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Weakly compressible particle-based discretization methods, utilized for the solution of the subsonic Navier-
Stokes equation, are gaining increasing popularity in the fluid dynamics community. One of the most popular
among these methods is the weakly compressible smoothed particle hydrodynamics. Since the dynamics of a
single numerical particle is determined by fluid dynamic transport equations, the particle per definition should
represent a homogeneous fluid element. However, it can be easily argued that a single particle behaves only
pseudo-Lagrangian as it is affected by volume partition errors and can hardly adapt its shape to the actual
fluid flow. Therefore, we will assume that the kernel support provides a better representative of an actual fluid
element. By means of nonequilibrium molecular dynamics (NEMD) analysis, we derive isothermal transport
equations for a kernel-based fluid element. The main discovery of the NEMD analysis is a molecular stress tensor,
which may serve to explain current problems encountered in applications of weakly compressible particle-based
discretization methods.
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I. INTRODUCTION

Nowadays, the weakly compressible smoothed particle hy-
drodynamics (WCSPH) method is a popular method utilized
for solving the subsonic Navier-Stokes equation. Within the
method, the fluid domain is decomposed into a finite set of
constant mass particles. These particles interact with each
other by means of a compact, spherical kernel. The dynamics
of each particle is determined by transport equations in a
Lagrangian frame of reference. Hence, the particles should be
representatives of real fluid elements per definition. Unfortu-
nately, their performance to represent the latter is insufficient.
As explained by Vogelsberger et al. [1], this is due to a con-
ceptual problem of SPH, which causes the method to behave
only pseudo-Lagrangian at finite resolution. Since we believe
that the pseudo-Lagrangian character is the physical root of
well-known problems in the community, especially excessive
numerical dissipation [2], we strive for a mathematical de-
scription of it. To date, such a measure does not exist to the
best of our knowledge. Within the paper, this problem will
be tackled. Since the pseudo-Lagrangian character is funda-
mental for our theory, we start with a description of its origin,
which can be attributed to two reasons.

On the one hand, the pseudo-Lagrangian character is intro-
duced by the common low-order particle volume estimate V
as initially suggested by Español and Revenga [3]:

1

V
≈

NNGB∑
j=1

Wh(x − x j ) . (1)

In Eq. (1), the function Wh(x − x j ) is a spherical, compact ker-
nel, with x ∈ R3 denoting the center particle position and x j ∈
R3 the neighbor particle positions. The parameter h represents
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the smoothing length, which defines the local, limiting radius
of interaction between particles. NNGB (NGB: neighbors) is
the number of particles located within the kernel support. In
this work, h is set constant for the sake of simplicity. The
problem with the approximation of V by Eq. (1) is that the
weighted average, with regard to the compact kernel support,
is computationally very demanding. As demonstrated by a
convergence analysis by Zhu et al. [4], an accurate estimate
of V requires a small mean particle spacing �l compared
to h or �l � h. Nevertheless, in practice h is chosen to be
in the order of �l in order to limit the computational costs.
By this pragmatic choice, volume partition errors are intro-
duced that are incorporated in the momentum equation [5].
As a consequence, the actual Lagrangian particle trajectories
are disturbed by numerical noise eventually causing pseudo-
Lagrangian behavior. The latter triggers numerical dissipation
[6] and compromises the ability of WCSPH to produce an
accurate simulation of vortex dynamics [5,7] and subsonic
turbulence [5,6] at finite resolution. Although the noise is
caused by numerical inaccuracy, within the scope of the paper
it will be called thermal noise.

On the other hand, the pseudo-Lagrangian nature of the
method is rooted in the deformation ability of the numeri-
cal particles. By imagining a cubic fluid element in a linear
shear flow, one would normally expect the fluid element to
be deformed into a parallelepiped. Conversely, a numerical
particle will preserve its shape except for weak isotropic vol-
ume changes limited by the weakly compressible character
of the method. Hence, the particle suffers from a missing
mechanism to adapt its shape according to the actual fluid
flow. Vogelsberger et al. [1] even go one step further, arguing
that at least the spherical kernel support associated with a
center particle should be deformed in a shear flow. However,
the shape of the kernel is practically forced to stay spherical,
which causes well-known mixing problems [1].
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Since the simulation of vortices, turbulence, and mixing
at finite resolution is problematic at the current stage due to
the pseudo-Lagrangian character, we want to gain a deeper
understanding of the latter. Therefore, a mathematical mea-
sure is inevitable. To obtain this measure, it is important to
highlight the striking similarity of the estimate for V in Eq. (1)
to the calculation of macroscopic quantities in nonequilibrium
molecular dynamics (NEMD). There, converged macroscopic
field quantities are obtained by an averaging process over
sufficient molecules (particles) in a local compact domain
(fluid element), as well (e.g., [8,9]).

Motivated by this observation, we take up the idea of
Vogelsberger et al. [1] that the spherical kernel support can
be interpreted as a fluid element. Based on that, we will de-
velop an isothermal Navier-Stokes equation for a kernel-based
fluid element by a NEMD analysis. The resulting momentum
transport equation contains an additional term depending on
a tensor field τmol which we will call molecular stress tensor.
It will be demonstrated that this term quantifies the influence
of the previously described pseudo-Lagrangian character and
gives direction to conceptual improvements of WCSPH.

So far, the motivation of this work was restricted to WC-
SPH as a weakly compressible particle-based discretization
method. However, the theory derived in the following will
be applicable to all weakly compressible particle-based dis-
cretization methods utilizing (i) a volume partitioning based
on the approximation in Eq. (1), and (ii) particles as discretiza-
tion volumes, which are interconnected by local, spherical
kernels.

