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In hot dense plasmas of intermediate or high-Z elements in the state of local thermodynamic equilibrium, the
number of electronic configurations contributing to key macroscopic quantities such as the spectral opacity and
equation of state can be enormous. In this work we present systematic methods for the analysis of the number of
relativistic electronic configurations in a plasma. While the combinatoric number of configurations can be huge
even for mid-Z elements, the number of configurations which have non-negligible population is much lower and
depends strongly and nontrivially on temperature and density. We discuss two useful methods for the estimation
of the number of populated configurations: (i) using an exact calculation of the total combinatoric number of
configurations within superconfigurations in a converged super-transition-array (STA) calculation, and (ii) by
using an estimate for the multidimensional width of the probability distribution for electronic population over
bound shells, which is binomial if electron exchange and correlation effects are neglected. These methods are
analyzed, and the mechanism which leads to the huge number of populated configurations is discussed in detail.
Comprehensive average-atom finite-temperature density functional theory (DFT) calculations are performed in
a wide range of temperature and density for several low-, mid-, and high-Z plasmas. The effects of temperature
and density on the number of populated configurations are discussed and explained.
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I. INTRODUCTION

The calculation of radiative transport properties and equa-
tions state from first principles are of key importance in the
modeling of a wide variety of high energy density plasmas,
which exist both in stellar interiors [1–11] and in terrestrial
laboratories, such as Z-pinch and high-power laser facilities
[12–20]. These macroscopic quantities entail a very sophisti-
cated interplay between plasma physics and atomic physics.

In the calculation of spectral opacities, the bound-bound
photoabsorption spectra results from all radiative transitions
between all levels from all pairs of electronic configurations.
In a hot dense plasma, the number of lines between each
pair of configurations may be enormous [21,22] and statistical
methods must be used. The unresolved-transition-array (UTA)
method [23–26] treats all levels between each pair of configu-
rations statistically, using analytic expressions for the energy
moments of the transition array. In many cases, the number
of configurations may also be extremely large and a such
detailed-configuration-accounting (DCA) calculations are in-
tractable as well. Similarly, in the calculation of equations
of state, a huge number of electronic configurations should
be taken into account, for an accurate calculation of the total
partition function.

In this work we discuss in detail the number of elec-
tronic configurations in a hot dense plasma. The combinatoric
number of possible configurations as well as the number of
configurations which have a non-negligible population are
examined. The combinatoric number of configurations is cal-
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culated by using exact recursive relations [27]. Two methods
for the estimation of the number of populated configurations
are considered and compared. The calculations are performed
in a very wide range of plasma temperature (100 eV–10 keV)
and density (10−3–103 g/cm3) for various low-, mid-, and
high-Z elements, using finite-temperature average-atom DFT
calculations as well as super-transition-array (STA) calcula-
tions, employing the opacity code STAR [28,29]. The effects
of temperature and density on the number of populated con-
figurations are discussed and explained.

A relativistic electronic configuration C is defined by a set
of occupation numbers {qs} on relativistic s = (nl j) orbital
shells, which are full solutions of the Dirac equation. In the
statistical configuration approximation (neglecting the atomic
structure within configurations [30,31]), the occupation of a
configuration C is given by the Boltzmann distribution:

PC = gCe−(EC−μQC )/kBT

Utot
, (1)

where QC = ∑
s qs is the number of bound electrons in C, μ

is the chemical potential, the statistical weight of C is

gC =
∏

s

(
gs

qs

)
, (2)

where orbital degeneracy is gs = 2 js + 1, the total partition
function is

Utot =
∑

C

gCe−(EC−μQC )/kBT , (3)
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and the the configuration average energy is

EC =
∑

s

qsIs + 1

2

∑
r,s

qr (qs − δrs)Hrs, (4)

where the residual energy is

Is = εs −
〈
s
∣∣∣Z

r
+ V (r)

∣∣∣s〉, (5)

where εs is the orbital energy, V (r) is the self-consistent
mean field central atomic potential, and Hrs is the average
interaction energy of the two-electron configuration rs, given
in terms of relativistic direct and exchange Slater integrals
(explicit expressions can be found in Refs. [26,32,33]).

