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Kinetic study of quantum two-stream instability by Wigner approach
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Classical plasma are typically of low density and/or high temperature. Two of its basic properties are Landau
damping and two-stream instabilities. When increasing the plasma density, quantum effects appear and beam-
plasma interactions show behavior different from the classical cases. We revisit Landau damping and two-stream
instabilities under conditions when quantum hydrodynamic and quantum kinetic theory can be applied, the latter
accounting for wave-particle interactions. We find that the instability growth rate behaves as pure two-stream
instability without Landau damping when the countering stream velocity exceeds a certain threshold, which
differs from the classical case.
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I. INTRODUCTION

High energy density physics (HEDP), especially the warm
dense matter (WDM) or hot dense matter (HDM) regimes
[1–5], has received attention in recent years. WDM or HDM
widely exists in inertial confinement fusion [6–8], and (labo-
ratory) astrophysics studies [9–11], with temperatures of 1 ∼
100 eV and density of 0.1 ∼ 10 solid densities. However, due
to the significantly higher temperatures when compared with
the condensed matter state and high densities, many properties
of WDM or HDM are not well studied.

Two basic properties of a plasma are Landau damping and
two-stream instability. Landau damping [12] defines “kinetic”
effects of the kind of wave-particle interaction, while two-
stream instability represents the excitation of oscillations of
charged particles in plasma. In most cases, the two-stream
instability cannot be treated as a pure fluid instability since
plasmas in reality always have velocity distributions departing
from thermal equilibrium, which means that the kinetic effects
exist. Although extensively investigated in ideal plasmas [13],
under the WDM or HDM regime, such properties are seldom
studied. In this case, instabilities differ from classical plasmas
in two respects: (1) the equilibrium distribution function be-
comes Fermi-Dirac instead of Maxwellian; (2) the quantum
mechanical feature, i.e., the wave-like behavior, of the single-
particle wave duality becomes relevant.

An investigation of dense plasma starts from the pio-
neering works of Bohm and Pines [14,15] who utilized the
random phase approximation (RPA) approach in calculating
the dynamic response of degenerate plasmas. Under classi-
cal plasmas, the RPA approach reproduces the Bohm-Gross
wave (BG) with Landau damping, and for degenerate plasmas,
one obtains its quantum counterparts. Bonitz summarized
the quantum effects in three-dimensional systems [16–19].
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Vladimirov gave an analytical description of collisonless
quantum plasma [20]. Manfredi and Haas established the
quantum hydrodynamics (QHD) theory [21]. Ren and Wu
discussed the multistream instability in quantum magne-
tized hot plasmas based on QHD [22]. Haas gave the fluid
expression form of quantum two-stream instability, proved
that the effective Schrodinger-Poisson system (QHD) is a
good approximation to the complete Wigner-Poisson sys-
tem (QKT) for long wavelengths, analyzed the nonlinear
process via QHD, and revised QHD under consideration
of exchange-correlation effects [23–25]. Kull discussed the
quantum two-stream instability with exchange interaction
via time-dependent two-coupled Schroedinger equations [26].
Akbari-Moghanjoughi compared the difference between fluid
approximation and the dynamic limit of the Wigner-Poisson
equation [27–29]. Son discussed the difference between clas-
sical and quantum cases through the Lindhard description and
gave a conclusion that the kinetic approach was more accurate
than QHD in studying two-stream instability [30].

However, most of these finished works are based on
QHD, which ignores the wave-particle interactions. There-
fore, they are not suitable for extension to the high-energy
density regime where high temperatures can significantly af-
fect wave-particle interactions and instabilities. The Lindhard
description in [30] applies to Fermi gas at zero temperature
and does not consider the temperature effects in detail.