II. THE ISOTHERMAL KERNEL TRANSPORT
EQUATIONS

In this section, the isothermal transport equations for a
kernel-based fluid element are derived by means of a NEMD
analysis. We use the theory of Hardy [8], which is similar to
the Irving and Kirkwood formalism [10]. The most important
difference is in regard to the utilized localization function.
Within the theory of Hardy [8], the Dirac delta function δ

is replaced by a positive, symmetrical function with compact
support. Obviously, the kernel function Wh itself appears to
be a natural choice. The procedure seems to be very promis-
ing since the theory of Hardy [8] was already successfully
deployed in the SPH context by Tartakovsky and Panchenko
[11] to model surface tension forces. Furthermore, we believe
that the derivation can be interpreted as a generalization of
the work of Ellero et al. [12]. In their work, the Irving and
Kirkwood formalism was applied to a numerical SPH particle
set to calculate implicit atomistic viscosities in a Couette flow.

For the first presentation of our new concept, we focus on
the transport of mass and momentum and neglect the transport
of entropy and chemical species. In the following, quantities
indexed with j are results obtained from a numerical sim-
ulation by means of a weakly compressible particle-based
discretization method.

The starting point of the NEMD analysis is an estimate for
the density ρ at a fixed kernel center position x = const. The
position can coincide with a center particle but does not have

to. The estimate includes Eq. (1) for the volume:

ρ = M

V
= M

NNGB∑
j=1

Wh(x − x j ). (2)

In the context of weakly compressible particle-based dis-
cretization methods, Eq. (1) is a commonly used approxi-
mation (e.g., [5,13]). According to the theory of Hardy [8],
we take the temporal derivative of Eq. (2) at x = const and
apply the chain rule. The resulting continuity equation for
the kernel-based fluid element can be obtained by considering
the particle positions x j (t ) to be only functions of time and
M = const:

∂tρ = M
NNGB∑
j=1

∂tWh(x − x j )

= −M
NNGB∑
j=1

v j · ∇Wh(x − x j )

= −∇ ·
NNGB∑
j=1

Mv jWh(x − x j ) = −∇ · p, (3)

where ∂t x j = v j ∈ R3 denotes the particle velocities. The de-
rived continuity equation (3) automatically leads to a natural
definition of the kernel-associated momentum density p ∈ R3

within the particle framework. Since the latter can be analyti-
cally expressed by p = ρU, U denoting the kernel velocity, a
comparison with Eq. (2) results in a definition of U:

p = ρU !=
NNGB∑
j=1

Mv jWh(x − x j )

⇒ U :=
∑NNGB

j=1 v jWh(x − x j )∑NNGB
j=1 Wh(x − x j )

. (4)

The focus on weakly compressible flows (V ≈ const) allows
us to conclude that the kernel velocity U in Eq. (4) is sim-
ilar to a Shepard filtered velocity [14]. The Shepard filter is
often employed in the SPH community to restore zero-order
consistency (e.g., [14–16]). Physically speaking, the thermal
noise introduced by Eq. (1) is partially canceled out at the
kernel level in Eq. (4). Hence, in correspondence to NEMD, it
justifies a separation of the particle velocities v j into the local
kernel velocity U and the peculiar velocities w j :

v j = U + w j . (5)

Analogously to NEMD, the peculiar velocity w j contains not
only the thermal noise introduced by Eq. (1) but also the
information of the velocity field within the kernel. Even in a
perfectly approximated flow where the discretized velocities
v j match the corresponding analytical field quantities, the
mere existence of a kernel introduces a nonvanishing peculiar
velocity w j . This idea will be addressed in Sec. III in more
detail.

If we repeat the procedure applied to the density ρ in
Eq. (3) with the momentum density p, we end up with a mo-
mentum transfer equation for the kernel-based fluid element.
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Therefore, we calculate the temporal derivative of Eq. (4).
Taking into account that the particle velocities v j (t ) are only
functions of time as well as Eq. (5), it follows that

∂t p = M
NNGB∑
j=1

v j∂tWh(x − x j ) + a jWh(x − x j )

= −M
NNGB∑
j=1

v jvT
j ∇Wh(x − x j ) + M

NNGB∑
j=1

a jWh(x − x j )

= div

(
NNGB∑
j=1

−Mv jvT
j Wh(x − x j )

)
+ M

NNGB∑
j=1

a jWh(x − x j )

= div

(
NNGB∑
j=1

−M(U + w j )(U + w j )
T Wh(x − x j )

)

+ M
NNGB∑
j=1

a jWh(x − x j ), (6)

where the superscript T denotes a transposed vector field,
and ∂t v j = a j are the particle accelerations. The operator div
represents the divergence acting on a tensor field. If we further
consider Eq. (2) in the last line of Eq. (6) and the fact that the
kernel-associated sum of the peculiar momenta vanishes per
definition of Eq. (5) (Appendix A), namely

NNGB∑
j=1

Mw jWh(x − x j ) = 0, (7)

the mixed terms with UwT
j and w jUT cancel out and we obtain

∂t p = div

(
NNGB∑
j=1

−Mw jwT
j Wh(x − x j )

)

+ M
NNGB∑
j=1

a jWh(x − x j ) − div(ρUUT ). (8)

The final form of the kernel momentum transfer equation is
derived by applying the following steps: First, we rearrange
the last term on the right-hand side (rhs) to the left-hand
side (lhs) and consider Eq. (3). Second, we introduce the
Lagrangian derivative d

dt = ∂t + U · ∇ on the kernel level.
Third, we argue that V ≈ Vj , due to the weakly compressible
assumption. If we finally abbreviate the sum in the first term of
Eq. (8) on the rhs with τmol, the momentum transfer equation
reads

ρ
dU
dt

= div(τmol) + ρ

NNGB∑
j=1

a jWh(x − x j )Vj . (9)

Obviously, Eq. (9) links the forces acting on the kernel-based
fluid element (lhs) to the numerically approximated particle
forces, i.e., a j (second term on the rhs).

