ′ = B sin θεdθ, (35)

where ε = |�v| is the positive energy eigenvalue.
Since the components of the Bloch vector are proportional

to the expected values of the spin operators, �B can be inter-
preted as the average magnetic dipole moment of the system,
which is embedded in an external magnetic field �v. For a
classical dipole, the potential energy is given by U = −�B · �v,
so it coincides with our expression for the internal energy
[Eq. (18)]. Therefore, the work that must be performed against
the magnetic field in order to rotate the dipole from the initial
to the final configuration equals the potential energy differ-
ence between those two configurations.
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In our case we notice that, unlike what occurs in unitary
evolutions, the interaction with the environment drives the
system along trajectories such that the polar angle θ may vary
in time, which implies that rotational work must be performed
against the magnetic field, in an amount

δWrot = − �M · �dθ, (36)

where �M = �B ∧ �v is the torque exerted by the magnetic force
and �dθ = dθ êϕ . It is now straightforward to show that δW ′ =
δWrot. Thus, δW ′ is the energetic cost of rotating the dipole in
the presence of the external field.

We also notice that B sin θ is the coherence of the state
measured using the l1-norm, Cl1 [22],

Cl1 ≡
∑
i 	= j

|ρi j | = B sin θ. (37)

From Eqs. (35) and (37) we obtain

δW ′ = Cl1εdθ, (38)

so we conclude that for a fixed local Hamiltonian, work can
be performed on the system only if coherence in the energy
eigenbasis is present. In fact, from Eq. (38) we see that Cl1
can be interpreted as the lever arm of the torque, revealing, in
the context of the present work, the role of quantum coherence
as a resource for thermodynamic tasks [23,24]. Reciprocally,
in Ref. [25] it is shown, employing a differential geometry
approach, that the creation of coherence is detrimental to
efficiency in finite-time thermodynamic processes.

As a simple example let us consider a qubit undergoing a
pure dephasing process. Since the Hamiltonian is fixed, from
the point of view of paradigm 1, no work is performed. Since
the nondiagonal terms tend to zero while the populations
remain constant, the Bloch vector evolves in such a way that
the energy of the system does not change. This implies that
no heat is exchanged either, so from the point of view of
paradigm 1, pure dephasing is a nondissipative process in
which the information contained in the coherence is trans-
ferred from the system to the environment.

However, information possesses an energy value [26–28],
so it should be expected that, despite maintaining its energy
constant, the potential of the qubit to do work would decrease.
This fact can be explained in a natural way by analyzing the
problem from the point of view of paradigm 2. Since during
pure dephasing the entropy of the qubit increases, for positive
temperature states, heat is transferred to the system. However,
since the energy of the system is constant, an equal but op-
posite amount of work is performed on the environment. This
decrease in the ability to perform work can then be interpreted
as the result of giving some high-quality energy (work), re-
ceiving, in exchange, the same amount of low-quality energy
(heat).

B. Temperature

Our main objective so far has been to compare the notions
of heat and work within each of the two paradigms considered,
However, the adoption of either one allows us to extend, in the
case of two-level systems, other thermodynamic quantities to
the quantum regime, considering their corresponding classical
analogous concepts.

Temperature is clearly defined only for systems in ther-
modynamic equilibrium. Nevertheless, many definitions of
temperature have been shown to be useful in nonequilibrium
situations [29–37].

The temperatures that we define below should be inter-
preted as a measure of the entropy changes produced by the
heat exchanged when the system finds itself in a particular
state. They are not necessarily linked to the direction of the
heat flow when thermodynamic systems are put in thermal
contact. In fact, it has been theoretically predicted and exper-
imentally shown that the direction of the heat flow between
quantum systems in local thermal states can be reversed if
quantum correlations are present in the initial state [38,39].