In this paper, we revisit the Landau damping and two-
stream instability by using both QHD and QKT theories. The
quantum Landau damping and two-stream instabilities are
here revisited at both the low temperature limit and WDM
regions by using quantum hydrodynamic and quantum kinetic
theories, with the later taking into account wave-particle in-
teractions. WDM typically involves other nonideal effects,
such as exchange-correlation effects, collision effects, and so
on. In this paper, we apply an ideal Fermi-distribution based
Wigner approach to simplify research in the high energy den-
sity regime. The similarity and discrepancy of the damping
rate of Langmuir Wave between high energy density and

2470-0045/2021/103(3)/033207(8) 033207-1 ©2021 American Physical Society

https://orcid.org/0000-0003-1360-8018
https://orcid.org/0000-0002-3223-2469
https://orcid.org/0000-0001-5738-5739
https://orcid.org/0000-0002-9745-5727
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.033207&domain=pdf&date_stamp=2021-03-29
https://doi.org/10.1103/PhysRevE.103.033207


LIANG, HU, WU, AND SHENG PHYSICAL REVIEW E 103, 033207 (2021)

classical plasmas are significantly compared and explained.
Specifically, we find the plasma growth rate behaves as pure
two-stream instability without Landau damping when the
countering velocity exceeds a certain threshold, which is dif-
ferent from the classical case.

The article is organized as follows. In Sec. II, we give
a brief introduction to QKT and QHD and summarize the
previous results of two-stream instability under the QHD
model. In Sec. III, we take the Lindhard function [31] and give
the influence of quantum Landau damping on the dispersion
relation, and then we study the property of quantum plasma
depending on the system density and temperature. In Sec. IV,
we consider the two-stream instability by using QKT theory,
and give an explanation for the theoretical difference with

the QHD model. Finally, we compare the effects of quantum
dissipative instability under different system parameters. A
summary and discussion are given in Sec. IV.

II. BRIEF REVIEW OF QKT AND QHD

We here give a brief introduction of QKT and QHD.
Following the introduction, the existing work on two-stream
instabilities based on QHD is also introduced.

A. Quantum kinetic theory

Quantum kinetic theory (QKT) [32] starts from the Wigner
function [33]

(
∂

∂t
+ p · ∇R

m

)
f (p, R, t ) = 1

ih̄

∫∫
drdp′

(2π h̄)3
exp

(
i(p − p′) · r

h̄

)
[Ueff(R + r/2, t )− Ueff(R − r/2, t )] f (p′, R, t ), (1)

where the quantum distribution f (p, R, t ) is expressed in terms of a Schrödinger wave function, ψα (R, t ), which is characterized
by a probability pα satisfying

∑N
α=1 pα = 1:

f (p, R, t ) =
N∑

α=1

pα

∫
dp

(2π h̄)3
exp

( ip · r
h̄

)
× ψ∗

α (R + r/2, t )ψα (R − r/2, t ). (2)

Here Ueff is the potential field. Combined with Poisson’s equation in integral form

Ueff(R, t ) = U (R, t ) +
∫

dR′V (R − R′) ×
∫

dp′

(2π h̄)3
f (p′, R, t ), (3)

where V represents the Coulomb interaction, one obtains the
linear longitudinal dielectric function

ε(k, ω) = 1 + uk

∑
s

χs(k, ω), (4)

where uk = 4πe2/k2 the Fourier components of V (R) and χs

the density response to the electric field in the form [14,15]

χ c
s (ω, k) =

∫
d3v

k · ∂ fs/∂v

ω − k · v
, (5)

χq
s (ω, k) =

∫
dp

(2π )3

fs,p− 1
2 k − fs,p+ 1

2 k

ω − h̄k · p/m
(6)

under classical and quantum conditions, respectively. Com-
paring Eqs. (5) and (6), the quantum density response can be
reduced to the classical in the long-wavelength approxima-

tion. In the high damping region, the wave decays rapidly and
does not contribute to transport. Therefore, it is appropriate
to apply the weakly damped approximation when analyzing
transport properties.

