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Conserved Kardar-Parisi-Zhang equation: Role of quenched disorder in determining universality
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We study the stochastically driven conserved Kardar-Parisi-Zhang (CKPZ) equation with quenched disorders.
Short-ranged quenched disorders are found to be a relevant perturbation on the pure CKPZ equation at one
dimension and, as a result, a different universality class different from pure CKPZ equation appears to emerge.
At higher dimensions, quenched disorder turns out to be ineffective to influence the universal scaling. This
results in the asymptotic long wavelength scaling to be given by the linear theory, a scenario identical with the
pure CKPZ equation. For sufficiently long-ranged quenched disorders, the universal scaling is impacted by the
quenched disorder even at higher dimensions.
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I. INTRODUCTION

The idea of universality, parametrized by the space di-
mensions, symmetries, and the order parameter components,
allows one to have a systematic physical understanding of
universal scaling properties near the critical points and in
the broken symmetry phases in equilibrium systems [1,2].
Subsequently, the concept of universality classes has been
extended to systems out of equilibrium. A notable example of
a nonequilibrium universality class is the Kardar-Parisi-Zhang
(KPZ) universality class [3–5]. Nonequilibrium universalities
are still topics of intense research in theoretical physics.

Conservation laws are known to be important in physics. In
equilibrium systems, the presence or absence of conservation
laws only affect the dynamic universality, i.e., the relax-
ation of the fluctuations and the time-dependent correlation
functions, while the time-independent or the thermodynamic
properties remain unaffected by it. For instance, in pure
relaxational dynamics of the Ising model near its critical
point, conservation of the magnetization leads to a slower
relaxation of the fluctuations than when it is not [2,6]. In
contrast, in nonequilibrium systems conservation laws af-
fect even the time-independent quantities. A classic example
of this is the conserved KPZ (CKPZ) equation, which like
the KPZ equation describes a fluctuating surface, but now
with a conservation law [7]. The CKPZ equation shows
distinctly different scaling properties of the equal-time corre-
lation function of the height fluctuations, and insofar as even
the time-independent properties are concerned, necessarily
belongs to a universality class different from the original KPZ
universality [7]. For instance, the roughness and the dynamic
exponents of the height fluctuations in the KPZ equation obey
an exact relation that arises due to the Galilean invariance
of the KPZ equation. In contrast, the CKPZ equation is not
Galilean invariant [8] and, as a result, there is no corre-
sponding exact relation between the scaling exponents in the
CKPZ equation. In addition, the KPZ equation undergoes a
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roughening transition between a smooth and a perturbatively
inaccessible rough phase [3] at dimension d > 2. This has no
analog for the pure CKPZ equation.

Quenched disorder is known to affect the macroscopic
properties of equilibrium systems. For example, even arbi-
trarily weak random fields are known to destroy long-ranged
ferromagnetic order in all spatial dimensions d � 4 [9].
Similarly, quenched disorders that introduce local quenched
fluctuations in the critical temperatures introduce new uni-
versality classes different from the corresponding pure model
[10,11]. Effects of quenched disorder on nonequilibrium sys-
tems are expected to be more dramatic, given the sensitive
dependencies of nonequilibrium universality classes on all
kinds of perturbations. In the absence of any general frame-
work to study nonequilibrium systems, it is useful to construct
and study simple nonequilibrium models with quenched dis-
orders that are amenable to analytical studies and hence allow
for systematic enumeration of physical quantities within sim-
ple calculational setups. Such a study should be useful in
forming general understanding of the effects of quenched
disorders on nonequilibrium universality classes.

In this article, we study a version of quenched disordered
CKPZ equation. We evaluate the universal scaling properties,
and compare and contrast them with the corresponding re-
sults for the pure CKPZ equation. We consider both short-
and long-ranged quenched disorders. We show that for short-
ranged quenched disorders, the universal scaling properties
are affected by the disorder at one dimension (1D), leading
to a different universality class, whereas at dimensions two
or more, quenched disorder is irrelevant. For long-ranged
quenched disorder, the dimension at which quenched disorder
ceases to be relevant is higher than two, and can in fact
be varied by tuning the spatial scaling of the variance of
the long-ranged disorder. The rest of the article is organized
as follows. In Sec. II, we set up the CKPZ equation with
quenched disorders. Next, we discuss the scaling in the lin-
earized limit in Sec. III A. We then set up a dynamic RG
calculation in Sec. III B. We separately calculate the scaling
exponents for short- and long-ranged disorder in Secs. III B 1
and III B 2, respectively. We summarize our results in Sec. IV.
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We have used one-loop dynamic renormalization group (RG)
calculations for our work. We provide the necessary technical
details in the Appendix for interested readers.

