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Understanding complex systems with their reduced model is one of the central roles in scientific activities.
Although physics has greatly been developed with the physical insights of physicists, it is sometimes challenging
to build a reduced model of such complex systems on the basis of insight alone. We propose a framework that can
infer hidden conservation laws of a complex system from deep neural networks (DNNs) that have been trained
with physical data of the system. The purpose of the proposed framework is not to analyze physical data with
deep learning but to extract interpretable physical information from trained DNNs. With Noether’s theorem and
by an efficient sampling method, the proposed framework infers conservation laws by extracting the symmetries
of dynamics from trained DNNs. The proposed framework is developed by deriving the relationship between a
manifold structure of a time-series data set and the necessary conditions for Noether’s theorem. The feasibility
of the proposed framework has been verified in some primitive cases in which the conservation law is well
known. We also apply the proposed framework to conservation law estimation for a more practical case, that is,
a large-scale collective motion system in the metastable state, and we obtain a result consistent with that of a
previous study.
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I. INTRODUCTION

Understanding complex systems with reduced models is
one of the central roles in scientific activities. Some complex
systems are modeled as low-dimensional canonical dynamical
systems. For example, reduced models have been developed
for large-scale collective motion systems, which are a type of
large-scale complex system with order (e.g., plasma, acoustic
waves, or vortex systems) [1–5]. To develop reduced models,
collective coordinates, such as the Fourier basis of a density
or charge distribution [1–4], or a vortex feature space [5],
have been introduced. Then, a Hamiltonian that describes the
coarse-grained properties of a dynamical system has been
derived. Thus, to develop a reduced model, it is necessary to
introduce collective coordinates and derive the Hamiltonian
in the coordinates. The obtained Hamiltonian is verified by
confirming that it can reconstruct the properties of the phe-
nomena analyzed. This approach relies heavily on the physical
insights of physicists; it would not work for modeling a dy-
namical system that features a more complicated structure.
One example is the collective motion of living things such
as fish or birds; such systems frequently have stable but very
complicated patterns in a metastable state [6,7].
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The problem we consider here is how to infer the reduced
model using machine-learning methods. As mentioned above,
this involves the solution of two problems: estimation of a
coordinate system and construction of a reduced model in
the coordinate system. One way to solve these problems is
to construct a Hamiltonian on the basis of a given coordinate
system and search for a coordinate system that improves the
model. Several machine-learning methods for inferring the
Hamiltonian from a time-series data set have been developed
[8–11]. These methods can be broadly divided into two types.
In one type, the Hamiltonian is inferred by regressing the data
with an explicit function, such as the linear sum of multi-
ple basis functions [8]. However, in the case of inferring a
reduced model that consists of complicated unknown basis
functions, the method only infers the approximated reduced
model using an approximated function, such as a polynomial
function. In the second type, a Hamiltonian is modeled by
a deep-learning technique [9–11]. In this case, an explicit
function used in the first one is not required. On the basis of
these machine-learning methods, the coordinate system could
be searched using statistical criteria such as the prediction or
generalization error of the inferred Hamiltonian.

There are inherent difficulties in building a reduced model
by the machine-learning approach. Such an approach finds a
Hamiltonian that has properties that only hold for the given
data. Historically, physicists have achieved great success in
constructing reduced models by abstracting knowledge ob-
tained from observational data and building universal models
that can explain various physical phenomena, not just the
given data. For example, in thermodynamics, a reduced model
that describes the molecular motion of a gas was linked to
chemical reaction theory by Gibbs [12,13]. This is one of
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the most successful uses of a reduced model. That is, a good
reduced model and a good coordinate system mean that the
performance is high not only for the given data.

To realize such a successful reduced model, it is important
to interpret the knowledge obtained during data analysis and
develop a model that can be applied to different phenomena by
combining the explicit and implicit knowledge of physics. In
general, an inferred Hamiltonian modeled using deep neural
networks (DNNs) is hardly interpretable because DNNs are
models with enormous degrees of freedom. If all physical
knowledge is quantified, it will be possible to construct a
reduced model with a DNN, but this is an impractical assump-
tion at present. Therefore, it is difficult for a machine-learning
approach to realize the same function as a physicist could
because a physicist can flexibly interpret phenomena by uti-
lizing explicit or implicit physical knowledge and construct a
reduced model.

To overcome this problem, here we attempt to extract
abstract information directly from physical data without con-
structing a reduced model. A given coordinate system can
be evaluated on the basis of the information. Furthermore,
the obtained information can also help physicists construct
a reduced model. The purpose of this paper is to develop
a machine-learning framework that extracts interpretable ab-
stract information from physical data and assist physicists in
building reduced models.

The proposed method is developed using knowledge about
DNNs. Results of several studies [14–19] suggest that DNNs
can model the distribution of data sets as manifolds, which
can be embedded in a low-dimensional Euclidean space.
Studies applying DNNs to physical data have employed a
time-series data set from the phase space (comprising po-
sition and momentum) [20–24] or a spin system data set
from the configuration space [25–33]. Such data sets have a
low–dimensional manifold structure, which implies that the
system has a small number of degrees of freedom. Such a
low-dimensional manifold structure should be related to cer-
tain physical constraints, such as conservation laws. That is,
a manifold structure modeled by a DNN should be related to
the conservation law or order of the system.

The proposed method is derived from Noether’s theorem
[34], which connects the symmetry of the Hamiltonian and
the conservation laws. We derive the relationship between
the symmetry of the Hamiltonian system and the distribution
of the time-series data set of a dynamical system. On this
basis, we develop a method of inferring the symmetry of
a data manifold modeled by a deep autoencoder [15] and
determine the conservation laws of the system. To infer the
conservation laws, we only need the tangent space around
the identity element of the manifold formed by a continuous
transformation group that corresponds to the symmetry of the
system. Therefore, unlike Hamiltonian estimation, the con-
servation law estimation requires modeling the manifold by
polynomials up to only a first-order accuracy. This means that
the conservation laws can be inferred with arbitrary precision
by polynomial approximation.

This paper is organized as follows. In Sec. II A, we show
the derivation of the relationship between the symmetry of the
time-series data-set distribution and the conservation law us-
ing Noether’s theorem. In Sec. III A, we describe our proposed

method of inferring the symmetry of the time-series data
manifold. In Sec. III B, we also describe another proposed
method of inferring the conservation law from the obtained
symmetry. In Sec. IV, to confirm the effectiveness of the
proposed methods, we apply them to three cases, one T(1) and
two SO(2) systems, corresponding to constant-velocity linear
motion, a central force system, and a large-scale collective
motion system called the Reynolds model [35]. In Sec. V, we
present a summary and discussion.

II. THEORY

A. Noether’s theorem

Noether’s theorem connects continuous symmetries of a
Hamiltonian system with conservation laws [34]. It is often
described in the (2d + 1)-dimensional extended phase space
� × R, (q, p) := (q0 = t, q1, · · · , qd , p1, · · · , pd ). The the-
orem can also be described in the (2d + 2)-dimensional space
� × R × R, (q0 = t, q1, · · · , qd , p0 = −H, p1, · · · , pd ). In
this paper, we describe the theory in the (2d + 2)-dimensional
space as follows. We consider Hamiltonian systems in the
(2d + 2)-dimensional space � × R × R, and restrict our-
selves to the case where the system’s Hamiltonian belongs to a
C2 class function H (q, p). The Hamiltonian representation of
Noether’s theorem is described as follows [36]. Assume that
H (q, p) and the canonical equations of motion ∂H (q,p)

∂qi
= −ṗi

and ∂H (q,p)
∂ pi

= q̇i are invariant under the infinitesimal transfor-
mation (q′

i, p′
i ) = (qi + δqi j, pi + δpi j ), where i = 1, . . . , d ,

and j is the index of the direction of the infinitesimal trans-
formation corresponding to a conservation law. Then, on the
basis of Noether’s theorem, the conserved value Gj satisfies
the following equation:

(δqi j, δpi j ) =
(

∂Gj

∂ pi
,−∂Gj

∂qi

)
. (1)

The canonical transformation that makes the Hamiltonian sys-
tem invariant is given as

cinv(θ) : � × R × R −→ � × R × R, (2)

(q, p) �−→ (Q,P) := (Q(q, p, θ),P(q, p, θ)), (3)

where Q(q, p, θ) and P(q, p, θ) represent the invariant trans-
formation functions of coordinate (q, p) to (Q,P), and θ

represents a dθ -dimensional continuous parameter character-
izing the transformation that satisfies Q(q, p, θ = �0) = q and
P(q, p, θ = �0) = p. We call this transformation an invariant
transformation in this paper. A set of the invariant transfor-
mations characterized by the continuous parameters θ forms a
Lie group. By the first-order Taylor expansion of Qi(q, p, θ)
and Pi(q, p, θ) around θ = �0, we have the infinitesimal trans-
formation,

(δqi j, δpi j ) =
(

ε
∂Qi(q, p, θ)

∂θ j

∣∣∣∣
θ=�0

, ε
∂Pi(q, p, θ)

∂θ j

∣∣∣∣
θ=�0

)
, (4)

where |ε| � 1.
Note that the dimension of the continuous parameter

dθ corresponds to the number of conservation laws, and
by our proposed methods, we estimate conservation laws
including dθ .
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B. Invariance of Hamiltonian and time-series data set

We show the relationship between such an invariant
transformation and the time-series data set of a dynami-
cal system in the (2d + 2)-dimensional space (q, p). Here,
we define the N sample time-series data set D as D :=
{qi

ti , pi
ti , qi

ti+�t , pi
ti+�t }N

i=1
, where qi

ti and pi
ti represent the gen-

eralized position and momentum at time ti, and ti + �t
represents a time evolution of �t .

The transformation of the (2d + 2)-dimensional space
(q, p) is defined as

c : � × R × R −→ � × R × R, (5)

(q, p) �−→ (Q, P) := (Q(q, p), P(q, p)), (6)

where Q(q, p) and P(q, p) represent transformation functions
of the coordinate (q, p) to (Q, P); the transformation is not
limited to the invariant transformation. It is assumed that c
has the inverse transformation:

c−1 : � × R × R −→ � × R × R, (7)

(Q, P) �−→ (q, p) := (q(Q, P), p(Q, P)). (8)

The transformed Hamiltonian H ′(q, p) obeying this transfor-
mation is defined as H ′(Q, P) := H (q(Q, P), p(Q, P)). The
necessary and sufficient condition for the transformation c
acting on H (q, p) to be identical, H ′(q, p) ≡ H (q, p), is
equivalent to

∀E , {q, p | H (q, p) = E} = {Q, P | H (q, p) = E}. (9)

This condition is derived in Appendix A and implies that the
transformation invariance of a Hamiltonian is equivalent to
that of the energy surface at each energy level in the space
� × R × R. If the time-series data set D has all possible
data points under the Hamiltonian H (q, p), the subset of
D with respect to qi

ti and pi
ti is understood as this energy

surface.

C. Invariance of canonical equations and time-series data set

Next, we consider the relationship between the invariance
of canonical equations of motion and the time-series data
set of the dynamical system. If the canonical equations of
motion are discretized with respect to time differentiation,
the discretized canonical equations of motion are obtained
as

qt+�t = u(qt , pt ) := ∂H (qt , pt )

∂pt
�t + qt , (10)

pt+�t = v(qt , pt ) := −∂H (qt , pt )

∂qt
�t + pt , (11)

where qt and pt represent the variables that evolved according
to time t , and u(qt , pt ) and v(qt , pt ) are elements of the C1

map u defined as

u : � × R × R −→ � × R × R, (12)

(qt , pt ) �−→ (qt+�t , pt+�t ) := (u(qt , pt ), v(qt , pt )). (13)

Following the transformations Q(q, p) and P(q, p) in Eq. (5),
these equations can be rewritten as

QT +�T = Q(qt+�t , pt+�t )

= u′(QT , PT ) := Q[u(q(QT , PT ), p(QT , PT )),

× v(q(QT , PT ), p(QT , PT ))], (14)

PT +�T = P(qt+�t , pt+�t )

= v′(QT , PT ) := P[u(q(QT , PT ), p(QT , PT )),

× v(q(QT , PT ), p(QT , PT ))], (15)

where T = Q0, �T = �Q0. For the transformation (Q, P) =
(Q(q, p), P(q, p)) to be a canonical transformation, the fol-
lowing conditions must be satisfied:

u′(QT , PT ) ≡ ∂H ′(QT , PT )

∂PT
�T + QT , (16)

v′(QT , PT ) ≡ −∂H ′(QT , PT )

∂QT
�T + PT . (17)

If H and H ′ are identically equal, the right sides of Eqs. (16)
and (17) are equivalent to

∂H (QT , PT )

∂PT
�T + QT ≡ u(QT , PT ), (18)

−∂H (QT , PT )

∂QT
�T + PT ≡ v(QT , PT ). (19)

Thus, we only need to prove that the functions u(·, ·) and
u′(·, ·) and the functions v(·, ·) and v′(·, ·) are identically
equal: {

u′(Qt , Pt ) ≡ u(Qt , Pt )
v′(Qt , Pt ) ≡ v(Qt , Pt ),

(20)

⇔ ∀(Qt , Pt ) ∈ � × R × R,

{
u′(Qt , Pt ) = u(Qt , Pt )
v′(Qt , Pt ) = v(Qt , Pt ),

(21)

⇔ ∀(qt , pt ) ∈ � × R × R,

{
u′(qt , pt ) = u(qt , pt )
v′(qt , pt ) = v(qt , pt ),

(22)

⇔
{

u′(qt , pt ) ≡ u(qt , pt )
v′(qt , pt ) ≡ v(qt , pt ).

