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Fast computation of exact solutions of generic and degenerate assignment problems

Patrice Koehl 1 and Henri Orland 2

1Department of Computer Science and Genome Center, University of California, Davis, California 95616, USA
2Institut de Physique Théorique, Université Paris-Saclay, CNRS, CEA, 91191 Gif/Yvette Cedex, France

(Received 2 December 2020; accepted 1 March 2021; published 2 April 2021)

The linear assignment problem is a fundamental problem in combinatorial optimization with a wide range
of applications, from operational research to data science. It consists of assigning “agents” to “tasks” on a
one-to-one basis, while minimizing the total cost associated with the assignment. While many exact algorithms
have been developed to identify such an optimal assignment, most of these methods are computationally
prohibitive for large size problems. In this paper, we propose an alternative approach to solving the assignment
problem using techniques adapted from statistical physics. Our first contribution is to fully describe this
formalism, including all the proofs of its main claims. In particular we derive a strongly concave effective
free-energy function that captures the constraints of the assignment problem at a finite temperature. We
prove that this free energy decreases monotonically as a function of β, the inverse of temperature, to the
optimal assignment cost, providing a robust framework for temperature annealing. We prove also that for
large enough β values the exact solution to the generic assignment problem can be derived using simple
roundoff to the nearest integer of the elements of the computed assignment matrix. Our second contribution
is to derive a provably convergent method to handle degenerate assignment problems, with a characteriza-
tion of those problems. We describe computer implementations of our framework that are optimized for
parallel architectures, one based on CPU, the other based on GPU. We show that the latter enables solv-
ing large assignment problems (of the orders of a few 10 000s) in computing clock times of the orders
of minutes.
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I. INTRODUCTION

Imagine that there are N flour milling plants around Paris,
France that serve N bakeries within Paris, and let us assume
balance, namely, that there is as much flour produced by one
plant as needed by one bakery. A company in charge of the
distribution of the flour will take into account the individual
cost of transporting flour from one plant to one bakery to
find an “optimal distribution plan,” namely, an assignment of
an exclusive flour milling plant to each bakery that leads to
a minimal overall cost for the transport. Finding a solution
to this seemingly simple practical task has become a classi-
cal problem in combinatorial optimization referred to as the
assignment problem or alternatively, using the language of
graph theory, as the bipartite weighted matching problem (for
a comprehensive analysis of assignment problems, see, for
example, Ref. [1]). Interests in solving it have been stimulated
by applications in operational research, economics, and data
science, among others. With such a wide range of applica-
tions, it has been and remains a topic of research of equal
importance for mathematicians, statisticians, and computer
scientists. As a consequence, many solutions, exact or approx-
imate, have been proposed. In this paper, we are interested in
filling the gap in one group of approximate solutions based on
mean-field theory and show that they can be modified to yield
an exact solution in non degenerate as well as in degenerate
situations in a computer efficient manner.

Let P be the set of plants, and B the set of bakeries. We are
concerned with the balanced assignment problem, namely, we
assume |P| = |B| = N . We note that the unbalanced problem
(i.e., when there are different numbers of plants and bakeries)
can always be reduced to the balanced case by adding pseudo
plants or bakeries so that the two corresponding sets have the
same cardinality. If we define as C(i, j) the cost of transport
between plant i and bakery j, then the assignment problem
can be formalized as finding a bijection f between P and B
that minimizes

U =
∑
i∈P

C(i, f (i)). (1)

Note that f can be seen as a permutation of {1, . . . , N}.
This is a linear problem. It can be solved naively by test-
ing all possible bijections f , or equivalently all permutations
of {1, . . . , N}: this is, however, extremely inefficient, as the
number of such permutations is N! and unnecessary. There
are indeed polynomial time algorithms to solve the assign-
ment problem. The most famous of such algorithms was most
likely originally proposed by Ref. [2] and published posthu-
mously in Latin, and rediscovered 60 years later by Ref. [3]
and dubbed the Hungarian algorithm. Initially developed as
a O(N4) algorithm, it has since been sped up and its fastest
exact, general version is of order O(N3 + N2 ln N ) when using
Fibonacci heaps [4]. The Hungarian algorithm remains the
most efficient exact algorithm when applied to a generic cost
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matrix C (there are faster versions for special cost matrices
C; see, for example, Refs. [5,6]). It is a global algorithm
that iteratively identifies assignments between the two sets of
points, or, in the language of graph theory, by augmenting
paths between the two graphs to be matched. While it has
polynomial worst-case running time, its main limitation is
that it is serial, i.e., it cannot be improved with paralleliza-
tion. There are alternate solutions to the assignment problem
such as the auction algorithms [7,8] that are based on finding
local updates, rather than full augmenting paths between the
two graphs. These methods have worse asymptotic computing
time behaviors, but they often work better in practice [9].
These algorithms have an average time complexity of O(N2)
and their structure is such that it is possible to parallelize them
(see, for example, Ref. [10]). Note, however, that their gains
in computing time compared to the Hungarian algorithm are
highly problem-dependent: The parallelization gain may be
modest for some cost matrices C, and in some degenerate
cases, auction algorithms may even run forever [11].

The Hungarian and the auction algorithms are iterative
methods aimed at finding the best bijection f within the
discrete set of all possible permutations, of cardinality N!.
On par with the invisible hand algorithm (IHA) proposed
by Ref. [12], we propose instead to use continuous systems
motivated by statistical physics. We have adapted an algo-
rithm we have recently proposed to solve the balanced optimal
transport problem [13,14] to solve specifically the assignment
problem. We focus on the balanced assignment problem (i.e.,
with the same number of points in the two sets of points
considered), with minimal cost, with an understanding that
our method could be easily extended to handle unbalanced
and/or maximal cost assignment problems. Our goals in this
paper are to

(1) Establish and validate a continuous framework for
solving the assignment problem using statistical physics,

(2) Establish that, in the generic case in which the assign-
ment problem has a unique solution, the framework proposed
above is guaranteed to converge arbitrarily close to that solu-
tion, and derive criteria to generate this solution,

(3) Describe a modification of the method that is guaran-
teed to find at least one solution for degenerate assignment
problems with multiple solutions, and

(4) Demonstrate that the implementation of this frame-
work can be efficiently parallelized on multiple cores / CPUs
and/or a general purpose GPU.

Note that the first two goals were already achieved by the
IHA algorithm [12]. In this paper, we propose a different
statistical physics formulation of a relaxed version of the
assignment problem, validate that it has similar theoretical
properties as the IHA in terms of convergence, and include
a comparison of its performance with respect to the IHA algo-
rithm, showing that the latter becomes significantly slower for
large systems. An analysis of the differences is provided. In
addition, the IHA does not handle degenerate cases; a signifi-
cant contribution in this paper is that such cases are considered
explicitly within our framework (goal 3 listed above).

The following four sections map with the four goals
listed above. We conclude with a discussion in which we
compare our framework with alternate methods for solv-
ing continuous assignment problems, as well as with a

presentation of possible extensions to very large assignment
problems.

II. A FINITE-TEMPERATURE ASSIGNMENT PROBLEM

We consider two sets of points S1 and S2 of the same
cardinality N . We encode the cost of transport between S1

and S2 as a positive matrix C(k, l ) with (k, l ) ∈ {1, . . . , N}2.
The assignment problem can then be formulated as finding
a binary permutation matrix G of correspondence between
points in S1 and points in S2 that minimizes the matching cost
U defined as

U (G) =
∑
k,l

G(k, l )C(k, l ), (2)

where the summations extend over all k in S1 and l in S2. The
minimum of U is to be found for the values of G(k, l ) that
satisfy the following constraints:

∀k,
∑

l

G(k, l ) = 1, (3a)

∀l,
∑

k

G(k, l ) = 1, (3b)

∀(k, l ), G(k, l ) ∈ {0, 1}. (3c)

The solution to the assignment problem provides an opti-
mal permutation matrix G∗ and the corresponding minimum
matching cost U ∗ = U (G∗). Minimizing Eq. (2) under the
constraints Eq. (3) is a discrete optimization problem, namely,
an integer linear program problem. We solve it using a
statistical physics approach by rephrasing it as a temperature-
dependent problem with real variables, with the integer
optimal solution found at the limit of zero temperature. This
relaxed version of the assignment problem is a special case of
a discrete optimal transport (OT) problem [15,16] in which the
masses associated to the points in S1 and S2 are all equal to 1.
Many methods have been proposed for solving the OT prob-
lem, from directly solving the linear system stem to solving
entropy-regularized version of this system [17]. Here we in-
troduce a modified version of our statistical physics approach
for solving this problem, adapting it to the specifics of the as-
signment problem. Note that this algorithm is a generalization
of the so-called invisible hand algorithm [12].

A. An effective free energy for the assignment problem

In statistical physics, a system that is in thermal equi-
librium at finite temperature will sample many states. The
corresponding Gibbs distribution represents the probability of
this system to exist in any specific state. The most probable
state is then the one with lowest energy. Hence, minimizing
an energy function can be reformulated as the problem of
finding the most probable state of the system it defines. In the
assignment problem between two sets S1 and S2, the “system”
is identified with the different binary transport plans between
S1 and S2 that satisfy the marginal constraints Eqs. (3a) and
(3b) as well as the constraint (3c). Those plans belong to the
permutation polytope which we denote as G.

Each state in this system is identified with a transport
plan G ∈ G, and its corresponding energy U (G) is defined in
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Eq. (2). The probability P(G) associated with a transport plan
G is defined as

P(G) = 1

Z (β )
e−βU (G). (4)

In this equation, β = 1/kBT where kB is the Boltzmann con-
stant and T the temperature, and Z (β ) is the partition function
computed over all states of the system. This partition function
is given by

Z (β ) = e−βF (β ) =
∫

G∈G
e−βU (G)dG, (5)

where dG can be seen as the Lebesgue measure for the space
of transport plans G and F (β ) is the free energy of the system.
This free energy is of limited practical interest as it cannot be
computed explicitly. We propose a scheme for approximating
it using the saddle point approximation.

Taking into account the constraints on the transport plan G,
the partition function can be written as

Z (β ) =
∑

G(k,l )∈{0,1}
e−β

∑
kl C(k,l )G(k,l )

∏
k

δ

(∑
l

Gkl − 1

) ∏
l

δ

(∑
k

Gkl − 1

)
. (6)

The first sum imposes that the G(k, l ) take values of 0
or 1 only. The constraints that there is only one 1 per line
and only one 1 per column are imposed through the δ func-
tions. We use the Fourier representation of those δ functions,
thereby introducing new auxiliary variables λ(k) and μ(l ),
with (k, l ) ∈ {1, . . . , N}2. After rearrangements, the partition
function can be written as (up to a multiplicative constant),

Z (β ) =
∫ +∞

−∞

∏
k

dλ(k)
∫ +∞

−∞

∏
l

dμ(l )eβ(
∑

k iλ(k)+∑
l iμl )

∑
G(k,l )∈{0,1}

e−β
∑

k,l G(k,l )[C(k,l )+iλ(k)+iμ(l )]. (7)

Note that we have scaled the auxiliary variables λ and μ

by a factor β for scale consistency with the energy term.
Performing the summations over the variables G(k, l ), we get

Z (β ) =
∫ +∞

−∞

∏
k

dλ(k)
∫ +∞

−∞

∏
l

dμl e
−βFβ (λ,μ), (8)

where Fβ is a functional, or effective free energy defined by

Fβ (λ,μ) = −
(∑

k

iλ(k) +
∑

l

iμ(l )

)

− 1

β

∑
kl

ln
(
1 + e−β[C(k,l )+iλ(k)+iμ(l )]

)
. (9)

Note that compared to the internal energy U defined in Eq. (2)
that depends on N2 constrained binary variables G(k, l ), the
effective free energy Fβ (λ,μ) depends on 2N unconstrained
variables λ(k) and μ(l ). In the following we will show how
finding the extremum of this function allows us to solve the
assignment problem.