1. Paradigm 1

Consistently with the classical case, we define the tem-
perature of a two-level system as the derivative of the von
Neumann entropy with respect to energy in a zero-work pro-
cess, a condition which is satisfied in the standard framework
if the Hamiltonian is time independent. Since the Hamiltonian
is determined by the effective magnetic field �v = εv̂, fixing
the direction v̂ we define

1

T = ∂SvN

∂E

∣∣∣∣
ε

. (39)

We observe that SvN depends only on B, which in turn depends
on three arbitrary orthogonal components of the Bloch vector.
Due to Eq. (1), the energy depends only on the component
parallel to v̂,

E = −ε �B · v̂, (40)

so we have

1

T = dSvN

dB

∂B

∂ ( �B · v̂)

∂ ( �B · v̂)

∂E

∣∣∣∣
ε

. (41)

From Eq. (23),

dSvN

dB
= −kB tanh−1 B, (42)

and the other factors are

∂B

∂ ( �B · v̂)
= B̂ · v̂,

∂ ( �B · v̂)

∂E

∣∣∣∣
ε

= −1

ε
. (43)

Thus,

T = ε

kB(B̂ · v̂) tanh−1 B
. (44)

We notice that pure states have zero temperature, except for
those such that the Bloch vector is orthogonal to the effective
magnetic field, for which the temperature is not defined. In
the case of mixed states, the temperature diverges as the mag-
netization in the direction of v̂ goes to zero. This behavior is
similar to that corresponding to classical spin systems [40].

2. Paradigm 2

From this perspective, a zero-work process is implemented,
keeping constant the product B̂ · �v, so we define

1

T
= ∂SvN

∂E

∣∣∣∣
B̂·�v

(45)
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or, equivalently,

1

T
= dSvN

dB

∂B

∂E

∣∣∣∣
B̂·�v

. (46)

In this case it is convenient to write Eq. (1) in the form

B = − E

B̂ · �v (47)

so that the second factor in Eq. (46) is written

∂B

∂E

∣∣∣∣
B̂·�v

= − 1

B̂ · �v (48)

and therefore

T = εB̂ · v̂

kB tanh−1 B
. (49)

Two families of zero-temperature states appear in paradigm
2: those with B = 1 (pure states) and B̂ · �v = 0 (SMCS). On
the other hand, the only infinite-temperature state is the max-
imally mixed state.

3. Discussion

First, we note the different position of the factor B̂ · v̂ in
Eq. (44) (first paradigm) and in Eq. (49) (second paradigm).
This implies that the relation between both temperatures is

T = T (B̂ · v̂)2 = T cos2 θ, (50)

from which we deduce that they always have the same sign
and that, for all possible states, T � T . In particular, for
incoherent states in the energy eigenbasis (θ = 0) both tem-
peratures coincide:

T = T = ε

kB tanh−1 B
. (51)

If additionally the system reaches thermal equilibrium with an
environment at temperature TE , the reduced state is described
by the Gibbs state in which the populations of the ground and
the excited levels Peq

g and Peq
e are fixed by the environment

temperature [41],

TE = 2ε

kB ln
(Peq

g

Peq
e

) . (52)

Since in this case the Hamiltonian and the density matrix
commute, the populations and the eigenvalues of the density
matrix coincide. Therefore, from Eq. (22) we obtain

ln

(
Peq

g

Peq
e

)
= ln

(
1 + Beq

1 − Beq

)
= 2 tanh−1 Beq. (53)

Finally, from Eqs. (51)–(53) we conclude that, in thermal
equilibrium,

T = T = TE . (54)

Therefore, at least in principle, both expressions (44) and (49)
extend naturally the concept of temperature to the nonequilib-
rium situation.

We have already noted that in the context of paradigm 2,
the zero-energy plane divides the Bloch sphere into two hemi-
spheres with opposite values of temperature. This is also true
in paradigm 1, since both temperatures have the same sign.

FIG. 1. Isothermal surfaces in the Bloch sphere, corresponding
to the temperature values kBT1 = ε (red, upper region) and kBT2 =
−2ε (blue, lower region) in (a) paradigm 1 and (b) paradigm 2.

This can be seen explicitly in finding the energy-temperature
relation from Eqs. (40) and (49),

T = − E

kBB tanh−1 B
. (55)

Finally, we note that in paradigm 1, zero temperature implies
zero entropy. This is not true in paradigm 2, since SMCS have
zero temperature but their entropy may take any value. Some
constant temperature surfaces in both paradigms are shown in
Fig. 1.

C. Heat capacity

As usual, we define the heat capacity as the partial deriva-
tive of the energy with respect to temperature, in a zero-work
process.

1. Paradigm 1

The derivation in Alicki’s theoretical framework was per-
formed in Ref. [19],

Cε = kBB(1 − B2)(tanh−1 B)2( �B · v̂)2

tanh−1(B)[B2 − ( �B · v̂)2](1 − B2) + B( �B · v̂)
. (56)

where the consequences of this result are discussed in detail.