(23)

Furthermore, Eq. (23) is equivalent to the following condition
(see Appendix B):

{qt+�t , pt+�t , qt , pt | (qt+�t , pt+�t )

= (u(qt , pt ), v(qt , pt ))}
= {QT +�T , PT +�T , QT , PT | (qt+�t , pt+�t )

= (u(qt , pt ), v(qt , pt ))}. (24)

The time-series data set D is understood as the part of the
subspace given on the left side of Eq. (24).

D. Noether’s theorem and time-series data set

By combining the conditions obtained in the previ-
ous two subsections, we obtain the condition that the
Hamiltonian and canonical equations are simultaneously in-
variant under the transformation. The condition is acquired
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as

∀E , {qt+�t , pt+�t , qt , pt | H (qt , pt ) = E , pt+�t

= pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
= {QT +�T , PT +�T , QT , PT | H (qt , pt ) = E , pt+�t

= pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
. (25)

If the time-series data set D has all possible data points
under the Hamiltonian H (q, p) and the canonical equa-
tions, D is equivalent to the subspace defined on the left
side of Eq. (25). Thus, the symmetry of the Hamiltonian
system is associated with the symmetry of the time-series
data set D. The transformation set satisfying Eq. (25),
{Q(q, p), P(q, p) | satisfy Eq. (25)}, is the same as the invari-
ant transformation set cinv : {Q(q, p, θ),P(q, p, θ) | θ ∈ Rdθ }
under the discretized equations of motion.

The transformed data set in Eq. (25),

{
QT +�T , PT +�T , QT , PT

∣∣∣∣ H (qt , pt ) = E , pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
, (26)

is obtained by the time evolution t → T of time-series data set at t :{
Qt+�t , Pt+�t , Qt , Pt

∣∣∣∣ H (qt , pt ) = E , pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
. (27)

If the Hamiltonian is given, we can obtain the time-evolved
data set by evolving the data set obeying the canonical equa-
tions of motion. Even when the Hamiltonian is not given, we
can obtain a time-evolved data set as follows. Assume that
we have a time-series data set at (t, t + �t, t + 2�t, . . . , t +
s�t, . . . ), where s is Z�0. The time transformation of data
from t to T can be approximated by replacing T with T ′:

T ′ = t + s�t, (28)

s = argmin
s

|T − (t + s�t )|. (29)

There is no guarantee that all energy states in the reduced
Hamiltonian are realized in the original complex system. In
particular, when constructing a reduced model of a metastable
state, only its energy state is realized. To overcome this diffi-
culty, we introduce the different expressions of the condition
in Eq. (25). Let Ei be a real number representing one energy
state. We also define the transformation

ci : � × R × R −→ � × R × R, (30)

(q, p) �−→ (Q, P) := (Qi(q, p), Pi(q, p)), (31)

which satisfy

{
qt+�t , pt+�t , qt , pt

∣∣∣∣ H (qt , pt ) = Ei, pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}

=
{

QT +�T , PT +�T , QT , PT

∣∣∣∣ H (qt , pt ) = Ei, pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
. (32)

The condition of Eq. (25) can be approximately rewritten using the condition Eq. (32),

∀i ∈ �E ,

{
qt+�t , pt+�t , qt , pt

∣∣∣∣ H (qt , pt ) = Ei, pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}

=
{

QT +�T , PT +�T , QT , PT

∣∣∣∣ H (qt , pt ) = Ei, pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
, (33)

where �E is the index set of all discretized energy states. Therefore, the transformation set that satisfies the condition Eq. (25)
can be reexpressed as a union of the divided conditions:

{Q(q, p), P(q, p) | satisfy Eq. (25)} ∼ {Qi(q, p), Pi(q, p) | ∀i ∈ �E , satisfy Eq. (32)} (34)

=
⋂

i∈�E

{Qi(q, p), Pi(q, p) | satisfy Eq. (32)}. (35)

This implies that the invariant transformation set for a certain energy Ei must include some invariant transformations for the
total energy. Thus, candidate transformations that make the Hamiltonian and canonical equations invariant are obtained as the
transformations that make the subspace

Si :=
{

qt+�t , pt+�t , qt , pt

∣∣∣∣ H (qt , pt ) = Ei, pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
(36)
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invariant. This expression is useful for finding the candidates of symmetries in a complex dynamical system, such as dynamics
in the metastable state.

In a finite time measurement or simulation, only data D of a subset of Si can be obtained. On the basis of the following
two physical principles, we can estimate Si from data D. The first principle is described as follows. The subspace Si can be
represented as a product space of two subspaces:

Si = Sa
i × Sb

i , (37)

Sa
i =

{
qt , pt

∣∣∣∣ H (qt , pt ) = Ei, pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
(38)

= {qt , pt | H (qt , pt ) = Ei}, (39)

Sb
i =

{
qt+�t , pt+�t

∣∣∣∣ H (qt , pt ) = Ei, pt+�t = pt − ∂H (qt , pt )

∂qt
, qt+�t = qt + ∂H (qt , pt )

∂pt

}
. (40)

Since the Hamiltonian is a C2 class function, Sa
i is a dif-

ferentiable manifold. The canonical equation of motion is
a C1 map because the Hamiltonian is a C2 class function.
The subspace Sb

i is a subspace mapped from manifold Sa
i

according to the canonical equations of motion. Therefore,
the subspace Sb

i is also a differentiable manifold and Si is
the product of differentiable manifolds Sa

i and Sb
i . From a

property of product manifold, Si is understood as a differ-
entiable manifold. Interpolation of differentiable manifolds
can be realized by machine learning methods such as deep
learning. In our proposed framework, Si is estimated from
a finite number of data D using a deep-learning technique.
The second principle is described as follows. In a canonical
dynamical system in which the energy changes with time,
it is not efficient to acquire the data of Si because Si is a
subspace of specific energy. The important cases of a complex
dynamical system to be modeled as a reduced model are in
the stable or metastable state. Also, one of the final goals of
this study is to extract the conservation laws in a large-scale
collective motion system in a metastable state. In the stable
or metastable state, the energy of the system is conserved:
H (qt , pt ) = H (qt+�t , pt+�t ) = E . Therefore, for the purpose
of this study, efficient data acquisition is realized.

E. DNN and data manifold

As mentioned in Sec. II D, the subspace Si could be
modeled as a differentiable manifold using machine learning
models. Some well-trained DNNs can model the distribution
of a training data set as a differentiable manifold [14–19]. In
this paper, we refer to such a differentiable manifold as a data
manifold.

We explain how a DNN models a dm-dimensional manifold
in din-dimensional space x using one of the simplest DNNs:
a feed forward three-layer DNN, for which the input has
din dimensions, the hidden layer has dh(> din ) dimensions,
and the output has dout (< din ) = dm dimensions. The map-
ping function fDNN(x) = [ f1(x), f2(x), · · · , fdout (x)] of the
DNN is defined as fDNN(x) = whh = whϕ(winx), where h =
(h1, h2, · · · , hdh ) is the dh-dimensional output of the hidden
layer. We define ϕ(·) as ϕ(winx) = (ϕ1, ϕ2, · · · , ϕdh ), ϕ j =
ϕ[

∑din
i (win

i j xi )], where ϕ is the activation function.
The element of the output of the hidden layer h j = w1 jx1 +

w2 jx2 + · · · + wdin jxdin is understood to be a projection of

vector (x1, x2, x3, · · · , xd ) to vector (w1 j,w2 j, · · · ,wdin j). In
addition, activation function ϕ(·) is usually set as a sigmoid
or ReLU function. These activation functions are constructed
using linear and flat domains. Therefore, ϕ j maps the input
subspace along vector (w0 j,w1 j · · · ,wdin j ) to hidden space,
and the region of the subspace is related to the linear domain
of the activation function. Using some elements of ϕ(winx),
we can represent a function that maps a dout-dimensional
subhyperplane in the input space to a dout-dimensional sub-
hyperplane in hidden space. By continuously pasting these
subhyperplanes using second layer wh as if they were the tan-
gent spaces of a data manifold, the DNN can model the data
distribution as a dout-dimensional manifold. That is, the DNN
embeds the input space in the output space by pasting the
sub-hyperplanes and compresses the tangent direction of these
sub-hyperplanes (Fig. 1). Deeper and more complex DNNs
can be understood as a collection of such three-layer DNNs.
Thus, such deeper DNNs can model more complex manifold
structures as a combination of simple manifold structures
modeled by a three-layer DNN [17]. Note that the output of a
three-layer DNN, a part of the deeper DNN, is referred to as
a hidden layer. This is only one example of how a DNN mod-
els a data manifold. However, many studies have suggested
that there are similar properties in successfully trained DNNs

FIG. 1. Schematic diagram of the mapping structure of a DNN
with din = 2 and dout = 1. The DNN is trained to map two-
dimensional data distributed on a black curve to one-dimensional
output space. The arrows indicate the compression direction of the
input space in the mapping from the input to the output.
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FIG. 2. Schematic diagram of the proposed framework.

[14–19]. By replacing the input space from x to � × R × R,
we can also model a time-series data manifold Si using DNN.

In this paper, using a trained DNN that models a time-
series data manifold Si, we propose a method of extracting
information about the symmetry of a dynamical system. As
described later in Sec. V, our proposed framework does not
require special DNNs, so we can directly utilize the vast
knowledge obtained from studies on physical data analysis
using DNNs. This is why we select the DNN from mul-
tiple machine-learning models that can be used to model
manifolds.

III. METHOD

In this section, we describe our proposed framework for
estimating the conservation law from a time-series data set of
dynamics. The schematic diagram of the proposed framework
is shown in Fig. 2. The framework consists of two methods.
In Sec. III A, on the basis of the derivation of the relationship
between the symmetry of the time-series data-set distribution
and the conservation law (Sec. II), we propose a method of in-
ferring the symmetry of data manifold using the Monte Carlo
sampling method. In Sec. III B, we describe the proposed
method of inferring the conservation law from the obtained
symmetry.

A. Method 1: Inferring the symmetry of data manifold using
Monte Carlo sampling method

In this subsection, we propose a general method of infer-
ring the symmetric property of data manifolds, which is not
limited to a physical time-series data set. It can be inferred
from the discussion in Sec. II E that data points that are not on

the manifold in the input space are attracted to the manifold
(Fig. 1). Once the data points are attracted to the manifold in
the hidden layer, they continue to exist on the manifold in the
output f (x). We propose a method based on this property of
DNNs for extracting the symmetry of the data manifold using
a deep autoencoder [15]. The deep autoencoder is a model that
compresses the input space to a low-dimensional hidden layer
and decompresses the layer to an output space with the same
dimension as the input space. In the decompression process,
only the subspace of the input space around the data manifold
is recovered because of the DNN property. On the basis of
this property, we can evaluate whether a transformation X(·)
causes the data-set distribution {xi}N

i=1 to remain in the same
subspace of the data manifold (Fig. 3). The procedure is as
follows. First, we train the deep autoencoder using {xi}N

i=1 as a
training data set. Second, we input the transformed data set
{X(xi )}N

i=1 into the trained deep autoencoder. Note that the
deep autoencoder is not trained on the transformed data set.
Third, we evaluate the transformation X(·) using the mean-
squared error between the input distribution of the data set
and its mapped distribution:

Esamp[X(·)] = 1

N

N∑
i=1

{X(xi ) − fDNN[X(xi )]}2. (41)

A smaller Esamp value implies that X(·) is a more invariant
transformation. Using the criterion Esamp, we approximate the
invariant transformation set as

{X(·)| argmin
X

Esamp[X(·)]}. (42)

To infer the conservation law, it is necessary to estimate the
invariant transformation set Minvariant of the manifold Si. The
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FIG. 3. Schematic diagram of method of extracting invariant transformation using autoencoder.

invariant transformation set Minvariant is defined as

Minvariant := {
QSi (·, ·, θ),PSi (·, ·, θ)| θ ∈ Rdθ

}
. (43)

In Eq. (41), by substituting {xi}N
i=1 for D =

{qi
ti , pi

ti , qi
ti+�t , pi

ti+�t }N

i=1
and X(·) for the transformation

c : (Q(·, ·), P(·, ·)), we can approximate Minvariant as

Minvariant ∼ {
Q(·, ·), P(·, ·)∣∣ argmin

Q(·,·),P(·,·)
Esamp[Q(·, ·), P(·, ·)]},

(44)

where the data set D is generated from dynamics data at
energy Ei. The approximated invariant transformation set is
obtained approximately by sampling from the probabilistic
density:

P(Q(·, ·), P(·, ·)) ∼ 1

Z
exp

{
− N

2σ 2
Esamp[Q(·, ·), P(·, ·)]

}
,

(45)

where σ is set as small as necessary and Z is a normalization
constant. Note that to actually perform this sampling, it is
necessary to first give a concrete coordinate system of (qi, pi )
in which physicists want to search conservation laws.