II. CONSERVED KPZ EQUATION
WITH QUENCHED DISORDER

We generalize the CKPZ equation [7] in the presence of
quenched disorder. The precise form of the quenched dis-
ordered conserved dynamical equation for the height field h
should depend on how exactly the quenched disorder coupled
with h. To make the ensuing study concrete, we consider
quenched disorder given by a quenched vector field Fi(r),
where i refers to the Cartesian component and r is the position
vector. Further, we assume that F couples with the spatial
nonuniformities of the height field, i.e., with ∇h to the leading
order in spatial gradients. In order to reduce the number of
model parameters and simplify the situation, we further im-
pose the condition that in the absence of any time dependent of
annealed noise if h = const at some time t , it remains so at all
other times, just as the pure CKPZ equation. Second, noting
that the conserved current JCKPZ in the pure CKPZ equation
has the form [7]

JCKPZ(r, t ) = −∇
[
ν∇2h + λ

2
(∇h)2

]
, (1)

one has JCKPZ(k = 0, t ) = 0, where k is a Fourier wave vec-
tor; JCKPZ(k, t ) is the spatial Fourier transform of JCKPZ(r, t ).
We then generalize JCKPZ in the presence of quenched disor-
der. We write the corresponding conserved current J for the
disordered CKPZ equation as

J(r, t ) = −∇
[
ν∇2h + λ

2
(∇h)2 + λ1F · ∇h

]
. (2)

Thus, J(k = 0, t ) = 0, just like the vanishing of JCKPZ(k = 0);
J(k, t ) is the spatial Fourier transform of J(r, t ). With this
proviso, we write the minimal quenched disordered CKPZ
equation in the long wavelength limit. We have

∂h

∂t
= −∇ · J (3)

giving

∂h

∂t
= −∇2

[
ν∇2h + λ

2
(∇h)2 + λ1F · ∇h

]
+ η. (4)

Here, ν > 0 is a damping coefficient and λ and λ1 are nonlin-
ear coupling constants both of which can be any sign. Lastly,
the annealed or time-dependent noise η(r, t ) is assumed to be
zero-mean Gaussian distributed with a variance

〈η(r, t )η(0, 0)〉 = −2Dh∇2δ(r)δ(t ), (5)

that is consistent with the conservation law form for the dy-
namics of h. Evidently, independent of the specific form of the
quenched disorder, h = const satisfies Eq. (4) at all times t so
long as η = 0, in exact analogy with the pure CKPZ equation.
Equation (4) upon setting λ1 = 0 evidently reduces to the
well-known pure CKPZ equation [7]. In order to completely
describe the model, the distribution of Fi must be provided.
Quenched disorder Fi is assumed to be zero-mean Gaussian
distributed with a given variance. We consider both short- and

long-ranged quenched disorder. For short-ranged quenched
disorder, the variance reads as

〈Fi(r)Fj (0)〉 = 2DF δi jδ(r), (6)

where as for the long-ranged case we choose

〈Fi(r)Fj (0)〉 = 2DF δi j |r|α−d , (7)

where α > 0 parametrizes the disorder distribution, i.e., it
describes “how long” is the long-ranged disorder; further
amplitude DF > 0. We choose 0 < α < d , implying that the
disorder correlation has a range longer than δ(r), which
nonetheless decays as the separation |r| increases. It is con-
venient to express variances (6) and (7) in the Fourier space.
For the short-ranged case we get

〈Fi(k, ω)Fj (k′, ω′)〉 = 2DF δi jδ(k + k′)δ(ω + ω′)δ(ω). (8)

Likewise, the variance in the long-ranged case is

〈Fi(k, ω)Fj (k′, ω′)〉 = 2DF δi j |k|−αδ(k + k′)δ(ω + ω′)δ(ω).
(9)

Here, k, k′ are Fourier wave vectors, and ω,ω′ are Fourier
frequencies. The factor of δ(ω) that appears in both (8) or
(9) has its origin in the fact that Fi(r) is time independent.
Equation (4) together with the variances (6) or (7), along with
the annealed noise (5), completely define the model.

Before we embark upon calculating the scaling exponents
for (4), it is instructive to discuss the physical implication of
the disorder λ1 term in Eqs. (4) or (2). Current J in Eq. (2)
may be written as J = −∇μ, where the disorder-dependent
local chemical potential μ is

μ ≡ ν∇2h + λ

2
(∇h)2 + λ1F · ∇h, (10)

where the last term λ1F · ∇h is the disorder contribution to
μ. Thus, the quenched disordered CKPZ equation (4) may
be interpreted as modeling local height fluctuations in sur-
face diffusion in the presence of quenched disorder. In a
microscopic realization of this process, this quenched disorder
may arise, e.g., in the local deformations or heterogeneities
affecting the diffusion, of any underlying lattice, on which
the surface diffusion may take place. Such quenched in-
homogeneities may locally facilitate or hinder pure surface
diffusion, depending upon the microscopic forms of the dis-
order locally. In appropriate experimental realizations, these
results may be tested by measuring surface diffusion on disor-
dered substrates (e.g., in molecular beam epitaxy experiments
with quenched disorder).

III. SCALING

We are interested in the scaling of the correlation function

C(r, t ) ≡ 〈h(r, t )h(0, 0)〉 = |r|2χ f (|r|z/t ), (11)

or its Fourier transformed version

C(k, ω) ≡ 〈|h(k, ω)|2〉 = k2χk f̃ (kz/ω) (12)

in the long wavelength limit. Here, χ and z are the roughness
and dynamic exponents, respectively; χk can be connected to
χ by Fourier transform, giving

χk = −d − χ − z. (13)
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Further, f (|r|z/t ) and f̃ (kz/ω) are dimensionless scaling
functions of their respective arguments.