In the next section, we will demonstrate that the set
of Eqs. (3) and (9), subsequently called isothermal kernel
transport equations, reveals a physical interpretation of math-
ematical convergence in weakly compressible particle-based
discretization methods. In particular, the derived molecular

stress tensor

τmol :=
NNGB∑
j=1

−Mw jwT
j Wh(x − x j ) (10)

will be of paramount importance. The latter proves to be a
mathematical measure for quantifying the pseudo-Lagrangian
behavior of weakly compressible particle-based discretization
methods.

III. A PHYSICAL INTERPRETATION OF
MATHEMATICAL CONVERGENCE

Although the isothermal kernel transport equations are not
directly considered in weakly compressible particle simula-
tions, they can be studied theoretically. This is the objective
of this section. As a result, a new, physically comprehensible
interpretation of convergence is introduced, as well as an
interpretation for τmol in Eq. (10).

We assume a convergent weakly compressible particle-
based discretization method. Then, in the formal limit

Wh → δ and
∑

→
∫

, (11)

the isothermal fluid dynamic transport equations should be
reproduced exactly by the discretized equations. In this case,

(i) the particle quantities should match the analytical field
quantities of the actual fluid elements, namely

v j → v(x, t ), a j → a(x, t ). (12)

(ii) the kernel summation should reproduce an exact parti-
tion of unity,

NNGB∑
j=1

Wh(x − x j )Vj →
∫

δ dx = 1. (13)

Thus, the kernel density in Eq. (2) and the kernel velocity
in Eq. (4) coincide with their analytical counterparts as well,
i.e., ρ = ρ(x, t ) and U = v(x, t ). Hence, Eq. (3) converges
to the actual continuity equation. Physically, the smoothing
procedure, or more specifically low-pass filtering, introduced
as an approximation, is eliminated.

The same expected result can be obtained for the second
term on the rhs of the kernel momentum transfer equation (9).
Again, in the limit (11), the smoothing is eliminated and the
volumetric forces ρa(x, t ) remain. New insights come from
the analysis of the first term on the rhs in Eq. (9). Obviously,
this term is canceled out because the peculiar velocities in
Eq. (5) become zero.

Although this finally illustrates that Eq. (9) converges to
the actual momentum transfer equation as required, it indeed
brings up a question. What is an appropriate physical interpre-
tation of the first term on the rhs of Eq. (9) and especially the
molecular stress tensor τmol in Eq. (10)? In NEMD the term
div(τmol) is called the kinetic contribution, and it arises from
the time derivative of the localization function used to define a
fluid element [see Eq. (6)] [8]. The symmetric tensor τmol is a
quadratic form in the peculiar velocity w j , and it possesses the
dimension of a stress. A dimensional analysis gives a quick
proof. Since the peculiar velocities w j describe a velocity
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FIG. 1. Generic one-dimensional, axisymmetric nozzle flow
considered to demonstrate the effect of the molecular stress tensor on
a kernel-based fluid element K . The element at two different times t1

and t2 along its Lagrangian flow path is depicted as a gray patch.

relative to the averaged velocity U [see Eqs. (4) and (5)], the
components of τmol are only zero in a perfectly homogeneous
flow. Noisy and nonhomogeneous flows are always exposed
to a molecular stress due to the mere presence of a kernel. In
this case, it is obvious that the numerically approximated flow
will be implicitly affected in its evolution.

Further analysis of the kinetic effect of spatially varying
molecular stresses [div(τmol) in Eq. (9)] on a kernel-based
fluid element K will be performed using a simple and generic
flow field. We consider the incompressible, stationary flow
through an axisymmetric nozzle as depicted in Fig. 1. Ad-
ditionally, the nozzle is assumed to be very short. Hence,
the boundary layer has not enough time to develop such that
the velocity profile along the coordinate x1 can always be
approximated locally as a plug flow. Consequently, the flow
problem is one-dimensional. Given the assumptions above,
the volumetric flow rate in the nozzle is constant. There is
only the velocity component v1 in the x1 direction which
is inversely proportional to the local cross-sectional area A,
namely v1 ∼ A−1. Since we are only interested in the nozzle
geometry, we choose A ∼ x−2 as a parametrization of the
cross-sectional area, and we obtain

v1(x1) ∼ x2
1 . (14)

For the calculation of the molecular stress tensor τmol in
Eq. (10), it is indispensable to discretize the problem. There-
fore, the fluid domain as depicted in Fig. 1 is decomposed
into finite mass particles arranged on a Cartesian lattice. The
Cartesian arrangement was chosen for the sake of simplicity,
but it can be replaced by an arbitrary particle distribution. To
each particle the velocity given by Eq. (14) is assigned, which
implies that the influence of noise is neglected. Furthermore,
a spherical kernel-based fluid element K is introduced, which
is highlighted in Fig. 1 as a gray patch K (t1).

Before we start to demonstrate the impact of div(τmol)
on K , it is important to understand how K would normally
deform along its Lagrangian flow path. Therefore, knowledge
of the forces or accelerations acting on the boundaries of K

FIG. 2. Kernel-based fluid element K exposed to a quadratically
increasing velocity. The corresponding acceleration is highlighted as
a blue dashed line.

is necessary. A kernel-based fluid element K exposed to a
quadratic flow field is depicted in Fig. 2. The Lagrangian
acceleration is given by a1(x1) = v1

dv1
dx1

∼ x3
1 and is illustrated

as a blue dashed line in Fig. 2. Consequently, K is exposed
to unequal forces on the left (−) and right (+) boundary, and
in the situation considered a1,− < a1,+ holds. This imbalance
implies that the element K will be stretched along its flow path
as indicated in Fig. 1. Hence, an initially spherical element
K (t1) is deformed into a stretched ellipsoid K (t2) at a later
time t2.