As mentioned in Sec. II A, continuous symmetries form
a Lie group. If the computational cost is ignored and the
transformation functions can be represented as parameterized
functions, the proposed framework can be applied to a vari-
ety of conversion functions, including nonlinear conversions
(Appendix I). In practice, it is important to narrow down the
class of candidate transformation functions. In the proposed
framework, we assume that this narrowing down is given by
physicists on the basis of their physical insights. This is not
necessarily a weakness of the proposed framework, but rather
an advantage. By narrowing down the class of coordinate
transformations and applying our methods with trial and error,
the physicists would obtain clues of the nature of the physics
system in the correspondence between the given candidate
transformation functions and the estimated conservation laws.
In this section, for simplicity of explanation, we restrict the
class of the candidate transformation functions to affine trans-

formations, (
Q
P

)
→ A

(
q
p

)
+ A0, (46)

where A is a 2d × 2d matrix and A0 is a 2d-dimensional
vector. A more general discussion is provided in Appendix
I. The invariant transformation is obtained by sampling an
element a jk of the matrix A and a0k of the vector A0 following
the probability distribution

P(a11, · · · , a2d 2d , a01, · · · , a0 2d )

= 1

Z
exp

[
− N

2σ 2
Esamp(a11, · · · , a2d 2d , a01, · · · , a0 2d )

]
× q(a11, · · · , a2d 2d , a01, · · · , a0 2d ), (47)

where q(·) is a probability distribution that represents the
constraints of transformation, resembling the prior distribu-
tion of Bayesian inference. For example, the general property
of Hamiltonian systems, in which an infinitesimal volume
in phase space is conserved under canonical transformations
[37], is represented as a uniform distribution:

q(a11, · · · , a2d 2d , a01, · · · , a0 2d )

=
{

const. for detA = 1
0 for detA �= 1.

(48)

Note that, in practice, we assume a uniform distribution with
the range 1 − δ < det A < 1 + δ, where 1 > δ > 0, to ac-
count for data noise or training error of a DNN. As mentioned
above, by utilizing all the knowledge to narrow down the
candidate transformations, we can avoid expanding the search
space and increasing the computational cost of extracting
meaningless symmetries.

To perform this sampling, we need to specify σ . Ideally,
σ should be set to 0. However, it is necessary to set σ to
an appropriate finite value because errors are included in the
time-series data set and the training results of a DNN. Such
σ affected by noise cannot be set in advance. In addition, the
target distributions in this study are assumed to be the global
flat minima, because the same Esamp surface corresponding to
the invariant transformation exists. Generally, such a target
distribution needs an enormous amount of time to sample.
Therefore, in this study, we use the replica-exchange Monte
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Carlo (REMC) method [38] for sampling to overcome these
problems. Such a method enables us to perform efficient sam-
pling by parallel sampling with different noise intensities of
σ while exchanging noise intensities with each other. In the
state of a large noise, we can realize global sampling from the
abstract distribution

P′(a11, · · · , a2d 2d , a01, · · · , a0 2d )

= 1

Z ′ exp
[
− N

2σ ′2 Esamp(a11, · · · , a2d 2d , a01, · · · , a0 2d )
]

× q(a11, · · · , a2d 2d , a01, · · · , a0 2d ), (49)

where σ ′ > σ . By exchanging this sampling information with
the state of a small noise, we can perform efficient sampling
from the target distribution P(a11, · · · , a2d 2d , a01, · · · , a0 2d ).
A detailed explanation of the REMC method and the set-
ting parameters of this method are described in Appendix
E. The target σ is determined by analyzing the sampling
results on multiple σ . In the demonstration of the pro-
posed framework, we set the target σ as described in
Appendix F. The procedure of method 1 is summarized in
Algorithm 1.

Algorithm 1 Estimation of the invariant transformation set

Input: Data set D = {qi
ti
, pi

ti
, qi

ti+�t , pi
ti+�t }N

i=1
in a given coordinate system.

Output:Invariant transformation set Da = {(a11, a12 · · · , a1d , a21 · · · , a2d 2d , a01 · · · , a0 2d )na }Na
na=1.

Step 1: Train the deep autoencoder with data set D.
Step 2: Using the trained deep autoencoder and REMC method, sample transformation parameters a11, · · · , a2d 2d , a01 · · · , a0 2d from

multiple probability distributions P′(a11, · · · , a2d 2d , a01 · · · , a0 2d ) corresponding to different noise intensities σ ′.
Step 3: Select σ ′ from the distribution structure of the sampling results and output the sampling result of the selected σ ′ state as Da.

Note that there is no description of how to train a DNN in
this paper. In the training of a deep autoencoder, the number
of nodes in the hidden layer is an important hyperparameter.
On the other hand, since this is a quantity that determines how
much a phenomenon is to be reduced, it is considered to be
provided by the physicist.

B. Method 2: Inferring the conservation law
from obtained symmetry

From the Na sampling results Da :=
{(a11, a12 · · · , a1 2d , a21 · · · , a2d 2d , a01, · · · , a0 2d )na}Na

na=1
in Sec. III A, we propose a method of estimating the
infinitesimal transformation, which represents the invariance
of the Hamiltonian and the equation of motion.

The set of invariant transformation Minvariant is char-
acterized by the dθ -dimensional continuous parameter θ.
Therefore, Minvariant is a dθ -dimensional differential manifold.
Note that Minvariant forms a Lie group as we mentioned in
Sec. II A. The infinitesimal transformation is estimated as the
tangent vector of Minvariant at θ = 0. Using A(θ), we estimate
Minvariant as

Minvariant ∼
{

A(θ)

(
q
p

)∣∣∣∣ θ ∈ Rdθ

}
. (50)

By serializing the transformation matrix A(θ), we define the
vector

A′(θ) = (a′
1(θ), · · · , a′

d ′ (θ)) := (a11(θ), · · · , a1 2d (θ), a21(θ),

× · · · , a2d 1(θ), · · · , a2d 2d (θ), a01(θ), · · · , a0 2d (θ)),

(51)

where d ′ = 4d2 + 2d . The implicit function representation of
the manifold Minvariant is defined as⎧⎨

⎩
f1(a′

1, · · · , a′
d ′ ) = 0

...

fd ′−dθ
(a′

1, · · · , a′
d ′ ) = 0.

(52)

In the representation of the implicit function, the infinitesimal
transformation is estimated as the tangent vector of the mani-
fold Minvariant at the position

eI = (· · · , ai j = 0, · · · , ai i = 1, · · · ), (53)

where i �= j and eI is the representation of the identity ma-
trix I in the A′(θ) space. We estimate this tangent space
TIMinvariant = TeI Minvariant from the sampling result Da ob-
tained in Sec. III A.

The Jacobian matrix of fk for parameters of the sub-

set A′, (b1, b2, · · · , bdθ
) ⊂ A′, is defined as Jkl = ∂ fk (a′

1,··· ,a′
d ′ )

∂bl
.

If the Jacobian matrix at A′ = eI becomes nonsingular,
from the implicit function theorem, variables other than
(b1, b2, · · · , bdθ

), {ck}d ′−dθ

k=1 := A′ \ {bl}dθ

l=1, can be expressed
as ck = gi(b1, · · · , bdθ

). This implies that, around eI, the im-
plicit equations in Eq. (52) representing the manifold Minvariant

can be decomposed into the following d ′ − dθ simultaneous
equations: ⎧⎨

⎩
h1

(
c1, b1, · · · , bdθ

) = 0
...

hd ′−dθ

(
cd ′−dθ

, b1, · · · , bdθ

) = 0,

(54)

where bl corresponds to the continuous parameter θl of the
continuous transformation [Q(q, p, θ),P(q, p, θ)]. Differen-
tiating these equations with respect to bl around a point eI
yields d ′ − dθ simultaneous partial differential equations:⎧⎪⎨

⎪⎩
∂

∂bl
h1

(
c1, b1, · · · , bdθ

)∣∣
A′=eI

= 0
...

∂
∂bl

hd ′−dθ

(
cd ′−dθ

, b1, · · · , bdθ

)∣∣
A′=eI

= 0.

(55)

Solving these simultaneous partial differential equations gives
the tangent vector A′(bl )

∂bl
|
A′=eI

of the manifold around eI. Us-
ing the tangent vector as the nonserialized representation
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A(bl )
∂bl

|
A′=eI

, we can estimate an infinitesimal transformation as

(
δql

δpl

)
= ε

A(bl )

∂bl

∣∣∣∣
A′=eI

(
q
p

)

= ε

⎛
⎜⎝

∂a1 1
∂bl

|A′=eI · · · ∂a2d 1
∂bl

|A′=eI

...
. . .

...
∂a1 2d
∂bl

|A′=eI · · · ∂a2d 2d
∂bl

|A′=eI

⎞
⎟⎠(

q
p

)
. (56)

Thus, the invariant transformation is obtained as the tan-
gent vector of the manifold Minvariant at point eI. Therefore,
if ck can be regressed around eI as the first-order polynomial
of {bl}dθ

l=1, the conservation law can be inferred without ap-
proximation. Compared with the Hamiltonian estimation and
conservation law estimation, this is the advantage of conser-
vation law estimation because, in general, the Hamiltonian
estimation requires infinite-order polynomial approximation.
This advantage stands not only for the linear transformations
used in the description but also for the general case involv-
ing nonlinear transformations [Eq. (I6) in Appendix I]. On
the other hand, the estimation accuracy of the tangent space
TeI Minvariant from finite data with noise is often low. In this
paper, we propose a method of estimating the infinitesimal
transform with high accuracy by using all sampled transfor-
mation data, not only data around eI. Another way to avoid
this problem is also discussed in Sec. V.

The simultaneous equations in Eq. (54) can be estimated
by the following procedure. First, the upper limit of the di-
mension of the manifold Minvariant is estimated by applying
principal component analysis (PCA) and the elbow method to
Da as described in Ref. [39]. Alternatively, the approximate
dimension of Minvariant can be estimated by using the manifold
dimension estimation method such as the method described in
Ref. [40]. Using such an estimated dimension of Minvariant, we
can prepare candidate dimension d ′

θ . Second, we extract one

variable set (b1, b2, · · · , bd ′
θ
). By orthogonal distance regres-

sion [41], we regress Db ≡ {(ck, b1, b2, · · · , bd ′
θ
)na}Na

na=1 to a
db-order implicit polynomial function,

ĥk
(
ck, b1, b2, · · · , bd ′

θ
; β, γ , d ′

θ

)
:=

db∑
s0=0

db∑
s1=0

· · ·
db∑

sd ′
θ
=0

γs0s1s2···sd ′
θ

βs0s1s2···sd ′
θ

cs0
k bs1

1 bs2
2 · · · b

sd ′
θ

d ′
θ

= 0, (57)

where β is the regression coefficient, and γ is a binary vector
indicating whether the basis is selected. The indicator vector
γ and the dimension of the manifold d ′

θ are determined by
a model selection method, such as the Bayesian information
criterion (BIC) [42]. To select the model, it is necessary to
estimate the likelihood. The method of estimating the like-
lihood is described in Appendix G. If dθ � 2, d ′

θ can be
determined by visualization. Note that, unlike the estimation
of the tangent space TeI Minvariant, the upper limit db of the order
of polynomial function must be sufficiently large because all
the sampling data are regressed. This regression and model
selection is performed for all ck ; then, an implicit function
representation of Minvariant can be obtained.

From the obtained simultaneous equations, we obtain the
simultaneous differential equations. If the Jacobian matrix Jkl

is singular, the solution of the simultaneous equations diverges
or becomes indefinite. In that case, a different variable set
{(b1, · · · , bd ′

θ
)} is reextracted and the same procedure is re-

peated for the new variable set {(b1, · · · , bd ′
θ
)}. If the Jacobian

matrix Jkl becomes nonsingular after applying this procedure
repeatedly, we can obtain the infinitesimal transformation ac-
cording to Eq. (56). In this method, by narrowing down the
regressing area of Da to the neighborhood of eI, we obtain a
more accurate estimation of infinitesimal transformation with
a lower-order polynomial function in Eq. (57).

