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Ballistic Brownian motion of supercavitating nanoparticles
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We show that the Brownian motion of a nanoparticle (NP) can reach a ballistic limit when intensely heated
to form supercavitation. As the NP temperature increases, its Brownian motion displays a sharp transition from
normal to ballistic diffusion upon the formation of a vapor bubble to encapsulate the NP. Intense heating allows
the NP to instantaneously extend the bubble boundary via evaporation, so the NP moves in a low-friction gaseous
environment. We find the dynamics of the supercavitating NP is largely determined by the near field effect, i.e.,
highly localized vapor phase property in the vicinity of the NP.
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I. INTRODUCTION

Brown [1] observed a suspended pollen grain in water
undergoing a random walk, and Einstein [2] showed that the
mean-squared displacement (MSD) of a particle experiencing
such Brownian motion is proportional to the product of its
diffusivity and time. When the particle is maintained at a
higher temperature than the surrounding fluid, the nonequi-
librium temperature field and its induced fluid property (e.g.,
viscosity) change lead to the so-called hot Brownian motion
[3]. Rings et al. [3] derived that the apparent diffusivity of
the particle experiencing hot Brownian motion can still be
described by the Stokes-Einstein relation (D ∝ T/η, where D
is the particle diffusion coefficient and the η is the surrounding
liquid viscosity), but the temperature and viscosity need to
be corrected to consider the nonequilibrium temperature field
and the temperature-dependent liquid viscosity. This general-
ized Stokes-Einstein relation was validated by the measured
effective diffusivity of laser-heated gold nanoparticles (NPs)
in fluid, where good agreement between theory and measure-
ments was obtained with an excess temperature of the NP up
to 150 K. The theoretical framework was further validated
using molecular simulations [4,5].

However, when the excitation laser has a power density
high enough to form a vapor bubble encapsulating the NP
(i.e., supercavitation, Fig. 1), the assumption that temperatures
and fluid properties vary continuously is no longer valid due
to phase discontinuity. There have been many studies [6–12]
on the nanobubble formation around intensely heated NPs.
Sasikumar et al. [12] used molecular dynamics (MD) to study
the cavitation dynamics around such NPs and found that liq-
uid temperature around the NP reached ∼90% of the critical
temperature. Lombard et al. [11] reported the expansion of
the nanobubble to be adiabatic by using a hydrodynamic
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free-energy model. Maheshwari et al. [10] determined the
exact conditions for the nanobubble formation around a heated
NP and found a good agreement with the macroscopic heat
balance equation. In these studies, bubble dynamics was the
focus with NPs all modeled as fixed particles. Experiments
[13] have indeed shown that NPs can be encapsulated by
supercavitation upon laser heating at the surface plasmonic
resonance, but their Brownian motion, which is expected to
be different from hot Brownian motion, has not been studied.

II. METHODS, RESULTS AND DISCUSSION

In this paper, the MD simulation model consists of a NP
immersed in a fluid and a solid slab away from the NP
as shown in Fig. 1(a), with periodic boundary conditions
applied in all directions. For the fluid, the Lennard-Jones
(L-J) argon model, E = 4ε[( σ