A. Linear theory

The linear limit of Eq. (4) is obtained by dropping all
nonlinear terms (in this case quadratic in ∇h or bilinear in
F and ∇h); see Eqs. (A4) and (A5). Obviously, in the linear
limit, both the pure CKPZ equation and our model equation
are identical and the correlation function is known exactly.
We have

C(k, ω) = 2Dhk2

ω2 + ν2k8
. (14)

This implies the exact values z = 4 and χ = 1 − d/2. It re-
mains to be seen how the various nonlinear terms may affect
these scaling exponents in the linear theory.

B. Anharmonic effects

Presence of the nonlinear terms no longer allows enumer-
ation of the exact scaling exponents for (4). Unlike in the
linear theory, exact enumeration of the scaling exponents is no
longer possible due to the nonlinear terms. Thus, perturbative
treatments are necessary. Similar to the pure CKPZ equation
[7], naive perturbation theory produces diverging corrections
to the model parameters. These divergences may be systemat-
ically handled within the framework of dynamic RG [6].

Although the dynamic RG procedure by now is well docu-
mented [6] in the standard literature, we give below a brief
outline of the method for the convenience of the readers.
It is useful to first cast the dynamical equation (4) into a
dynamic generating functional by introducing a conjugate
field ĥ(r, t ) (see Ref. [12], see also Appendix 1, for some
details). The dynamic generating functional is then averaged
over the Gaussian disorder distribution with variances (6) or
(7). The momentum shell dynamic RG procedure consists of
integrating over the short wavelength Fourier modes of h(r, t )
and ĥ(r, t ) in the generating functional. This is then followed
by rescaling of lengths and time. In particular, we follow
the standard approach of initially restricting wave vectors to
lie in a Brillouin zone: |q| < 
, where 
 is an ultraviolet
cutoff, which should be of order of the inverse of the lattice
spacing a, although its precise value is unimportant so far as
the scaling in the long wavelength limit is considered. The
height field h(r, t ) and its dynamic conjugate ĥ(r, t ) are then
split into two parts, a high and low wave vector part h(r, t ) =
h>(r, t ) + h<(r, t ) and ĥ(r, t ) = ĥ>(r, t ) + ĥ<(r, t ), where
h>(r, t ) and ĥ>(r, t ) are nonzero in the high wave vector
range 
/b < k < 
, b > 1, whereas h<(r, t ) and ĥ<(r, t )
are nonzero in the low wave vector range k < 
/b. Next,
h>(r, t ) and ĥ>(r, t ) are to be integrated out in the dynamic
generating functional. Of course, this integration cannot be
done exactly, but is done perturbatively in the anharmonic
couplings in Eq. (A4) for short-ranged disorder or (A5) for
long-ranged disorder. This perturbation theory is usually rep-
resented by Feynman diagrams, with the order of perturbation
theory given by the number of loops in the diagrams that we
calculate; see Appendix 2 and 3. Next to this perturbative step,
we rescale length by r = r′b, in order to restore the UV cutoff
back to 
. We further rescale time by t = t ′bz, where z is

the dynamic exponent. This is then followed by rescaling of
h<(r, t ) and ĥ<(r, t ), the long wave length parts of h(r, t ) and
ĥ(r, t ); see Appendix 4.

We separately study this problem with short- and long-
ranged disorders. We confine ourselves to a low-order
(one-loop) RG analysis, following the calculational scheme
outlined above.

1. Short-ranged disorder

We provide the one-loop Feynman diagrams for the model
parameters in the Appendix 2. The Feynman graphs for the
diffusivity ν and the nonlinear vertices (λ/2)(∇2ĥ)(∇h)2 and
λ2

1DF (∇2ĥ(r, t1))∇mh(r, t1)(∇2ĥ(r, t2))∇mh(r, t2) see action
(A4) are shown in the Appendix 2.

At the one-loop order diffusivity ν receives two fluctuation
corrections, one of which survives in the pure limit and the
other one originates from the disorder vertex. The relevant
Feynman diagrams are shown in the Appendix 2.

For reasons similar to the pure CKPZ equation, there are no
one-loop fluctuation corrections to the annealed noise strength
Dh since these one-loop diagrams are all O(k4), whereas
the bare or unrenormalized noise strength is O(k2). Vertex
coefficients λ2

1DF and λ are themselves renormalized at the
one-loop order by the graphs shown in the Appendix 2.