B. Optimizing the effective free energy

Let Ḡ(k, l ) be the expectation value of G(k, l ) with respect
to the Gibbs distribution given in Eq. (4). As mentioned above,
it is unfortunately not possible to compute this value directly
as the partition function defined in Eq. (8) is not known
analytically. Instead, we derive a saddle point approximation
(SPA) by looking for extrema of the effective free energy with
respect to the variables λ and μ:

∂Fβ (λ,μ)

∂λk
= 0 and

∂Fβ (λ,μ)

∂μl
= 0. (10)

After some rearrangements, those two equations can be writ-
ten as

∀k,
∑

l

X (k, l ) = 1, (11a)

∀l,
∑

k

X (k, l ) = 1, (11b)

where

X (k, l ) = h{β[Ckl + iλ(k) + iμ(l )]} (12)

and

h(x) = 1

ex + 1
. (13)

We will prove that in the limit β → ∞ (or equivalently
T → 0), the matrix X converges to the solution of the assign-
ment problem G∗ (see above).

As is often the case, the saddle-point may be purely imagi-
nary. In the present case, one can easily see from Eq. (11) that
the variables iλ(k) and iμ(l ) must be real and in the following,
we will replace {iλ(k), iμ(l )} by {λ(k), μ(l )}. We observe that
the values of the matrix X (k, l ) are invariant under the trans-
lation {λ(k) + K, μ(l ) − K} where K is an arbitrary constant.
This translational degree of freedom leaves the free energy Feff

unchanged.
To analyze the SPA, we need to check the existence and

assess the unicity of the critical points of the free energy. The
following theorem shows that Fβ (λ,μ) is weakly concave and
can be made strictly concave on a subspace of the parameter
space that is easily defined.

Theorem 1. The Hessian of the effective free energy
Fβ (λ,μ) is negative semi-definite with (2N − 1) nega-
tive eigenvalues and one zero eigenvalue. Furthermore, the
eigenvector corresponding to the zero eigenvalue is (1,...,1,
−1, ....−1) (with N 1s, and N −1s), and thus corresponds
to the constant translation invariance of this energy. Setting
one of the parameters λ(k) or μ(l ) as zero, the free-energy
function on this restricted parameter space is strictly concave.

Proof. See Appendix A. �
For a given value of the parameter β, the X (k, l ) that are

solutions to the system of Eqs. (11) form a transport plan X MF
β

between S1 and S2 that is optimal with respect to the free
energy defined in Eq. (9). We can associate to this transport
plan an optimal free energy F MF(β ) and an optimum energy
U MF(β ) = ∑

k,l X MF
β (k, l )C(k, l ). Note that those two values

are the mean-field approximations of the exact free energy
and internal energy of the system, respectively. We now list
important properties of U MF(β ) and F MF(β ):
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Property 1. F MF(β ) and U MF(β )) are, respectively, mono-
tonic increasing and monotonic decreasing functions of the
parameter β.

Proof. See Appendix B for F MF(β ) and Appendix C for
U MF(β ). �

Theorem 1 and the property 1 above highlight a num-
ber of advantages of the proposed framework that rephrases
the assignment problem as a temperature-dependent process.
First, at each temperature the assignment problem is turned
into a strongly concave problem with a unique solution. This
problem has a linear complexity in the number of variables,
compared to the quadratic complexity of the original problem.
The concavity allows for the use of simple algorithms for find-
ing a minimum of the effective free-energy function [Eq. (9)].
We note also that Eq. (12) provides good numerical stability
for computing the transport plan, because of the behavior of
the function h(x) (see below). Finally, the convergence as a
function of temperature is monotonic.

C. Rewriting the free energy

Equation (9) provides an expression of the free energy
as a function of the unconstrained variables λ(k) and μ(l ).
This free energy is not “standard” as it does not include the
corresponding energy U . We derive a new form for this free
energy. To simplify notations, let us define

xkl = C(k, l ) + λ(k) + μ(l ),

X (k, l ) = h(βxkl ), (14)

Uβ (λ,μ) =
∑

kl

C(k, l )X (k, l ),

where h(x) is the function defined above. We have the follow-
ing property:

Theorem 2. The effective free energy of the assignment
problem can be written as

Fβ (λ,μ) = Uβ (λ,μ) − T Sβ (λ,μ)

+
∑

k

λk

(∑
l

X (k, l ) − 1

)

+
∑

l

μl

(∑
k

X (k, l ) − 1

)
, (15)

where we have defined the entropy S as

Sβ (λ,μ) =
∑

kl

(βxkl h(βxkl ) + ln[1 + e−βxkl ]). (16)

In particular, at a maximum of the free energy,

F MF(β ) = U MF(β ) − T SMF(β ). (17)

This form of the free energy has an intuitive physical inter-
pretation. The first term is the original assignment energy, the
second is −T times an entropy term, and the third and fourth
terms impose constraints via Lagrange multipliers.

Proof. Using the definition of the free energy [Eq. (9)], and
adding and subtracting the internal energy, we get

Fβ (λ,μ) = Uβ (λ,μ) −
∑

kl

C(k, l )X (k, l )

−
(∑

k

λ(k) +
∑

l

μ(l )

)

+ 1

β

∑
kl

ln[1 + e−βxkl ]. (18)

As C(k, l ) = xkl − λ(k) − μ(l ), we get

Fβ (λ,μ) = Uβ (λ,μ) +
∑

k

λk

(∑
l

X (k, l ) − 1

)

+
∑

l

μl

(∑
k

X (k, l ) − 1

)

1

β

∑
kl

(βxkl X (k, l ) + ln[1 + e−βxkl ]), (19)

which concludes the proof. �
By noticing that the function H (x) = − ln(1 + e−x ) is an

antiderivative of the function h(x) = 1/(1 + ex ), we have
more general definitions for the internal energy Uβ and the
entropy Sβ as a function of λ and μ,

Uβ (λ,μ) =
∑

kl

C(k, l )h(βxkl ),

Sβ (λ,μ) =
∑

kl

t (βxkl )

=
∑

kl

[βxkl h(βxkl ) − H (βxkl )], (20)

or alternatively, as a function of the transport plan X ,

Uβ (X ) =
∑

kl

C(k, l )X (k, l )

Sβ (X ) =
∑

kl

J[X (k, l )]

=
∑

kl

(
X (k, l )h−1[X (k, l )] − H{h−1[X (k, l )]}).

(21)

In the specific case considered here in which h(x) = 1/(1 +
ex ), the functions t (x) and J (x) are defined as

t : R → R, t (x) = x

1 + ex
+ ln(1 + e−x ),

J : [0, 1] → R, J (x) = −x ln(x) − (1 − x) ln(1 − x).

(22)

Note that J ′(x) = ln ( 1−x
x ) = h−1(x), and therefore that J (x)

is the Legendre transform of −H (x). J (x) is positive on [0,1],
null only for x = 0 and x = 1, and maximum for x = 0.5 in
which case it is equal to ln(2). In Fig. 1, we illustrate the
different functions h(x), H (x), t (x) and J (x) as their properties
are central to the rest of the paper.
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FIG. 1. The different functions h(x), H (x), t (x), and J (x) (see text for details).

III. SOLVING THE GENERIC ASSIGNMENT PROBLEM

In the previous section, we have described a formalism
based on statistical physics for solving the assignment
problem. We have derived an effective free energy, Fβ (λ,μ),
that depends on 2N unconstrained variables λ and μ. We
have shown that this free energy is (weakly) concave and
that its maximum is found by solving a system of nonlinear
equations, at each inverse temperature β. We have also shown
that the trajectory of the maxima F MF(β ) as a function of
β is monotonic, increasing. We need to establish now that
this trajectory allows us to find the actual solution of the
assignment problem. Recall that this solution is defined by a
permutation matrix G∗ and its corresponding energy U ∗. In
this section, we will assume that the assignment problem is
non degenerate and that it has a unique solution. We will fully
characterize what it means in the next section.

We first prove that the optimal assignment energy U ∗, is
equal to the infinite inverse temperature limit of both the
mean-field free energy and the internal energy:

Theorem 3.

U ∗ = lim
β→+∞

F MF(β ),

U ∗ = lim
β→+∞

U MF(β ). (23)

Proof. See Appendix D. �

As the trajectories of F MF(β ) and U MF(β ) as a function
of β were already found to be respectively monotonically
increasing and monotonically decreasing, this theorem adds
the information at the infinite inverse temperature limit (or
equivalently at the zero temperature limit), both converge to
the optimal assignment energy. These results validate our sta-
tistical physics approach and the saddle-point approximation
in particular. They are however results at convergence, i.e., at
infinite inverse temperature, and we need to assess how well
the solution at a finite inverse temperature approximates the
exact solution.

The following theorem puts bounds on the entropy, internal
energy, and free energy at the SPA. Let us define A(N ) =
N2 ln(N ) − N (N − 1) ln(N − 1); then

Theorem 4.
0 � SMF(β ) � A(N ), (24)

U ∗ − A(N ))

β
� F MF(β ) � U ∗, (25)

U ∗ � U MF(β ) � U ∗ + A(N )

β
. (26)

Proof. See Appendix E. �
The two previous theorems are valid for all assignment

problems. We establish now bounds on the element of the
assignment matrix X MF

β in the specific case that this assignment
problem has a unique solution. The matrix X MF

β denotes the
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unique doubly stochastic matrix associated with the minimum
of the free energy at the inverse temperature β. The next
theorem bounds how close this doubly stochastic matrix is to
the unique permutation matrix, G∗, representing the optimal
solution to the assignment problem.

Theorem 5. Suppose that the assignment problem associ-
ated with the N × N cost matrix C admits a unique optimal
assignment matrix, G∗. Let � be the difference in total cost
between the optimal solution and the second best solution.
Then,

max
k,l

∣∣X MF
β (k, l ) − G∗(k, l )

∣∣ � A(N )

β�
. (27)

Proof. See Appendix F. �
This theorem validates that in the generic case for which

the solution to the assignment problem is unique, the con-
verged solution matrix X MF

∞ when β → +∞ is this unique
solution to the assignment problem, G∗. In addition, it pro-
vides bounds to how close X MF

β is from the optimal solution
at any inverse temperature β. We can use this result to find
bounds on the inverse temperature required to recover the
optimal assignment from the free-energy optimum:

Theorem 6. Suppose that the assignment problem associ-
ated with the N × N cost matrix C admits a unique optimal
assignment matrix, G∗. Let � be the difference in total cost
between the optimal solution and the second best solution.
Then, rounding off each of the entries of X MF

β to the near-
est integer yields the permutation matrix G∗ that solves the
assignment problem whenever

β >
2A(N )

�
. (28)

Proof. The proof follows directly from Theorem 5. Round-
ing off to the nearest integer will yield the optimal assignment
matrix whenever

max
k,l

∣∣X MF
β (k, l ) − G∗(k, l )

∣∣ <
1

2
. (29)

This condition is met if

A(N )

β�
<

1

2
, (30)

i.e., if

β >
2A(N )

�
. (31)

�
We can then conclude that in the generic case we can

solve the assignment problem exactly at finite, although
sufficiently high inverse temperature β. Assuming finite pre-
cision, the inverse temperature required for convergence
is O[A(N )]. Since A(N ) = N2 ln(N ) − N (N − 1) ln(N − 1),
A(N ) is O[N ln(N )], and therefore the inverse temperature is
of order N ln(N ). Theorem 6 is important theoretically as it
validates that the mean-field approach converges to the solu-
tion of a generic assignment problem. It also provides a recipe
for setting a cutoff for the value of the inverse temperature β

that guarantees that the optimal solution has been found. It is,
however, not easy to implement as it is difficult to estimate �.
A simpler procedure is based on the following result:

Theorem 7. Suppose that the assignment problem associ-
ated with the N × N cost matrix C admits a unique optimal
assignment matrix, G∗. Let us assume that at an inverse tem-
perature β, the current solution matrix X MF

β is strictly row
dominant. Then, rounding off each of the entries of X MF

β to the
nearest integer yields the permutation matrix G∗ that solves
the assignment problem.