r )12 − ( σ
r )6], is used where

σ = 3.405 Å, εF−F = 0.24 kcal/mol. A time step of 5 fs
is used. For the NP, which has a diameter of 1 nm, the
Morse potential, E (r) = D0[e−2α(r−r0 ) − 2e−α(r−r0 )], where
D0 is the bond-dissociation energy, r0 is the equilibrium bond
length, and α is the parameter characteristic of the atom, is
used with the parameters of D0 = 10.954 kcal/mol, αNP =
1.583 Å, rNP = 3.042 Å. The NP interacts with the fluid
atoms via the L-J potential with parameters σNP−F = 3.405 Å
and εNP−F = 0.46 kcal/mol to model the hydrophilic sur-
face. All interactions are truncated at rc = 3.67σ . For all
simulations, the system is first equilibrated in a canonical
ensemble with T0 = 0.75ε/kB, and then further equilibrated
in an isothermal-isobaric ensemble at the same temperature
and pressure of P = 0.0024ε/σ 3. The NP is then heated and
maintained at Tp (� T0) by rescaling the thermal velocity of
the NP atoms, whereas the center of mass velocity is intact.
The slab is maintained at T0 using a Langevin thermostat to
dissipate heat so that the overall temperature of the whole
system does not rise constantly. It is worth mentioning that
the distance between the NP with the slab is much larger
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FIG. 1. (a) The simulated structure with a dimension of ∼44 × 44 × 73 σ 3; Radial (b) temperature and (c) density profiles of the fluid
around the NP maintained at various Tp (the nanoparticle heating temperature). Red shaded regions in (b) and (c) indicate the local temperature
and density of fluid in the close vicinity of the NP. Black dotted lines in (b) are the solutions of the heat equation of a heated NP in liquid for
the respective Tp conditions. Inset in (c) plots density of the red shaded region as a function of Tp. Color legends are the same for (b) and (c).
Blue shaded regions in (c) and its inset are where stable cavitation is observed; (d)–(f) Fluid phase around the heated NP with Tp = 0.75, 4.17,
and 8.35, respectively. The deeper cyan region indicates the nanobubble generated around the heated NP (see Appendix Note 1 for further
details about the visualizations).

than the cutoff, so there is no influence of the slab on the
dynamics of the NP. All values reported are in reduced
units.

The radial temperature and number density profiles of fluid
with the center of NP as the coordinate origin are shown in
Figs. 1(b) and 1(c) for cases where the NP is heated to dif-
ferent Tp. More details on implementation and simulations are
explained in the Appendix. Supercavitation is apparent when
Tp > 4.17 as the density in the vicinity of the NP shows a
sharp decrease as a function of Tp [inset in Figs. 1(c) and 1(d)–
1(f)]. Such findings are consistent with Refs. [12,14]. The
existence of the vapor phase can also be inferred by fitting the
MD temperature profile using the steady-state heat equation
solution in the radial coordinate: T (r) = (Ts − Ta)Rp/r + Ta,
where Ts is the NP surface temperature, Ta is the ambient
liquid temperature, and Rp is the NP radius. The fitted T(r)
begins to deviate from the MD temperature in the vicinity of
the NP when Tp > 4.17, suggesting that local thermal con-
ductivity has changed. It is noted that due to the hydrophilic
nature of the NP surface, there are always a number of liquid
atoms attached to the surface, so the liquid density is not zero
right next to the NP even when supercavitation is formed at
Tp = 4.17∼8.35.

The MSD of the center of mass of NP as a function of
time, averaged over 50 independent simulations, for each Tp

is shown in Fig. 2(a). MSD increases slowly as Tp increases
from 0.75 to 3.34, and an abrupt large increase is seen from
Tp = 3.34 to Tp = 4.17. This threshold coincides with the
emergence of supercavitation as indicated in Fig. 1. It is noted
that the variation of the MSD curve is large when supercav-
itation exits, since the NP travel large distances with slower
changes in its direction, i.e., the sampling of the phase space
is not sufficiently diverse in one simulation [Fig. 2(b)], and
that is why large ensemble averaging is needed.

The MSD of Brownian motion generally follows 〈MSD〉 =
kα�tα [20,21], where kα is the anomalous diffusion coeffi-
cient with a unit of cm2 s–α . Depending on α, the dynamics
of the NP can be divided into: subdiffusion (α < 1)), normal
diffusion (α = 1), superdiffusion (1 < α < 2), and ballistic
diffusion (α = 2). Figure 2(c) shows that for the isothermal
case (Tp = Ta), the Brownian NP obeys normal diffusion (α =
1). In hot Brownian motion (Tp > Ta), but prior to supercavi-
tation, NP exhibits weak superdiffusion (1 < α < 1.1). When
supercavitation emerges (Tp � 4.17), there is a step increase
in α, and it reaches ballistic diffusion (α = 2) after Tp � 5.01
at least for times up to the simulation time of 300 ps.
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FIG. 2. (a) MSD of the Brownian NP at different Tp. The shaded area represents the standard deviation of the MSD obtained from 50
independent simulations for each Tp. (b) Representative trajectories of NP at Tp = 0.75 and 8.35; (c) Fitted exponential α in 〈MSD〉 = kα�tα

at different Tp.