Algorithm 2 Estimation of infinitesimal transformation

Input: Sampling results of method 1, Da = {(a11, a12 · · · , a2d 2d , a01, · · · , a0 2d )na }Na
na=1, and d ′

θ .
Output:Infinitesimal transformation, δql , δpl .
Step 1: Extract Db = {(ck, b1, b2, · · · , bd ′

θ
)na }Na

na=1 from Da.
Step 2: Fit Db with the implicit polynomial function ĥk (ck, bl

1, bl
2, · · · , bl

d ′
θ
; β, γ , d ′

θ ) [Eq. (57)] for each ck .

Step 3: Estimate the likelihood [Eq. (G1)] by numerical integration of Z [Eq. (G2)].
Step 4: Select the indicator vector γ and the dimension d ′

θ of Minvariant in Eq. (57) for each ck using the BIC.

Step 5: Determine whether the Jacobi matrix Jkl = ∂hk (ck ,b1,··· ,bdθ
)

∂bl
is nonsingular. If Jkl is singular, return to Step 1 and reextract D′

b.
Step 6: Differentiate the obtained simultaneous equations with respect to bl around a point eI to obtain Eq. (55).
Step 7: Solve the simultaneous equations in Eq. (55) and obtain the infinitesimal transformation, δql , δpl .

IV. RESULTS

We evaluate the proposed method using one geometrical
structure and three physical systems: (i) a half sphere, (ii)
constant-velocity linear motion, (iii) a two-dimensional cen-
tral force system, and (iv) a collective motion system. Case (i)
has a rotational symmetry. In case (i), we confirm that method
1 can obtain a set of transformations corresponding to the
symmetry. Cases (ii) and (iii) are systems that conserve the

momentum and angular momentum, respectively. Using these
cases, we verified method 2. Finally, we apply both proposed
methods to (iv), which is a complicated collective motion
system, and attempted to infer the collective coordinate and
conservation law. In each case, the parameters of the DNN
are set as described in Appendix H and REMC is set as de-
scribed in Appendix E. In these demonstrations, we estimated
invariant coordinate transformations by restricting them on
the affine transformations. Since the affine transformation is
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one of the simplest coordinate transformations, it would be
a reasonable first assumption. Also, assuming that there are
no complex symmetries due to the combination of temporal
and spatial transformations, we also ignored the time trans-
formation in these demonstrations. Note that we do not deny
the existence of time translational symmetry which related to
energy conservation because it can exist independently of the
spatial transformation. Also, we further narrowed down the
coordinate transformations using a property of time-series
data distributions, as explained using cases (ii), (iii), and (vi).
Moreover, we carried out PCA to estimate the dimension of
manifold corresponding to invariant transformation.

(i) Half sphere

The data set of case (i) was generated by the function

x2
1 + x2

2 + x2
3 = r, (x3 > 0), (58)

where r was set to be 0.25. We generated 1671 samples
according to Eq. (58). The data set of case (i) [shown in
Fig. 4(a)] was used to verify the ability of method 1 described
in Sec. III A to extract the symmetry. We set the coordinate
system as (x1, x2, x3) and limit the transformation on the x1-x2

plane. In such a case, the affine transformation is defined as

A

⎛
⎝x1

x2

x3

⎞
⎠ + A0 :=

⎛
⎝a11 a21 0

a12 a22 0
0 0 1

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ +

⎛
⎝a01

a02

0

⎞
⎠, (59)

where A and A0 have constraints q(A, A0) in (47), which are
described as

q(A, A0) =
⎧⎨
⎩

const. for 0.8 < detA < 1.2, and
−0.2 < a0 j < 0.2, j = 1, 2

0 for else.

(60)

In this coordinate system, the half sphere has a rotation
symmetry and a mirror symmetry. The rotation symmetry
transformation is represented as

Arot (θrot ) =
(

cos(θrot ) sin(θrot )
− sin(θrot ) cos(θrot )

)
, (61)

where θrot is a rotation angle and the mirror symmetry trans-
formation is represented as

Amirror (θmirror ) =
(

cos(2θmirror ) sin(2θmirror )
sin(2θmirror ) − cos(2θmirror )

)
, (62)

where θmirror is an angle of the mirror plane with the x1

axis. The mirror symmetry is a discrete symmetry; therefore,
the invariant transformation of the half sphere is represented
as Atot (θrot, θmirror ) := Arot (θrot )[Amirror (θmirror )]m, where m :=
{0, 1} and

Arot (θrot )[Amirror (θmirror )]
0 := Arot (θrot ), (63)

Arot (θrot )[Amirror (θmirror )]
1

:=
(

cos(2θmirror − θrot ) sin(2θmirror − θrot )
sin(2θmirror − θrot ) − cos(2θmirror − θrot )

)
= Amirror (θ

′), (64)

θ ′ := θmirror − θrot

2
. (65)

By comparing Eq. (59) with Eqs. (63) and (64), we obtain the
implicit function representation of the invariant transforma-
tion Atot (θrot, θmirror ) as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a2
11 + a2

21 = 1
a2

11 + a2
12 = 1

(a11 + a22)(a11 − a22) = a2
11 − a2

22 = 0
(a21 − a12)(a21 + a12) = a2

21 − a2
12 = 0

a2
21 + a2

22 = 1
a2

12 + a2
22 = 1.

(66)

Method 1 was applied to such a Da system.
The sampling results of ai j are shown in Fig. 4(b) as black

dots. The results of PCA of the sampling result Da are shown
in Figs. 4(c) and 4(d). From the eigenvalues obtained by
PCA, Da is understood to be embedded in a four-dimensional
space. As can be seen from the appearance of the sampling
distribution [Fig. 4(b)], this is the result of embedding two
intersecting circular manifolds corresponding to O(2). The
principal component vectors with their eigenvalues greater
than zero have zero values corresponding to the elements
of a01 and a02. This means that the distribution Da is not
spread out in the space corresponding to a01 and a02. This is
consistent with the fact that the half sphere has no translational
symmetry, i.e., a01 = const and a02 = const. We confirmed
this observation by applying method 2 for the sampling results
of a01 and a02 with polynomials of order up to first.

We apply method 2 for the sampling result Da, and selected
the best implicit polynomial functions from the viewpoint of
the BIC. For the transformation elements of A, we regressed
with polynomials of up to second order and selected a poly-
nomial model. The red curves in Fig. 4(b) are curves fitted by
the selected implicit polynomial functions. The fitting results
are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.00 a2
11 + 1.01 a2

21 = 1.00
1.00 a2

11 + 0.98 a2
12 = 1.00

1.00 a2
11 − 1.00 a2

22 = 0
1.00 a01 = −0.01 (on a11–a01 plane)
1.00 a02 = −0.01 (on a11–a02 plane)
1.00 a2

21 − 0.97 a2
12 = 0

1.00 a2
21 + 0.99 a2

22 = 1.00
1.00 a01 = −0.01 (on a21–a01 plane)
1.00 a02 = −0.01 (on a21–a02 plane)
0.99 a2

12 + 1.01 a2
22 + 0.01 a12 − 0.01 a22 = 1.00

1.00 a01 = −0.01 (on a12–a01 plane)
1.00 a02 = −0.01 (on a12–a02 plane)
1.00 a01 = −0.01 (on a22–a01 plane)
1.00 a02 = −0.01 (on a22–a02 plane),

(67)

where we set d ′
θ to be 1 on the basis of the knowledge derived

from Eq. (66).

(ii) Constant-velocity linear motion

The data set of case (ii) was generated using the one-
dimensional Hamiltonian system

H2 = p2

2m
, (68)

where m was set to be 1. We generated 1000 samples by
solving Eq. (68). In this case, we show that the proposed

033303-10



INTERPRETABLE CONSERVATION LAW ESTIMATION BY … PHYSICAL REVIEW E 103, 033303 (2021)

FIG. 4. Results of case (i): half sphere. (a) Data set used for the evaluation. There are 1671 samples. (b) Black dots represent sampling
distributions Da obtained by method 1 and red curves represent fitting curves estimated by method 2. Each graph shows 12 combinations of
six transformation variables ai j . (c) Eigenvalues of the principal components of the distribution Da. (d) Principal component vectors of the
distribution Da with their eigenvalues greater than zero.
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FIG. 5. Results of case (ii): Constant-velocity linear motion. (a) Conceptual diagram of constant-velocity linear motion. (b) Distribution
of time-series data on q–p plane. (c) Black dots represent sampling distribution Da obtained by method 1 and the red line represents the
fitting curve estimated by method 2. (d) Eigenvalues of the principal components of the distribution Da. (e) Principal component vectors of the
distribution Da with their eigenvalues greater than zero.

method can infer the momentum conservation law. We set the
coordinate system as (q, p). In the coordinate, we found the
linear relationship p = 0.00q + 0.10 from the distribution of
time-series data [Fig. 5(b)]. On the basis of this relationship,
we can reduce the affine transformation as(

a11 a21

a12 a22

)(
q
p

)
+

(
a01

a02

)
⇔

(
a11 0
a12 0

)(
q
p

)

+
(

a01 + 0.1a21

a02 + 0.1a22

)
⇔

(
a11 0
a12 0

)(
q
p

)
+

(
a01

a02

)
. (69)

Thus, we define the candidate transformation as

A

(
q
p

)
+ A0 :=

(
a11 0
a12 0

)(
q
p

)
+

(
a01

a02

)
, (70)

where A and A0 have constraints q(A, A0) [see Eq. (47)] de-
scribed as

q(A, A0) =
⎧⎨
⎩

const. for 0.5 < a11 < 1.5, and
−0.5 < ai j < 0.5, ai j ∈ {a12, a01, a02}
0 for else.

(71)

The sampling results of Da are shown in Fig. 5(c) as black
dots. The eigenvalues of the principal components of Da

[Fig. 5(d)] suggest that the manifold of invariant trans-
formation is embedded in a two-dimensional space. The
two eigenvectors with eigenvalues much larger than others

[Fig. 5(e)], corresponding to space embedding the manifold,
do not have the components a12 and a02. Considering that
the distributions of a11 and a01 are uniformly spread out
[Fig. 5(c)], the space consisting of a11 and a01 might be the
manifold of the invariant transformation itself. This suggests
that the sampling distribution Da has two dimensions and
that two conservation laws possibly exist. To confirm this,
we set the dimension of the manifold d ′

θ to be 2 and applied
method 2 to the Da for polynomial models up to first order in
a three-dimensional space (a11, a01, a12) and (a11, a01, a02).

The regression results obtained with the selected implicit
polynomial function using the BIC are plotted as red curves
in Fig. 5(c). The regression result is

⎧⎪⎨
⎪⎩

a11 = a11

a01 = a01

a12 = −0.01 (on a11–a01–a12 space)
a02 = 0.10 (on a11–a01–a02 space).

(72)

The simultaneous partial differential equations in Eq. (55),
where bl ∈ {a11, a01}, were obtained from the fitting results.
From the solution of the simultaneous partial differential
equations, we obtained the two infinitesimal transformations
corresponding to a11 or a01{

δq = ε ∂a11
∂a11

q + ε ∂a01
∂a11

= εq
δp = ε ∂a12

∂a11
p + ε ∂a02

∂a11
= 0,

(73)
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FIG. 6. Results of case (iii): Two-dimensional central force system. (a) Conceptual diagram of two-dimensional central force system.
(b) Distributions of time-series data on q1–p2 and q2–p1 planes. (c) Black dots represent sampling distribution Da obtained by method 1 and
the red line represents the fitting curve estimated by method 2. (d) Eigenvalues of the principal components of the distribution Da. (e) Principal
component vectors of the distribution Da with their eigenvalues greater than zero.

{
δq = ε ∂a11

∂a01
q + ε ∂a01

∂a01
= ε

δp = ε ∂a12
∂a01

p + ε ∂a02
∂a01

= 0.
(74)

By substituting Eqs. (73) and (74) into Eq. (1) and solving the
simultaneous equations, we found that there is no solution for
Eq. (73), whereas Eq. (74) gives us the conserved value Gδ =
εp. This result shows that the momentum p was conserved.