This theorem defines a criteria that is easily implemented to
terminate the annealing process in β when solving the assign-
ment problem with our method. Note that this theorem is not
equivalent to Theorem 6. It does not guarantee convergence,
i.e., it does not establish that the matrix X MF

β becomes row
dominant, but only claims that if it does, then the annealing
process can be stopped. From Theorem 6 we know however
that if the assignment problem has a unique solution, then our
framework will converge to this solution, and, in doing so, the
trajectory of the X MF

β matrices is guaranteed to reach a row
dominant matrix.

Proof. See Appendix G. �
In Sec. VI, we will compare these possible cutoff schemes

for β.

IV. SOLVING DEGENERATE ASSIGNMENT PROBLEMS

In our statistical physics approach described in Sec. II,
the binary assignment problem has been relaxed. Indeed, we
build a collection of real matrices X MF

β that minimizes the
assignment cost and that are doubly stochastic, but at a finite
inverse temperature this matrix cannot be binary as X MF

β is
given as h(βxkl ), where all values h(x) are strictly in (0,1)
(see Fig. 1). In the previous section, we have shown that
if this relaxed assignment problem has a unique solution,
then the trajectories of the X MF

β as β increases converge to
the permutation matrix G∗ that solves the integer assignment
problem. The question remains as to whether this is always
the case, and if it is not, then how we can still find an integer
solution to the assignment problem.

Let S1 and S2 be two sets of points of cardinality N and let
C be a cost matrix between S1 and S2. The relaxed assignment
problem can be formulated as finding the assignment matrix
Gr that minimizes

U (G) =
∑
k,l

Gr (k, l )C(k, l ), (32)

where the summations extend over all k in S1 and l in S2. The
minimum of U is to be found for the values of Gr (k, l ) that
satisfy the following constraints:

∀k,
∑

l

Gr (k, l ) = 1, (33a)

∀l,
∑

k

Gr (k, l ) = 1, (33b)

∀(k, l ), 0 � Gr (k, l ) � 1. (33c)

Note that the assignment problem defined in Eqs. (2) and
(3) is a special case of this relaxed problem. The two prob-
lems have the same solution under circumstances that will be
described below. In general, it is not expected that solving
this relaxed problem will lead to an optimal matrix G∗

r that
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is binary. However, Ref. [18] have proved that this relaxed
assignment problem always has an optimal solution where
G∗

r take integer values. We rewrite the corresponding theorem
here and sketches its proof, as it contains elements that we will
use later.

Theorem 8 ([18]). If the relaxed assignment problem has
at least one feasible solution, then it has at least one integral
optimal solution. This solution is an optimal solution for the
corresponding integer assignment program.

Proof. Let G∗
r be an optimal solution to the relaxed assign-

ment problem described in Eqs. (32) and (33) and let U (G∗
r )

be the associated minimum assignment cost. Let us denote as
K the number of nonintegral values in G∗

r . If K = 0, then G∗
r

is a permutation matrix and we are done. If K > 0, then let
G∗

r (k1, l1) be one of its nonintegral values:

0 < G∗
r (k1, l1) < 1. (34)

Since ∑
k

G∗
r (k, l1) = 1, (35)

there exists k2 ∈ S1 with k2 �= k1 such that G∗
r (k2, l1) is nonin-

tegral. Similarly, we can find l2 �= l1 in S2 such that G∗
r (k2, l2)

is nonintegral. We can continue in this manner, leading to a
path [(k1, l1), (k2, l1), . . .] with nonintegral values in G∗

r . As
the number of points in S1 and S2 is finite, we will ultimately
reach a pair that we have already visited. This means that we
have identified a cycle A among all edges between S1 and S2;
the cardinality of this cycle is even (bipartite graph). We write
this cycle as

A = {(a1, b1), (a2, b2), . . . , (a2M , b2M )}, (36)

where 2M = |A|. For a small real number ε, we define the
matrix Gε as

Gε (k, l ) = G∗
r (k, l ) (k, l ) /∈ A,

Gε (a2i, b2i ) = G∗
r (a2i, b2i ) + ε i ∈ {1, . . . , M},

Gε (a2i+1, b2i+1) = G∗
r (a2i+1, b2i+1) − ε i ∈ {1, . . . , M}.

As two consecutive pairs in A leads to the addition and
subtraction of the same quantity ε on one row or one column
of G∗

r , it is easy to verify that Gε is doubly stochastic and
therefore satisfies the constraints of the assignment problem.
In addition, for sufficiently small ε, we have

0 � Gε (ai, bi ) � 1 (37)

for all (ai, bi ) ∈ A, as by construction those pairs where cho-
sen such that 0 < G∗

r (ai, bi ) < 1. Let us now compute the
assignment cost Uε associated with Gε :

Uε =
∑
k,l

Gε (k, l )C(k, l )

=
∑

(k,l )/∈A

Gε (k, l )C(k, l ) +
2M∑
i=1

Gε (ai, bi )C(ai, bi )

=
∑

(k,l )/∈A

G∗
r (k, l )C(k, l ) +

2M∑
i=1

[G∗
r (ai, bi ) + (−1)iε]C(ai, bi )

= U (G∗
r ) + ε�, (38)

where we have defined � = ∑2M
i=1(−1)iC(ai, bi ). Since G∗

r
is optimal, we have � = 0, for otherwise, we would have
Uε < U (G∗

r ) either by choosing ε > 0 if � < 0, or by choos-
ing ε < 0 for � > 0. This means that Gε is another optimal
solution of the relaxed assignment problem. By choosing
the largest ε > 0 for which the constraints 0 � Gε (ai, bi ) �
1 ∀i are still satisfied, one of the (ai, bi ) ∈ A will be such
that Gε (ai, bi ) ∈ {0, 1}. Therefore, Gε has fewer nonintegral
elements than G∗

r and the procedure can be repeated until
K = 0. �

The proof described above provides an algorithm for
modifying a fractional optimal solution to the relaxed as-
signment problem into an integer solution with the same
optimal assignment cost. This algorithm, however, is nu-
merically unstable and difficult to implement for large N .
Indeed, a fractional solution to the assignment problem will
not satisfy the constraints exactly (because of numerical
imprecision) and therefore cycles are difficult to identify.
An alternate solution to following this algorithm would
be to add a penalty term to the energy function of the
form

∑
kl G(k, l )[1 − G(k, l )] that would be minimum when

G(k, l ) is 0 or 1, therefore pushing the solution towards in-
teger values. We propose a different solution. We first list an
interesting side result from the proof above as a property on
its own:

Property 2. If the relaxed assignment problem
has an optimum solution that contains fractional
elements, then there exists (at least) one cycle A =
{(a1, b1), (a2, b2), . . . , (a2M , b2M )} in the cost matrix C
for which � = ∑2M

i=1(−1)iC(ai, bi ) = 0. Reversely, if
the cost matrix C does not contain any cycle of the
form A = {(a1, b1), (a2, b2), . . . , (a2M , b2M )} for which∑2M

i=1(−1)iC(ai, bi ) = 0, then the corresponding assignment
problem has a unique integer solution.

Proof. The proof of the first part of the proposition fol-
lows exactly the proof of Theorem 8 that is sketched above.
The second part is basically its contrapositive. Briefly, we
start from the fact that the cost matrix C does not contain
any cycle of the form A = {(a1, b1), (a2, b2), . . . , (a2M , b2M )}
for which

∑2M
i=1(−1)iC(ai, bi ) = 0. Let us assume now that

the corresponding assignment matrix has an optimal solu-
tion matrix that contains fractional elements. Then, based
on the proof of Theorem 8, we can identify (at least) one
cycle in the cost matrix, which is contradictory to our hy-
pothesis. Therefore, the assignment problem has only integer
solutions that are permutation matrices. Let us assume now
that it has (at least) two different optimal permutation ma-
trices π1 and π2 as solutions, i.e., with the same optimal
cost U ∗. We can then build a doubly stochastic matrix Ga =
aπ1 + (1 − a)π2 for each a ∈ [0, 1]. The cost associated
with Ga is

U (G) = a
∑

kl

C(k, l )π1(k, l ) + (1 − a)
∑

kl

C(k, l )π2(k, l )

= a
∑

k

C(k, π1(k)) + (1 − a)C(k, π2(k))

= aU ∗ + (1 − a)U ∗ = U ∗, (39)
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for all a ∈ [0, 1]. This would mean that Ga is also an optimal
solution to the assignment problem. However, for a strictly
in (0,1), Ga is fractional, which contradicts the fact that the
assignment problem only has integer solutions. Therefore, the
assignment problem has a unique solution. �

This property implies that when solving the assignment
problem for generic cost matrices that do not contain specific
cycles, we can follow the strategy described in Sec. III. If the
cost matrix is degenerate and contains (at least) one cycle,
then we propose to randomly perturb that matrix to bring it
back to the generic problem. We do need to specify the per-
turbation level that guarantees that a solution of the perturbed
problem is also a solution to the original problem. This is the
purpose of the following theorem:

Theorem 9. Suppose that the solution X MF
β to the assign-

ment problem associated with the N × N cost matrix C has
a nonzero entropy SMF(β ) when β → +∞. Let � be the
difference in total cost between the optimal solution and the
second best solution. Then, adding random uniform noise with
support [0, α] to each value of C and solving the assignment
problem on this perturbed matrix will generate one integer
solution that is also solution to the unperturbed assignment
problem with probability one, whenever

α <
�

2N
. (40)

If all the entries of the cost matrix C are scaled to be integers,
then � � 1 and it suffices to have

α <
1

2N
. (41)

Proof. See Appendix H. �
This theorem gives us a general strategy for solv-

ing a minimum cost assignment problem for any cost
matrix C:

(a) Solve the assignment problem using the approach de-
scribed in Secs. II A and II B. If the trajectory of the entropy
converges to 0 as β → +∞, then the solution is guaranteed
to be a permutation. All results from Sec. III apply and in
particular the solution matrix G∗ obtained by rounding off
each element of X MF

β when β is large enough is guaranteed to
be an optimal solution to the assignment problem. In practice,
β is set to be large enough when the entropy SMF(β ) falls
below a cutoff value, usually 10−6.

(b) If the approach described in (a) fails as the entropy
does not converge to 0, then scale the cost matrix to be integer,
and add random uniform noise in the interval [0, 1

2N ]. Solve
the assignment problem with the perturbed matrix: its solu-
tion is guaranteed to solve also the unperturbed assignment
problem.

V. IMPLEMENTATION

We have implemented the finite-temperature assignment
framework described here in a C++ program matching that
is succinctly described in Algorithm 1.