2. Paradigm 2

In this approach, the heat capacity is

CB̂·�v = ∂E

∂T

∣∣∣∣
B̂·�v

. (57)

The evaluation of this equation requires us to express the
energy in terms of T and B̂ · �v. From Eq. (49)

B = tanh

(
B̂ · �v
kBT

)
, (58)

which, combined with Eq. (24), leads to

E = −(B̂ · �v) tanh

(
B̂ · �v
kBT

)
. (59)

Therefore,

CB̂·�v = kB

[ x

cosh x

]2
, (60)
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where

x = B̂ · �v
kBT

, (61)

and T is given by Eq. (49).

3. Discussion

A quick inspection of Eqs. (56) and (60) shows that in both
cases the heat capacity is non-negative for all possible states.
The equivalence between Eq. (56) and the equilibrium heat
capacity is shown in Ref. [19]. On the other hand, the ex-
pression (60) for the heat capacity in the alternative paradigm
is clearly a more natural extension of the classical result.
Since in thermal equilibrium the Bloch vector is parallel to
the effective magnetic field,

B̂ · �v = |�v| = ε, (62)

and since in that case the temperature of the system equals the
environment temperature, Eq. (60) reduces to the well-known
expression [42]

CB̂·�v = kB

[
ε/kBT

cosh ε/kBT

]2

. (63)

D. Entropy production

Classically, the entropy change of a closed system is
given by

dS = δQ

T
+ δSint

gen, (64)

where the first term corresponds to the entropy flux through
the system’s boundary at temperature T due to heat exchange
and the second term is the non-negative entropy production
associated with the irreversibilities inside the system [6]. A
typical situation is that in which the system is in contact with
a heat bath at temperature TE . In this case, if the system’s
temperature and the environment temperature are different, an
additional entropy production appears due to the irreversible
character of the heat transfer. In this case, the total entropy
production can be evaluated by applying Eq. (64) to the sys-
tem plus its border so that the irreversible heat transfer occurs
in its interior, i.e., considering the environment temperature
instead of the system’s temperature in Eq. (64). In this case,

dS = δQ

TE
+ δStot

gen. (65)

From Eqs. (64) and (65) we can make two important ob-
servations. One is that the total entropy production can be
separated in the internal and the heat transfer contributions.
The latter corresponds to the second term on the right-hand
side of

δStot
gen = δSint

gen + δQ

(
1

T
− 1

TE

)
. (66)

We also note that Eq. (65) can be written as

δStot
gen = dS − δQ

TE
. (67)

Note that the two terms on the right-hand side of this equation
correspond to the entropy variations of the system and the

environment, respectively, so the total entropy production and
the total entropy variation, in the case of classical systems,
coincide:

δStot
gen = dStot. (68)

This equation has represented a big challenge to the possi-
bility of extending thermodynamics to the quantum regime.
Since the evolution of an open system is, in the general
case, irreversible, one expects a positive entropy production
(δStot

gen > 0). However, the unitary evolution of the whole
system preserves the density matrix eigenvalues and as a con-
sequence the total entropy does not change (dStot = 0). This
fundamental problem has been addressed in several works
[14,43–45] and it has been suggested that entropy production
instead of entropy change is the relevant quantity to explain
irreversible behavior. In this work we will only focus on the
analysis of Eq. (64) within each paradigm, in order to inves-
tigate if an intrinsic entropy production is expected in each
case.

1. Paradigm 1

This problem has been analyzed in Ref. [19]. From
Eqs. (21), (42), and (44) it is straightforward to obtain an
equation linking the von Neumann entropy, the heat trans-
ferred, and the temperature defined in Alicki’s theoretical
framework,

dSvN = δQ
T + δS int

gen, (69)

where the internal entropy production is given by

δS int
gen = −kB tanh−1(B)[B̂ − (v̂ · B̂)v̂] · d �B. (70)

Since B̂ − (v̂ · B̂)v̂ is orthogonal to v̂, for a unitary evolution,
or if the system evolves along equilibrium states, Eq. (70)
predicts zero-internal-entropy production, as expected.