II. COMBINATORIC NUMBER OF CONFIGURATIONS

First we demonstrate how to calculate the combinatoric
number of configurations with Q electrons, which are dis-
tributed over a set of shells A = {s1s2 · · · sN }, defined by

N A
Q =

∑
{qs}N

s=1
with

∑N
s=1 qs = Q

1,

where we have expressed the constraint that only configura-
tions {qs}N

s=1 with a total number of Q electrons are summed.
This sum can be expressed in terms of partials sums over the
population of the N th shell:

N A
Q =

min(gN ,Q)∑
qN =0

∑
{qs}N−1

s=1
with

∑N−1
s=1 qs = Q − qN

1. (6)

Since the inner sum is actually N A/{sN }
Q−qN

, where A/{sN } denotes
the set A excluding the shell sN , we get the recursive relation

N A
Q =

min(gN ,Q)∑
qN =0

N A/{sN }
Q−qN

. (7)

We note that this recursion relation is performed simultane-
ously over the numbers of electrons Q and the number of
shells N , and should obey the initial condition N A

Q = δQ,0

for an empty shell group A. The derivation above, which
results from a simple combinatoric argument, can be proved
by employing the powerful and general method of generating
functions, as was done in detail Ref. [27], which deals with
stable algorithms for the calculation of canonical partition
functions, which were further generalized and improved in
Refs. [34,35]. We note that in a recent work [36] an approach
that leads to recurrence and analytic relations as well as a
statistical modeling of the combinatoric number of configu-
rations is developed in detail.

The total combinatoric number of configurations for an
element with an atomic number Z is given by summing the
number of configurations over all ionization levels:

N combin
C =

Z∑
Q=0

N A
Q , (8)

where A is the set of all shells from which configurations
are constructed. We note that, in general, the number of

bound shells is a function of the atomic number, tempera-
ture, and density, which determines the self-consistent central
potential—for example, a higher-Z element has a larger num-
ber of bound shells; due to the higher nucleus charge and a
higher density plasma it may have a smaller number of shells
due to an increased pressure ionization effect (bound states
dissolving into the continuum [33,37–45]).

One can also define the number of configurations taking
into account only charge states with probability larger than p:

N combin
C (p) =

∑
Q, PQ>p

N A
Q , (9)

where the charge state distribution is given by the sum of
probabilities of all configurations with a total charge Q:

PQ =
∑

C, QC=Q

PC . (10)

We note that Eq. (9) may depend strongly on the parameter p,
and may give a severe overestimation for the number of popu-
lated configurations, since each charge state Q can correspond
to a huge number of configurations, some of which have an
extremely low probability. In addition, an exact computation
of the ion charge distribution (10) [via Eq. (1)] is in many
cases intractable, due the huge number of configurations that
need to be taken into account. However, many approximated
methods for the calculation of the charge state distribution in a
plasma exist (for example, via the well known Saha equations)
and can be used “externally” in the calculation of Eq. (9). In
this work we will use a more accurate charge state distribution
which is obtained from an STA calculation (see below).

III. NUMBER CONFIGURATIONS WITHIN
SUPERCONFIGURATIONS

In the STA method [28,33,46–53], a large number of
configurations C are grouped into superconfigurations (SCs),
commonly denoted by � = �σσ Qσ , which are defined as sets
of configurations which have Qσ electrons in each “super-
shell” σ , which is a group of shells. The total occupation of a
super configuration is naturally

P� =
∑
C∈�

PC, (11)

and the combinatoric number of configurations within a su-
perconfiguration is

NC (�) =
∑
C∈�

1. (12)

As was already noted in Ref. [27], N� can be evaluated
exactly, using the recursive relation (7). Since electron oc-
cupation numbers in different supershells are independent,
Eq. (7) can be used for each supershell, to give the combi-
natoric number of configurations within a superconfiguration:

NC (�) =
∏
σ

N σ
Qσ

, (13)

where N σ
Qσ

is calculated by applying the recursion relation (7)
for each supershell.
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A simple estimate for the number of populated config-
urations, is given by the number of configurations within
all populated superconfigurations with a probability larger
than p:

N in SCs
C (p) =

∑
� P� > p

NC (�). (14)

where we have expressed the constraint that only superconfig-
urations with a non-negligible occupation are included.

We note that the combinatoric number of superconfigura-
tions, for a given set of supershells, can also be calculated
using the recursion relation (7), by treating the supershells
σ as shells, defining A = {σ1 · · · σN }, with total degeneracies
gσ = ∑

s∈σ gs and summing over all ionization levels.