We follow this diagrammatic expansion by rescaling the
long wavelength part of the height field h(r, t ) as

h(r, t ) = ζh′(r′, t ′); ζ = bχ . (15)

Exponents χ and z are to be chosen to produce a fixed point.
This procedure together with b = edl ≈ 1 + dl , ultimately
leads to the following recursion relations:

dν

dl
= ν

[
z − 4 + g

4 − d

4d
+ g̃

d − 2

d

]
, (16)

dDh

dl
= Dh[z − 2 − d − 2χ ], (17)

dλ

dl
= λ

[
z + χ − 4 + 2g̃ − 4

d
g̃

]
, (18)

d

dl

(
λ2

1DF
) = λ2

1DF

[
2z − d − 6 + 2g̃ − 6g̃

d

]
. (19)

Here, g ≡ λ2Dh
ν3 kd and g̃ ≡ λ2

1DF

ν2 kd are the two effective dimen-
sionless coupling constants; kd = Sd/(2π )d , where Sd is the
surface area of a hypersphere with unit radius in d dimensions.
We now use the flow equations (16)–(19) to calculate the flow
equations for g and g̃. We obtain

dg

dl
= g

[
2 − d + 4g̃ − 8

d
g̃ − 3g

4 − d

4d
− 3g̃

d − 2

d

]
, (20)

dg̃

dl
= g̃

[
2 − d + 2g̃ − 6g̃

d
− 2g

4 − d

4d
− 2g̃

d − 2

d

]
. (21)

Before proceeding further, we note the following from the
flow equations (20) and (21). First of all, setting aside the
fluctuation corrections, we note that both scale dependent
g, g̃ scale as exp[(2 − d )l], where exp(l ) is a length scale,
indicating the “equal” relevance of g(l ) and g̃(l ) in a RG sense.
Second, for d < (>)2 both g(l ) and g̃(l ) grow (decay) under
rescaling, showing d = 2 is the critical dimension, same as
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FIG. 1. RG flow diagram in the g-g̃ plane. The fixed point
(g∗, g̃∗) = ( 1

3 , 1
4 ) is globally stable, fixed points (0,0), ( 4

9 , 0), and
(0, 1

2 ) are unstable (see text).

for the pure CKPZ equation. In fact, flow equations (20) and
(21) are amenable to an ε expansion where ε ≡ 2 − d , and the
scaling exponents may be calculated in an ε expansion similar
to the pure CKPZ equation [7].

First consider scaling in one dimension. Instead of using an
ε expansion with ε = 1 for 1D, we first use a fixed dimension
RG scheme, similar to the one used for the pure 1D KPZ
equation [13]. Setting d = 1 in Eqs. (20) and (21) above, we
get

dg

dl
= g

[
1 − 9g

4
− g̃

]
, (22)

dg̃

dl
= g̃

[
1 − 3g

2
− 2g̃

]
. (23)

Setting dg/dl = 0 = dg̃/dl , apart from the Gaussian (trivial)
fixed with (g∗, g̃∗) = (0, 0), that is globally unstable, we get
three possible nontrivial fixed points:

(1) FP1: (g∗, g̃∗) = ( 4
9 , 0), which is stable in the g direc-

tion, but unstable in the g̃ direction.
(2) FP2: (g∗, g̃∗) = (0, 1

2 ), which is stable in the g̃ direc-
tion, but unstable in the g direction.

(3) FP3: (g∗, g̃∗) = ( 1
3 , 1

4 ), which is stable along both the
g and g̃ directions. This is the only globally stable fixed point.

Eigenvalues of the stability matrix of the globally stable
fixed points are −1 and − 1

4 .
At the globally stable fixed point, we find (i) z = 4 −

g∗ 3
4 + g̃∗ = 4 − 1

4 + 1
4 = 4, and (ii) χ = 1

2 . Thus, the scaling
exponents are identical to their values in the linear theory. This
we believe to be just fortuitous. Higher order corrections are
likely to change this.

See Fig. 1 for a schematic RG flow diagram in the g-g̃
plane.

Close to d = 2 but below it, we employ an ε expansion
to the leading order in ε, defined by d = 2 − ε, ε > 0. We
notice that (20) becomes independent of g̃ to the leading order
in ε. Then by using (20) and (21) we have

g∗ = 4ε

3
, g̃∗ = ε

3
. (24)

This is a globally stable fixed point. We do not mention the
other fixed points, which are not globally stable. Surprisingly

and related to the fact that the RG flow of g is independent of
g̃ to the leading order in ε, the scaling exponents are identical
to their values for the pure CKPZ equation:

z = 4 − ε

3
, χ = 1

3
ε. (25)

We believe this is fortuitous. Higher order corrections are
expected to make the scaling exponents to depend on g̃∗; this
can already be seen from the fixed dimension RG results at
1D. We note that the scaling exponents (25) with ε = 1 do not
reduce to their values obtained for d = 1; we believe this is
due to the limitation of the small-ε expansion used to obtain
Eq. (25).

We now study the higher dimensional d > 2 case. Setting
d = 2 − ε, ε < 0 (such that d > 2), we get to the leading
order in ε

dg

dl
= g

[
−ε − 3g

4

]
, (26)

dg̃

dl
= g̃

[
−ε − g̃ − g

2

]
. (27)

Flow equations (26) and (27) have only one physically ac-
ceptable solution: g∗ = 0, g̃∗ = 0, which is stable and which
is identical to the Gaussian fixed point, confirming that d = 2
is the upper critical dimension of the model, which is same as
that for the pure CKPZ model. At this fixed point, unsurpris-
ingly, the scaling exponents are identical to those in the linear
theory.