(iii) Two-dimensional central force system

The data set of case (iii) was generated using the Hamilto-
nian system

H3 = 1

2m
p2 + G

mM

|q| , (75)

where q := (q1, q2), p := (p1, p2), and m, M, and G were
set to be 1. In this study, the proposed framework is applied
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to time-series data restricted to circular orbits to make the
estimation problem of symmetries easier. The circular motion
data manifold is clearly closed for the linear coordinate trans-
formation of SO(2) corresponding to the angular momentum
conservation law. Therefore, in case (iii), the effectiveness of
the proposed framework can be verified by whether the angu-
lar momentum conservation law can be estimated. In addition,
to simplify the problem, we excluded the symmetry of time
inverse transition t → −t from the verification data, and we

only focused on the counterclockwise motion. We generated
1000 samples by solving Eq. (75). We set the coordinate sys-
tem as (q1, q2, p1, p2). In the coordinate, we found the linear
relationships p2 = 3.16 q1 + 0.00 and p1 = −3.16 q2 + 0.00
from the distribution of time-series data [Fig. 6(b)]. From this
relationship, the transformation is constrained on the two-
dimensional plane corresponding to the normalized vectors

1√
1+3.162 (1, 0, 0, 3.16) and 1√

1+3.162 (0, 1,−3.16, 0). Thus, the
affine transformation is reduced as

1

1 + 3.162

⎛
⎜⎝

1 0
0 1
0 −3.16

3.16 0

⎞
⎟⎠(

a11 a21

a12 a22

)(
1 0 0 3.16
0 1 −3.16 0

)⎛
⎜⎝

q1

q2

p1

p2

⎞
⎟⎠ + 1√

1 + 3.162

⎛
⎜⎝

1 0
0 1
0 −3.16

3.16 0

⎞
⎟⎠(

a01

a02

)
, (76)

= 1

1 + 3.162

⎛
⎜⎜⎜⎜⎝

a11 a21 −3.16a21 3.16a11

a12 a22 −3.16a22 3.16a12

−3.16a12 −3.16a22 3.162a22 −3.162a12

3.16a11 3.16a21 −3.162a21 3.162a11

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

q1

q2

p1

p2

⎞
⎟⎟⎟⎟⎠ + 1√

1 + 3.162

⎛
⎜⎜⎜⎜⎝

a01

a02

−3.16a02

3.16a01

⎞
⎟⎟⎟⎟⎠, (77)

⇔ 1

1 + 3.162

⎛
⎜⎜⎜⎜⎜⎝

(1 + 3.162)a11 (1 + 3.162)a21 0 0

(1 + 3.162)a12 (1 + 3.162)a22 0 0

0 0 (1 + 3.162)a22 −(1 + 3.162)a12

0 0 −(1 + 3.162)a21 (1 + 3.162)a11

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

q1

q2

p1

p2

⎞
⎟⎟⎠ +

⎛
⎜⎝

a01

a02

−3.16a02

3.16a01

⎞
⎟⎠. (78)

Thus, we define the candidate transformation as

A

⎛
⎜⎝

q1

q2

p1

p2

⎞
⎟⎠ + A0 :=

⎛
⎜⎝

a11 a21 0 0
a12 a22 0 0
0 0 a22 −a12

0 0 −a21 a11

⎞
⎟⎠

⎛
⎜⎝

q1

q2

p1

p2

⎞
⎟⎠ +

⎛
⎜⎝

a01

a02

−3.16a02

3.16a01

⎞
⎟⎠, (79)

where A and A0 have constraints q(A, A0) [see Eq. (47)], which are defined below in this demonstration:

q(A, A0) =
{

const for 0.8 < detA < 1.2, and − 0.2 < a0 j < 0.2, j = 1, 2
0 for else. (80)

The sampling results of ai j are shown in Fig. 6(c) as
black dots. The results of PCA of the sampling result Da

are shown in Figs. 6(d) and 6(e). The eigenvalues obtained
by PCA [Fig. 6(d)] suggested that Da is embedded in a
two-dimensional space. As can be seen from the appearance
of the sampling distribution [Fig. 6(c)], this is the result of
embedding one-dimensional circular manifolds. Thus, we set
the dimension of the manifold d ′

θ to be 1. Also, the principal
component vectors with their eigenvalues greater than zero
have zero values corresponding to the elements a01 and a02

[Fig. 6(e)]. This means that the distribution Da is not spread
out in the space corresponding to a01 and a02. This suggests
that there is no translational symmetry, i.e., a01 = const and
a02 = const. We verify this by applying method 2 for the
sampling results of a01 and a02 with polynomials of up to
first order and selecting a polynomial model from them. For
the transformation elements of A, we regressed with poly-
nomials of up to second order and selected a polynomial
model.

The regression results obtained with the selected implicit
polynomial function using the BIC are plotted as red curves
in Fig. 6(c). The fitting results are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.00 a2
11 + 1.00 a2

21 + 0.0 a11a21 = 1.00
1.00 a2

11 − 1.00 a2
12 = 1.00

1.00 a11 − 0.99 a22 − 0.02 a2
22 = −0.01

1.00 a01 = 0.00 (on a11–a01 plane)
1.00 a02 = 0.00 (on a11–a02 plane)
1.00 a21 + 1.00 a12 = 0
1.00 a2

21 + 1.01 a2
22 = 1.01

1.00 a01 = 0.00 (on a21–a01 plane)
1.00 a02 = 0.00 (on a21–a02 plane)
1.00 a2

12 + 1.01 a2
22 + 0.00 a12a22 = 1.01

1.00 a01 = 0.00 (on a12–a01 plane)
1.00 a02 = 0.00 (on a12–a02 plane)
1.00 a01 = 0.00 (on a22–a01 plane)
1.00 a02 = 0.00 (on a22–a02 plane).

(81)
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TABLE I. Parameters of the Reynolds boid model used to generate time-series data.

Watt Wsep Wali ratt [unit] rsep [unit] rali [unit] θatt [rad] θsep [rad] θali [rad] speed [unit/s]

0.04 0.02 0.01 200 5 20 π π π 10–50

The simultaneous partial differential equations in Eq. (55),
where bl = a21, were obtained from the fitting results. By
solving the simultaneous partial differential equations, we
obtained the infinitesimal transformation,

δq = ε

( ∂a11
∂a21

∂a21
∂a21

∂a12
∂a21

∂a22
∂a21

)
q + ε

( ∂a01
∂a21
∂a02
∂a21

)

= ε

( −2×a21
2a11

∣∣
A′=eI

1

−1 −2a21
1.01×2a22

∣∣
A′=eI

)
q + ε

(
0
0

)

=
(

0 ε

−ε 0

)
q, (82)

δp = ε

( ∂a22
∂a21

− ∂a12
∂a21

− ∂a21
∂a21

∂a11
∂a21

)
p + ε

( ∂a01
∂a21
∂a02
∂a21

)
=

(
0 ε

−ε 0

)
p, (83)

where the values in the final formula are up to one decimal
place. By substituting Eqs. (82) and (83) into Eq. (1) and
solving the equation, we estimated the conserved value Gδ

as Gδ = ε(x1 p2 − x2 p1). This result shows that the angular
momentum was conserved.

(iv) Collective motion system

In this case, we apply our framework to an NR-body col-
lective motion system called the Reynolds boid model [35]. In
this model, each individual moves accordingly to three forces,
which are the forces attracting each other, separating each
other, and aligning the orientation of each other,

dp j

dt
= −Wali

(
p j −

∑
k∈K ( j)

ali
pk

nali

)
+ Wsep

⎛
⎝ ∑

k∈K ( j)
sep

(q j − qk )

|q j − qk|

⎞
⎠ + Wali

(
q j −

∑
k∈K ( j)

att
qk

natt

)
, (84)

dq j

dt
= p j, (85)

K ( j)
ali =

{
k

∣∣∣∣ |qk − q j | < rali, arccos

(
pk · p j

|pk||p j |
)

< θali, k �= j

}
,

K ( j)
sep =

{
k

∣∣∣∣ |qk − q j | < rsep, arccos

(
pk · p j

|pk||p j |
)

< θsep, k �= j

}
,

K ( j)
att =

{
k

∣∣∣∣ |qk − q j | < ratt, arccos

(
pk · p j

|pk||p j |
)

< θatt, k �= j

}
,

nali =
∑

k∈Kali

1, natt =
∑

k∈Katt

1,

where q := (q1, q2, q3), p := (p1, p2, p3), and j, k represent

the index of an individual. The attraction, separation, and
alignment terms are represented by the first, second, and third
terms in Eq. (84), and the forces have the interaction ranges,
ratt, rsep, and rali, and the angles of view θatt , θsep, and θali,
respectively. The parameters Watt, Wsep, Wali, ratt, rsep, rali, θatt,
θsep, and θali of the Reynolds boid model can be tuned to
simulate the collective motion of living things such as birds
or fish [35,43]. In this study, we tuned these parameters as
described in Table I, and we focused on a parameter set that
simulates the torus-type behavior of a school of fish in the
sea. Such a torus-type collective motion can be realized in a
two-dimensional space. Therefore, we set the space to have
two dimensions in this study. By solving Eq. (84), we gener-
ated 2000 steps of time-series data of the torus-type collective
motion by 200 individuals.

To infer the conservation law of collective motion, we need
to set a candidate collective coordinate. In this study, we set

the collective coordinate on the basis of the following consid-
erations. First, from the visual symmetry of the motion, the
average position (q̄1, q̄2) and the average momentum ( p̄1, p̄2)
of all particles over time are set as the origin of the coor-
dinate system. Second, since the same behavior is observed
regardless of the individual, each individual is considered to
have no degree of freedom. From these considerations, we
set the coordinate system as (q̃, p̃) = (q1 − q̄1, q2 − q̄2, p1 −
p̄1, p2 − p̄2), and prepared the data set as

D = {q̃(ti )i, p̃(ti )i, q̃(ti + �t )i, p̃(ti + �t )i}NRT
i=1 , (86)

:= {q̃(t jk ) jk, p̃(t jk ) jk, q̃(t jk + �t ) jk, p̃(t jk + �t ) jk}〈 j,k〉,

(87)

where NR = 200, T = 2, 000, and 〈 j, k〉 represents all
combinations of individuals j and time steps k. We ran-
domly selected 5000 samples from this data set for the
training of the DNN. We set the coordinate system as
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(q1, q2, p1, p2). In the coordinate, we found the linear rela-
tionships p2 = −0.161 q1 + 0.00 and p1 = 0.167 q2 + 0.00
from the distribution of time-series data [Fig. 7(b)]. From
this relationship, the transformation is constrained on the two-

dimensional plane corresponding to the normalized vectors
1√

1+0.1612 (1, 0, 0,−0.161) and 1√
1+0.1672 (0, 1, 1.67, 0). Thus,

similarly to case (iii), we define the candidate transformation
as

A

⎛
⎜⎝

q1

q2

p1

p2

⎞
⎟⎠ + A0 :=

⎛
⎜⎜⎜⎜⎜⎝

a11

√
1+0.1672√
1+0.1612 a21 0 0

√
1+0.1612√
1+0.1672 a12 a22 0 0

0 0 a22 −
√

1+0.1612√
1+0.1672

0.167
0.161 a12

0 0 −
√

1+0.1672√
1+0.1612

0.161
0.167 a21 a11

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

q1

q2

p1

p2

⎞
⎟⎠ +

⎛
⎜⎝

a01

a02

0.167 a02

−0.161 a01

⎞
⎟⎠

∼

⎛
⎜⎝

a11 1.0 a21 0 0
1.0 a12 a22 0 0

0 0 a22 −1.0 a12

0 0 −1.0 a21 a11

⎞
⎟⎠

⎛
⎜⎝

q1

q2

p1

p2

⎞
⎟⎠ +

⎛
⎜⎝

a01

a02

0.167 a02

−0.161 a01

⎞
⎟⎠, (88)

where A and A0 have constraints q(A, A0) [see Eq. (47)], which are described as

q(A, A0) =
{

const for 0.8 < detA < 1.2, and − 0.2 < a0 j < 0.2, j = 1, 2
0 for else. (89)

The sampling results of Da are shown in Fig. 7(c) as black dots. The results of PCA of the sampling result Da are shown in
Figs. 7(d) and 7(e). Note that, because the translation transformations a01 and a02 are affected by the scale of the time-series
data distributions of q1 and q2, when we apply PCA to the time-series data of this case, we renormalize the sampled a01 and a02

divided by 100, which is the scale of the distributions q1 and q2 [Fig. 6(b)]. The eigenvalues obtained by PCA [Fig. 7(d)] suggest
that Da is embedded in a two-dimensional space. As can be seen from the appearance of the sampling distribution [Fig. 7(c)],
this might be the result of embedding one-dimensional circular manifolds. Thus, we set the dimension of the manifold d ′

θ to be 1.
Also, the principal component vectors with their eigenvalues greater than zero have 0 values corresponding to the elements a01

and a02 [Fig. 7(e)]. This means that the distribution Da is not spread out in the space corresponding to a01 and a02. This suggests
that there is no translational symmetry, i.e., a01 = const. and a02 = const.. We verify it by applying method 2 for the sampling
results of a01 and a02 with polynomials of up to first order and selecting a polynomial model from them. For the transformation
elements of A, we regressed with polynomials of up to second order and selected a polynomial model from them.