In the low temperature limit the Fermi distribution reduces
to a step function and the real and imaginary parts of the
density response become

Re
(
χq

s

) = mkF

2π2h̄

{
1− 1

2k̃

[
1 −

(
ω̃

k̃
− k̃

2

)2]
ln

∣∣∣∣∣1 + (
ω̃

k̃
− k̃

2

)
1 − (

ω̃

k̃
− k̃

2

)
∣∣∣∣∣

+ 1

2k̃

[
1 −

(
ω̃

k̃
+ k̃

2

)2]
ln

∣∣∣∣∣1 + (
ω̃

k̃
+ k̃

2

)
1 − (

ω̃

k̃
+ k̃

2

)
∣∣∣∣∣
}

(7)

Im(χq
s ) =

⎧⎪⎨
⎪⎩

−mkF

h̄2
1

4π k̃
2ω̃, with (ω̃/k̃ + k̃/2) < 1,

−mkF

h̄2
1

4π k̃

[
1 + (

ω̃

k̃
− k̃

2

)2]
, with

∣∣ω̃/k̃ − k̃/2
∣∣ < 1 < (ω̃/k̃ + k̃/2),

0, with
∣∣ω̃/k̃ − k̃/2

∣∣ > 1.

Here ω̃ = ω/(h̄k2
F/m) is the normalized frequency and k̃ =

k/kF is the normalized wave number [31]. In the limit ω̃ �
k̃, like for Langmuir waves in classical plasmas, we get the

dispersion relation [34]

ωLW(k) =
(

ω2
p + 〈v2〉k2 + h̄2k4

4m2
e

)1/2

. (8)
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For degenerate fermions, one has, of course,

〈v2〉 = 3

5

( pF

m

)2
, (9)

with pF = h̄kF = h̄(3π2n)1/3 the Fermi momentum.

B. Quantum hydrodynamics

Quantum hydrodynamics equations trivially follows the
Wigner-Poisson equations

∂n

∂t
+ ∇ · (nu) = 0, (10)

∂u
∂t

+ u · ∇u = e

m
∇	 − 1

mn
∇P, (11)

with definitions of the density, velocity, and pressure [21]

n =
∫

dp
(2π h̄)3

f (p, R, t ), (12)

u = 1

nm

∫
dp

(2π h̄)3
p f (p, R, t ), (13)

P = m
∫

dp
(2π h̄)3

(v2 − u2) f (p, R, t ). (14)

The pressure can be separated into classical and quantum
parts. The second of which can be written as

PQ = − h̄2

2m
[(∇√

n)2 − √
n∇2√n] (15)

whose gradient divided by particle density, −∇PQ/n =
−h̄2∇(∇2√n/2m

√
n), is the Madelung term [35], and WB =

−h̄2∇2√n/2m
√

n is the Bohm potential [14,15].
Linearizing in the long-wavelength range, we obtain the

linear classical and quantum unified dispersion relation of
Langmuir waves Eq. (8).

C. Two-stream instability in QHD

Studying collective effects such as fast ignition and white
dwarfs in the quantum regime, we are interested in two-stream
instabilities.

Ignoring kinetic effects and adopting the QHD approach
[24], we have in this case

1 − ω2
pe

(ω + k · u0)2 − ω2
u

− ω2
be

(ω − k · u0)2 − ω2
u

= 0, (16)

where ωpe = ωbe = ωp for the two-stream case. The differ-
ent considerations lead to different values of ωu: (1) the
classical zero temperature case, ω2

u = 0; (2) the classical
Fermi distribution case, ω2

u = 〈v2〉k2 with 〈v2〉 = (3/5)v2
F;

and (3) the quantum condition, ω2
u = 〈v2〉k2 + h̄2k4/4m2

e . As
expected, the expression of the dispersion relation is also
naturally consistent with the QKT Langmuir wave under
the long-wavelength approximation. Now we can expand
the expression into polynomial form (ω2 + k2u2

0 − ω2
u )2 −

4k2u2
0ω

2 − 2(ω2 + k2u2
0 − ω2

u )ω2
p = 0. Then we obtain the so-

lution

ω2 = ω2
p + ω2

u + k2u2
0 ± [

ω4
p + 4k2u2

0

(
ω2

p + ω2
u

)]1/2
. (17)