2. Long-ranged disorder

To extract the universal scaling with long-ranged disorder,
we follow the calculational scheme outlined for short-ranged
disorder above. We start with action functional (A5). The
relevant one-loop Feynman diagrams are shown in the Ap-
pendix 3. We use the same rescaling of the height field h
as given in Eq. (15). This procedure results in the following
recursion relations:

dν

dl
= ν

[
z − 4 + g

4 − d

4d
+ g̃

(
1 + α − 2

d

)]
, (28)

dDh

dl
= Dh[z − 2 − d − 2χ ], (29)

dλ

dl
= λ

[
z + χ − 4 + 2g̃ − 4

d
g̃

]
, (30)

d

dl

(
λ2

1DF
) = λ2

1DF

[
2z − d + α − 6 − 4g̃

d

]
. (31)

The flow equations for g and g̃ read as

dg

dl
= g

[
2 − d + 4g̃ − 8

d
g̃ − 3g

4 − d

4d
− 3g̃

(
1 + α − d

2

)]
,

(32)

dg̃

dl
= g̃

[
2 − d + α − 4g̃

d
− 2g

4 − d

4d
− 2g̃

(
1 + α − 2

d

)]
.

(33)

Clearly, the upper critical dimension of g̃ is d = 2 + α,
whereas that for g is still 2. We focus on the one-dimensional
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case, which is below the critical dimensions of both g and g̃.
We use a fixed dimension RG, similar to the short-ranged case
above. Apart from the Gaussian fixed point (0,0), which is
globally unstable, there are three more fixed points.

(i) FP1: g∗ = 4
9 , g̃∗ = 0. Near this fixed point

dg̃

dl
= g̃

[
α + 1

3

]
> 0 (34)

for all α � 0. Thus, this fixed point is always globally unsta-
ble.

(ii) FP2: g∗ = 0, g̃∗ = 1
2 . Near this fixed point, writing g̃ =

g̃∗ + δg̃,

dδg̃

dl
< 0 (35)

and
dg

dl
= g

2
[1 − 3α] > (<)0 (36)

if α < (>) 1
3 . Thus, this fixed point is globally stable only if

α > 1
3 . The corresponding scaling exponents are given by

z = 4 − 1
2 (α − 1) > 4, (37)

χ = 1
2

[
1 − 1

2 (α − 1)
]

> 1/2 (38)

so long as α < 1, which is what we consider here. Thus, the
dynamics is slower and the surface is rougher than that in the
linear theory.

(iii) FP3: g∗ = (1 + α)(1 − 3α)/3, g̃∗ = (1 + 3α)/4.
Clearly, this fixed point ceases to exist for α > 1

3 since g
cannot be negative. For 0 � α � 1

3 , this fixed point can exist.
We now check the linear stability of this fixed point. The
stability matrix M is given by

M =
(

− 3
4 (1 + α)(1 − 3α) − (1+α)(1+3α)(1−3α)

3

− 3
8 (1 + 3α) − (1+α)(1+3α)

2

)
. (39)

The eigenvalues 
̃ of M are


̃ = − 1
8 [(1 + α)(5 − 3α)

±
√

(1 + α)2(5−3α)2−16(1 + α)(1 − 3α)(1 + 3α)].

(40)

These are negative for α < 1
3 , implying global stability of this

fixed point. Thus, for α < 1
3 , the globally stable fixed point

is g∗ = (1 + α)(1 − 3α)/3, g̃∗ = (1 + 3α)/4. The associated
scaling exponents are

z = 4 + α, (41)

χ = 1
2 (1 + α). (42)

Thus, both dynamic and the roughness exponents are bigger
than their counterparts in the linear theory. Thus, the surface
is rougher and the dynamics is slower. Furthermore, these ex-
ponents reduce to their corresponding values for short-ranged
disorder at 1D if we set α = 0. The RG flow diagrams for
α < 1

3 and α > 1
3 in the g-g̃ plane are shown in Fig. 2.

We now briefly discuss the higher-dimensional case. Not-
ing that the upper critical dimension for g̃ is d = 2 + α, we use
an expansion in ε̃ ≡ 2 + α − d . The upper critical dimension

FIG. 2. RG flow diagrams in the g-g̃ plane. (Top) α > 1
3 , (bot-

tom) 0 < α < 1
3 (this is topologically identical to the RG flow

diagram for short-ranged disorder, as shown in Fig. 1). Stable and
unstable fixed points are shown: (top) FP2 = (0, 1

2 ) and (bottom)
FP3 = (1 + α)(1 − 3α)/3, (1 + 3α)/4 are the stable fixed points;
see text.

of g remains 2. Therefore, for sufficiently small ε̃ with α > 0,
we can neglect g. From (26) we get

g̃∗ = ε̃

2

α

1 + α
, (43)

which is a linearly stable fixed point. This gives for the dy-
namic and the roughness exponents

z = 4 − ε̃α

2(α + 1)
, (44)