Unfortunately, the deformation behavior of K is neglected
in weakly compressible particle-based discretization methods.
The pseudo-Lagrangian character forces the kernel to stay
spherical. As will be demonstrated subsequently, the tensor
field τmol in Eq. (10) prevents the actual deformation by the
introduction of local molecular stresses. The only nonzero
component of the molecular stress tensor regarding the pre-
vious assumptions is

τmol,11 =
NNGB∑
j=1

−Mw2
j,1Wh(x − x j ) < 0. (15)

Since each factor in the summation is obviously positive, the
component τmol,11 will be negative in the whole domain. If we
now consider n as a vector pointing in the main flow direction,
the resulting stress vector t = τmoln will be antiparallel to the
main flow. From this observation one may conclude that the
molecular stresses introduce additional friction on the particle
level and decelerate the flow. As can be seen from Eq. (9),
this is only true if ∂1τmol,11 < 0 or, in other words, the stresses
are growing downstream. Hence, for the chosen example, it is
inevitable to understand how w2

j,1 change in the x1 direction.
As the peculiar velocity component w j,1 describes a velocity
relative to the averaged velocity U1 [Eq. (5)], the distribution
of w j,1 inside a kernel-based element K downstream of the
nozzle can only change if the velocity field has a nonzero cur-
vature. This is demonstrated in Appendix B. From Eq. (14),
we conclude that the resulting curvature in our example is
d2v1

dx2
1

= 2 1/(m s) and positive everywhere. Considering that,

it is obvious that w2
j,1 is growing in the main flow direction

and that ∂1τmol,11 < 0 holds.
The example demonstrates that spatially changing molec-

ular stresses, as described by div(τmol) in Eq. (9), will adjust
the flow field in such a way that kernel-based fluid elements
K will preserve their spherical shape. In the given example,
the flow is thus decelerated. Since the momentum transfer
is driven by the curvature of the velocity field, it can be
concluded that div(τmol) describes an additional diffusive
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momentum transfer. The latter relation is well-known from
general transport phenomena [17] and is causing a homoge-
nization of the driving field quantity.

Finally, we draw the following conclusions: Up to now,
mathematical convergence of weakly compressible particle-
based discretization schemes could be physically interpreted
as the elimination of a smoothing procedure or more specifi-
cally low-pass filtering. We could demonstrate in this section,
by deriving the kernel transport equations in Sec. II, that math-
ematical convergence also means that the pseudo-Lagrangian
character, quantified by the molecular stresses τmol in Eq. (10),
is eliminated. The stresses are caused by nonzero peculiar ve-
locities w j , which result from the introduction of a spherical,
finite-sized kernel in a noisy approximated, inhomogeneous
flow field. As w j is quadratically fed back into τmol, and
w j is bigger in velocity fields with high local curvature, we
hypothesize that these implicit molecular stresses could be the
reason why weakly compressible particle-based discretization
schemes show inferior performance in strongly subsonic tur-
bulent flows [4–6].

So far, the current study has been focused on the
derivation of a mathematical background to quantify the
pseudo-Lagrangian character and the consecutive, theoretical
interpretation of the derived molecular stresses τmol. The ob-
jective of the following section is to demonstrate that τmol can
also be used as a quality indicator in simulations.

IV. TOWARD CONCEPTUAL IMPROVEMENTS:
MOLECULAR STRESSES AS A QUALITY INDICATOR

As discussed previously, accurate simulations of vortices,
turbulent flows, and mixing processes are an issue for weakly
compressible particle-based discretization methods in general
[1,4–7,18]. We will demonstrate the practical importance of
τmol as a quality indicator for a two-dimensional turbulent
flow. We have tested our concept also with laminar flows, and
the conclusions are identical.

A. Description of the numerical setup

For the subsequent numerical tests, the experiment con-
ducted by Rivera and Wu [19] is considered. In their study,
forced, statistically steady two-dimensional turbulence was
created in a freely suspended soap film driven by electromag-
netical forcing. As the authors point out, the resulting fluid
flow can be described by an incompressible Kolmogorov flow
[20] represented by an augmented Navier-Stokes equation:

1

ρ

dρ

dt
= −∇ · v ⇒ ∇ · v = 0,

dv
dt

= −∇p

ρ
+ ν�v + χ sin(k2x2)e1 − μv. (16)

In Eq. (16), the symbol v ∈ R2 describes the two-dimensional
velocity field, p is the pressure field, and ν is the kinematic
viscosity. The third term on the rhs of Eq. (16) models a sinu-
soidal forcing with amplitude χ and wave number k2 pointing
in the direction of the x1 coordinate given by the vector e1 =
(1, 0)T . As two-dimensional turbulence is characterized by an
inverse cascade process, a large-scale friction, namely μv in
Eq. (16), has to be introduced to ensure a statistically steady

flow [21]. The latter is known as Rayleigh drag [19] and its
magnitude is determined by the friction coefficient μ.

To demonstrate that even sophisticated, higher-order
weakly compressible particle-based discretization methods
suffer from the pseudo-Lagrangian character, we have solved
Eq. (16) numerically with the meshless-finite-mass method
(MFM) as introduced by Hopkins [5]. For this reason, we have
augmented the open-source code GIZMO [22] by the sinusoidal
forcing and the Rayleigh drag as given by Eq. (16), which is a
straightforward task. Additionally, we have implemented the
Cole equation of state [23] defined by

p = pref + ρrefc
2
s

(
ρ

ρref
− 1

)
. (17)

In the WCSPH literature, Eq. (17) is well-known (e.g.,
[24,25]) and utilized to close the set of partial differential
equations in Eq. (16). The parameters introduced in Eq. (17)
are a constant reference density ρref, an artificial speed of
sound cs, and the constant background pressure pref. Although
a choice of pref > 0 enhances the numerical dissipation by
the generation of local high-frequency modes [5,25,26], in the
methods of interest imposing a background pressure pref > 0
is essential because it stabilizes the simulation in spatial re-
gions of strong deformation by implicit particle regularization
[25].