Since the anomalous diffusion coefficients, kα , have dif-
ferent dimensions that depend on α for different Tp, they
are not directly comparable. We further calculate the prob-
ability density function f (x, t ) of the Brownian NP in each
dimension using the center of mass positions sampled from
10 independent simulations for each Tp case and averaged the

results over all three dimensions [Figs. 3(a) and 3(b)]. We then
leverage Eq. (1) to calculate the apparent diffusion coefficient
(D) [15]:

∂ f (x, t )

∂t
= D

∂2 f (x, t )

∂x2
. (1)

FIG. 3. (a), (b) Selected probability distribution of the NP position for Tp = 0.75 and 8.35 (see Fig. 7 in the Appendix for other Tp). Blue
curves are the fitted Gaussian distribution; (c) Generalized diffusion coefficient (D) extracted from the NP position probability distribution and
apparent friction coefficient (ζ ) extracted from the NP velocity autocorrelation function.
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The solution to Eq. (1) is a Gaussian function with mean at
zero and variance of 2Dt:

f (x, t ) = 1√
4πDt

e− (x−u)2

4Dt . (2)

Thus, fitting f(x,t) will yield D. We also find that the fitted
position mean μ are almost exactly zero for all Tp, which
indicates the Brownian nature of NP in all cases. The fitted
D increases as Tp increases with a sharp increase from Tp =
3.34 to 4.17, coinciding with the onset temperature of super-
cavitation [Fig. 3(c)]. We also extract the apparent friction
coefficient, ζ , from the NP velocity autocorrelation function
(see the Appendix, Fig. 5):

〈V (t ) · V (0)〉 = 〈V 2(0)〉e−(ζ/m)t , (3)

where m is the NP mass. While ζ decreases gradually prior
to supercavitation, a sudden decrease to virtually a friction-
less environment for the NP is seen after supercavitation
[Fig. 3(c)], supporting the observed ballistic diffusion indi-
cated in Fig. 2(c).

Different from hot Brownian motion [3], which is influ-
enced by the temperature and viscosity field far into the
fluid, the observed Brownian motion of the supercavitating
NP seems to be dominated by the fluid property local to the
bubble. The vapor layer presents large thermal resistance so
that the far field temperature is much lower than Tp and is
not sensitive to Tp [cases for Tp > 4.17 in Fig. 1(b)]. The
other important feature is that the high temperature NP can
instantaneously evaporate liquid to extend the vapor boundary
as it moves, like the Leidenfrost effect [Fig. 4(a)], so that
the NP is always enclosed in the vapor environment. This
nanoscale Leidenfrost effect was experimentally observed by
Lee et al. [13], where optical force drives supercavitating NPs
to a speed that can only be explained by moving continuously
in the gaseous phase. Indeed, in our MD simulations, the
velocity of supercavitating Brownian NPs can be as much as
30× higher than that of the normal Brownian motion (see the
Appendix, Fig. 8). We note that a similar superfast diffusion
phenomenon was also found by Fu et al. [16], but in that case,
the NP was propelled by a vapor bubble detaching from the
NP surface.

As a result, we believe supercavitating Brownian motion
is a dominantly near field effect, where for timescales at least
on the order of a few hundred picoseconds, the particle moves
as a Brownian particle, independent of the fluctuations at the
liquid-vapor boundary. To test this hypothesis, we employ a
fluctuating hydrodynamics model calculates the effective fric-
tion coefficient of a NP at different Tp for a range of physically
reasonable far-field conditions using independently obtained
simulation data for bulk-like argon (see the Appendix, Note 7
for more details).