2. Paradigm 2

From Eqs. (26), (42), and (49),

dSvN = δQ

T
(71)

and, as a consequence,

δSint
gen = 0. (72)

Thus, in the case of paradigm 2, no intrinsic entropy produc-
tion is expected in any process. It must be pointed out that
this result is valid only in the case of two-level systems. For
higher-dimensional systems we have been able to find a very
reduced set of quantum states for which the concept of local
temperature can be consistently defined, but not a generally
valid treatment of this quantity [46].

3. Discussion

To give a physical interpretation of Eq. (70), we first recall
the definition of heat in paradigm 1 [Eq. (4)],

δQ = −d �B · �v,

and note that only the part of d �B which is parallel to v̂ is
responsible for heat exchange. If we restrict ourselves to the
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case in which the Hamiltonian is fixed, expressing Eq. (70) in
spherical coordinates (with the z axis in the direction of v̂), we
obtain [19]

δSint
gen = −kB tanh−1 B sin θd (B sin θ ). (73)

Therefore, the component of d �B which is orthogonal to v̂ and
produces no heat is the one responsible for entropy produc-
tion. Since B sin θ = Cl1 , the entropy produced in paradigm
1 is proportional to the change in the coherence of the qubit
in the energy eigenbasis. If coherence is lost, entropy is pro-
duced, and destruction of entropy can occur in processes in
which the coherence of the qubit increases. On the other hand,
the nonexistence of internally generated entropy in paradigm
2 was expected, since in it heat is defined as the part of the
energy change which produces an entropy change. Therefore,
in this approach, there are no causes of entropy variation other
than the heat flow.

The nonexistence of internal entropy production is consis-
tent with the possibility of obtaining an extra amount of work
in comparison with the previous approach. Nevertheless, if
the system and its environment are at different temperatures,
entropy production at the boundary should be expected due to
irreversible heat transfer according to Eq. (66),

δSht
gen = δQ

(
1

T
− 1

TE

)
. (74)

However, this result was obtained by subtracting Eqs. (64) and
(65), and it was assumed that the heat released by one system
equals the one absorbed by the other, an aspect that in the
quantum case is not guaranteed in either of the two paradigms.
In fact, for a system of two qubits in positive-temperature
states and under a global unitary evolution, the Schmidt de-
composition forces both entropy changes to be equal. As a
consequence, in paradigm 2 the heat exchanged has the same
sign for both systems, so they are releasing or absorbing heat
simultaneously.

IV. EXAMPLES

A. Two-level atom in a heat bath

In the Markovian approximation (valid in the high-
temperature limit), the evolution of a two-level atom inter-
acting with a thermal state of the electromagnetic field at
temperature TE is given, in the interaction picture, by the
master equation [43]

∂ρS

∂t
= γ0(N + 1)

(
σ−ρσ+ − 1

2
σ+σ−ρ − 1

2
ρσ+σ−

)

+ γ0N
(

σ+ρσ− − 1

2
σ−σ+ρ − 1

2
ρσ−σ+

)
, (75)

where γ0 is the spontaneous emission rate, ω0 is the transition
frequency, N is the Planck distribution at that frequency,

N = 1

eβE h̄ω0 − 1
, (76)

σ± = 1
2 (σx ± iσy), and βE = (kBTE )−1. It is known that in

the asymptotic regime, the equilibrium state of the atom is
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FIG. 2. Comparative evolution of the thermodynamic quantities
in both paradigms, for a two-level atom interacting with a thermal
electromagnetic field at temperature kBTe/ε = 10: (a) heat and work
exchanged and (b) temperature. In both cases the initial state is a
product state, where the atom’s initial density matrix is defined by
the Bloch vector �B = (0.2, 0.5, 0.4).

described by the thermal reduced density matrix,

ρeq = e−βE H

tr(e−βE H )
, (77)

which implies that the Bloch vector points in the direction of
the effective magnetic field, with modulus

Beq = tanh βEε, (78)

where ε = |�v| is the eigenenergy of the system. As a
consequence, the environment temperature determines the
equilibrium values of all the thermodynamic quantities. In
particular, the equilibrium temperature coincides with the en-
vironment temperature.

In the case of paradigm 1, the total energy variation of the
atom corresponds to the heat exchanged with the environment,
�E = Q, represented by the thick red solid line in Fig. 2(a).