χ = 1

2

[
− ε̃α

2(α + 1)
− α + ε̃

]
. (45)

Interestingly, close to d = 2 + α, i.e., for small ε̃, z is actu-
ally smaller than 4, its value in the linear theory, indicating
that the disorder now makes the dynamics faster. Further-
more, χ can be negative if α is sufficiently large, i.e., when
ε̃ < 2α(α + 1)/(α + 2). A negative χ implies a smooth sur-
face, e.g., the χ for the pure CKPZ equation or the KPZ
equation (in its smooth phase) for d > 2 are negative. Thus, by
increasing α, the disordered CKPZ model undergoes a rough-
to-smooth transition for a sufficiently large α. This opens
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up an intriguing possibility of smoothening by long-ranged
disorder. Further theoretical investigation would be useful to
explore this feature.

IV. SUMMARY AND OUTLOOK

To summarize, we have studied the conserved KPZ equa-
tion that couples with quenched disorders. The coupling with
the quenched disorder is such that it respects the symmetry
of the pure CKPZ equation under a constant shift of the
height field. Of course, it has no Galilean invariance, just
as the pure CKPZ equation itself does not [12]. We have
considered both the short- and long-ranged quenched disor-
ders. We find that with short-ranged disorder, the universal
properties are affected by the disorder at 1D, where as for
higher d � 2, quenched noise is irrelevant (in a RG sense).
With long-ranged disorder, quenched disorder continues to re-
main relevant at 2D and even higher, controlled by the spatial
scaling of the variance of the Gaussian-distributed disorder,
which is parametrized by α here. Notice that the values of
the scaling exponents at 1D obtained by using a fixed dimen-
sion dynamic RG scheme quantitatively differ from what one
would get for the exponents by setting ε = 1 or ε̃ = 1. We
believe these mismatches are due to the limitations of the
small-ε expansion that we set up. Higher order perturbative
calculations and/or numerical simulations should be useful
to extract quantitatively more accurate values of the scaling
exponents. Nonetheless, we expect the general conclusions
drawn here for the universality classes should be true.

It will be instructive to consider and study microscopic
lattice-gas models that belong to the same universality class
as the continuum equation (4). A possible route would be
to suitably generalize the conserved restricted solid on solid
(RSOS) model for surfaces (see, e.g., Ref. [7]). In the usual
d-dimensional conserved RSOS models, a site is randomly
chosen and its height is increased by a unit and correspond-
ingly reducing the height of neighbor by the same amount,
while ensuring that the resulting configuration remains “re-
stricted,” i.e., the height difference between the neighboring
sites does not exceed one. Quenched disorder may be intro-
duced by making the probability of the “height exchange”
process bond dependent in a quenched (or time-independent)
manner. At a technical level, this may in principle be achieved
by making the probability that a bond is updated via the
stochastic height exchange process quenched or time indepen-
dent with a distribution having spatially short- or long-ranged

variances. Yet another way for numerical verification of our
results here would be to numerically integrate the contin-
uum equation (4) directly. This may be done, e.g., using the
pseudospectral method [14,15], in d dimensions. Although
pseudospectral methods are known to produce numerical re-
sults with good accuracy. We, however, note with caution that
applying it in the present context could be challenging because
of the wide ranging timescales involved among the different
Fourier modes due to the fourth order diffusion operator in
Eq. (4). These studies will be considered in the future.

For simplicity, we have made a particular choice for
coupling the disorder with the height field, such that the spa-
tial average of the corresponding conserved current vanishes
identically. Recently, the pure CKPZ equation has been gener-
alized by inclusion of another nonlinear term that is as relevant
as the existing nonlinear term of the pure CKPZ equation, but
makes the current generally nonzero at zero wave vector [16].
By using RG calculations, this term has been shown to be
a relevant perturbation on the pure CKPZ universality class.
For instance, it introduces a roughening transition, absent in
the CKPZ equation. It will be interesting to see how quenched
disorders may affect this roughening transition. In fact, cou-
pling with the quenched disorder can also be generalized to
make the disorder-dependent current to have a nonzero spatial
average. Whether or not the roughening transition elucidated
in Ref. [16] survived such perturbation from the quenched
disorder should form an interesting future study.

Our work may be extended in a variety of ways. In this
work, we have assumed the quenched disorder to couple with
the height field multiplicatively. One could relax this and
consider appropriate additive coupling with the quenched dis-
order, such that the height field dynamic will be subject to not
just an additive annealed noise (as here), but also an additive
quenched noise. Such additive quenched noise is found to be
relevant and give rise to complex scaling behavior for the ordi-
nary KPZ equation [17]. It would be interesting to consider an
analogous study for the quenched disordered CKPZ equation.
Further, one may also study how the scaling behavior of the
CKPZ equation coupled with another dynamic field [18] is
affected by quenched disorder. We hope our work will provide
impetus to further studies in these general directions.
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APPENDIX: RENORMALIZATION GROUP CALCULATIONS

We discuss here in details the RG calculations. To that end, we first obtain the disorder-averaged action functional corre-
sponding to the dynamical equation of motion (4), and then apply one-loop perturbation theory on it.