It has two branches, one is a stable solution with ω2 > 0 and
the other is an unstable solution with ω2 < 0. The unstable
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FIG. 1. Growth rates of different conditions at countering drift
u0 = 1.15vF, with parameters Te = 0 and np = nb = 1024cm−3.

solution satisfies(
k2u2

0 − ω2
u

)(
2ω2

p + ω2
u − k2u2

0

)
< 0. (18)

(1) In the classical zero temperature case, ω2
u = 0, insta-

bility region always exists. The unstable wave number interval
is k <

√
2ωp/u0.

(2) For the classical Fermi distribution, we have ω2
u =

〈v2〉k2. In this case, there is an instability threshold u2
0 > 〈v2〉.

The two-stream instability emerges when the countering drift
velocity exceeds the thermal velocity [36,37]. The unstable
region satisfies k <

√
2ωp/(u2

0 − 〈v2〉)1/2.
(3) Under quantum conditions, we have ω2

u = 〈v2〉k2 +
h̄2k4/4m2

e . The threshold is the same as in the second case,
u2

0 > 〈v2〉. When 〈v2〉 < u2
0 < 〈v2〉 + √

2h̄ωp/m, the insta-
bility region satisfies k < 2mU 1/2/h̄ where U = u2

0 − 〈v2〉.
When u2

0 > 〈v2〉 + √
2h̄ωp/m, a new stable region [ka, kb]

appears:

k2
a,b = (2m2/h̄2)

[
U ± (

U 2 − 2h̄2ω2
p/m2)1/2]

. (19)

At zero temperature U = v2
0 − 3/5v2

F.
Figure 1 shows that the effects of temperature or Fermi dis-
tribution enlarge the area of two-stream instability, while the
maximum growth rate decreases. Comparing the second and
third cases, we find that quantum correction expands the insta-
bility interval and simultaneously forms a new stable region in
it, thereby splitting it into two growth intervals.

III. LANDAU DAMPING

In this section, we compare the quantum Landau damping
with both QKT and QHD theories. QHD is a fluid theory
which ignores the wave-particle interactions. In comparison,
QKT is a more complete theory.

According to Eq. (8), when compared with the disper-
sion relation of classical Langmiur waves, ω(k) = (ω2

p +
〈v2

th〉k2)1/2, the Fermi distribution, promotes particles to fill
the lowest energy levels and provides the system a minimum
average kinetic energy. For this reason, there is no absolute
“cold” plasma at low temperature limits. There is another
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FIG. 2. Real dispersion relation of longitudinal oscillations of a
degenerate electron gas by QKT with Te = 0 and ne = 1024cm−3.
Here a is the optical mode and b is the acoustic mode. kc and kd

represent, respectively, damping turning points of two modes. ω± =
h̄k/2m(2kF ± k) is the kinetic resonance frequency for particles on
Fermi sphere [20].

wave structure called electron acoustic wave (EAW), which
is certainly nonlinear and strongly damped, but can still ex-
ist in a plasma. In a classical plasma [38], its frequency is
ω = 1.31kvth for small k, which is related to thermal pres-
sure. Therefore, EAWs will not disappear at low temperature
conditions, which is different from the classical plasmas.

Consider the limit that k̃ (k̃ > 0) approach zero and
ω̃/k̃ has a finite value. According to the approximation
ln|1 − ( ω̃

k̃
± k̃

2 )| ≈ ln|1 − ω̃

k̃
| ± k̃

2|1− ω̃

k̃
| + O(k̃2), we expand

the real part of Eq. (7), and the ω̃/k̃ relation of quantum
electron acoustic waves satisfies

− ω̃

k̃
ln

∣∣∣∣∣1 + ω̃

k̃

1 − ω̃

k̃

∣∣∣∣∣ + 2 = 0. (20)

The dispersion relation of EAWs under quantum conditions is
ωEAW ≈ 0.834kvF.