The numerical domain is defined as a periodic, square box
of length L = 0.042 m which corresponds to exactly seven
wavelengths of the sinusoidal forcing in Eq. (16) and is in
accordance with Fig. 1 of [19]. The finite mass particles are
initially at rest and placed on an equidistant Cartesian grid
with a spacing of �l = 125 μm. Since the viscous friction
scale in the laboratory experiment was determined to be lν =
250 μm, under the assumption that a particle represents a fluid
element, we would conduct a resolved direct numerical sim-
ulation. As the kernel, the Wendland C4 kernel was utilized
[27] with an effective number of neighbors NNGB = 32 [5].
The numerical parameters in Eqs. (16) and (17) as used for
the simulation are listed in Table I. They are similar to the
ones documented in [19,28]. Only ρref, pref, and χ had to
be chosen as they were not reported. Since the soap film is
realized with an aqueous solution [19], it seems reasonable
to set ρref = 1000 kg/m3. The background pressure was set
to the smallest possible choice pref = 400 Pa with the goal
of stabilizing the simulation on the one hand and minimizing
the numerical dissipation on the other hand. The forcing am-
plitude χ was determined from a parametric study with the
goal of reaching the same time-averaged root-mean-square
velocity

urms = 1

|IT |
∫

IT

√
1

A

∫
A

v2dx dt ≈ 0.11 m/s (18)

as in the publication of Rivera [19]. The outcome of the
parameter study was that for χ = 1.75 m/s2 the value for
urms could be reproduced. Hence, the time-averaged level of
turbulent kinetic energy in the system was matched, but, as
demonstrated in the next subsection, only by an excessive
energy input into the system, which can be attributed to the
pseudo-Lagrangian character.

The time range covered by the simulation was Tsim = 8.4 s.
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TABLE I. Parameters utilized for the investigated Kolmogorov flow.

ρref (kg/m3) pref (Pa) cs (m/s) ν (m2/s) χ (m/s2) k2 (1/m) μ (1/s) L (m) �l (μm)

1000 400 2 1.6 × 10−6 1.75 1047.2 0.7 0.042 125

B. Analysis of the results

After an initial transient process of �t1 ≈ 3 s in which the
particles were accelerated due to the forcing in Eq. (16) and
the turbulent flow develops, the flow reaches a statistically
steady state as expected. In Fig. 3, snapshots of the station-
ary turbulence, namely of the velocity magnitude field v and
the vorticity field ω, are depicted at a time t∗ = 4.1 s. The
vorticity ω = ∂1v2 − ∂2v1 was extracted in a postprocessing
step by nearest-neighbor sampling of the velocity field on a
Cartesian grid twice as fine as �l and consecutive application
of a second-order finite-difference method for the derivative
approximation. Due to this sampling resolution, aliasing ef-
fects could be avoided [6].

As can be seen in the velocity field in Fig. 3(a), the flow
field contains complex flow features characterized by different
spatial scales. Obviously, regions of strong shear as well as
vortices are apparent. These features can be identified by
regions where the color changes quickly over a short dis-
tance and by small red spots trapped by blue, high velocity
areas. This becomes even more evident in the corresponding
vorticity field ω in Fig. 3(b). Here, regions of strong shear
are highlighted by characteristic high vorticity filaments, and
vortices are highlighted by circular, high vorticity spots. A
comparison with the equivalent experimental field quantities
in [19] reveals similar results.

Furthermore, we have extracted the Eulerian turbulent ki-
netic energy spectrum at the time t∗ = 4.1 s by utilization of
the interpolated velocity field already used for the calculation
of the vorticity field and the method described by Durran et al.
[29]. The result is depicted in Fig. 4 and clearly demonstrates
that the spectral characteristics of two-dimensional turbulence
are captured by the method. Similar to the work of Rivera and
Ecke [30], the spectral energy of the inverse cascade scales
with Einv ∼ k−1.2 and the spectral energy of the direct cascade

scales with Edir ∼ k−5.7. It is interesting to note that for wave
numbers k � 6000 1/m, corresponding to the order of the
kernel diameter for NNGB = 32, the level of the spectrum
saturates. Effectively, the direct cascade is inhibited by this
kernel bottleneck, which we think is related to the pseudo-
Lagrangian character.

Although a typical two-dimensional turbulent flow field
with the same amount of turbulent kinetic energy [see
Eq. (18)] has developed, it can be easily demonstrated that
this could only be achieved by an excessive energy input.
According to Eq. (5) in the work of Rivera and Wu [19], the
averaged, stationary energy balance for the turbulent kinetic
energy is given by

εinj = εν + εRayleigh = ν� + μu2
rms. (19)

In Eq. (19), the averaged energy input εinj due to the forcing
in Eq. (16) must balance the averaged frictional losses εν ,
εRayleigh on the rhs to ensure stationary turbulence. Since urms

was calibrated according to Eq. (18), the loss εRayleigh = μu2
rms

due to Rayleigh drag is identical to the laboratory exper-
iment. Hence, the averaged level of viscous dissipation εν

determines the amount of injected turbulent kinetic energy.
For an incompressible flow, the viscous dissipation is directly
proportional to the averaged enstrophy � [2], and as the latter
was extracted experimentally in [19] to be �exp = 3000 1/s2,
we can prove that the same urms could only be reached due to
an excessive energy input. The latter has to compensate the
excessive viscous dissipation, which can be attributed to the
excessive averaged enstrophy from the numerical simulation
in the interval IT = [3; 8.4] s, namely

� = 1

|IT |
∫

IT

1

A

∫
A
ω2dx dt ≈ 8200 1/s2. (20)

Although the simulation was conducted with a spatial res-
olution of �l twice as fine as the experimentally extracted

FIG. 3. Snapshots of the statistically steady turbulent flow field at time t∗ = 4.1 s. (a) Snapshot of the velocity magnitude. (b) Snapshot of
the vorticity field.
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FIG. 4. Eulerian turbulent kinetic energy spectrum at time t∗ =
4.1 s.

viscous friction scale lη, we still obtain an excessive viscous
dissipation by a factor of εν/εν,exp ∼ �/�exp ≈ 2.7 with re-
gard to the experiment.