Algorithm 1. Matching: A temperature-dependent framework
for solving the assignment problem

Input: The size of the assignment problem, N , the cost matrix C,
and the initial value β0 for β

Initialize: Initialize arrays λ and μ to 0. Set ST EP = √
10. Set

β0 = β0/ST EP
for k = 1, . . . until convergence do

(1) Set βk = ST EP ∗ βk−1.
(2) Solve nonlinear Eqs. (11) for λMF and λMF at saddle point
(3) Compute current optimal assignment matrix X MF

β and the
corresponding assignment U MF(β ) and entropy SMF(β )

(4) Check for convergence: If |U MF(βk ) − U MF(βk−1)|/
U MF(βk−1) < T OL, or if X MF

β strictly row dominant, or if the
entropy falls below a cutoff value, then stop

end for
Output: The converged transport plans Gopt

β (k, l ) and the
corresponding transport costs U MF(β ).

Matching is based on an iterative procedure in which the
parameter β (inverse of the temperature) is gradually in-
creased. At each value of β, the nonlinear system of equations
defined by Eq. (11) is solved using an iterative Newton-
Raphson method. At each iteration for this Newton method,
the Jacobian of the system of equations is computed, and
the corresponding linear system of equations is solved us-
ing a preconditioned conjugate gradient approach (we use
an incomplete LU decomposition of the Jacobian matrix as
a preconditioner). Solutions of this system provide updated
estimates for the arrays of parameters λ and μ. These new
estimates are then used to assess how well the SPA equations
are satisfied. Once the errors on the SPA equations fall be-
low a tolerance TOL (usually set to 10−4), the optimal cost
matrix X MF

β and the corresponding assignment U MF(β ) and
entropy SMF(β ) are computed. If the latter falls within the
tolerance TOL, or if the matrix the procedure is deemed to
have converged, then the program is stopped. The values in the
corresponding X MF

β are rounded off and its corresponding cost
defines the minimal assignment cost. Note that the converged
values of λ and μ at a given β serve as input for solving the
SPA nonlinear system of equation at the following β, in spirit
of an annealing procedure.

In some cases, matching has converged in energy, but the
entropy remains nonzero and the current assignment matrix
X MF

β is not row dominant. This indicates that the assignment
problem does not have a unique solution, and that matching
has identified a fractional solution. We then rerun matching
by applying the relaxed procedure described in Sec. IV, by
introducing random noise to each element of the cost matrix
(see above for details).

VI. NUMERICAL SIMULATIONS

In order to confirm our theoretical results, we applied
our method to solve random linear assignment problem with
random cost matrices of size N × N whose elements are inde-
pendent identically distributed (iid) variables with exponential
distribution with mean 1. The authors of Ref. [19] have con-
jectured that the expectation value for the optimal, minimal
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FIG. 2. Convergence of the entropy SMF(β ) (a), and of the internal energy U MF(β ) and free energy F MF(β ) as a function of β when solving
a random assignment problem with a cost matrix C of size 10 000 whose elements are independent identically distributed values drawn from
exponential distributions with mean 1. In panel (b), we show the theoretical bounds on the internal energy and on the free energy computed
from the theoretical bounds given in Theorem 4 as red and blue shaded areas, respectively. The dotted horizontal line show the expected value
for the minimal cost of an exponential random assignment problem of the same size.

assignment cost LN satisfies

lim
N→+∞

E [LN ] = π2

6
, (42)

and a few years later [20] they conjectured that

E [LN ] =
N∑

i=1

1

i2
. (43)

Proofs of the two conjectures were subsequently provided
by Refs. [21] and [22], respectively. We note that such ran-
dom problems are guaranteed to have a unique solution: as
the elements of the cost matrix are iid variables, there is a
zero probability that they can form cycles (as defined in the
previous section) and then, based on proposition 2, the cor-
responding assignment problem has a unique solution matrix
whose entries are 0 or 1.

Matching is based on an iterative procedure in which the
parameter β (inverse of the temperature) is gradually in-
creased. At each value of β, the nonlinear system of equations
defined by Eq. (11) is solved using an iterative Newton-
Raphson method. At each iteration for this Newton method,
the Jacobian of the system of equations is computed, and
the corresponding linear system of equations is solved us-
ing a preconditioned conjugate gradient approach (we use
an incomplete LU decomposition of the Jacobian matrix as
a preconditioner). Solutions of this system provide updated
estimates for the arrays of parameters λ and μ. These new
estimates are then used to assess how well the SPA equations
are satisfied. Once the errors on the SPA equations fall below
a tolerance TOL (usually set to 10−4), the optimal cost matrix
X MF

β and the corresponding assignment U MF(β ) and entropy
SMF(β ) are computed. If the latter falls within the tolerance
TOL, then the procedure is deemed to have converged and the
program is stopped. The values in the corresponding X MF

β are

rounded off and its corresponding cost defines the minimal
assignment cost. Note that the converged values of λ and μ

at a given β serve as input for the following β, in spirit of an
annealing procedure.

A. Simple example

We ran the procedure described above on a random cost
matrix with exponential distributions with mean 1 of size
10 000 × 10 000. In Fig. 2(a), we show the trajectory of the
entropy SMF(β ) (left panel) as a function of β generated
while solving the corresponding assignment problem. As this
assignment problem has a unique matrix solution whose el-
ements are either 0 or 1 (i.e., a permutation matrix), it is
expected that the entropy converges to 0, as observed. Based
on Theorem 4, the entropy is bounded in [0, A(10 000)] where
A(10 000) ≈ 105. In Fig. 2(b), we show the corresponding
trajectories of the internal energy U MF(β ) and free energy
F MF(β ) as well as the theoretical bounds on those values
given in Theorem 4. As expected, the internal energy is mono-
tonically decreasing while the free energy is monotonically
increasing, and both converge to the same value, 1.6341. Note
that from Eq. (43), the expected value of the minimum cost
associated with a matrix of this size is E [L10 000] = 1.6445,
i.e., very close to the value observed with the specific cost
matrix that was generated for this example.

B. Solving large assignment problems

We ran simulations on random cost matrices with expo-
nential distributions with mean 1 of sizes N ranging in size
between 50 × 50 and 15 000 × 15 000. We ran five indepen-
dent simulations for each size. As mentioned above, each of
these assignment problems have a unique solution; we verified
that we obtained the correct assignment by running in parallel
the Hungarian algorithm.
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FIG. 3. CPU time and efficiency of matching for solving the assignment problem. Two sets of calculations are performed, on two different
computers. The first set is based on the implementation of matching for CPUs. It is run on an Intel Core i7 processor running at 4.00 GHz,
and 64 GB of memory. The second set is based on the implementation of matching for GPUs. It is run on a Linux server, with Xeon Platinum
8168 CPU at 2.7 GHz, and a NVIDIA RT2080 Ti GPU card with 11 GB of memory. In each set, we run matching on random cost matrices
with exponential distributions with mean 1 of sizes N ranging in size between 50 × 50 and 15 000 × 15 000. (a) The mean computing times
(clock time) are plotted against the sizes of the cost matrices for computation on one core (black), on 8 cores (red), and on the GPU (blue).
The dashed lines represent quadratic polynomial fits to the means. (b) The speedup (computed as the ratio of total computing time over clock
time) is plotted against the size of the assignment problem.

We have claimed that the temperature-based method we
propose enables a fast and robust solution to the assign-
ment problem. To check that it is indeed the case, we have
monitored the running times for our procedure for the dif-
ferent simulations described above. We first note that our
implementation relies heavily on linear algebra, as at each
inverse temperature we solve a nonlinear system of equa-
tion iteratively, with each iteration involving the solution of
a linear system of equation. It is therefore expected that
the whole algorithm can benefit greatly from parallelization.
We have therefore implemented two versions of matching,
one that runs on possibly multiple CPUs, and another that
runs on GPUs. Both rely heavily on the optimized BLAS
and LAPACK libraries for the corresponding processors. The
computing times for the two versions of matching, averaged
over five simulations, are plotted against the size N of the
assignment problem in Fig. 3. As expected, we observe a
significant speedup when matching is run on multiple pro-
cessors: a factor of nearly 7 for large matrices on a 8 CPUs,
and nearly a factor of 200 when matching is run on GPU.
The gain in time is significant: the mean computing time for
solving a random assignment problem with a cost matrix of
size 15 000 × 15 000 is 67 000 s for a serial computation on
a single CPU, and 9700 s and 425 s on a modern 8-CPU
computer and on a modern GPU card, respectively. While we
cannot fully take credit for the effectiveness of the different
implementations of matching as they are based on the highly
efficient machine-specific BLAS and LAPACK libraries, we
note that the method we have presented here provides the
framework for such significant improvement in computing
time compared to a serial computation.

To estimate the overall time complexity of matching, we
need to consider the number M of β values considered, the

number P of iterations required to solve the nonlinear system
of equations at each β, the number of conjugate gradient iter-
ations required to solve the linear Jacobian system at each of
those iterations, and finally the cost of each of those conjugate
gradients. For a cost matrix of size N × N , the linear Jacobian
system is of size 2N × 2N , and the worst case complexity for
solving such a system of equation using conjugate gradient is
2N × 2N × 2N , assuming 2N iterations to reach convergence,
namely, a O(N3) time complexity. The total worst case com-
plexity of matching is therefore of order M × P × N3, where
M is a constant (see below), while P depends on the quality of
the initial guess for the solution of the system (also discussed
below). In practice, we observe a N2 time complexity [see
Fig. 3(a)]. This quadratic time complexity indicates that the
conjugate gradient procedure converges in a small number of
steps which is nearly independent of N .

Matching includes an annealing procedure with respect to
the temperature. In practice, this means that the values of the
converged parameters λ and μ at one value of β are used as
input to the next value of β considered. This is found to signif-
icantly improve convergence. We did repeat the calculations
with matching in which λ and μ are reset to zero for each β

value. The reset was found to lead to significantly less efficient
convergence. This is expected, as the efficiency of solving the
system of nonlinear equations at each β is strongly dependent
on the quality of the initial guess for the solution, with zero
being a poor guess, and the value computed at the prior β a
more reasonable guess.

One option to reduce the computing cost associated with
matching is to limit the number of inverse temperatures β

considered. In all the simulations described above, the tem-
perature annealing is performed until the total entropy SMF(β )
falls below a small tolerance (10−6). When this happens, the
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values X MF
β of the assignment matrix are either very close to 0,

or very close to 1, and it is then safe to round them off to the
nearest integer. There are two other possible criteria that we
can use to determine when to stop the temperature annealing
process and still be guaranteed that we can recover the optimal
assignment. One is to consider the theoretical cutoff defined
in Theorem 6, namely, that β be larger than 2A(N )

�
, where

A(N ) is a number defined by N , and � is the difference in
total cost between the optimal solution and the second best
solution. While this cutoff guarantees that the solution at such
a β is the exact solution, after roundoff to the nearest integer,
it is difficult to implement as � is not known. In practice,
for computations with fixed precision, it can be set to be this
precision, i.e., of the order of 10−8. The second possibility
is to continue the annealing process until the computed as-
signment matrix X MF

β becomes strictly row dominant and then
stop and roundoff the elements of X MF

β to the nearest integer.
The validity of this approach is established in Appendix H.
In Fig. 4, we compare the three stopping criteria and their
impacts on computing time, for random assignment problems
with exponential distributions with mean 1 of sizes N ranging
in size between 50 × 50 and 25 000 × 25 000. All computa-
tions are performed on GPU. Each simulation is run with β

up to 1014, with the different stopping criteria being computed
during the annealing procedure. Five simulations are run for
each matrix size.