1. Disorder-averaged action functional

The RG calculations are greatly facilitated in terms of the generating functional for Eq. (4). We find

Z =
∫

DhDĥ exp(−SF ), (A1)
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where ĥ(r, t ) is the dynamic conjugate field of h(r, t ) [12]. The disorder-dependent action functional SF reads as

SF =
∫

dd x dt Dhĥ∇2ĥ +
∫

dd x dt ĥ

[
∂t h + ∇2

{
ν∇2h + λ

2
(∇h)2 + λ1F · ∇h

}]
. (A2)

We now average over the the Gaussian-distributed quenched disorder F. Only the term
∫

dd x dt ĥ∇2[F · ∇h] = ∫
dd x dt (∇2ĥ)F ·

∇h is to be affected by the disorder averaging. We find〈
exp

[
λ1

∫
dd x dt (∇2ĥ)F · ∇h

]〉
= exp

[
λ2

1

2

∫
dd x1dd x2

∫
dt1dt2[(∇2ĥ)∇mh]x1,t1〈Fm(x1)Fn(x2)〉[(∇2ĥ)∇nh]x2,t2

]
. (A3)

We now separately deal with short- and long-ranged disorders. For short-ranged disorders, we use (6) to arrive at a disorder-
averaged action

S ≡
∫

dd x dt Dhĥ∇2ĥ +
∫

dd x dt ĥ

[
∂t h + ∇2

{
ν∇2h + λ

2
(∇h)2

}]
− λ2

1DF

∫
dd x

∫
dt1dt2[(∇2ĥ)∇mh]x,t1 [(∇2ĥ)∇mh]x,t2 .

(A4)

For long-ranged disorders, we use (7) to arrive at

S ≡
∫

dd x dt Dhĥ∇2ĥ +
∫

dd x dt ĥ

[
∂t h + ∇2

{
ν∇2h + λ

2
(∇h)2

}]
− λ2

1DF

∫
dd x1dd x2

∫
dt1dt2[(∇2ĥ)∇mh]x1,t1

× |x1 − x2|α−d [(∇2ĥ)∇mh]x2,t2 . (A5)

It is convenient to write the time-nonlocal terms in Eqs. (A4) and (A5) in the Fourier space. We get∫
dd x

∫
dt1dt2[(∇2ĥ)∇mh]x,t1 [(∇2ĥ)∇mh]x,t2 =

∫
dd k dd q1dd q2

∫
dω d�1d�2

[
q2

1ĥ(q1,�1)i(k − q1)mh(k − q1, ω − �1)
]

× δ(ω)
[
q2

2ĥ(q2,�2)i(−k − q2)mh(−k − q2,−ω − �2)
]

(A6)

and ∫
dd x1dd x2

∫
dt1dt2[(∇2ĥ)∇mh]x1,t1 |x1 − x2|α−d [(∇2ĥ)∇mh]x2,t2

=
∫

dd k dd q1dd q2

∫
dω d�1d�2

[
q2

1ĥ(q1,�1)i(k − q1)mh(k − q1, ω − �1)
]

×δ(ω)|k|−α
[
q2

2ĥ(q2,�2)i(−k − q2)mh(−k − q2,−ω − �2)
]
. (A7)

2. Feynman diagrams for short-ranged disorder

If we ignore the anharmonic terms in Eqs. (A4) or (A5),
then we can evaluate all the two-point correlation functions
exactly. These in the Fourier space read as

〈ĥ(k, ω)ĥ(−k,−ω)〉 = 0, (A8)

〈ĥ(k, ω)h(−k,−ω)〉 = 1

iω + νk4
, (A9)

〈ĥ(−k,−ω)h(k, ω)〉 = 1

−iω + νk4
, (A10)

〈h(k, ω)h(−k,−ω)〉 = 2Dhk2

ω2 + ν2k4
. (A11)

We now give here the one-loop Feynman diagrams for ν, λ,
and λ2

1DF with short-ranged disorder in Figs. 3–5, respec-
tively. In each of the diagrams, a broken line represents the
short-ranged disorder.

There are three more infrared divergent diagrams for λ2
1DF ,

over and above those shown in Fig. 5, the total correction for
λ2

1DF coming from such three diagrams is zero.

Combining all the fluctuation corrections, we obtain the
fluctuation corrected ν, λ, and λ2

1DF . We get

ν< = ν

[
1 + λ2Dh

ν3
kd

4 − d

4d

∫ 



/b
dq qd−3

+ λ2
1DF

ν2

(
1 − 2

d

)
kd

∫ 



/b
dq qd−3

]
, (A12)

λ< = λ

[
1 + 2

λ2
1DF

ν2
kd

∫ 



/b
dq qd−3

− 4

d

λ2
1DF

ν2
kd

∫ 



/b
dq qd−3

]
, (A13)

(
λ2

1DF
)< = λ2

1DF

[
1 − 6λ2

1DF

ν2d
kd

∫ 



/b
dq qd−3

+ 2
λ2

1DF

ν2
kd

∫ 



/b
dq qd−3

]
(A14)
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FIG. 3. One-loop Feynman diagrams for ν with short-ranged dis-
order: (top) one-loop diagram that exists in the pure CKPZ problem,
(bottom) one-loop diagram that originates from the short-ranged
disorder (see text).

for short-ranged disorder. In the differential recursion rela-
tions that follow, we set 
 = 1.