In this sense, we have still performed a spatially under-
resolved direct numerical simulation of the turbulent fluid
flow, and the deficits of the pseudo-Lagrangian behavior, as
described in Sec. I, become obvious. Hence, it seems natural
to evaluate the molecular stress tensor in Eq. (10) to locate
the spatial regions where the pseudo-Lagrangian character
becomes important.

C. Molecular stresses in two-dimensional turbulence

As the molecular stress described by τmol in Eq. (10) varies
in space and time, we present τmol only for the turbulent
snapshot depicted at time t∗ = 4.1 s in Fig. 3. The essence
of the observations is not affected by this restriction. For
the evaluation of τmol in Eq. (10), each particle was first
associated with a kernel element K whose size is determined
by the selected effective number of neighbors NNGB = 32
[5]. Then, the corresponding kernel velocities U according to
Eq. (4) were calculated to obtain the peculiar w j velocities
within K as given by Eq. (5). These were finally utilized for
the computation of the molecular stress τmol. Additionally, to
shorten the description and reduce the amount of presented
data, an eigendecomposition of τmol was performed. In R2 this
reads

τmoltI,II = τI,IItI,II, (21)

where τI,II denotes the first or second eigenvalue, and tI,II

denotes the first or second eigenvector. According to contin-
uum mechanics, we will call the eigenvalues principal stresses
and the eigenvectors principal directions [31]. The principal
stresses in R2 are explicitly given by [32]

τI,II = tr(τmol)

2
±

√(τmol,11 − τmol,22

2

)2

+ τ 2
mol,12. (22)

In Eq. (22), the expression tr(τmol) = τmol,11 + τmol,22 denotes
the trace of the tensor field. By inserting Eq. (22) into Eq. (21),
the resulting linear system can be solved and the correspond-
ing principal directions are derived as

tI,II =
(

1, −τmol,11 − τI,II

τmol,12

)T

. (23)

It should be noted that tI and tII are orthogonal to each
other everywhere, which manifests in tI · tII = 0. We want to
emphasize that in the subsequent visualization, this property
is hardly perceptible. For visualization purposes, we further
normalize the eigenvector fields with their Euclidean norm
||tI,II||2 and scale them with the conjugated eigenvalues in
Eq. (22). This transformation reads

tI,II → τI,II
tI,II

||tI,II||2 . (24)

The results of the eigendecomposition of τmol at time t∗ are
depicted in Fig. 5, and we will start with a discussion of the
principal stresses.

As can be seen in Fig. 5(a), the first principal stress field τI

is close to zero almost everywhere except where vortex cores
are present. A comparison with the corresponding vorticity
field in Fig. 5(c) proves this statement. It gives an indication
that the pseudo-Lagrangian character becomes sensible in the
vicinity of vortices. This observation also holds true for the
principal stress field τII in Fig. 5(b). Again, the maximal prin-
cipal stress magnitude coincides with the location of vortex
cores, although it has to be highlighted that the magnitudes
are significantly higher. On the contrary, the quantity τII has
a significant, nonzero intensity in the regions of high vortic-
ity filaments as well. Thus, we can conclude that molecular
stresses τmol are introduced everywhere in the flow domain
where strong velocity gradients prevail. This is reasonable as
the peculiar velocities w j associated with a kernel element K
generally grow with increasing velocity gradients by defini-
tion of Eqs. (4) and (5). Since w j quadratically feeds back
into τmol in Eq. (10), the molecular stress grows significantly
in regions of strong shear. Furthermore, the molecular stress
in shear regions will be additionally increased by the agitation
instability described by Basa et al. [33] in the WCSPH con-
text. According to this instability, particles exposed to shear
flow are not solely convected into the main flow direction but
also exhibit a perpendicular movement, which causes irregular
particle distributions. As a result, by implication of Eq. (1),
volume partition errors are generated, as well as thermal noise,
which is responsible for further relative particle movement
inside K . Additional nonzero w j are triggered, which conse-
quently contribute to the molecular stress τmol.

Even more interesting insight into the physical nature of
the molecular stress τmol can be gained by the analysis of
the principal directions as defined by Eq. (24). So far, we
could demonstrate, by means of the principal stress fields τI

and τII, that significant molecular stress is inherently linked
to areas of high velocity gradients. Intriguingly, the orien-
tation of the generated molecular stress is characteristic as
well. In Figs. 5(c) and 5(d), the eigenvector fields tI and
tII, corresponding to Figs. 5(a) and 5(b), are visualized as
black arrows. Both are superimposed on the vorticity field
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FIG. 5. Visualization of the molecular stress tensor τmol at time t∗ = 4.1 s by eigendecomposition. For (d)–(f) the corresponding vorticity
field is superimposed in the background. (a) Snapshot of the first eigenvalue τI. (b) Snapshot of the second eigenvalue τII. (c) Snapshot of the
first eigenvector tI with the region considered for a detailed view. (d) Snapshot of the second eigenvector tII with the region considered for a
detailed view. (e) Detail of the first eigenvector tI. (f) Detail of the second eigenvector tII.