From the perspective of paradigm 2, the thermalization
process is related to two different phenomena. On the one
hand, since the initial entropy of the atom is arbitrary and
its final entropy is defined by the environment temperature,
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FIG. 3. Evolution of the state of the atom in the Bloch sphere.
The system evolves from the initial state (0.2,0.5,0.4) (blue point)
towards the thermal state (red point) located at the vertical diameter.

a heat exchange is needed so that the final entropy is the
one that ensures thermal equilibrium with the environment.
On the other hand, work is also required to rotate the Bloch
vector towards the equilibrium direction. Both quantities are
also represented in Fig. 2(a).

The transient positive character of the work observed in
the case of paradigm 2 can be understood by analyzing the
path towards the equilibrium state in the Bloch sphere (see
Fig. 3). Note that when evolution begins, even though both
the distance to the z axis, B sin θ , and B decrease, θ increases,
so work is done on the system. This occurs until the point
representing the reduced state reaches the intersection of the
trajectory with the tangent line from the center of the sphere
(the dashed line in Fig. 3). From that point onward, both B and
θ , and consequently the net work, begin to decrease, resulting,
at the end of the thermalization process, in a total negative
work done on the system. For this reason, thermalization in
the case of paradigm 2 requires greater heat absorption from
the environment, part of which is converted into work.

The first part of the process described above shows that
although coherence is a useful resource, its consumption does
not necessarily imply an extraction of work. In fact, if the
temperature of the bath is infinite, there are trajectories that
converge to the maximally mixed state tangentially to the
plane z = 0, so a positive total work is performed on the
system during the process.

Regarding the behavior of the temperature, Fig. 2(b) shows
that in both theoretical frameworks the temperature increases
as the atom absorbs heat. As expected, the respective tem-
peratures tend to the equilibrium temperature, with a faster
convergence in Alicki’s formulation.

B. Photon exchange between two two-level atoms

As a second example, let us consider a system composed
by two two-level atoms embedded in a common environment

at zero temperature. If the atoms are separated a distance
R and only the spontaneous emission is taken into account,
the system undergoes a dissipative process described by the
master equation [47]

∂ρ

∂t
= 1

2

∑
k,l=A,B

γkl (2σ k
−ρσ l

+ − σ k
+σ l

−ρ − ρσ k
+σ l

−), (79)

where

σ A
± = σ± ⊗ I2, σ B

± = I2 ⊗ σ±, (80)

γAA = γBB = γ0 is the spontaneous emission rate of each
atom, γAB = γBA = γ = g(R)γ0 � γ0 is the photon-exchange
relaxation constant, and g(R) is a function which approaches
the value 1 as R → 0. In the case γ < γ0, the atoms are
not capable of absorbing all the energy emitted by the other,
so independently of the initial state, the composed system
asymptotically relaxes towards the ground state |0〉 ⊗ |0〉.

In Fig. 5 we show the trajectories followed by the states of
both atoms in the Bloch sphere. We observe that as the atom
A releases energy, its state evolves from its initial state 1A
towards the ground state 2A. On the other hand, since atom
B starts in the unexcited state 1B, it initially absorbs energy,
which drives it out of the ground state. Upon reaching the
point 2B, the energy emitted equals the energy absorbed and
from that moment on emission exceeds absorption and the
atom relaxes to the ground state 3B. In the following we will
interpret these facts within the framework of each paradigm.

Let us analyze the case in which the system starts from an
initially uncorrelated state, with the atom (A) in the partially
excited state defined by the Bloch vector �BA = (0, 0.5, 0.8),
while atom B is in the ground state, �BB = (0, 0, 1). Since the
local Hamiltonians are constant in time, from the point of view
of paradigm 1 the emission and absorption of photons are
modeled as a heat transfer process between the atoms, with
some heat released to the environment. The heat exchanged
by each atom is represented by the thick red solid lines in
Figs. 4(a) and 4(b). We note that in the net balance, the
atom A is always releasing heat but at a decreasing rate as
it approaches the ground state, while atom B undergoes the
process described in the preceding paragraph, interpreting its
energy change exclusively as heat absorbed and released.

From the perspective of paradigm 2, the energy variation
of atom A includes a negative work component, i.e., work
performed by the system, represented by the blue dash-dotted
line in Fig. 4(a). This is due to the fact that the angle formed
by the Bloch vector and the vertical direction decreases mono-
tonically in time as the atom approaches the ground state. As
a consequence, the amount of heat emitted by the atom is less
than in paradigm 1.