Using Eqs. (7) and (8), we can get the real solution of
dispersion relation and obtain the weak damping rates

γ = −εI(k, ωR)/(∂εR/∂ω)ωR
. (21)

Figure 2 shows the resonance curve ω+(k) in the ω − k
plane. For the waves whose phase velocity is greater than
Fermi velocity, there are no particles satisfying the velocity
condition and hence no particle can resonance with waves and
contribute to Landau damping. The intersection of the optical
mode and resonance curve ω+(k) indicates a turning point
kc which shows Landau damping occurs for the part k > kc

of the optical mode. Another turning point kd exists at the
intersection of the acoustic mode and resonance curve ω−(k).
However, unlike the optical mode, the acoustic mode is always
damped.

Let us consider the influence of electron density on disper-
sion relation of the degenerate system. As shown in the Fig. 3,
it is obvious that the optical mode approaches the classical
electron Langmuir waves as density decreases. Another im-
portant point is that the acoustic mode approaches the k axis
simultaneously and deviates from the kinetic resonance fre-
quency (ω−), which is consistence with the classical condition
at low density limit.

The dissipative undamping region limit kc of the optical
mode is a parameter which shows the difference between
quantum condition and classical condition. The formation of
the undamping region is due to the steep edge of the Fermi-
Dirac distribution [20], which is different from the undamping
region based on Debye shielding at classical condition. The
normalized kinetic resonance frequency is

ω±

ωp
= h̄k2

F

2mωp

(
2

k

kF
± k2

k2
F

)
= εF

h̄ωp

(
2

k

kF
± k2

k2
F

)
, (22)

which can be derived from the imaginary part of Eq. (7).
According to Eqs. (8) and (22), the undamping limit kc

satisfies

k3
c

k3
F

+ 2

5

k2
c

k2
F

− h̄2ω2
pe

ε2
F

= 0. (23)

As shown in Fig. 4(b), the first-order slope of resonance
curve εF/h̄ωp increases with density, which means the area
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-1 0 1

-2

0

2

-1 0 1

-2

0

2

FIG. 3. The real part of longitudinal dispersion relation as the density changes shown by the solid lines (blue). The dashed lines represent
the theoretical approach of optical mode ωLW(k) (red).
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FIG. 4. (a) Various values of quantum undamping region limit kc of optical mode with Te = 0 as the density changes using QKT and QHD.
Here, aB = 52.9 pm is the hydrogen Bohr radius. (b) The ratio of plasmon energy and Fermi energy of degenerate system decreases as the
density increases. In the density range of WDM, 1021 ∼ 1027 cm−3 we can find the ratio is between 3.2 and 0.32. And in the density range of
ICF, 1024 ∼ 1026 cm−3, the ratio is between 1 and 0.45.

of undamping region in the ω − k plane decreases simultane-
ously. The tendency of curve kc(n) also represents the same
conclusion. It should be noted that the absolute value of kc

increases with density in the contrary because the Fermi wave
vector kF is proportional to n1/3, shown by the solid line in
Fig. 4(a).

The low temperature limit theory has pointed out some
difference between the classical and quantum conditions,
however, we cannot obtain an accurate result at finite tem-
perature. Hence we can directly solve Eq. (6) by using small
damping approximation from the beginning. The real part of
the dispersion relation can only be given analytically at some
limiting cases [39,40]. The imaginary part can be found by the
theoretical approach

Im
(
χq

s (ω, k)
) = 2e2m2

βk3h̄4 ln

(
f̃−(ω, k)

f̃+(ω, k)

)
, (24)

where

f̃±(ω, k) = 1 + exp

[
μβ −

(
ω

k
± k

2

)2
β

2m

]
. (25)

The parameter μ and β in the above equation represent,
respectively, the chemical potential and temperature of the
system. Hence we can use Eq. (21) and the real part solutions
to obtain the damping rates.