ω. As the magnitude of the principal directions is propor-
tional to τI,II according to Eq. (24), it is comprehensible that
in Fig. 5(c) the eigenvector field tI is hardly visible. Only
a few vectors are apparent inside the vortex cores. On the
other hand, the eigenvector field tII in Fig. 5(d) is clearly
visible in areas where the black vectors are concentrated. To
reveal the characteristic structure of the eigenvector fields,
we will subsequently focus on the black outlined region as
highlighted in Figs. 5(c) and 5(d). The outcome is visualized

in Figs. 5(e) and 5(f). As already stated, in Fig. 5(e) only a
few vectors are present in the vicinity of the vortex core. If
we consider natural coordinates in each point of the field, two
types of vectors can be distinguished. The first type is mainly
oriented perpendicular to the main flow direction, whereas the
second type is mainly tangential to the main flow direction. In
Fig. 5(f) this observation is supported in a more obvious way
as the magnitude of the eigenvector field tII is much bigger due
to τII. Furthermore, it can be demonstrated by Fig. 5(f) that
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FIG. 6. Juxtaposition of (a) the detail of the second eigenvector tII and (b) the detail of the velocity field v for the statistically steady
turbulent flow field at time t∗ = 4.1 s. The corresponding vorticity field is superimposed in the background. A comparison reveals that the
eigenvectors inside the vortex cores are dominantly oriented perpendicular to the flow field, whereas on high vorticity filaments, in the vortex
surrounding, the eigenvectors are dominantly oriented tangentially with respect to the main flow.

not only do the vector fields possess preferential directions,
but the preferential directions are also linked to certain flow
features. Vectors associated with high vorticity filaments are
preferentially oriented tangential to the main flow direction,
in contrast to vectors associated with vortex spots, which are
mainly oriented perpendicular to the main flow. This fact is
highlighted in Fig. 6, in which the detail of the eigenvector
field tII is juxtaposed in opposition to the vector field of the
velocity v.

We conclude that the implicit molecular stress in regions
of strong shear is characterized by what we call shear modes
and stretch modes. The former are aligned with the main flow
direction, whereas the latter are oriented perpendicular to it.
Both are a consequence of the fact that for a given velocity
gradient the local size of the kernel-based fluid element K
is too large, such that particles interact with each other in a
detrimental way.

Since we could demonstrate in Sec. III that the molecular
stress introduces an additional diffusional momentum transfer
[Eq. (9)], we suppose that the difference between these two
modes is how the kinetic energy of the flow is redistributed.
Depending on the local bending of the streamlines, two cases
should be discriminated, which are depicted in Fig. 7:

(i) Shear modes, associated with regions of moderate
streamline bending, will redistribute the kinetic energy be-

FIG. 7. Schematic illustration of the modes extracted from the
molecular stress tensor τmol. Shear mode: two parallel velocity vec-
tors in the eigenbasis defined by Eq. (24) are depicted. The molecular
energy transfer is indicated by a white arrow. Stretch mode: two
orthogonal velocity vectors in the eigenbasis defined by Eq. (24)
are depicted. The molecular energy transfer is indicated by a white
arrow.

tween parallel velocity components pointing to the main flow
direction in order to homogenize the velocity field.

(ii) Stretch modes, associated with regions of strong
streamline bending, will redistribute the kinetic energy be-
tween orthogonal velocity components aligned with the
principal directions given by Eq. (24).

Hence, stretch modes could be a physical explanation for
the fact that weakly compressible particle-based discretization
methods are prone to excessive dissipation when decaying
vortices are considered [5,7].

D. Molecular stresses as a basis for conceptual improvements

Although details of the energy transfer with regard to
molecular stresses are not fully understood, it is evident at
this point that τmol proved to be an appropriate indicator to
pin down the pseudo-Lagrangian character. Hence, we strive
for an answer on how τmol can be utilized to mitigate the
problems associated with the pseudo-Lagrangian character. At
this stage, we see two promising research paths for conceptual
improvements:

Subkernel-scale model. Assuming that the utilized local kernel
elements are appropriate representatives of local fluid ele-
ments, one possible way to eliminate the pseudo-Lagrangian
character could be to explicitly consider div(τmol) in the
methods of interest. Then, the term would serve as a
subkernel-scale model in accordance with subgrid-scale mod-
els deployed in turbulence modeling. Recalling that a ≈∑NNGB

j=1 a jWh(x − x j )Vj denotes the numerically approximated
acceleration at position x, we rearrange Eq. (9) as follows:

ρa = −div(τmol) + ρ
dU
dt

. (25)

From Eq. (25) it can be concluded that it may be inter-
esting to investigate how particle methods perform if the
kernel-averaged velocity U is algorithmically utilized and if
−div(τmol) is considered as an extra stress term.

If we subsequently restrict ourselves to the extra stress
term in Eq. (25) and decompose the molecular stress tensor
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τmol into its spherical and deviatoric part, namely sp{τmol} and
dev{τmol}, one finds in R2

−div(τmol) = −div(sp{τmol} + dev{τmol})

= −div

(
tr(τmol)

2
+ dev{τmol}

)
. (26)

Surprisingly, if only the spherical part of τmol is considered in
Eq. (26), then the extra stress term reads

−div

(
tr(τmol)

2

)
= 1

2

NNGB∑
j=1

M∇[
w2

jWh(x − x j )
]
. (27)

The result in Eq. (27) is very similar to the extra stress term
developed by Monoghan [34] within the SPH-ε turbulence
model, although obtained in a completely different way. While
the model of Monoghan emerges from the Lagrangian of the
particle system [34] by means of a top-down approach, our
model is a consequence of a bottom-up approach by appli-
cation of the Hardy theory from NEMD [8]. Compared to
the extra stress term in [34], the term in Eq. (27) does not
contain a numerical parameter ε ∈ [0, 1], and gradients of
the quadratic relative velocity w2

j are considered as well. It
is hard to believe that this similarity is just a coincidence.
Furthermore, our proposed model would contain information
about the deviatoric part of τmol as well [Eq. (26)] and it was
not explicitly developed for turbulence modeling.