There are significant differences in the required maximum
β values to reach convergence with guaranteed exact solutions
after rounding off to the nearest integer, based on the criteria
considered, with the condition of row dominance of the as-
signment matrix giving the smallest β cutoff. This is expected
as the other criteria cannot be satisfied before the matrix is
strictly row dominant. For large assignment problems, the
difference is significant, with a cutoff of the order of 109 for
row dominance, and of the order of 1011 for entropy cutoff.
The cutoff based on � is even larger (close to 1014), however

this cutoff was set arbitrarily large as it is difficult to actually
estimate �.

Interestingly, while the stopping criteria based on entropy
and based on an estimate of � differ significantly, the corre-
sponding computing times do not and in fact overlap exactly.
When the entropy cutoff is satisfied, the assignment matrix
is basically integer and the system has converged; adding a
few steps in β will not change the computing time, as the
initial values from the entropy converged step will satisfy the
nonlinear SPA systems at larger values of β. Computing times
based on the row dominance cutoff are shorter (mean value
of 1500 s for matrices of size 25 000 × 25 000, compared to
1600 s on the same matrices for the entropy cutoff), but by
less than 10% while the differences in the maximum β value
is of two orders of magnitude. Again, when the procedure has
converged, independent of the cutoff scheme, additional steps
will come at minimal computing costs. We do note, however,
that large values of β (of the order of 109) are required for
large assignment problems (of the order of 25 000), are there-
fore the computing framework is expected to be numerically
stable, which is the case for our own procedure.

C. Comparisons with other algorithms for solving
the assignment problem

Based on the results presented above. Matching is expected
to provide a fast and robust solution to the assignment prob-
lem. To check that it is indeed the case, we have compared
matching, with our own implementations of the invisible hand
algorithm and of the entropy regularized approach to the as-
signment problem.

The IHA [12] is very similar to the method proposed in
this paper. Indeed, in both approach the relaxed assignment
problem is rewritten as the problem of finding a saddle point
approximation for a free-energy functional. The derivations
and consequently the free-energy functionals differ; both,
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the assignment problem introduced in this paper, for the Invisible Hand Algorithm, with an implementation that mirrors matching (see text for
details), and for a stabilized version of the Sinkhorn algorithm are given as a function of the size N of balanced random assignment problems,
with randomized cost matrix with exponential distributions. Results are shown as mean values over five experiments at each value with N,
with error bars at one standard deviation. (b) The three algorithms are run on the same cost matrix of size 7 500 × 7 500. Theirs computing
times are shown as a function of the annealing parameter β, the inverse of the temperature. For the Sinkhorn algorithm, β is the inverse of the
relaxation parameter ε, i.e., the factor in front of the entropy regularization term. All timings are computed on a single I7 processor running at
4.0 GHz with 64 GB of RAM.

however, are written as functions of unconstrained variables
λ and μ, which satisfy a system of equations of the form

∀k,
∑

l

G(k, l ) = 1, (44a)

∀l,
∑

k

G(k, l ) = 1, (44b)

where

G(k, l ) = h{ β[Ckl + λ(k) + μ(l )]}, (45)

where C is the cost matrix, and G the coupling matrix to be
found. The main difference between matching and IHA lays
in the function h(x), with h(x) = 1/(1 + ex ) for the matching
algorithm, and h(x) = e−x for the IHA. The simplicity of the
latter makes it possible to eliminate the variables λ and solve
only for the variables μ. This can be done using a Sinkhorn-
like fixed point algorithm, a steepest descent algorithm (both
approaches were described in the original IHA paper [12]),
or using a Newton approach, as proposed for matching. Our
implementation of the IHA follows the latter.

Our implementation of the Sinkhorn algorithm for solving
the relaxed assignment problem is based on a log-domain
stabilization and eta-scaling heuristic [23] and an overrelax-
ation scheme [24]. These two modifications to the original
algorithm of Cuturi [25] are expected to improve convergence
of the iterative scaling algorithm, as well as robustness for
small values of the relaxation parameter ε through the use of
logarithmic stabilization.

We have experimented with applications of matching, IHA,
and Sinkhorn on random cost matrices based on exponential
distributions, as described above. We have solved the corre-
sponding assignment problems using all three methods, for

problem size N between 100 and 7,500, with five independent
runs for each value of N . The optimization is performed
until convergence, using the row dominance criterium of
Theorem 7. All computational experiments were performed
on an iMac computer with a 4.0 GHz Intel I7 processor,
with 64 GB of memory. The computing times are plotted
against N in Fig. 5(a). With the exceptions of small problem
sizes, matching and IHA are found to be faster than Sinkhorn,
with matching becoming faster as the problem size increases.
We have assigned this difference to the fact that Sinkhorn is
known to slow down significantly for very small ε values,
despite the log-stabilization and ε scaling, as illustrated in
Fig. 5(b). Matching and our implementation of IHA use the
same strategy of solving the nonlinear system of equations to
find the saddle point with an iterative Newton’s approach. We
have tried a steepest descent approach as well as a rewriting
of IHA using s Sinkhorn iterative scheme, as proposed in
Ref. [12]), but found that those implementations were slower
than the Newton’s approach described here. Matching is faster
than IHA for large values of N ; we believe that this is a
consequence of the modified free-energy functional we have
introduced. This will be discussed below.

D. Solving pathological assignment problems

All the numerical experiments presented above relate to
assignment problems with random cost matrices drawn from
exponential distributions. To further analyze the behavior and
efficiency of our approach, we repeated our analyses on two
other types of cost matrices, namely, real matrices whose
elements are drawn from the Cauchy distribution, and integer
matrices whose elements are drawn uniformly from a given
interval.
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FIG. 6. CPU time for solving pathological assignment problems. We compare the computing times of the Hungarian algorithm (black) with
the computing times of two versions of our matching algorithm, one running on an 8-core CPU (blue) and one running on GPU (red), when
those algorithms are applied to two types of cost matrices, random real matrices whose elements are drawn from a standard Cauchy distribution
(a), and random integer matrices whose elements are drawn uniformly from the interval [0,10] (b). The mean computing times (clock time)
over five independent calculations are plotted against the sizes of the cost matrices. The dashed lines represent quadratic polynomial fits to the
means. Technical details are provided in the caption of Fig. 3.

The standard Cauchy distribution is defined with the prob-
ability distribution

f (x) = 1

π (1 + x2)
.

It is a canonical example of a “pathological” distribution since
both its expected value and its variance are undefined. We
ran simulations on random cost matrices whose elements are
drawn from this standard Cauchy distribution. Those matrices
vary in sizes between 50 × 50 and 10 000 × 10 000. We ran
five independent simulations for each size. To our knowledge,
there are no known theoretical results on the expected values
of the optimal cost for the assignment problems associated
to those cost matrices. For each experiment, we have then
verified that we obtained the correct optimal assignment cost
by running in parallel the Hungarian algorithm. We note that
for all those experiments, the Hungarian and our algorithm not
only found the same optimal cost but also the same assign-
ment, hinting that these assignment problems have a unique
solution. The computing times for the Hungarian algorithm
and for the two versions of matching (i.e., CPU-based and
GPU-based), averaged over five independent simulations, are
plotted against the size N of the assignment problem in Fig. 6,
left panel. Much akin to the simulations based on random
cost matrices derived from exponential distributions, we ob-
serve that matching provides a significant speed improvement
compared to the Hungarian algorithm. This improvement is
a consequence of the fact that matching benefits from par-
allelization (see above): the difference between applications
of the Hungarian algorithm and of the GPU-based matching
algorithm is of order 200 in favor of the latter for matrices of
size 10 000 × 10 000.

We observe very different behaviors, however, when we
consider random integer matrices. We ran simulations on such
random cost matrices whose integer elements are drawn uni-
formly in the interval [0, M], with M = 10, and with sizes

N ranging in size between 50 × 50 and 10 000 × 10 000. For
all those simulations, simple applications of the matching
algorithm lead to non integer assignment matrices, indicative
of the fact that the corresponding cost matrices are degenerate.
We applied the method described in Sec. IV (i.e., addition of
small random noise to the cost matrix) to identify an integer
assignment with the same optimal cost. We note also that
in all cases, the solutions found by the Hungarian algorithm
and by matching had the same optimal cost but different
assignments. The computing times for the Hungarian algo-
rithm and for the two versions of matching (i.e., CPU-based
and GPU-based), averaged over five independent simulations,
are plotted against the size N of the assignment problem in
Fig. 6, right panel. In opposition to the random assignment
problems based on real matrices, the Hungarian algorithm
was always found to be faster than matching, for all matrix
sizes considered. The Hungarian algorithm is an algorithm
that proceeds by iteratively removing ambiguities when at-
tempting assignments between “agents” and “tasks” through
modifications of the cost matrix that do not affect the opti-
mal solution. Those modifications proceeds by subtractions
between rows or between columns to reach values of zeros,
and an unambiguous zero defines an assignment. When the
matrix elements are integer values, drawn from a small inter-
val, the chances of getting many zeros when performing those
operations are significantly higher than if the matrix elements
are real. The Hungarian algorithm greatly benefits from this
fact, while matching handles integer values as if they were
real values. Figure 6 shows that the Hungarian algorithm is
significantly faster than the two implementations of matching,
with a speedup of approximatively 700 compared to the 8-
CPU version, and of approximately 20 for the GPU version,
for matrices of size 10 000 × 10 000. We also investigated the
importance of M, that defines the size of the interval from
which the random integer elements of the cost matrices are
drawn. Results are shown in Fig. 7. As matching does not
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FIG. 7. CPU time for solving integer assignment problems. We
compare the computing times of the Hungarian algorithm (black)
with the computing times of the multicore CPU version of our match-
ing algorithm,when those algorithms are applied to random integer
matrices of sizes 2000 × 2000 whose elements are drawn uniformly
from the interval [0, M]. The mean computing times (clock time)
over five independent calculations are plotted against the sizes M of
the intervals from which the elements of the cost matrices are drawn.
note that the computing times for matching remain constant, while
those for the Hungarian algorithm increase as M increases. Technical
details are provided in the caption of Fig. 3.

differentiate if the cost matrix is real or integer, we observe
that its computing cost is independent of M, for a given
matrix size. The Hungarian algorithm, however, is found to be
strongly dependent on the value of M, with computing times
that increase as M increases. This corroborate our assertion
that the diversity inside the cost matrix affects the perfor-
mance of the Hungarian algorithm.

VII. DISCUSSION

In this paper, we have proposed a statistical physics frame-
work to solve the balanced assignment problem. Given two
sets of points S1 and S2 with the same cardinality N , and a
cost matrix between those sets, we have constructed a weakly
concave free energy parametrized by temperature that cap-
tures the constraints of the assignment problem. Its maximum
defines an optimal assignment between the two sets of points.
We proved that this free energy decreases monotonically as a
function of β (the inverse of temperature) to the optimal as-
signment cost, providing a robust framework for temperature
annealing. We proved also that for large enough β values (i.e.,
small enough temperature), the exact solution to the generic
assignment problem can be derived directly from the maxi-
mum of the free energy using simple roundoff to the nearest
integer of the elements of the assignment matrix associated
with this maximum. We have also derived a provably con-
vergent method to handle degenerate assignment problems,
with a characterization of those problems. We have described
two computer implementations of our framework that are op-
timized for parallel architectures, one based on CPU, the other
based on GPU, and have shown that the latter enables solving

large assignment problems (of the orders of a few 10 000 s) in
computing clock times of the orders of minutes.