The regression results obtained with the selected implicit polynomial function using the BIC are plotted as red curves in
Fig. 7(c). The fitting results are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.01 a2
11 + 1.01 a2

21 − 0.01 a11 + 0.00 a21 + 0.00 a11a21 = 1.00
1.01 a2

11 + 1.00 a2
12 − 0.01 a11 = 0.99

1.00 a11 − 1.00 a22 + 0.00 a22 = 0
1.00 a01 = 0.81 (on a11–a01 plane)
1.00 a02 = 0 (on a11–a02 plane)
1.00 a21 − 1.00 a12 = 0
1.00 a2

21 + 1.00 a2
22 − 0.01 a22 = 0.99

1.00 a01 = 0.81 (on a21–a01 plane)
1.00 a02 = 0 (on a21–a02 plane)
1.02 a2

12 + 1.00 a2
22 − 0.01 a12a22 = 1.00

1.00 a01 = 0.81 (on a12–a01 plane)
1.00 a02 = 0 (on a12–a02 plane)
1.00 a01 = 0.81 (on a22–a01 plane)
1.00 a02 = 0 (on a22–a02 plane).

(90)

The simultaneous partial differential equations in Eq. (7), where bl = a21, were obtained from the fitting results. By solving the
simultaneous equations, we obtained the infinitesimal transformation

δq = ε

( ∂a11
∂a21

∂a21
∂a21

∂a12
∂a21

∂a21
∂a21

)
q + ε

( ∂a01
∂a21
∂a02
∂a21

)
= ε

( −1.01×2a21
1.01×2a11−0.01

∣∣
A′=eI

1
−1.00
1.00

∣∣
A′=eI

−1.00×2a21
1.00×2a22+0.01

∣∣
A′=eI

)
q +

(
0
0

)
, (91)

=
(

0 ε

−ε 0

)
q, (92)

δp = ε

( ∂a22
∂a21

− ∂a12
∂a21

− ∂a21
∂a21

∂a11
∂a21

)
p + ε

( ∂a02
∂a21
∂a01
∂a21

)
=

(
0 ε

−ε 0

)
p, (93)
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FIG. 7. Results of case (iv): Collective motion system. (a) Simulation snapshot of torus-type collective motion. The simulation data were
applied to the proposed method. (b) Distributions of time-series data on q1–p2 and q2–p1 planes. (c) Black dots represent the sampling
distribution Da obtained by method 1 and the red line represents the fitting curve estimated by method 2. (d) Eigenvalues of the principal
components of the distribution Da. (e) Principal component vectors of the distribution Da with their eigenvalues greater than zero.

where the values in the final formula are up to one decimal
place. By substituting Eqs. (92) and (93) into Eq. (1) and solv-
ing the equation, we estimated the conserved value Gδ to be
ε(x1 p2 − x2 p1). This result shows that the angular momentum
was conserved.

V. SUMMARY AND DISCUSSION

From the results of case (i), we confirmed that method 1
could be used to extract the symmetry. The results of cases

(ii) and (iii), wherein the expected conservation laws were
inferred, show that method 2 is effective. By comparing cases
(i) and (iii), we observed differences in the selected implicit
polynomial functions in the a11-a22 and a21-a12 spaces. These
differences emerged from the mirror symmetry in case (i).
This finding supports the assertion that the method works
well in extracting the symmetry of a system. In case (ii),
two translational symmetries corresponding to A11 and A01

were found, and the simultaneous differential equation cor-
responding to a11 had no solution. a11 maps the coordinate
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system (qt , qt+�t ) to (a11qt , a11qt+�t ). Strictly speaking, a11

cannot take any value other than 1 because the distribution
of the time-series data of case (iii) does not pass through the
origin of this coordinate system. Therefore, the presumption
that a11 has translational symmetry is an erroneous conclusion
that ignores the intercept that the time-series data have in the
coordinate system (qt , qt+�t ). Therefore, the conclusion that
the simultaneous differential equations do not have a solution
implies the robustness of the proposed framework for the
misestimation of invariant transformation. Even if such a false
symmetry has a solution, its validity can easily be evaluated by
checking whether the estimated conservation law holds with
original time-series data. Therefore, we assume that the pro-
posed framework would not lead to the wrong conclusion. For
a more practical collective motion system [i.e., case (iv)], we
inferred the angular momentum conservation law; the results
thereof are consistent with those of a previous study [43]. The
previous study suggests that angular momentum is conserved
in torus-type swarming patterns. Additionally, the finding of
a conservation law in the collective coordinates, where the
degree of freedom of an individual degenerated and the origin
of the coordinates was the average position and momentum
of the swarm, suggests that a dynamical system with a large
degree of freedom can be reduced to a central force dynamical
system.

In our present study, we dealt only with the case of a
single conservation law. If there are multiple conservation
laws, the number of dimensions of the manifold Da increases,
and Eq. (55) has multiple orthogonal solutions. Theoretically,
the proposed method can still handle such a problem, but the
number of combinations of polynomial regressions [Eq. (57)]
increases exponentially, and the Jacobian matrix is more likely
to be singular. Therefore, it is necessary to develop a more
efficient method of estimating an infinitesimal transformation.
To estimate an infinitesimal transformation, one needs only to
estimate a tangent space around the identity element. Since the
sample is finite, in the proposed method, the manifold formed
by Lie groups is regressed over the entire space. It is expected
that the tangent space can be directly estimated by orthogonal
basis decomposition by introducing various constraints.

In this paper, we verified that the framework is feasible
for simple cases. For example, in case (iii), the angular mo-
mentum conservation law is estimated from the circular orbit
data of a central force potential system. When the coordinate
transformation is limited to linear transformations of SO(2),
a coordinate transformation converting circular orbits into
elliptical orbits cannot be realized. Therefore, the symmetry of
the system related to the angular momentum conservation law
could be estimated by limiting the invariant transformations to
the time-series data of circular orbits only. Similarly, there is
no linear transformation of SO(2) that transforms an elliptical
orbit of one long-axis radius into the elliptical orbit of another
long axis radius. Therefore, by preparing all the time-series
data of orbits with the same long-axis radius and energy, we
may be able to estimate the angular momentum conserva-
tion law using the proposed framework in the same manner
as used in the case of circular orbits. In contrast, because
time-series data for all possible directions of the long-axis are
required, the number of time series data required to estimate

the invariant transformations is much larger than that for cir-
cular orbits, which have no such inherent orientation. In that
case, the computational cost required to extract the invariant
transformations from the trained DNNs by sampling would
be high. Therefore, we would need to improve the method
for applying the proposed framework to the time-series data
of elliptical trajectories. The proposed framework can also be
applied in principle to the estimation of nonlinear invariant
transformations (Appendix I). If the proposed framework is
applied to nonlinear invariant transformations, it should be
possible to estimate the Runge–Lenz vector (Appendix J), a
hidden conservation law in the central force potential sys-
tem. The nonlinear transformation allows transition among
all trajectories containing different long-axis radii. Therefore,
it would be necessary to prepare all time-series data with a
certain energy and apply the proposed framework to them.
From the perspective of computational cost, estimating the
invariance of such nonlinear transformations is more difficult
than estimating the invariance of the matrix transformations of
an elliptic orbit system. In addition, to estimate interpretable
conservation laws, we would need to model nonlinear trans-
formations of appropriate complexity as parametric functions
(Appendix I). This is as difficult as setting up a reduced
coordinate system. These difficulties could be addressed by
incorporating constraints such as the Lie group axioms or the
refinement of candidate coordinate transformations given by
physicists into the proposed framework.

The proposed framework can be understood as a frame-
work for evaluating the reduced coordinate system set by
physicists directly from time-series data. The reduced coordi-
nate system is usually evaluated by comparing a phenomenon
with the model constructed in that coordinate system. There-
fore, the proposed framework could allow the search for a
reduced coordinate system with the desired property in an
exploratory manner from a candidate coordinate system with-
out constructing a model. This should be a great benefit in
modeling complex phenomena where the reduced coordinate
system is nontrivial.

In this paper, to determine the width of the sampling
distribution σ , we proposed a framework for determining a
reasonable σ that provides physicists with the sampling dis-
tributions of multiple σ obtained by REMC. If it is difficult to
determine σ by visualizing sampling distribution D, for exam-
ple, in a case with multiple conservation laws (and therefore a
high-dimensional manifold Minvariant) or a case where we need
to evaluate σ more quantitatively. For these cases, a possible
solution is to apply method 2 of the proposed framework to
estimate the conservation laws of the sampling results for all
possible σ . Using the obtained conservation laws, physicists
would then be able to investigate the appropriate σ using
their physical intuition. Moreover, σ is not only related to
the accuracy of the modeling of data manifolds by DNNs, but
also the coarse-grained scale of the reduced model. Therefore,
the hierarchical structure of a dynamics system should also be
clarified from the estimated conservation laws at various σ

values obtained by the proposed method.
In this study, we used the deep autoencoder to model the

time-series data manifolds; nonetheless, there is no need to
use a deep autoencoder. The only requirement for a machine
learning model is that it has a mapping function that can
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determine whether it is on or outside the manifold. From
this perspective, the deep autoencoder can be replaced with
another type of DNN model, such as a variational autoencoder
[44] or a generative adversarial network [45]. Additionally,
a feed-forward-type DNN, which is widely used in DNN
research, can be used in our proposed method by additionally
training a neural network that reconstructs the input data from
the output layer of the feed forward neural network. The
same method should be feasible for use with machine-learning
models that have mapping functions that embed data mani-
folds into the output space (e.g., the kernel method). Thus,
the proposed framework can potentially extract interpretable
physical knowledge from a wide range of machine-learning
models. Note that the structure of the extracted manifold
changes depending on the DNN model and its training set-
tings. This is because the reduced model acquired inside the
DNN changes depending on the DNN model and the training
settings. How to learn a time-series data set using a certain
DNN model and which training settings to use are understood
as the implicit construction of the reduced model.

In this paper, we have proposed a method for classical
Hamiltonian systems of finite dimensions. We discuss here
the extension of the method to the symmetry of the system
in canonical quantum field theory. In the canonical quantum
field theory, the Hamiltonian is given as

H (φ(x),π(x), x), (94)

where φ(x) is the field, π(x) is the canonical momentum
conjugate of φ(x), and x = (ct, x1, x2, x3) is the Minkowski
space; φ(x) and π(x) satisfy the commutation relation:

[φ(x),π(y)] = iδ(4)(x − y), (95)

[φ(x),φ(y)] = [π(x),π(y)] = 0. (96)

The infinitesimal transformation is given as

�i(X ) = φi(x) + δφi(x), (97)

�i(X ) = π i(x) + δπ i(x), (98)

X i = xi + δxi. (99)

Similar to the nested relations between coordinates and time
in the classical system, the canonical quantum field theory
states that a field and its conjugate momentum have a nested
Minkowski space. Therefore, as in the discussion for classical
systems, the following relation is given as a condition of the
invariant transformation of a Hamiltonian system:

∀E , {φt+�t ,πt+�t ,φt ,πt | H (φt ,πt )

= E , (φt+�t ,πt+�t ) = u(φt ,πt )}
= {�T +�T ,�T +�T ,�T ,�T | H (φt ,πt )

= E , (φt+�t ,πt+�t ) = u(φt ,πt )},
where u is an equation of motion such as the Klein–Gordon
equation of a scalar particle. This equation is the same as
Eq. (25), which suggests that the framework can be ex-
tended to canonical quantum systems. On the other hand,
the Hamiltonian needs to satisfy other conditions, such as
the operator order, resulting from noninterchangeability, or
the renormalizability of operators. Therefore, to extend the

proposed framework to the canonical quantum field theory,
we need to develop a method to achieve symmetry estimation
that satisfies these conditions.

In this paper, we showed that the proposed framework can
infer the hidden conservation laws on a given coordinate of
a complex system from DNNs that have been trained with
the physical data of the system. On the basis of the obtained
results, it is expected that the knowledge of physical data
embedded in the trained DNNs in previous studies and the
knowledge of physicists can be merged. This should acceler-
ate the research on the construction of reduced models.
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APPENDIX A: DERIVATION OF EQUIVALENT
CONDITION TO MAKE HAMILTONIAN INVARIANT

The identity condition H (q, p) ≡ H ′(q, p) has the equiva-
lent expression

∀(q, p), H (q, p) = H ′(q, p). (A1)

This condition can be transformed to an equivalent conditional
expression represented by a set,

∀E , {q, p | H (q, p) = E} = {q, p | H ′(q, p) = E},
(A2)

which is proved in Appendix C. Replacing q, p with
the transformed parameters Q, P does not change the
set: {q, p | H ′(q, p) = E} = {Q, P | H ′(Q, P) = E}.
Therefore, Eq. (A2) is rewritten as

∀E , {q, p | H (q, p) = E} = {Q, P | H ′(Q, P) = E}.
(A3)

From the definition of the transformed Hamiltonian H ′,
H ′(Q, P) := H (q(Q, P), p(Q, P)) = H (q, p) are satisfied.
By substituting these into Eq. (A3), we obtain the target con-
dition equivalent to the identity condition H (q, p) ≡ H ′(q, p)
as

∀E , {q, p | H (q, p) = E} = {Q, P | H (q, p) = E}. (A4)

APPENDIX B: DERIVATION OF EQUIVALENT
CONDITION TO MAKE CANONICAL

EQUATIONS INVARIANT

The identity condition in Eq. (23),

u(qt , pt ) ≡ u′(qt , pt ) ∧ v(qt , pt ) ≡ v′(qt , pt ), (B1)

has the equivalent expression:

∀(qt , pt ), (u(qt , pt ), v(qt , pt )) = (u′(qt , pt ), v′(qt , pt )).