Dynamic anisotropic kernel adjustment: Another promising
research path emerging from the utilization of the molecular
stress τmol could be to dynamically adjust the shape of the
kernel. Instead of using an isotropic spherical kernel in a
strongly anisotropic flow, which causes pseudo-Lagrangian
behavior, it could be attractive to utilize the scaled principle
directions [Eq. (24)] to adapt the kernel in a Lagrangian man-
ner. An initially spherical kernel-based fluid element would
then be deformed into an ellipsoid according to the flow as
sketched in Fig. 1. Hence, the pseudo-Lagrangian character
would be mitigated in its roots in contrast to the proposed
subkernel-scale model strategy. The idea is not new in general
and was already introduced by Shapiro et al. [35], with the
only difference that an eigendecomposition of the velocity
field Jacobian v′ rather than τmol was proposed for the kernel
adjustment. We see a potential benefit in the fact that for the
calculation of τmol, no estimates of the spatial derivatives are
required, which, at least in SPH, can be heavily affected by
noise. Although introducing computational overhead for the
kernel adjustment, there is the chance that this modification
will improve the performance. As explained by Shapiro et al.
[35], the benefit of a Lagrangian adjustment of the kernel is
that a costly nearest-neighbor particle search does not have to
be conducted every time step. It would be interesting to see
how a specific implementation of such an anisotropic kernel
adjustment performs compared to the conventional reference.

V. CONCLUSION

In this work, isothermal kernel transport equations were
derived that describe the dynamics of kernel-based fluid el-
ements in weakly compressible particle-based discretization
methods. Therefore, we applied the theory of Hardy [8] from

NEMD, motivated by the fact that these methods suffer from
pseudo-Lagrangian behavior. Interestingly, the outcome of
this bottom-up approach was that the resulting kernel trans-
port equations contain an additional molecular stress term
τmol. We could explain that these stresses are associated with
the thermal noise triggered by volume partition errors as well
as the isotropic, spherical kernels utilized. Furthermore, it
was demonstrated by means of a generic flow example that
the stresses generate forces that act opposite to the actual
Lagrangian deformation of the kernel-based fluid element K .
Mathematically, these molecular forces are driven by the cur-
vature of the velocity field and, hence, introduce a diffusional
momentum transfer in the kernel transport equations.

Another major result, which could be valuable for theorists,
is that convergence of weakly compressible particle-based
discretization schemes can not only be physically interpreted
as the elimination of the kernel low-pass filtering but also the
elimination of implicit molecular stresses.

Finally, we have analyzed the ability of the molecular stress
tensor τmol as a quality indicator for a numerical dataset ac-
quired with the MFM method [5]. Therefore, we numerically
reproduced the two-dimensional turbulent flow of Rivera and
Wu [27] with the open-source code GIZMO [22]. Although
the same level of averaged turbulent kinetic energy could
be reached, this was only possible due to excessive energy
input, which compensates the excessive viscous dissipation.
We believe that this excessive viscous dissipation is implicitly
related to the molecular stress. An eigenvalue decomposition
of τmol revealed that the numerical approximation in regions
of high shear and vortical structures is prone to errors. This
is well-known in the community [1,4–7,12,33]. Additionally,
we were able to identify that τmol is characterized by shear
and stretch modes mainly aligned or perpendicular to the main
flow. At the current stage, we presume that the latter can
be distinguished by the way in which the kinetic energy is
redistributed.

APPENDIX A: PROPERTY OF PECULIAR MOMENTA

In Eq. (7) it was stated that the kernel-associated sum
of the peculiar momenta vanishes identically. Here, a short
reasoning is given.

Combining Eq. (5) and the lhs of Eq. (7), as well as taking
into account that M and U are independent of the summation
index j, we can write

NNGB∑
j=1

Mw jWh(x − x j ) =
NNGB∑
j=1

M(v j − U)Wh(x − x j )

= M
NNGB∑
j=1

v jWh(x − x j ) − MU
NNGB∑
j=1

Wh(x − x j )

= M
NNGB∑
j=1

Wh(x − x j )

(∑NNGB
j=1 v jWh(x − x j )∑NNGB

j=1 Wh(x − x j )
− U

)

= 0. � (A1)

The second set of parentheses in the last part of Eq. (A1) van-
ish identically as its first term is exactly equal to the definition
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of the kernel velocity in Eq. (4). Thus, the statement in Eq. (7)
is true.

APPENDIX B: GRADIENT APPROXIMATION OF
PECULIAR VELOCITIES

Here we want to demonstrate that the peculiar velocity
components w j,α in Eq. (5), associated with a kernel element
K centered at x ∈ R3, can be approximately represented by
∇vα (x). The index α denotes a spatial index.

We start with the utilization of the weakly compressible
character in Eq. (4). Then V ≈ Vj and we can write for the
component α of the kernel velocity

Uα :=
∑NNGB

j=1 v j,αWh(x − x j )∑NNGB
j=1 Wh(x − x j )

≈
NNGB∑
j=1

v j,αWh(x − x j )Vj . (B1)

Additionally, we linearize the particle velocity v j,α around the
center x. If we abbreviate x j − x =: �x j , we find

v j,α ≈ vα (x) + ∇vα (x) · �x j . (B2)

Considering that for the kernel moments

NNGB∑
j=1

Wh(x − x j )Vj ≈ 1,

NNGB∑
j=1

�x jWh(x − x j )Vj ≈ 0, (B3)

the peculiar velocity components in Eq. (5) can be approxi-
mated by a combination of Eq. (5) with Eqs. (B1), (B2), and
(B3). This results in the following gradient approximation:

w j,α ≈ ∇vα (x) · �x j . (B4)

As a consequence of Eq. (B4), the peculiar velocities can only
change in the spatial coordinate x if the particle velocity com-
ponent vα (x) has a nonzero curvature. For linear vα (x), the
gradient ∇vα (x) would be constant and thus w j,α = const for
the same �x j . Hence, without velocity noise on the particle
level, the term div(τmol) in Eq. (9) would vanish.
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