A. Comparison with other algorithms coming from physics

Statistical physics provides a framework for addressing
otherwise difficult optimization problems. For example, sta-
tistical physicists have long been interested in the assignment
problem (for examples, see Refs. [12,19,26–28]. Of direct
relevance to this paper, the “invisible hand algorithm” [12],
solves the assignment problem using a statistical physics ap-
proach similar to the one we have proposed. Both approaches
use temperature schemes that are provably guaranteed to con-
verge to the exact assignment solution at zero temperature
for generic problems. For both approaches, schemes are pro-
posed to extract the exact solution in bounded computing
time. While we have expanded beyond generic assignment
problems with guaranteed unique solution by building a prov-
ably convergent scheme for solving degenerate assignment
problems (see Sec. IV), the main differences between our
method and invisible hand algorithm sit elsewhere and are
worth discussing. Both methods rely on the construction of a
temperature-dependent free energy, weakly convex for the in-
visible hand algorithm and weakly concave in our case. While
energy functions are derived using different formalisms when
constructing the partition function for the system considered,
they do take similar forms. If C is the cost matrix between the
two sets of points considered, and G is an assignment matrix
between those two sets, then the free-energy functionals take
the form

F (β ) =
∑

kl

C(k, l )G(k, l ) − 1

β

∑
kl

s[G(k, l )]

+
∑

k

λk

[∑
l

G(k, l ) − 1

]

+
∑

l

μl

[∑
k

G(k, l ) − 1

]
, (46)

where β is the inverse of the temperature T . Note that we
do not write the exact formulation given in Ref. [12], but an
equivalent form proposed by Ref. [28]. From a physics point
of view, this form for the free energy is intuitive: the first term
is the internal energy, i.e., the assignment cost that needs to be
minimized, the second term is an entropic term, which can be
seen as a regularization term that renders the problem convex
(or concave) as well as a barrier function that will prevent the
G(k, l ) to take some values, and the third and fourth terms im-
pose the row sums and column sums constraints via Lagrange
multipliers, respectively. The two energy functions differ in
expression of the function s(x) that encodes the entropy.

In the invisible hand algorithm, the function s(x) =
−x ln(x), namely, takes the traditional form of the Gibbs
entropy. It serves as a barrier at zero, thereby maintaining
the positivity of the G(k, l ). Interestingly, with this formula-
tion, the invisible hand algorithm is equivalent to the entropy
regularized method that was proposed for solving the opti-
mal transport (OT) problem, i.e., a generalized assignment
problem not limited to binary assignments. Just like for the
invisible hand algorithm, the entropic penalization for the OT
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problem has the advantage that it defines a strongly convex
problem with a unique solution [25]. In addition, its solution
can be found efficiently through the so-called iterative pro-
portional fitting procedure [29], also known as the Sinkhorn’s
algorithm [30], or Sinkhorn-Knopp algorithm [31]. Note that
the use of this algorithm has led Cuturi [25] to propose a
“Lightspeed Computation of Optimal Transport” (in the title
of this paper), which we paraphrased for the title of this paper.
Many variants of those algorithms have been developed for
solving regularized OT problems; we refer to [32–34] for
overviews on those methods. Those algorithms find solutions
for a given value of the relaxation parameter ε, which plays
the role of a temperature. For small values of this parameter,
numerical issues can arise and a stabilization of the algorithm
is necessary [35]. Despite such stabilization, convergence of a
stabilized Sinkhorn-Knopp algorithm can nevertheless be very
slow when ε is small, and sometimes numerically unstable.
Such small values are, however, desirable for finding good
approximations to the solution of the original problem. The
same difficulty can be mentioned for the invisible hand algo-
rithm, as it can also be solved using the Sinkhorn’s algorithm
(see Ref. [12]).

In contrast, the function s(x) in our formalism takes the
form s(x) = −x ln(x) − (1 − x) ln(1 − x). Note that this is a
typical mixture entropy, where the first term is the entropy
of “particles,” and the second term is the entropy of “holes.”
As such, it introduces barriers both a zero for positivity and
at one to ensure that points are only assigned once. It also
provides a simple and stable expression for the terms of the
assignment matrix as a function of the internal variables of
the free energy, given by the function h(x) = 1/(1 + ex ). h(x)
is continuous, monotonic, bounded between 0 and 1, and
bijective. With this function and the double-barrier entropy
function s we consider, we have run routinely computations
with temperatures of the order of 10−13 without numerical
instabilities.

B. Computational complexity: How large can we go?

Our implementations of the method presented in this pa-
per were found to be efficient with nearly optimal use of
parallelization, both on CPU and on GPU processors. While
we cannot fully take credit for the effectiveness of these
implementations as they are based on the highly efficient
machine-specific BLAS and LAPACK libraries, we note that
the method we have presented here provides the framework
for such significant improvements in computing time com-
pared to a serial computation. In addition, the apparent time
complexity of those implementations were found to be O(N2),
an improvement compared to the O(N3) time complexity of
the Hungarian algorithm (though this needs to be considered
with caution as the former is based on a small sample of
empirical running time averages, while the latter is defined
theoretically). The space complexity of our implementations
is also O(N2), as we need to store both the cost matrix and a
work array of similar size that contains either the assignment
matrix, or part of the Jacobian matrix needed to solve the
nonlinear systems of equations at the saddle point approxima-
tions. Both matrices are of size N × N . Such a requirement
limits the use of our implementations to problems of size up

to 25 000 × 25 000. Indeed, with N = 30 000, handling two
matrices of size N2 in double precision requires 14.4 GB of
memory, which is beyond the capacity of the GPU cards we
have used in our numerical simulations. While GPU cards
with larger memory are available (currently up to 32 GB),
it remains that a O(N2) algorithm in memory complexity is
ultimately limited to assignment problems of up to a few
10 000 points. Handling larger problem sizes for which the
cost matrix is sparse will require some redesign of our algo-
rithm. We will pursue this in future studies.
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APPENDIX A: PROOF OF THEOREM 1: CONCAVITY
OF THE EFFECTIVE FREE ENERGY

We first prove that the effective free energy Fβ (λ,μ) is
weakly concave, by showing that its Hessian H is negative
semidefinite. H is a symmetric matrix of size 2N × 2N , such
that its rows and columns correspond to all N λ values first,
followed by all N μ values. Let h′ be the derivative of the
function h(x) = 1/(1 + ex ), i.e.,

h′(x) = − ex

(1 + ex )2
. (A1)

We note first that h′(x) ∈ [−1
4 , 0) ∀x ∈ R, i.e., that h′(x) is

always strictly negative. We define the matrix X ′ such that

X ′(k, l ) = h′{β[C(k, l ) + λ(k) + μ(l )]} (A2)

From Eqs. (11), we obtain

H (k, i) = ∂2Fβ (λ,μ)

∂λ(k)∂λ(i)
= βδki

∑
l

X ′(k, l ), (A3)

H (k, l ) = ∂2Fβ (λ,μ)

∂λ(k)∂μ(l )
= βX ′(k, l ), (A4)

H (l, m) = ∂2Fβ (λ,μ)

∂μ(l )∂μ(m)
= βδlm

∑
k

X ′(k, l ), (A5)

where δ are Kronecker functions, the indices k and i belong to
[1, N], and the indices l and m belong to [1, N].

Let x = (x1, x2) be an arbitrary vector of size 2N . The
quadratic form Q(x) = xT Hx is equal to

Q(x) =
∑
i,k

x1(k)H (k, i)x1(i) + 2
∑
k,l

x1(k)H (k, l )x2(l )

+
∑
l,m

x2(l )H (l, m)x2(m)

= β
∑
k,l

x1(k)2H ′(k, l ) + 2β
∑
k,l

x1(k)X ′(k, l )x2(l )

+β
∑
k,l

x2(l )2X ′(k, l )

= β
∑
k,l

[x1(k) + x2(l )]2X ′(k, l ). (A6)
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As X ′(k, l ) is based on the function h′ that is strictly negative,
the summands in the equation above are negative for all k and
l , and therefore Q(x) is negative for all vector x. The Hessian
H is negative, semidefinite. As a consequence Fβ (λ,μ) is
(weakly) concave.

As Q(x) is a sum of negative terms, it is 0 if and only if
all the terms are equal to 0. This means that ∀(k, l ) x1(k) +
x2(l ) = 0. This is realized when all the coordinates to x1 are
equal, and set to a parameter K , and all the coordinates to
x2 are equal, and set to −K . Therefore, 0 is an eigenvalue of
H , with eigenvector x = (1, . . . , 1,−1, . . . ,−1). This eigen-
vector corresponds to the translation invariance for the free
energy. It can be removed by setting one of the parameters
λ(k) or μ(l ) to zero; the free-energy functional Fβ (λ,μ) on
this restricted parameter space is then strictly concave.

APPENDIX B: MONOTONICITY OF FMF(β)

The effective free energy Fβ (λ,μ) defined in Eq. (9) is
a function of the cost matrix C and of real unconstrained
variables λ(k) and μ(l ). For the sake of simplicity, for any
(k, l ) ∈ [1, N]2, we define

xkl = C(k, l ) + λ(k) + μ(l ). (B1)

The effective free energy is then

Fβ (λ,μ) = −
[∑

k

λ(k) +
∑

l

μl

]
− 1

β

∑
kl

ln(1 + e−βxkl ).

(B2)

As written above, Fβ (λ,μ) is a function of the independent
variables β, λ(k) and μ(l ). However, under the saddle point
approximation, the variables λ(k) and μ(l ) are constrained by
the conditions

∂Fβ (λ,μ)

∂λ(k)
= 0,

(B3)
∂Fβ (λ,μ)

∂μ(l )
= 0,

and the free energy under those constraints is written as
F MF(β ). In the following, we will use the notations dF MF(β )

dβ

and ∂F MF(β )
∂β

to differentiate between the total derivative and

partial derivative of F MF(β ) with respect to β, respectively.
Based on the chain rule,

dF MF(β )

dβ
= ∂Fβ (λ,μ)

∂β
+

∑
k

∂Fβ (λ,μ)

∂λ(k)

∂λ(k)

∂β

+
∑

l

∂Fβ (λ,μ)

∂μ(l )

∂μ(l )

∂β
. (B4)

Using the constraints Eq. (B3), we find that

dF MF(β )

dβ
= ∂Fβ (λ,μ)

∂β
, (B5)

namely, that the total derivative with respect to β is in this
specific case equal to the corresponding partial derivative,

which is easily computed to be

dF MF(β )

dβ
= 1

β2

∑
kl

[
ln

(
1 + e−βxMF

kl
) + βxMF

kl

1 + eβxMF
kl

]
. (B6)

Let t (x) = ln (1 + e−x ) + x
1+ex . The function t (x) is continu-

ous and defined over all real values x and is bounded below
by 0 (see Fig. 1), i.e., t (x) � 0 ∀x ∈ R.

As

dF MF(β )

dβ
= 1

β2

∑
kl

t (βxkl ), (B7)

we conclude that

dF MF(β )

dβ
� 0, (B8)

namely, that F MF(β ) is a monotonically increasing function
of β.

APPENDIX C: MONOTONICITY OF UMF(β)

Let

Uβ (λ,μ) =
∑

kl

C(k, l )h(βxkl ), (C1)

where we have used the same definition for xkl = C(k, l ) +
λ(k) + μ(l ) as above, and let the corresponding mean-field
approximation of the internal energy at the saddle point,

U MF(β ) = Uβ (λMF,μMF). (C2)

Before computing dU MF(β )
dβ

, we prove the following property.
Property 3.

U MF(β ) = F MF(β ) + β
dF MF(β )

dβ
, (C3)

i.e., it extends the well-known relationship between the
free energy and the average energy to their mean-field
counterparts.