(B2)
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This condition can be transformed to the following equivalent
conditional expression represented by a set:

∀(qt+�t , pt+�t ), {qt , pt | (qt+�t , pt+�t )

= (u(qt , pt ), v(qt , pt ))} = {qt , pt | (qt+�t , pt+�t )

= (u′(qt , pt ), v′(qt , pt ))}. (B3)

The proof of the equivalence of Eqs. (B2) and (B3) is a
multivariable case of the proof described in Appendix C. By
treating qt+�t , pt+�t as a set of elements, we transform the
condition in Eq. (B3) to the equivalent condition (see the proof
in Appendix D):

{qt+�t , pt+�t , qt , pt | (qt+�t , pt+�t )

= (u(qt , pt ), v(qt , pt ))}
= {qt+�t , pt+�t , qt , pt | (qt+�t , pt+�t )

= (u′(qt , pt ), v′(qt , pt ))}. (B4)

Replacing qt , pt , qt+�t , pt+�t with the transformed parame-
ters QT , PT , QT +�T , PT +�T does not change the set:

{qt+�t , pt+�t , qt , pt | (qt+�t , pt+�t )

= (u′(qt , pt ), v′(qt , pt ))}, (B5)

= {QT +�T , PT +�T , QT , PT | (QT +�T , PT +�T )

= (u′(QT , PT ), v′(QT , PT ))}. (B6)

Therefore, Eq. (B4) is rewritten as

{qt+�t , pt+�t , qt , pt | (qt+�t , pt+�t )

= (u(qt , pt ), v(qt , pt ))}
= {QT +�T , PT +�T , QT , PT | (QT +�T , PT +�T )

= (u′(QT , PT ), v′(QT , PT ))}. (B7)

From the definition of the transformed canonical equations
[Eqs. (14) and (15)], we obtain

(QT +�T , PT +�T ) = (u′(QT , PT ), v′(QT , PT )), (B8)

⇔ (qt+�t , pt+�t ) = (u(qt , pt ), v(qt , pt )). (B9)

By substituting this in Eq. (B7), we obtain the target condition
equivalent to the identity condition in Eq. (23) as

{qt+�t , pt+�t , qt , pt | (qt+�t , pt+�t )

= (u(qt , pt ), v(qt , pt ))}
= {QT +�T , PT +�T , QT , PT | (qt+�t , pt+�t )

= (u(qt , pt ), v(qt , pt ))}. (B10)

APPENDIX C: PROOF OF EQ. (A1)⇔EQ. (A2) AND EQ.
(B2)⇔EQ. (B3)

The problem can be abstracted as the proposition below:

∀x, f (x) = g(x) ⇔ ∀E , {x| f (x) = E} = {x|g(x) = E},
(C1)

where f (x) and g(x) are single-valued functions:

Proof of ∀x, f (x) = g(x) → ∀E , {x| f (x)

= E} = {x|g(x) = E}. (C2)

The contrapositive of (C2) is ∃E , {x| f (x) = E} �= {x|g(x) =
E} → ∃x, f (x) �= g(x). This contrapositive is proved as fol-
lows. Since ∃E , {x| f (x) = E} �= {x|g(x) = E}, there exists E ′
and x′, which satisfy f (x′) = E ′, but g(x′) �= E ′. Therefore,
∃x, f (x) �= g(x) is satisfied because :

�

Proof of ∀E , {x| f (x) = E} = {x|g(x) = E} → ∀x, f (x)

= g(x) (C3)

The contrapositive of (C3) is ∃x, f (x) �= g(x) →
∃E , {x| f (x) = E} �= {x|g(x) = E}. This contrapositive is
proved as follows. Select one x′ from x, which satisfies
f (x′) �= g(x′) and f (x′) = E ′. Since f (x) is a single-valued
function, x′ is not included in the set of x that satisfies
g(x) = E ′. Thus, {x| f (x) = E ′} �= {x|g(x) = E ′} holds.
Therefore, ∃E , {x| f (x) = E} �= {x|g(x) = E} is satisfied.

�

APPENDIX D: PROOF OF EQ. (B3)⇔EQ. (B4)

The problem can be abstracted as the proposition below:

∀b, {x| f (x) = b} = {x| g(x) = b} ⇔ {x, b| f (x)

= b} = {x, b| g(x) = b}, (D1)

where f (x) and g(x) are single-valued functions:

Proof of ∀b, {x| f (x) = b} = {x| g(x) = b}
→ {x, b| f (x) = b}

= {x, b| g(x) = b}. (D2)

The contrapositive of (D2) is {x, b| f (x) = b} �= {x, b| g(x) =
b} → ∃b, {x| f (x) = b} �= {x| g(x) = b}. This contrapositive
is proved as follows. Since {x, b| f (x) = b} �= {x, b| g(x) =
b}, there is a set of x′ and b′, which satisfies f (x′) = b′ and
g(x′) �= b′. Therefore, {x| f (x) = b′} �= {x| g(x) = b′} holds. It
means that ∃b, {x| f (x) = b} �= {x| g(x) = b} is satisfied.

�

Proof of {x, b| f (x) = b} = {x, b| g(x) = b}
→ ∀b, {x| f (x) = b}

= {x| g(x) = b}. (D3)

The contrapositive of (D3) is ∃b, {x| f (x) = b} �= {x| g(x) =
b} → {x, b| f (x) = b} �= {x, b| g(x) = b}. This contrapositive
is proved as follows. Since ∃b, {x| f (x) = b} �= {x| g(x) = b},
there is a set of b′ and x′, which satisfies f (x′) = b′ and
g(x′) �= b′. Therefore, {x, b| f (x) = b} �= {x, b| g(x) = b} is
satisfied.

�

APPENDIX E: REPLICA EXCHANGE MONTE CARLO
(REMC) METHOD AND ITS PARAMETERS

Using A′ := (a11, a12, a21, · · · , a2d 2d ), we reexpress
Eq. (47) as

P(A′) = 1

Z
exp

[
− N

2σ 2
Esamp(A′)

]
q(A′). (E1)
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TABLE II. Parameters of REMC method.

Parameter name (i) Half sphere (ii) Constant velocity (iii) Central force (iv) Collective motion

Sampling size, Na 10,000 50 000 10 000 10 000
L 20 30 30 30
γ 1.4 1.9 1.4 1.4
C [CA/CA0 ] 3.0/0.3 0.03/0.3 0.3/0.03 0.3/0.03
d 0.6 0.7 0.8 0.8
e 5.0 1.0 5.0 5.0
σmin 4.42 × 10−2 5.41 × 10−5 1.67 × 10−1 8.0
Burn-in length 10.000 50,000 10,000 10,000
Selected noise intensity, σ 3.32 × 10−1 5.80 2.92 3.83 × 102

The REMC method takes samples from the joint density,

P(A′1, · · · , A′l , · · · , A′L )

=
L∏

l=1

1

Z
exp

[
− N

2σ 2
l

Esamp(A′)
]

q(A′), (E2)

where σl > σl+1 and σL = σ . In the REMC method, sampling
from the joint density P(A′1, · · · , A′l , · · · , A′L ) is performed
on the basis of the following updates:

(1) Sampling from each density P(A′1, · · · , A′l , · · · , A′L ).
Sampling A′l from P(A′l ) := 1

Zl
exp [− N

2σ 2
l

Esamp(A′l )]q(A′),
where Z ′ is the normalization constant. The sampling is per-
formed by a conventional Monte Carlo method, such as the
Metropolis–Hastings algorithm [46].

(2) Exchange between two densities corresponding to
noise intensity σ .

The exchanges between the configurations A′l and A′l+1

correspond to adjacent inverse temperatures following the
probability R = min(1, r), where

r = P(A′1, · · · , A′l+1, A′l , · · · , A′L )

P(A′1, · · · , A′l , A′l+1, · · · , A′L )

= P(A′l+1)P(A′l )
P(A′l )P(A′l+1)

= exp
{N

2

[
σ−2

l+1 − σ−2
l

][
E (A′l+1) − Esamp(A′l )

]}
.

Sampling from a distribution with a larger σl tends not to
have a local minimum. Hence, sampling from the joint density
P(A′1, A′2 · · · A′L ) overcomes the local minima in distributions
with small σl and enables the rapid convergence of sampling.

For the execution of EMC sampling, we adopted the
Metropolis–Hastings algorithm [46] to sample each state of
σl . When we performed the Metropolis–Hastings sampling, a
candidate for the next sample al next

i j is picked from the condi-

tional probability distribution with the precondition al previous
i j ,

P
(
al next

i j |al previous
i j

) = 1

2Ul

( − Ul � al next
i j � Ul

)
, (E3)

where Ul is set as

Ul =
{

C
(
eNσ−2

l � 1
)

C(
eNσ−2

l

)d

(
eNσ−2

l < 1
)
. (E4)

C, d , and e in Eq. (E4) are set as Table II for the evaluation
of the proposed method in Sec. IV. The sampling parameters
C of A and A0 were set as different values [the values are
described as (C of A)/(C of A0) in the column for constant
velocity (ii) in Table II]. Each state of σl was determined
following the exponential function [47]:

σ−2
l =

{
0.0 (l = 1)
σ−2

minγ
(l−1)−L (l �= 1),

(E5)

where σmin is set as the root-mean-square error for A = I in
the trained DNN because it represents the minimum value of
Esamp. L and γ are set as shown in Table II for each case.

APPENDIX F: NOISE INTENSITY OF SAMPLING

Depending on the difference in σ , the sampling results
corresponding to low MSE and the sampling results cor-
responding to high MSE are obtained [Fig. 8(a)]. In the
low-MSE region, the transformation matrix corresponding to
the identity mapping is sampled [Fig. 8(b)]. In the high-MSE
region, the transformation matrix corresponding to the ro-
tation matrix is sampled [Fig. 8(d)]. At intermediate noise
intensities, sampling between both conditions is achieved
[Fig. 8(c)]. On the basis of such a structure, in this research,
we select the noise intensity σ that looks like it will obtain
the nonidentity transformation and a continuously connected
distribution, such as σ = 3.452 of Fig. 8. Thus, in this pro-
posed framework, we determine the σ through qualitative
considerations based on the sampling results of multiple σ

obtained in REMC. In the demonstration case of this study, we
qualitatively determined σ by focusing on the nonidentity fea-
ture, but we could also focus on other features. In the proposed
framework, we propose to provide physicists with sampling
results of multiple σ instead of a specific σ determination
method. For the evaluation of the proposed method in Sec. IV,
we select the noise intensity σ for each evaluation case, as
shown in Table II.

APPENDIX G: ESTIMATION OF LIKELIHOOD FOR THE
MODEL SELECTION

Under the assumption that Na samples of transformation
are given with Gaussian noise, the following likelihood is
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defined for a statistical selection of implicit function:

P(�b1, �b2, · · · , �bNa ) =
Na∏

na=1

1

Z
exp

{
− 1

2σ 2
b

D
[�bna , f

(
ck, b1, b2, · · · , bd ′

θ
; β, γ , d ′

θ

)]2
}
, (G1)

Z =
∫ ∞

−∞
d �bna exp

{
− 1

2σ 2
b

D
[�bna , f

(
ck, b1, b2, · · · , bd ′

θ
; β, γ , d ′

θ

)]2
}

q
(�bna

)
, (G2)

σb =
{

1

Na

Na∑
na=1

D
[�bna , f

(
ck, b1, b2, · · · , bd ′

θ
; β, γ , d ′

θ

)]2

} 1
2

, (G3)

�bna = (
ck, b1, b2, · · · , bd ′

θ

)
na

, (G4)

where D[�bna , f (ck, b1, b2, · · · , bd ′
θ
; β, γ , d ′

θ )] is the minimum

distance from a data point �bna to a subspace defined by the im-
plicit function f (ck, b1, b2, · · · , bd ′

θ
; β, γ , d ′

θ ) = 0, and q(�bna )
is set corresponding to the constraints of the transformation
q(A′), in Eq. (47). The normalized constant Z is estimated
numerically as the Riemann sum.

APPENDIX H: DNN MODEL AND ITS
TRAINING PARAMETERS

In this Appendix, we describe the DNN models and their
training settings.