As a first approximation, this model consists of a discon-
tinuous step in density, temperature, viscosity, and pressure
corresponding roughly to the respective averages in a low-
density, hot vapor bubble region from r = Rp to Rb (Rp is NP
radius and Rb is the bubble radius) and the ambient “bulklike”
region extending to infinity [see the inset in Fig. 4(b)]. The
arguments of Rings et al. [5], which critically employ the ob-
servations of Keblinskii and Thomin [17] regarding the nature
of the fluid velocity fields near NPs, so we replace the actual

FIG. 4. (a) A representative continuous trajectory of the super-
cavitating NP at Tp = 5.01 showing the bubble boundary is extended
outward as the NP moves so it is always encapsulated in a virtually
friction environment to achieve ballistic diffusion (see Appendix
Note 1 for further details). (b) Comparison between the friction
extracted from MD and from the theoretical model. The case for far-
field fluid density corresponding to liquid at T = 0.69 (black dashed)
and T = 1.24 (red dashed) show negligible difference from the
T = 0.75 case (orange solid line). A case with temperature-dependent
bubble radius (blue solid line) is shown from T = 4.5 to T = 8.35.
The bubble radius was selected at 7.2σ to get the best fit with the
highest temp point for the constant-radius cases and a cubic fit was
used for the temperature-dependent radius case. The scattered dots
are the friction from the MD simulations. The inset is the schematic
illustration of the surrounding environment around the heated NP.

hydrodynamic velocity field with a much simpler fictitious
diffusing scalar field. These arguments permit a straight-
forward generalization of the original Einstein [2] type of
fluctuation-dissipation argument to nonequilibrium situations.
Radial symmetry is assumed, and we seek (quasi) steady-state
solutions to the spherically symmetric Naiver-Stokes equation
(essentially averaging over time dependence and assuming the
viscosity η(T ), density ρ(T) and T to be spatially uniform)

0 = 1

r2

∂

∂r
r2 ∂u

∂r
. (4)

The solution to the above equation represents averages of
momentum diffusion over times much longer than the time
between a typical molecular collision in the fluid, but shorter
than the typical relaxation time of the Brownian motion of the
NP.

In the step-bubble model, the velocity field is also taken
as steplike. Solutions are sought with a volume-average of
zero divergence over the bubble and simultaneously obey
mass continuity at the liquid-vapor interface. This assumption
is permissible because only the excess heat associated with
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the frictional motion of the NP is considered. The reaction
of the bubble back on the motion of the particle occurs on
timescales corresponding to the complete reflection of a pres-
sure wave across the relevant portions of the system. For a
bubble of radius ∼1.5 nm and a ∼1-nm radius particle in
argon vapor with a speed of sound just over ∼300 m/s, con-
tributions due to fluctuations in the evaporating/condensing
boundaries will not affect the effective friction on these time
scales. No boundary conditions are imposed on the velocity
field at the particle surface, so the solution is in a sense
one-sided, like an asymptotic solution. The frictional force is
calculated as a reaction force of the NP through the flow to
fluctuations in the mechanical pressure, ξeffu(Rp) = −∫ PdA
(i.e., assuming dynamic equilibrium between random hydro-
dynamic driving and drag forces with similar effective mean
field/hydrodynamic character). The effective friction is found
by integrating the mechanical pressure from the Navier-Stokes
equation over the NP surface so that

ξeff = −4πR2
pη(T )

u(Rp)
∂ru|r=Rp. (5)

In each region, well-behaved hydrodynamic solutions are
assumed to exist for the flow field. The existence of the far-
field solution itself is only required to close the problem at
the liquid-vapor boundary, thus accounting for the inertia and
momentum of the far field but not coupling its fluctuations to
the motion of the NP. Thus, we do not account for the ex-
cess heat associated with evaporation and condensation at the
liquid-vapor interfaces which the NP, respectively, approaches
and recedes since our MD simulations indicate the bubble
size to be roughly constant during NP Brownian motion. We
emphasize that this is true on time scales comparable to the
MD simulations.