Regarding atom 2, we note that in the first part of the
evolution the photon absorption has two effects. It leads to an
increase in entropy, interpreted as heat entering the system. In
fact, we note in Fig. 4(c) that the temperature also increases.
In addition, it also leads to a change in the direction of the
Bloch vector, which moves away from the vertical direction.
This motion requires external rotational work to overcome its
tendency to stay in the vertical direction due to the presence
of the magnetic field. We also note that the signs of heat and
work are in phase.
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FIG. 4. Thermodynamic quantities for the evolutions of the two
atoms considered in Fig. 5 using the two paradigms considered in this
work: (a) heat and work exchanged by atom A, (b) the same quantities
as in (a) but for atom B, and (c) the respective temperatures, also in
both approaches.

As the system subsequently evolves from state 2B to 3B,
the emission of photons governing the process comes from
the heat released and work done, in amounts opposite to those
of the process 1B → 2B, with a decrease in temperature. It is
also interesting to note that the state 2B occurs approximately
when the temperatures of the atoms are equal, so it is rea-
sonable to think that, from that moment on, the energy flows

FIG. 5. Trajectories in the Bloch sphere. The initial reduced state
is a product state of local densities defined by the Bloch vectors
�Ba = (0, 0.5, 0.8) and �Bb = (0, 0, 1), and g(R) = γ /γ0 = 0.8. The
environment temperature is zero.

between the atoms balance and both atoms cool, releasing
energy to the environment, as it can be seen in Fig. 4.

V. FINAL REMARKS AND CONCLUSIONS

In this work we have explored a proposal about the nature
of heat and work in the quantum regime, explicitly devel-
oping the comparison, for the simple case of a two-level
system, of the alternative definitions with one of the more
accepted paradigms involving these quantities. In addition
to making it possible to reproduce all the classic results for
incoherent states, the predictions based on the alternative ap-
proach present several advantages with respect to the standard
paradigm. In particular, the alternative concept of heat is
closer to the classical one, according to which heat is the part
of the energy exchange that involves a change in the entropy
of the system.

In regard to the definition of work, the main difference in
relation to the previous paradigm is the possibility of obtain-
ing work even if the local Hamiltonian of the system does not
vary in time. This is consistent with situations in which the
interaction with the environment is time dependent, so work
is expected to be performed on the system.

In addition, the alternative paradigm allows us to classify
the work into two contributions: one associated with Hamil-
tonian driving, which coincides with the previous definition,
and an additional one associated with the coherence of the
state of the system. The latter, which does not appear as work
in the first paradigm, is related to the work associated with the
rotation of the spin direction. This contribution is analogous
to the classical work required to rotate a magnetic dipole in an
external magnetic field.

Another important advantage of the alternative definition
of work is that it highlights the importance of coherence as a
resource, an aspect already reported in numerous references.
In particular, the analysis of a pure dephasing process from the
alternative perspective allows us to understand in a different
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way why the ability to perform work decreases as the system
evolves to the passive state.

A remarkable prediction of the alternative paradigm is that
the thermalization process can no longer be understood as be-
ing a purely thermal process, but rather involves a mechanical
component associated with the change in orientation of the
Bloch vector or, in the general case, with a rotation of the
eigenstates of the system. However, we must not forget that
the notion of heat arises due to the impossibility of accessing
the microscopic degrees of freedom of macroscopic systems.
It is intuitive that, in the absence of that limitation, many
energy exchange processes could be exclusively associated
with the concept of work. In the alternative paradigm, heat
is linked to a more fundamental inaccessibility, which is a
consequence of the quantum description of open systems in
terms of mixed states.

Finally, a counterintuitive aspect of paradigm 1 that is not
resolved by the alternative proposal has to do with the fact

that, since heat and work are defined using local variables,
they cannot be considered energy flows in a strict sense. In the
general case, the heat released by one part of the system can
be different from the heat absorbed by the other, and the same
occurs with the work. Maybe these concepts can be defined
unambiguously and respecting all the intuitive requirements,
only in particular situations, such as those in which the
system of interest interacts with systems which, by construc-
tion, can only exchange either heat or work in the classical
sense.
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