Proof. Using Eqs. (B2) and (B6), and the definition of
h(x) = 1/(1 + ex ), we find that

β
dF MF(β )

dβ
= −F MF(β ) −

∑
k

λMF(k) −
∑

l

μMF(l )

+
∑

kl

xMF
kl h

(
βxMF

kl

)
. (C4)

Let us recall that

xMF
kl = C(k, l ) + λMF

k + μMF
l .

In addition, all mean-field values correspond to the maxi-
mum of the effective free energy, for which the constraints
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are satisfied, namely,
∑

l h(βxMF
kl ) = 1 and

∑
k h(βxMF

kl ) = 1.
Replacing in Eq. (C4), we get

β
dF MF(β )

dβ
= −F MF(β ) −

∑
kl

λMF(k)h
(
βxMF

kl

)

−
∑

kl

μMF(l )h
(
βxMF

kl

)

+
∑

kl

(C(k, l ) + λMF(k) + μMF(l ))h
(
βxMF

kl

)
,

(C5)

i.e.,

β
dF MF(β )

dβ
= −F MF(β ) +

∑
kl

C(k, l )h
(
βxMF

kl

)
= −F MF(β ) + U MF(β ), (C6)

which concludes the proof. �
Based on the chain rule,

dU MF(β )

dβ
= ∂U MF(β )

∂β
+

∑
k

∂U MF(β )

∂λ(k)

∂λ(k)

∂β

+
∑

l

∂U MF(β )

∂μ(l )

∂μ(l )

∂β
. (C7)

Let us compute all partial derivatives in this equation using
Proposition 4:

∂U MF(β )

∂λ(k)
= ∂F MF(β )

∂λ(k)
+ β

∂

∂λk

(
∂F MF(β )

∂β

)

= ∂F MF(β )

∂λ(k)
+ β

∂

∂β

(
∂F MF(β )

∂λ(k)

)
= 0, (C8)

where the zero is a consequence of the SPA constraints. Sim-
ilarly, we find

∂U MF(β )

∂μ(l )
= 0. (C9)

Finally,

∂U MF(β )

∂β
= 2

∂F MF(β )

∂β
+ β

∂

∂β

(
∂F MF(β )

∂β

)

= 2
∂F MF(β )

∂β

+β

(
− 2

β

∂F MF(β )

∂β
+ 1

β2

∑
kl

βxMF
kl t ′(βxMF

kl

))
,

(C10)

i.e.,

∂U MF(β )

∂β
= 1

β

∑
kl

βxMF
kl t ′(βxMF

kl

)
, (C11)

where f is defined above [see Eq. (B6)]. As t ′(x) = − x
(1+ex )2 ,

we get

∂U MF(β )

∂β
= − 1

β

∑
kl

(
xMF

kl

)2

(1 + eβxMF(k,l ) )2
. (C12)

Therefore,

dU MF(β )

dβ
= ∂U MF(β )

∂β
� 0, (C13)

and the function U MF(β ) is a monotonically decreasing func-
tion of β.

APPENDIX D: PROOF OF THEOREM 3: CONVERGENCE
OF THE MEAN-FIELD FREE ENERGY AND THE

INTERNAL ENERGY TO THE OPTIMAL
ASSIGNMENT COST

We prove first that the optimal assignment energy U ∗ is
equal to the limit of the mean-field free energy when the
inverse temperature β → +∞. For simplicity in notation, we
define F MF(∞) = limβ→+∞ F MF(β ).

We first prove that U ∗ � F MF(∞).
Let U MF(β ) be the mean-field internal energy at the inverse

temperature β:

U MF(β ) =
∑
k,l

C(k, l )X MF
β (k, l ), (D1)

where X MF
β is the solution to the SPA system of equations. At

a finite inverse temperature β, X MF
β is strictly nonintegral, as

each of its terms is of the form hβ(xkl ), where h(x) = 1/(1 +
ex ), and therefore strictly in (0,1). However, X MF

β satisfies the
constraints on row sums and column sums, it is a doubly
stochastic matrix. The set SN of doubly stochastic matrices of
size N × N forms a convex polytope that is the convex hull of
the set of permutation matrices. In addition, the vertices of SN

are exactly the permutation matrices (Birkhoff–von Neumann
theorem, see Ref. [36]). Therefore, X MF

β can be written as a
linear combination of the permutation matrices πk ∈ �N ,

X MF
β =

∑
π∈�N

aππ, (D2)

with all aπ ∈ [0, 1] and
∑

π∈�N
aπ = 1. The summation ex-

tends over all N! permutations in �N . Therefore,

U MF(β ) =
∑
k,l

C(k, l )X MF
β (k, l )

=
∑

π∈�N

aπ

∑
k

C[k, π (k)]. (D3)

As U ∗ is the minimum matching cost over all possible permu-
tations of {1, N}, for all π ∈ �N , we have∑

k

C[k, π (k)] � U ∗. (D4)

Combining Eqs. (D3) and (D4), we get

U MF(β ) �
∑

π∈�N

aπU ∗, (D5)
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from which we conclude that at each β,

U ∗ � U MF(β ). (D6)

The mean-field free energy and internal energy are related
by Eq. (17). In this equation, the entropy can be written as

SMF(β ) = −
∑

kl

X MF
β (k, l ) ln

[
X MF

β (k, l )
]

−
∑

kl

[
1 − X MF

β (k, l )
]

ln
[
1 − X MF

β (k, l )
]
. (D7)

This entropy is positive (see Fig. 1) and satisfies the following
constraints:

0 � SMF(β ) � N2 ln(2). (D8)

Using Eq. (17), after rearrangement we obtain

U MF(β ) − 1

β
N2 ln(2) � F MF(β ) � U MF(β ). (D9)

Taking the limits when β → +∞, we get

F MF(∞) = U MF(∞), (D10)

and since U ∗ � U MF(β ) for all β, U ∗ � F MF(∞).
We now prove the converse inequality, F MF(∞) � U ∗. Let

us first recall the definition of the free energy,

Fβ (λ,μ) = −
∑

k

λ(k) −
∑

l

μ(l )

− 1

β

∑
kl

ln
(
1 + e−β[C(k,l )+λ(k)+μ(l )]

)
. (D11)

For sake of clarity, let us write again x(k, l ) = C(k, l ) +
λ(k) + μ(l ). Note first this property of limits:

lim
β→+∞

ln(1 + e−aβ )

β
=

{
0 if a � 0,

−a if a � 0.
(D12)

Therefore,

lim
β→+∞

Fβ (λ,μ) = −
∑

k

λ(k) −
∑

l

μ(l ) +
∑

kl|x(k,l )�0

x(k, l ).

(D13)

In this limit, the third term on the right only includes the terms
C(k, l ) + λ(k) + μ(l ) that are negative.

Let us consider a permutation π of {1, N}. We can write

N∑
k=1

C[k, π (k)] =
N∑

k=1

{C(k, l ) + λ(k) + μ[π (k)]}

−
∑

k

λ(k) −
∑

l

μ(l ), (D14)

i.e.,

N∑
k=1

C[k, π (k)] =
N∑

k=1

x[k, π (k)] −
∑

k

λ(k) −
∑

l

μ(l ).

(D15)

For each index k, the summand included in the first term
on the right is always larger or equal to the sum of all the

corresponding terms that are negative:

x(k, π (k)) �
∑

l|x(k,l )�0

x(k, l ). (D16)

Therefore,

N∑
k=1

C[k, π (k)] �
∑

kl|x(k,l )�0

x(k, l ) −
∑

k

λ(k) −
∑

l

μ(l ),

(D17)

i.e.,

N∑
k=1

C[k, π (k)] � lim
β→+∞

Fβ (λ,μ), (D18)

where this inequality follows from Eq. (D13).
Equation (D18) is valid for all permutations π : It is there-

fore valid for the optimal permutation π∗ that solves the
assignment problem. Since U ∗ = ∑

k C(k, π∗(k), we have

U ∗ � lim
β→+∞

Fβ (λ,μ). (D19)

As this equation is true for all λ and μ, it is true in particular
for λ = λMF and μ = μMF, leading to

U ∗ � lim
β→+∞

F MF(β ) = F MF(∞). (D20)

We have shown that U ∗ � F MF(∞) and F MF(∞) �
U ∗; therefore, U ∗ = F MF(∞). The corresponding result for
the internal energy, U ∗ = U MF(∞) follows directly from
Eq. (D10).

APPENDIX E: PROOF OF THEOREM 4: BOUNDS ON THE
ENTROPY, INTERNAL ENERGY, AND FREE ENERGY

1. Bounds on the entropy

In the previous Appendix, we have already derived bounds
on the entropy, see Eq. (D13). These bounds were found
from the behavior of the function J (x) that defines the en-
tropy, which is bound in the interval [0, ln(2)]. However,
a tighter upper bound can be found by noticing that the
values of the variable x, i.e., the different Xβ (k, l ) are con-
strained. Using Lagrange multipliers to optimize the entropy
S = ∑

kl J[X (k, l )] under the constraints
∑

l X (k, l ) = 1 and∑
k X (k, l ) = 1, we find that the maximum is found when

X (k, l ) = 1/N , in which case,

SMF(β ) � N2J

(
1

N

)

� N2

[
− 1

N
ln

(
1

N

)
−

(
1 − 1

N

)
ln

(
1 − 1

N

)]
� A(N ), (E1)

where we have defined A(N ) = N2 ln(N ) − N (N − 1) ln(N −
1). As the entropy is positive, we conclude

0 � SMF(β ) � A(N ). (E2)
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2. Bounds on the free energy

In Appendix C, we have shown that [see Eq. (C6)]

β
dF MF(β )

dβ
= −F MF(β ) + U MF(β ). (E3)

Using this equation and the relationship between free energy,
energy, and entropy at SPA [see Eq. (17)], we obtain

dF MF(β )

dβ
= 1

β2
SMF(β ). (E4)

From the bounds on the entropy,

0 � dF MF(β )

dβ
� A(N )

β2
. (E5)

By integrating over β between β and +∞,

0 � F MF(∞) − F MF(β ) � A(N )

β
. (E6)

Finally, as F MF(∞) = U ∗,

U ∗ − A(N )

β
� F MF(β ) � U ∗. (E7)

3. Bounds on the energy

As U MF(β ) = F MF(β ) + 1
β

SMF(β ), using the inequalities
in Eqs. (E2) and (E7), we get

U MF(β ) � U ∗ + A(N )

β
. (E8)

In addition, as U MF(β ) is monotonic, decreasing, with limit
U ∗ as β → +∞, U ∗ � U MF(β ). Therefore,

U ∗ � U MF(β ) � U ∗ + A(N )

β
. (E9)

APPENDIX F: PROOF OF THEOREM 5: BOUNDS
ON ASSIGNMENT MATRIX X MF

β

This proof is inspired by the proof of Theorem 6 in
Appendix 2 of Ref. [12].