In the simple model of the vapor bubble, the temperature,
density, and viscosity are taken to be spatially uniform in-
side the bubble with some effective values to be determined
from our definition of the bubble in the MD simulations.
The solutions are denoted u and u’ in the vapor and liquid
regions, respectively. Even though we assume the bubble has
an average density, the vapor layer solution need not obey
the incompressibility condition. Thus, we may use the solu-
tion u(r) = a0 + a1

r . However, incompressibility is imposed
on average over the volume of the bubble, including both
the liquid and vapor sides of a (nonequilibrium) Gibbs-like
nonequilibrium phase boundary. Thus, imposing that the vol-
ume integral of ∇ · u is zero over the whole bubble couples
the two solutions to guarantee the flow field corresponds
to the correct average force balance acting on the NP in
the absence of coupling to far-field fluctuations (i.e., the
actual fluctuating liquid-vapor boundary.) Applying the di-
vergence theorem to the integral of the velocity divergence
over a spherical shell corresponding to the vapor bubble
then permits a matching relationship of R2

pu(Rp) = R2
bu′(Rb).

Continuity of mass flux at the bubble boundary requires
that ρV u(Rb) = ρLu′(Rb). By defining φ(T ) = ρv (T )/ρL and
α(T ) = Rb/Rp, the coefficients for u(r) may be related via
a0 = a1

1
Rp

(φ−α)
(α2−φ) , and the calculated friction coefficient is

ξeff (T ) = 4πη(T )Rp
α2(T )−φ(T )
α2(T )−α(T ) . Note that the far-field density,

ρL, essentially plays the role of a normalization constant in

the mass continuity at the liquid-vapor interface. Since the
definition of the liquid-vapor boundary on these length scales
is somewhat subjective [see Fig. 1(c)], which is implicit in our
above imposition of a nonequilibrium Gibbs dividing plane,
we choose to leave the bubble radius as a free parameter. This
is also consistent with our hypothesis regarding relative inde-
pendence of far-field conditions. There is weak dependence
on the bubble radius for the regime of interest, above the
cavitation threshold. Below this, a more correct theoretical de-
scription would require more careful treatment of the viscosity
and temperature profiles, a la Rings et al. [3,5].

To calculate ξeff (T ) for each Tp case, we take ρv (Tp) as
the effective fluid density in the vicinity of the NP from the
respective MD simulations [red shaded region in Fig. 1(c)].

We then performed isothermal MD simulations on bulk ar-
gon fluid with temperatures and densities equal to the effective
values in the vicinity of the NP for each Tp case [red shaded
regions in Figs. 1(b) and 1(c)] to calculate its shear viscosity
using the Green-Kubo relationship (see the Appendix, Fig. 6),
which are then used as η(Tp) in the hydrodynamic model. The
model is then used to reproduce the MD-calculated friction
coefficients with the bubble radius being the only adjusting
parameter.

As seen in Fig. 4(b), the model agrees well with the MD
data between Tp = 4.17 and 8.35, when using Rb = 7.2 σ