3. Feynman diagrams for long-ranged disorder

We now give the one-loop Feynman diagrams for ν, λ, and
λ2

1DF with long-ranged disorder in Figs. 6–8, respectively. In
each of these diagrams, a dotted-dashed line represents the
long-ranged disorder vertex. We have only shown the most
relevant diagrams, all of which arise from the disorder vertex.
The relevant diagrams with long-ranged disorder are topolog-
ically identical to some of the diagrams in the short-ranged
disorder case. Nonetheless, we present them here separately to
highlight the fact that the disorder lines (dotted-dashed lines)
in the Feynman diagrams for the long-ranged disorder case
carry a factor k−α , where k is a wave vector, whereas the
disorder lines (dashed lines) in the Feynman diagrams for the
short-ranged disorder case carry only a constant factor.

FIG. 4. One-loop diagrams for λ with short-ranged disorder. All
these diagrams vanish for the pure CKPZ problem.

FIG. 5. One-loop diagrams for λ with short-ranged disorder. All
these diagrams vanish for the pure CKPZ problem.

FIG. 6. One-loop diagram for ν with long-ranged disorder.

FIG. 7. One-loop diagrams for λ with long-ranged disorder.
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FIG. 8. One-loop diagram for λ2
1DF with long-ranged disorder.

For long-ranged disorder (α > 0), the effective,
fluctuation-corrected model parameters are

ν< = ν

[
1 + λ2Dh

ν3
kd

4 − d

4d

∫ 



/b
dq qd−3

+ λ2
1DF

ν2

(
1 + α − 2

d

)
kd

∫ 



/b
dq qd−3−α

]
, (A15)

λ< = λ

[
1 + 2

λ2
1DF

ν2
kd

∫ 



/b
dq qd−3−α

− 4

d

λ2
1DF

ν2
kd

∫ 



/b
dq qd−3−α

]
, (A16)

(
λ2

1DF
)< = λ2

1DF

[
1 − 4λ2

1DF

ν2d
kd

∫ 



/b
dq qd−3−α

]
. (A17)

Notice that the one-loop diagrams contributing to λ2
1DF are

more for short-ranged disorder (Fig. 5) than those for long-
ranged disorder (Fig. 8). This is because the extra diagrams
in Fig. 5, which exist even for the long-ranged case in princi-
ple, actually imply generation of short-ranged disorder in the
long-ranged disorder case. Since for α > 0 the short-ranged
disorder is irrelevant (in the RG sense) in the presence of the
long-ranged disorder, we ignore these contributions for the

long-ranged disorder case [19]. As a result, setting α = 0 does
not reduce (A17) to (A14).

4. Rescaling

We discuss the rescaling of space, time, and the long wave-
length parts of the fields h and ĥ. We lay out the details for the
long-ranged disorder case; the corresponding rescaling for the
short-ranged case can be easily retrieved by setting α = 0. We
scale space and time as follows:

x → bx, t → bzt, (A18)

where z is the dynamic exponent. Under these spatiotemporal
rescaling, we let the long wavelength parts of h and ĥ to scale
as

h → bχh, ĥ → bχ ′
ĥ. (A19)

Here, the rescaling factor b > 1. We can now calculate the
rescaling factors of the different terms in Eq. (A5).

For instance,
(1) We get

∫
dd x dt ĥ∂t h → bχ+χ ′−d

∫
dd x dt ĥ′∂t h′. De-

manding that the coefficient of
∫

dd x dt ĥ∂t h remains unity
after rescaling, we get χ + χ ′ = −d .

(2) Next,
∫

dd x dd x′ ∫ dt dt ′λ2
1DF (∇2ĥ∇mh)x,t D̃h(|x − x′|)

(∇2ĥ∇mh)x′,t ′ → b2z−d+α−6
∫

dd x dd x′dt dt ′λ2
1DF (∇2ĥ∇mh)x,t

D̃h(|x − x′|)(∇2ĥ∇mh)x′,t ′ . This gives (λ2
1DF ) →

b2z−d+α−6(λ2
1DF ).

(3) Then, λ
∫

dd x dt (∇2ĥ)(∇h)2 → b−z+2χ+χ ′−d−4λ∫
dd x dt (∇2ĥ)(∇h)2. This gives λ → bχ+z−4λ.
(4) Next,

∫
dd x dt Dhĥ∇2ĥ → b2χ ′+z+d−2

∫
dd x dt Dhĥ∇2ĥ.

This gives Dh → bz−d−2−2χ Dh.
(5) Lastly,

∫
dd x dt νĥ∇4h → bχ+χ ′+z+d−4

∫
dd x dt νĥ∇4h.

This gives ν → bz−4ν.
These rescalings of the model parameters together with

the one-loop fluctuation corrections lead to the different flow
equations in the main text.
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