We first recall that X MF
β is a doubly stochastic matrix, it can

be written as a linear combination of the permutation matrices
πk ∈ �N ,

X MF
β =

∑
π∈�N

aππk, (F1)

with all aπ ∈ [0, 1] and
∑

π∈�N
aπ = 1 (see Appendix D for

details).
To prove that maxk,l |X MF

β (k, l ) − G∗(k, l )| � A(N )
β�

, where
G∗ is the optimal solution of the assignment problem, � =
U 2∗ − U ∗ the difference in total cost between the second
best solution and the optimal solution (� > 0 as we have
assumed that the assignment problem has a unique solution),
and A(N ) = N2 ln(N ) − N (N − 1) ln(N − 1), we use a proof
by contradiction. We assume that there exists a pair (i, j) such
that

A(N )

β�
<

∣∣X MF
β (i, j) − G∗(i, j)

∣∣. (F2)

Let us denote B(i, j) = |X MF
β (i, j) − G∗(i, j)|. As G∗ is a

permutation matrix, G∗(i, j) = 0 or G∗(i, j) = 1.
In the first case,

B(i, j) = X MF
β (i, j)

=
∑

π∈�N

aππ (i, j). (F3)

Since G∗ is a permutation matrix, it is included in the decom-
position of X MF

β , and therefore,

B(i, j) = aG∗G∗(i, j) +
∑

π∈�N −{G∗}
aππ (i, j)

=
∑

π∈�N −{G∗}
aππ (i, j)

<
∑

π∈�N −{G∗}
aπ = 1 − aG∗ , (F4)

where the final equality follows from the fact that the sum of
all coefficients a is equal to 1.

In the second case, G∗(i, j) = 1,

B(i, j) = 1 − X MF
β (i, j)

= 1 −
∑

π∈�N

aππ (i, j). (F5)

Again, as G∗ is included in the decomposition of X MF
β ,

B(i, j) = 1 − aG∗G∗(i, j) −
∑

π∈�N −{G∗}
aππ (i, j)

= 1 − aG∗ −
∑

π∈�N −{G∗}
aππ (i, j)

< 1 − aG∗ , (F6)

where the final inequality follows from the fact that∑
π∈�N −{G∗} aππ (i, j) is positive.
In both cases, we have

A(N )

β�
< 1 − aG∗ . (F7)

Now, let us look at the energy associated with X MF
β :

U MF(β ) =
∑

kl

C(k, l )X MF
β (k, l )

=
∑

π∈�N

aπ

∑
k

C[k, π (k)]

= aG∗U ∗ +
∑

π∈�N −{G∗}
aπ

∑
k

C[k, π (k)]

� aG∗U ∗ +
( ∑

π∈�N −{G∗}
aπ

)
U 2∗

� aG∗U ∗ + (1 − aG∗ )U 2∗

� U ∗ + (1 − aG∗ )�. (F8)

In Theorem 4, we have shown that

U ∗ � U MF(β ) � U ∗ + A(N )

β
. (F9)
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Therefore,

U ∗ + (1 − aG∗ )� � U ∗ + A(N )

β
, (F10)

i.e.,

(1 − aG∗ ) � A(N )

β�
, (F11)

as � is strictly positive.
We have shown that A(N )

β�
< 1 − aG∗ [Eq. (G3)] and

(1 − aG∗ ) � A(N )
β�

[Eq. (G6)], i.e., we have reached a
contradiction. Our hypothesis is wrong, and therefore
max

k,l
|X MF

β (k, l ) − G∗(k, l )| � A(N )
β�

.

APPENDIX G: PROOF OF THEOREM 7: SIMPLE
TERMINATION CRITERIA FOR THE GENERIC

ASSIGNMENT PROBLEM

Let us start by proving the following lemma (note that this
lemma is at the core of the Hungarian algorithm for solving
the assignment problem):

Lemma 1. Let S1 and S2 be two sets of points with the
same cardinality N and let C be a real-valued cost matrix
between S1 and S2. Let G be an assignment matrix be-
tween S1 and S2 that satisfies the constraints on row sum
and column sum, namely, G is a doubly stochastic matrix,
and let U (G,C) be the total cost associated with G, namely,
U (G,C) = ∑

k,l C(k, l )G(k, l ). Let a and b be any two real-
valued vectors of size N , and let Da,b be the matrix defined as
Da,b(k, l ) = C(k, l ) + a(k) + b(l ). Then,

U (Da,b, G) = U (C, G) + m, (G1)

where m = ∑
k a(k) + ∑

l b(l ) is a constant, independent
of G.

Proof. From the definition of D

U (Da,b, G) =
∑

kl

(C(k, l ) + a(k) + b(l ))G(k, l )

= U (C, G) +
∑

kl

a(k)G(k, l )

+
∑

l

b(l )G(k, l )

= U (C, G) +
∑

k

a(k)
∑

l

G(k, l )

+
∑

l

b(l )
∑

k

G(k, l )

= U (C, G) +
∑

k

a(k) +
∑

l

b(l ), (G2)

where the last equality comes from the fact that G is doubly
stochastic. �

It is clear from Lemma 1 that solving the assignment prob-
lem between S1 and S2 with the cost matrix C is equivalent to
solving the assignment problem with the cost matrix Da,b. In
general this is of little help within our approach to solving
the assignment problem, as the latter has no reason to be
simpler than the former. There is one significant exception,

however, corresponding to the setting of Theorem 7. Indeed,
let us consider an inverse temperature β and let λMF and μMF

be the mean-field solutions at that temperature. Let us suppose
that the matrix X MF

β is strictly row dominant. We write first
what it means to be strictly row dominant. On each row k of
X MF

β , there is one element, which we will write as π (k), such
that ∣∣X MF

β [k, π (k)]
∣∣ >

∑
l �=π (k)

∣∣X MF
β (k, l )

∣∣. (G3)

As X MF
β satisfies the row sum and row column constraints, the

vector {π (1), . . . , π (N )} forms a permutation of {1, . . . , N}.
As all X MF

β (k, l ) are positive, Eq. (G3) is equivalent to

2X MF
β [k, π (k)] >

∑
l

X MF
β (k, l ). (G4)

As the matrix X MF
β is a solution to the assignment problem at

the inverse temperature β, it satisfies the row constraints, and
therefore the sum on the right side is 1, and we have

X MF
β [k, π (k)] > 1

2 . (G5)

It is equally easy to show that Xβ (k, l ) < 1
2 for all l �= π (k).

Since Xβ (k, l ) = h(xMF
kl ), where xMF

kl = C(k, l ) + λMF(k) +
μMF(l ), we get

xMF
kπ (k) < 0,

xMF
kl > 0 ∀l �= π (k). (G6)

By setting the vectors a and b in Lemma 1 to be λMF

and μMF, respectively, we have DλMF,μMF (k, l ) = xMF
kl , and,

therefore,

DλMF,μMF [k, π (k)] < 0,

DλMF,μMF (k, l ) ∀l �= π (k). (G7)

As the assignment problem associated with this matrix
DλMF,μMF corresponds to finding the assignment with minimal
cost, element k in S1 is trivially associated with element π (k)
in S2, as the corresponding cost is negative and therefore
minimal compared to all the other costs DλMF,μMF (k, l ), l �=
π (k) that are positive. Therefore, the assignment problem
associated with the cost matrix DλMF,μMF has for solution
the permutation matrix � corresponding to π , and based on
Lemma 1, it is also the solution to the original assignment
problem.

Finally, we note that since X MF
β [k, π (k)] > 1

2 and
X MF

β (k, l ) < 1
2 , ∀l �= π (k), the permutation matrix � is

constructed from X MF
β by simply rounding off its elements to

the nearest integer.

APPENDIX H: PROOF OF THEOREM 9: SOLVING
THE ASSIGNMENT PROBLEM FOR DEGENERATE

COST MATRICES

Let us introduce first some notations. Let S1 and S2 be two
sets of points with cardinality N , and let C be the cost matrix
between S1 and S2. The assignment problem between S1 and
S2 amounts to minimizing U (G) = ∑

kl C(k, l )G(k, l ), where
G is a permutation matrix. We note G∗ one solution to this
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problem, and U ∗ the minimum cost associated with G∗. We
note U 2∗ the second best cost, such that � = U 2∗ − U ∗ > 0.

Suppose now that we perturb each element of C by a
uniform random number:

Cα (k, l ) = C(k, l ) + αη(k, l ), (H1)

where η(k, l ) is uniform in [0,1] and the different η are
independent of each other. The perturbed assignment prob-
lem between S1 and S2 amounts to minimizing Uα (G) =∑

kl Cα (k, l )G(k, l ) where G is a permutation matrix. We note
G∗

α one solution to this problem, and U ∗
α the minimum cost

associated with G∗
α . We first prove the following property:

Property 4. Let S1 and S2 be the two sets of points with
cardinality N , and let C be the cost matrix between S1 and
S2. Adding random uniform noise with support [0, α] to each
value of C and solving the assignment problem on this per-
turbed matrix will generate a unique integer solution.

Proof. Let us assume first that the perturbed assignment
problem has (at least) two different integer solutions, namely,
two permutations π1 and π2 such that U ∗

α = Uα (π1) =
Uα (π2). It is easy to show that the matrix Ga = aπ1 + (1 −
a)π2 where a is a real number in (0,1) is also an optimal
solution to the perturbed problem. Indeed, Ga is a doubly
stochastic matrix as it is a combination of two permuta-
tion matrices (see Birkhoff–von Neumann theorem [36]). In
addition,

Uα (Ga) =
∑

kl

Cα (k, l )Ga(k, l )

= a
∑

k

Cα[k, π1(k)] + (1 − a)
∑

k

Cα[k, π2(k)]

= aUα (π1) + (1 − a)Uα (π1) = U ∗
α . (H2)

Therefore, if the perturbed assignment problem has more than
one solution, then it has a solution with fractional components.
Based on Proposition 2, this means that there exists (at least)
one cycle A = {(a1, b1), (a2, b2), . . . , (a2M , b2M )} in the cost
matrix Cα for which � = ∑2M

i=1(−1)iCα (ai, bi ) = 0, in which
case we would have

α

2M∑
i=1

(−1)iη(ai, bi ) = −
2M∑
i=1

(−1)iC(ai, bi ). (H3)

As the variables η are independent random uniform variables
and the term on the right side of the equation is constant,
the probability to have this linear relationship on the η is 0.
Therefore, there are no cycles within the matrix Cα , the

perturbed assignment problem does not have solution with
fractional value and consequently it has a unique integer solu-
tion.

We now provide an upper bound on α such that the solution
G∗

α is also an optimal solution to the unperturbed assignment
problem. First, we note that G∗ and G∗

α are both permutation
matrices, and as G∗ is one optimal solution to the unperturbed
assignment problem,

U ∗ � U (G∗
α ). (H4)

Reversely, as G∗
α is the optimal solution to the perturbed

assignment problem,

Uα (G∗
α ) � Uα (G∗). (H5)

From this equation, we have∑
kl

Cα (k, l )G∗
α (k, l ) �

∑
kl

Cα (k, l )G∗(k, l ), (H6)

which can be rewritten as

U (G∗
α ) + α

∑
kl

η(k, l )G∗
α (k, l ) � U ∗ + α

∑
kl

η(k, l )G∗(k, l ).

(H7)

Moving all the terms containing η on the right side,

U (G∗
α ) � U ∗ + α

∑
kl

η(k, l )[G∗(k, l ) − G∗
α (k, l )]. (H8)

The matrices G∗ and G∗
α contains exactly N ones and N2 − N

zeros, therefore there are at most 2N nonzero values of the
form G∗(k, l ) − G∗

α (k, l ). As η(k, l ) � 1, we have

U (G∗
α ) � U ∗ + 2Nα. (H9)

If we impose that α < �
2N , then

U (G∗
α ) < U ∗ + �, (H10)

i.e.,

U (G∗
α ) < U 2∗. (H11)

Combining Eqs. (H4) and (H11),

U ∗ � U (G∗
α ) < U 2∗. (H12)

As U 2∗ is by definition the second best cost for the assignment
problem, there are no solutions to the assignment problem
whose cost is strictly between the optimal cost U ∗ and the
second best cost, U 2∗. Therefore, U ∗ = U (G∗

α ) and G∗
α is

an optimal solution of the unperturbed assignment problem
whenever α < �

2N . �
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