In this paper, we used deep autoencoders as DNN models.
In cases (i)–(iv), the DNNs consisted of an input layer, three
hidden layers, and an output layer. The number of nodes

FIG. 8. Qualitative transition of sampling results due to the
increase in noise intensity. The figures describe the qualitative tran-
sition of the case (iii) central force system where rotation symmetry
exists. (a) Distributions of MSE with different noise intensities. (b)–
(d) Sampling results of a11 and a21 at each noise intensity.

in each layer was set as shown in the network structure in
Table III.

The activation functions of the deep autoencoders were set
as the sigmoid or hyperbolic tangent functions, as shown in
the activation function in Table III. The sigmoid function is
defined as

sigmoid(x) = 1

1 + exp(−x)
(H1)

and the tanh function is defined as

tanh(x) = exp(x) − exp(−x)

exp(x) + exp(−x)
. (H2)

The numbers of samples used for training DNN are shown
in Table III as training data size N . The Adam method [51]
was used for training. The training iterations are shown in
Table III. For training, the data were divided into minibatches
whose sizes are shown in Table III as minibatch size.

As mentioned in the main text, the proposed framework
assumes that the network structure and training parameters of
the DNN are given by a physicist. In the demonstrations of
this study, as a physicist, we set the network structure and
learning parameters of the DNN model using the following
considerations and procedures.

Step 1:We determined the number of nodes in the center
layer corresponding to the dimensions of the data manifold.

Case (i):In this case, we generated the data so the dimen-
sion of the manifold is two, so we used two nodes.

Cases (ii) and (iii):For these cases, we assumed that the
system has no multiple scales of motion. This means that the
dimension of the manifold is clearly determined as a single
value. Therefore, we expect the data manifold reconstruction
error obtained by the DNN to be clearly larger when the
number of nodes is lower than the dimension of the manifold.
When we reduced the number of nodes under this assumption,
a sufficiently small error was realized even the number of cen-
ter nodes was one. Specifically, in case (ii), the reconstructed
mean squared root error (MSRE) was 8.35 × 10−4 for the
input data with a value range of O(1), and in case (iii), the
MSRE was 1.67 × 10−1 for the input data with a value range
of about O(10). Thus, we set the number of nodes in the center
layer to one.

Case (iv):In this case, we set the number of nodes in the
middle layer to one based on the assumption that the motion
of case (iv) is analogous to that of case (iii).
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TABLE III. Parameters of DNN and its training. In the network structure, the number of nodes is shown in the order from left to right:
input layer–first layer–second layer–third layer–output layer.

Parameter name (i) Half sphere (ii) Constant velocity (iii) Central force (iv) Collective motion

Training data size N 1671 1000 1000 5000
Network structure 3-10-2-10-3 4-10-1-10-4 8-20-1-20-8 8-20-1-20-8
Activation function sigmoid tanh sigmoid sigmoid
Training algorithm Adam Adam Adam Adam
Training iteration 50 000 100000 50 000 50 000
Minibatch size 10 30 10 10
Library theano [48,49] scikit-learn [50] theano theano

Step 2:Based on the number of nodes in the center layer
given in step 1, we tuned the number of DNN layers, number
of nodes in the other intermediate layers, or learning parame-
ters to minimize the reconstruction error.

Step 3:We determined the whole network structure and
training parameters of the DNN by feeding the results of step
1 and step 2 to each other.

APPENDIX I: APPLICABILITY OF THE METHODS TO
MORE GENERAL COORDINATE TRANSFORMATIONS

1. Method 1 for general coordinate transformations

In this paper, we presented an explanation of the method
for a matrix representation of Lie groups. The method can
be applied in principle to a wide range of Lie group real-
izations including nonlinear coordinate transformations. In
this Appendix, we discuss method 1 for this wide range of
transformation functions. The set of expected invariant trans-
formations is defined as follows in Eq. (43):

Minvariant := {
QSi (·, ·, θ),PSi (·, ·, θ)| θ ∈ Rdθ

}
. (43)

In the main paper, we set the transformation function
QSi (·, ·, θ),PSi (·, ·, θ) as the matrix transformation function,
but the transformation function can also be set as an otherwise
complex transformation function, such as a nonlinear func-
tion. In such a case, because QSi (·, ·; θ), PSi (·, ·; θ) are usually
unknown, we infer them to be a subset of a parametric func-
tion set {Q(·, ·; a), P(·, ·; a)| a ∈ Rda}, where da � dθ . This
function can be complex enough to contain a true transfor-
mation function, but it will be more difficult to determine the
subset from the finite data. Moreover, significant difficulties
arise when applying method 2. This will be discussed further
in the next Appendix section.

Similar to the matrix transformation case in the main text,
the subset of the true transformation function Minvariant is iden-
tified using the trained DNN as

Minvariant ∼ {Q(·, ·; a), P(·, ·; a)| argmin
a

Esamp

× [Q(·, ·; a), P(·, ·; a)]}, (I1)

Esamp[Q(·, ·; a), P(·, ·; a)] = 1

N

N∑
i=1

{[Q(·, ·; a), P(·, ·; a)]

− fDNN[Q(·, ·; a), P(·, ·; a)]}2.

(I2)

Next, the invariant transformation is obtained by sampling an
element a j of the parameter vector a following the probability
distribution, as in the matrix transformation case

P(a1, a2, a3, · · · , ada )

= 1

Z
exp

{
− N

2σ 2
Esamp[Q(·, ·; a), P(·, ·; a)]

}
. (I3)

2. Method 2 for general coordinate transformations

From the Na sampling results of Eq. (I3), Da :=
{(a1, a2 · · · ada )na}Na

na=1, the infinitesimal transformations are
estimated as follows.

Assuming that a is a differentiable function of θ: a(θ),
Rdθ → Rda , we can estimate Minvariant as

Minvariant = {
Q(·, ·; a(θ)), P(·, ·; a(θ))| θ ∈ Rdθ

}
. (I4)

The set of invariant transformations Minvariant forms a Lie
group, as we mentioned in Sec. II A. Therefore, Minvariant

constructs a dθ -dimensional differential manifold in the co-
ordinate space of θ. The infinitesimal transformation is
estimated as the tangent vector of the manifold at θ = 0 as
follows:

(δql , δpl ) = ε

(
∂Q(q, p; a(θl ))

∂θl

∣∣∣∣
θl =0

,
∂P(q, p; a(θl ))

∂θl

∣∣∣∣
θl =0

)
.

(I5)
Because a is a differentiable function of θ, the tangent vector
is given as

(δql , δpl ) = ε

(
da∑

k=1

∂Q(q, p; a)

∂ak

∂ak (θ)

∂θl

∣∣∣∣
θ=0

,

×
da∑

k=1

∂P(q, p; a)

∂ak

∂ak (θ)

∂θl

∣∣∣∣
θ=0

)
. (I6)

Because functions Q and P are defined explicitly, their deriva-
tions, ∂Q(q,p;a)

∂ak
and ∂P(q,p;a)

∂ak
, can be obtained analytically.

Therefore, we should only estimate ∂ak (θ)
∂θl

|
θ=0

to obtain the
infinitesimal transformation. Additionally, as for the linear-
transformation case in the main text, if ak can be regressed
around θ = 0 as a first-order polynomial of {θl}dθ

l=1, the con-
servation law can be inferred without approximation.

Because a(θ) is defined as a differentiable function, set
{a|θ ∈ Rdθ } constructs a dθ -dimensional manifold structure in
coordinate space a. The implicit function representation of the
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manifold is defined as⎧⎨
⎩

f1
(
a1, · · · , ada

) = 0
...

fda−dθ

(
a1, · · · , ada

) = 0.

(I7)

The Jacobian matrix of fk for the parameters of subset
a, (b1, b2, · · · , bdθ

) ⊂ a, is defined as Jkl = ∂ fk (a1,··· ,ada )
∂bl

.
If the Jacobian matrix at aid becomes nonsingular,
from the implicit function theorem, variables other than
(b1, b2, · · · , bdθ

), {ck}da−dθ

k=1 := A′ \ {bl}dθ

l=1, can be expressed
as ck = gi(b1, · · · , bdθ

). This means that θ can be replaced
by b. In this case, ∂ak (θ)

∂θl
|
θ=0

is estimated as the tangent vector
∂ak (b)
∂bl

|
a=aid

at identity map

aid ∈ {a|Q(·, ·; a) = q, P(·, ·; a) = p}. (I8)

This implies that, around eI, the implicit equations in Eq. (I7)
representing the manifold Minvariant can be decomposed into
the following d ′ − dθ simultaneous equations:⎧⎨

⎩
h1

(
c1, b1, · · · , bdθ

) = 0
...

hd ′−dθ

(
cd ′−dθ

, b1, · · · , bdθ

) = 0,

(I9)

where bl corresponds to the continuous parameter θl of contin-
uous transformation [Q(q, p, θ),P(q, p, θ)]. Differentiating
these equations with respect to bl around a point eI yields
d ′ − dθ simultaneous partial differential equations:⎧⎪⎨

⎪⎩
∂

∂bl
h1

(
c1, b1, · · · , bdθ

)∣∣
A′=eI

= 0
...

∂
∂bl

hd ′−dθ

(
cd ′−dθ

, b1, · · · , bdθ

)∣∣
A′=eI

= 0.

(I10)

Solving these simultaneous partial differential equations gives
the tangent vector ∂a(bl )

∂bl
|
a=aid

of the manifold at aid. Thus, if
hk can be regressed with the sampling result Da as the polyno-
mial of {bl}dθ

l=1, the conservation law can be inferred. Thus, we
can estimate the infinitesimal transformation (δql , δpl ) from
the sampling result Da.

Thus, in principle, the method can be applied to general
coordinate transformations other than the matrix representa-
tion of the Lie group, which we describe in the main text.
However, it is difficult to prepare a set of parametric functions
{Q(·, ·; a), P(·, ·; a)| a ∈ Rda} that contains the set of true
invariant transformations Minvariant because the true invariant
transformation set is unknown. Even if Q(·, ·; a), P(·, ·; a)
could be prepared to include the true invariant transforma-
tions, it is not guaranteed that the function’s parameters a
satisfy the conditions to be parameters θ of the Lie group,
that is, the Jacobian Jkl = ∂ fk (a1,··· ,ada )

∂bl
becomes nonsingular.

For example, a complex model with a high functional rep-

resentation capability such as a DNN or a Gaussian process
model would address the problem of including the true invari-
ant transformations, but it is difficult to estimate the model
parameters a of such a complex model from finite data. In
addition, the number of parameters in such models can be
enormous, which makes the computational cost extremely
high to find the parameter set b at which the Jacobian Jkl

becomes nonsingular.

APPENDIX J: LAPLACE–RUNGE–LENZ VECTOR
AND SYMMETRY

Consider the motion of the central force potential in six-
dimensional phase space: (q, p) = (q1, q2, q3, p1, p2, p3). In
this system, the Laplace–Runge–Lenz vector [52,53]

�A = p × L − mG
q

||q||2 , (J1)

L = q × p (J2)

is conserved. The Laplace–Runge–Lenz vector corresponds to
the SO(4) symmetry in the coordinate space (q̃, q̃4, p̃, p̃4) =
(q̃1, q̃2, q̃3, q̃4, p̃1, p̃2, p̃3, p̃4), defined as

q̃= q̃(q, p) := q
||q||2 − q · p

mG
p, q̃4 = q̃4(q, p) := p0

mG
q · p,

(J3)

p̃= p̃(q, p) := 2p0p
p2

0 + p2
, p̃4 = p̃4(q, p) := p2 − p2

0

p2
0 + p2

, (J4)

where p0 = √−2mE . The transformed coordinate satisfies
the conditions q̃2 + q̃2

4 = 1, p̃2 + p̃2
4 = 1, and q̃ · p̃ + q̃4 p̃4 =

0. Let us assume that the matrix representation of SO(4) is
given by A. Moreover, assume the transformation is repre-
sented as q̃′T = Aq̃T and p̃′T = Ap̃T .

We investigate the correspondence between the 4 × 4 ma-
trix representation A of the SO(4) symmetry in (q̃, p̃) space
and the coordinate transformation in (q, p) space. Because the
inverse of the coordinate transformation is given by

q = q(q̃, q̃4, p̃, p̃4) = − G

2E
[(1 − p̃4)q̃ + q̃4p̃], (J5)

p = p(q̃, q̃4, p̃, p̃4) = √−2mE
p̃

1 − p̃4
, (J6)

the transformation of SO(4) in the original space becomes

Q(q̃, q̃4, p̃, p̃4) = q(Q̃, Q̃4, P̃, P̃4), (J7)

P(q̃, q̃4, p̃, p̃4) = p(Q̃, Q̃4, P̃, P̃4), (J8)(
Q̃t

Q̃4

)
= A

(
q̃t

q̃4

)
,

(
P̃t

P̃4

)
= A

(
p̃t

p̃4

)
. (J9)

This is an example of symmetry realized by a nonlinear trans-
formation function.
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