which is in the same range as the bubble radii in MD. The
small difference may be mainly attributed to the definition of
vapor phase in MD, which is somewhat subjective, as is the
actual bubble radius, and the simplification of the step-bubble
profile in the hydrodynamic model which does not account
for local gradients (known to shift the effective friction [3].
This may contribute to the difference between the MD sim-
ulations and the model especially in the range Tp = 4 to
Tp = 5 (bubble nucleation). We tested the influence of liquid
property change and overall bubble radius on ξeff using the
model, but virtually no change in ξeff is observed [Fig. 4(b)]
for realistic changes in fluid density nor is there any strong
dependence on the bubble radius for reasonable bubble sizes.
It is worth noting that the agreement between the results ob-
tained from simulations and the model using independent data
and a piecewise-defined bubble does verify our assumption
and the variation of the far-field properties across the widest
physically sensible range produces no appreciable difference
in the effective friction. While the far-field fluid conditions
enter into the calculation of effective friction to ensure conser-
vation laws are satisfied, for reasonable fluid densities, most
of the dependence of the effective friction on the temperature
is determined by the changes in the near-field quantities. To-
gether, these strongly suggest that the supercavitation makes
NP Brownian motion a near field effect. Without supercavita-
tion, ξeff varies strongly as liquid property changes [Fig. 4(b)].

III. CONCLUSION

Although our model does not directly correspond to a
realistic system, the developed hydrodynamics model which
is validated against MD results can be used to predict
a realistic situation. We further collected the experimental
NP/nanobubble relevant data from Lee et al. [13] and used
our hydrodynamic model to predict the effective viscosity
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of the liquid/gas environment around the ballistic gold NP.
For example, for a 60-nm radius NP and a 90-nm radius
generated nanobubble, our hydrodynamic model-predicted
effective viscosity is around 5.9 × 10−5 Pa S, which is ap-
proximately two times larger than the water vapor viscosity
(∼2.97 × 10−5 Pa S) [18] and four times smaller than the
liquid state viscosity (∼2.3 × 10−4 Pa S) [18]. Our observed
ballistic NPs encapsulated in a bubble is indeed similar (in
order of magnitude) to the Brownian motion in the vapor situ-
ation since the phase change at the liquid-vapor interface is not
important due to the instantaneously evaporating phenomena,
which ensures the NP is constantly encapsulated in the vapor
phase. It is also worth noting that varying the bubble size
would not change the order of the magnitude of the effec-
tive viscosity we predicted for a range of reasonable bubble
radius from 90 to 250 nm in the experiment although the
bubble diameter depends on the laser fluence. Our developed
hydrodynamic model predicts that the effective viscosity of
a supercavitating Brownian gold NP would be much smaller
than that in the pure liquid phase, which may be potentially
measured in the future.
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APPENDIX: MATERIALS AND METHODS

1. Three-dimensional meshing to visualize the vapor boundary

To further illustrate the movement of the heated NP inside
the nanobubble at the molecular level, we divide the whole
liquid region into a fine three-dimensional grid. Each unit do-
main is of size ∼ σ (y) × σ (y) × σ (z). By calculating mass
density at each domain, we are able to distinguish the liq-
uid/vapor boundary and found that the hot NP can constantly
evaporate liquid while moving and keeps pushing the vapor
boundary during the fast movement as shown Figs. 1(d)–1(f)
and 4(a). Here the bubble interface location is determined by
half of the ambient liquid density [12,14]. A nanobubble is
considered to be formed when the fluid/gas density is below
half of the ambient liquid density.

2. Center of mass velocity autocorrelation function

The center of mass velocity autocorrelation of the nanopar-
ticles with different heating temperatures were calculated
using the ensemble average.

FIG. 5. Center of mass velocity autocorrelation as a function of
different nanoparticle heating temperatures.

3. Shear viscosity of pure argon at valley
temperature and density

The shear viscosity of the surrounding liquid/gas for
nanoparticles is calculated using the density and temperature
from the first valley point from radial temperature and mass
density profile [the shaded regions in Figs. 1(b) and 1(c)].

See Fig. 6 below.

4. Probability distribution of the NP position
at different temperatures

See Fig. 7 below.

5. Steady state nanobubble radius from Tp = 4.17 to Tp to 8.35.

See Table I below.

6. The normalized mean NP velocity at different Tp

See Fig. 8 below.