We plot the real part of the dispersion relation in Fig. 5.
High temperatures break the steep edge of the Fermi distribu-
tion and narrow the difference between quantum theory and
the classical limit. For this reason, the undamping region will
disappear. However, at relatively low temperature, there are
very few particles with large momentum which can resonate
with waves. Hence, just like what we implemented at the low
temperature limit case, here we have 2/(eβ(h̄2k2

t /2m−μ) + 1) >

1/n where the factor of 2 stands for the spin. Then we get
k2

t = 2m/h̄2[μ + 1
β

ln(2n)].
Replacing kF at low temperature with kt , and accounting

for energy conservation, we have the approximate resonance

frequency for particles at finite temperature:

ω± = k

√
2

m

(
μ + 1

β
ln(2n)

)
± h̄k2

2m
. (26)

Then we can determine the undamping region limit kc

according to the intersection of the resonance frequency curve
and Langmuir wave curve Eq. (8), shown by the dashed line
in Fig. 5.

The tendency of the two curves in Fig. 6 is basically the
same. Therefore, the reason for the formation of dissipative
undamping region is indeed the particularity of Fermi distribu-
tion. As shown in the figure, the value of kc/kF tends to zero as
temperature increases. It means at the high temperature limit,
since the Fermi distribution is equivalent to the Maxwellian,
the undamping region disappears, which is consistent with the
classical situation.

IV. TWO-STREAM INSTABILITY

In this section, we compare the two-stream instability in
QKT and QHD. To maintain symmetry, we study the nonrel-
ativistic countering-stream, which can also be obtained from

-1 0 1
-2

-1

0

1

2

-1 0 1
-2

-1

0

1

2

-1 0 1
-2

-1

0

1

2

FIG. 5. The solid lines (blue) represent the real part of dispersion
relation as the temperature θ = kBT/εF changes. The dashed line
(gray) is classical Langmuir waves ω = (ω2

p + 〈v2
th〉k2)1/2. The dotted

line (red) is classical EAWs ω = 1.31kvth [38].
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QHD Approach

QKT Approach

FIG. 6. The undamping region limit of optical mode (n =
1024 cm−3) at finite temperature according to the approximate reso-
nance condition is shown by the dashed line. The solid line represents
the theoretical approach of imaginary part of dielectric function.

the two-stream case by coordinate transformation

ε(k, ω) = 1 + ukχpe(k, ω + k · u0) + ukχbe(k, ω − k · u0),
(27)

where χpe and χbe are the susceptibilities of background and
beam, respectively.

Now we can add the previously omitted kinetic Landau
damping to the theoretical results of QHD. Due to the ex-
istence of two parts of countering stream electrons, their
respective undamped regions will overlap. When the coun-
tering stream speed exceeds a certain threshold, the overlap
forms a new dissipative undamping region.

In Fig. 7, the increase in countering-stream velocity causes
the new undamping region to expand, until completely cov-
ering the first growth interval of two-stream instability.
According to the intersection of two kinetic resonance fre-
quency curves ω+ − k · u0 = ω− + k · u0, we have the vertex
of a new dissipative undamping region:

k = 2(mu0/h̄ − kF). (28)

This stable region also coincides with part or all of the
two-stream instability growth region. Combing Eqs. (19) and
(28), we get the countering stream velocity for covering the
dissipative undamping region and growth regions

u2
c

v2
F

+ 13

5
− 4

uc

vF
+

√(
u2

c

v2
F

− 3

5

)2

− 1

2

h̄2ω2
p

ε2
F

= 0. (29)

Figure 8 shows that as the density increases, the ratio
of threshold to Fermi velocity decreases, while the absolute
value increases, which is consistent with the trend of kc in
Sec. II.

When the countering stream velocity is greater than the
threshold, the instability of this region appears as a pure
two-stream growth rate without Landau damping. From the
perspective of the distribution function, when the phase ve-
locity of waves is located at the “gap” between two parts of
the distribution, waves can become directly excited without
Landau damping.

FIG. 7. The same as Fig. 2, but for countering-stream case (Te =
0, np = nb = 1024 cm−3). Solid lines (blue) represent the numerical
solution of QKT, and dotted lines represent the real (red) and imagi-
nary (gray) solution of QHD. The enclosed dashed curves (light blue)
form a new dissipative undamping region.

As the countering stream velocity increases, the results of
QHD and QKT gradually coincide. When the stable mode
appears in QKT (u0 ≈ uc), the differences between the two
theories are relatively large because the approximation of
QHD is invalid in the short-wavelength region.

Quantum corrections (Fermi-Dirac distribution and quan-
tum diffraction) are the reason for the formation of this new
dissipative stable region. Considering the dispersion relation
of the Fermi system in the classical case, ignoring the k2

term which represents the quantum wave effect, we have the
resonance curve function which can be expressed as a linear
function from Eq. (22). Hence we find that the similar sta-
ble region is an open interval composed of two rays in the
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FIG. 8. the value of countering velocity threshold with the
change of electron density.
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FIG. 9. The value of countering stream velocity threshold with
the change of temperature (n = 1024 cm−3).

classical case, which is different from the closed interval in
the quantum case. Thus, when u0/vF > 1, the entire range of
two-stream instability is completely within this region in the
classical case.

Therefore, in the quantum case, within a certain counter-
ing velocity range, the wave growth rate is the result of the
combined effect of two-stream instability and wave-particle
resonance, which cannot be considered separately.

In Sec. II, we mentioned that the increase in temperature
will lead to the reduction of undamping region, which is
consistent with classical case at high temperature limit. Ac-
cording to Eqs. (26) and (19), we can obtain the vertex of the
undamping region

k = 2m

h̄

(
u0 −

√
2

m

(
μ + 1

β
ln(2n)

))
= 2m

h̄
(u0 − vμ).

(30)

Similarly, we can obtain the countering-stream velocity
threshold where dissipative undamping coincides with the first
growth region of two-stream instability

u2
c − 4vμuc + 2v2

μ + 〈v2〉 +
√(

u2
c − 〈v2〉)2 − 2h̄2ω2

p

m2
= 0.

(31)

When we plot the solution of Eq. (31) in Fig. 9, we can see
that as temperature increases, the equivalent thermal velocity
is also increasing, which means that a higher velocity is re-
quired to cause the appearance of two-stream instability. The

threshold velocity rises faster, which means that the higher
the system temperature, the higher the countering velocity
is needed to make two-stream instability completely free of
Landau damping. However, a high countering velocity will
cause two-stream instability to be insignificant, and simulta-
neously the theory of relativity needs to be considered, which
also requires the basic model to be revised. Therefore, in the
high temperature region, two-stream instability is bound to be
accompanied by a certain Landau damping.

V. CONCLUSION

We discussed the quantum effect of two-stream instability
in high energy density plasmas by means of quantum kinetic
theory and quantum hydrodynamics. The discrepancies of
these two theoretical frameworks are caused by wave-particle
interaction, i.e., kinetic effects, which is ignored by QHD. We
conclude that, first, the Fermi statistic effect yields a stable
region without Landau damping, which is further deformed by
the single-particle Bohm potential. The stable region shrinks
as the temperature rises, which means the quantum effect is
being concealed by the thermal effect. Second, the unstable
region of two-stream instability is split into two parts by
the Bohm effect, one of which is located at the dissipative
undamping region, thus yielding a pure two-stream instability
growth region. Last but not least, there exists a threshold drift
velocity beyond which the two-stream instability decouples
with Landau damping and becomes a pure fluid instability.
This threshold also increases as temperature rises.

The findings in this paper can have major implications on
the beam stopping by the warm dense background plasmas,
especially in inertial confinement fusion research [6–8]. Com-
pared with the classical case, quantum two-stream instability
has a larger regime so that it is easier for the beam to excite
Langmuir waves and cause stronger beam stopping. On the
contrary, Landau damping can inhibit the excitation of Lang-
muir waves to reduce beam stopping. Especially in the WDM
regime, the high countering stream velocity threshold implies
that these two mechanisms are coupled and simultaneously
affect the actual beam stopping.
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