FIG. 6. The shear viscosity of pure argon liquid/gas at valley
temperature and density conditions.
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FIG. 7. The position probability density function of the heated Brownian NP for Tp = 1.67 to Tp = 7.51.

7. Details and discussions on the hydrodynamic model

For a mesoscale hydrodynamics model defined over a
nanoscale vapor volume, we will seek an effective solution
for a fictitious time-averaged flow velocity with purely radial
symmetry in the spirit of Rings et al. [3]. For simplicity, we
assume this is the only spatially nonuniform field within the
bubble and introduce effective average temperatures and den-
sities with a step at the liquid-vapor interface. A more accurate
model would include all gradient contributions, including the
density gradient, which captures effects of condensation and
evaporation [19]. But this is not necessary for the present pur-
pose, which is principally to examine the dependence of such
ballistic Brownian motion on near-field vs far-field properties.

We take a solution of the spherical Naiver-Stokes equa-
tion, which is bounded at infinity, u(r) = a0 + a1

r , and assume
there may be different solutions u and u′ in the vapor and
liquid regions. However, it turns out that the solution in this
‘outer’ liquid region is not needed explicitly because it can
be eliminated from the problem outside of bookkeeping at the
liquid-vapor boundary (the nanoparticle excludes the singu-
larity at r = 0.) We only impose a boundary condition at the
liquid-vapor interface, namely mass continuity per unit vol-
ume, or ρV u(Rb) = ρLu′(Rb). Thus, the solution is one-sided
in the spirit of an asymptotic solution. In disposing of the
angular portion of the (quasisteady) flow, we are in effect tak-
ing both time and volume averages to define u(r). Therefore,
we will only require that the average over many molecular
collisions provide the required force on the particle, i.e., cor-
responding to the Brownian motion, through the integral of
the mechanical pressure over the particle surface. Taking the
(dynamic) equilibrium between hydrodynamic drag and pres-
sure, Newton’s law yields, ξeffu(Rp) = −∫ PdA. This enables
us to calculate the effective friction, again simply following
Rings [3]. The mechanical pressure at the particle surface is
given by P = η(T )∂ru|r=Rp .

TABLE I. The steady state nanobubble radius at Tp = 4.17 to
Tp = 8.35.

Temperature (in LJ unit) 4.17 5.01 5.84 6.68 7.51 8.35
Radius (A) 21.5 23.3 23.7 24.0 24.4 24.6

We require one more assumption to close the problem. In
assuming a steplike bubble, excepting the effective momen-
tum diffusion (flow) field u(r), we are dealing with spatially
uniform quantities which represent effective (average) local
quantities. Therefore, even though we do not impose incom-
pressibility on the flow (strictly speaking, the vapor need
not obey incompressibility at all,) we instead impose the
following condition: the volume average of the flow field is
incompressible, i.e., the average density remains constant at
fixed temperature during a virtual deformation of the bubble
corresponding to motion of the NP,

1

4πR3

∫
Volume

∇ · ud = 0. (A1)

Applying the divergence theorem, the integral is trans-
formed into a surface integral evaluated at the particle-vapor
and vapor-liquid interfaces respectively, or,

4
3πR2

pu(Rp) = 4
3πR2

bu
′(Rb). (A2)

Temperature-dependent density φ(T ) = ρv (T )/ρL and
radius ratios α(T ) = Rb/Rp are introduced. The coefficients
may be related

a0 = a1
1

Rp

(φ − α)

(α2 − φ)
, (A3)

FIG. 8. The normalized mean NP velocity at different Tp.

042104-7



HUANG, SCHIFFBAUER, LEE, AND LUO PHYSICAL REVIEW E 103, 042104 (2021)

so that the effective friction may be solved in terms
of temperature-dependent (bulk) data obtained from in-
dependent MD simulations along with the temperature-
dependent bubble radius. The model, however, is relatively

insensitive to the temperature-dependence of the bubble
radius (for physically reasonable radii.) This again em-
phasizes that principally the local quantities determine the
dynamics.
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