IV. ESTIMATION OF THE NUMBER
OF POPULATED CONFIGURATION

In this section we discuss a very simple way to estimate
the number of populated configurations, without using a state-
of-the-art sophisticated STA method, as was suggested in the
previous section. This method was presented in the seminal
book [54] and was used subsequently in Refs. [28,29]. In
this method, only the bound shells and chemical potential
are needed, so that the estimate for the number of populated
configurations can be obtained, for example, by solving the
Dirac equation in a Thomas-Fermi potential [55] or in a more
advanced average-atom model potential [33,37–45].

Let us estimate the number of populated configurations.
Neglecting the electron-electron interaction effects beyond the
self-consistent field model, the configuration average energy
given in Eq. (4) can be approximated as a first-order polyno-
mial of the occupation numbers:

EC ≈
∑

s

qsεs. (15)

Under this approximation, the total partition function is

Utot =
∏

s

(1 + e−(εs−μ)/kBT )gs , (16)

and the configuration probability (1) becomes a simple multi-
variate binomial distribution of the occupation numbers {qs},
given by

P({qs}) ≡ PC =
∏

s

(
gs

qs

)
nqs

s (1 − ns)gs−qs , (17)

where ns = 1/(e(εs−μ)/kBT + 1) is the Fermi-Dirac distribu-
tion. The variance of the population of each shell is given by

δqs ≡
√〈(qs − 〈qs〉)2〉 =

√
gsns(1 − ns). (18)

As illustrated in Figs. 1 and 2, it is evident that the occupation
of shells whose energies are near the Fermi-Dirac step, which
is located around −kBT � εs − μ � kBT , fluctuate, while the
other shells are either filled or empty. These fluctuating shells
may have a wide range of possibilities to distribute electrons
over the magnetic quantum numbers 0 � ms � gs. The fluctu-
ating occupation numbers may give rise the a huge number of
populated configurations, which increases exponentially with
the number of fluctuating shells.

FIG. 1. A schematic description of the population of electrons
over shells according to the Fermi-Dirac distribution (red thick line).
The occupation of electronic shells which have energies nearby the
Fermi-Dirac step (which is located at εs ≈ μ and has a width of the
order of kBT ), fluctuate and result in wide range of possibilities to
distribute electrons over the magnetic quantum numbers, while shells
which are far from the Fermi-Dirac step are either filled or empty.
The fluctuating occupation numbers may give rise the a huge number
of populated electronic configurations.

The number of populated configurations can be estimated
as the number of possibilities to put electrons in each shell,
within a few standard deviations δqs around the average occu-
pation 〈qs〉 = gsns of the multivariate distribution (17). The
number of possible occupation numbers for each shell is
estimated as α × δqs, where α/2 is the number of standard
deviations. Therefore, the number of populated configurations
can be estimated by

N approx
C =

∏
s

(αδqs + 1), (19)

which is simply the multidimensional “width” of the multi-
variate binomial distribution ((17)).

We note that the result may depend on the somewhat
arbitrary value chosen for α, but it can be expected that a
reasonable value should be in the range 2 � α/2 � 4, corre-
sponding to a range of two to four standard deviations for the
occupation of each shell. In order to demonstrate this, N approx

C
was calculated as a function of α in the range 1 � α � 10 and
compared with the number of configurations within populated
superconfigurations [Eq. (14)] of a converged STA calcula-
tion. Two cases are considered: (1) iron (Z = 26) at typical
conditions of the recent Sandia Z experiments [12,15], with
temperature T = 182 eV and density ρ = 0.13 g/cm3, and
(2) gold (Z = 79) with temperature T = 200 eV and density
ρ = 0.1 g/cm3. The calculations were performed using the
relativistic average-atom model implemented in the STA code
STAR [3,26,28,29,31,43,51]. The number of bound shells was
limited to a principle atomic number of nmax = 8 (which
corresponds to 64 relativistic orbitals), since highly excited
bound orbitals can be accounted for by using the method
detailed in Ref. [56], and therefore need not be accounted in
the estimation of the number of populated configurations that
are used in the calculation of spectral opacities. Illustration
of the bound orbitals and the Fermi-Dirac step for the two
cases is given Fig. 2. The supershell structure for each case
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FIG. 2. The Fermi-Dirac distribution (red solid lines, as illus-
trated in Fig. 1) and the occupation fluctuation δq2

s /gs [black dashed
lines, see Eq. (18)] as a function of orbital energy, for iron at T =
182 eV, ρ = 0.13 g/cm3 (upper figure) and gold at T = 200 eV,
ρ = 0.1 g/cm3 (lower figure). The relativistic Dirac bound orbitals
are listed and represented as vertical dashed thin lines at their appro-
priate bound energies. The resulting chemical potential is given in
the title.

are given in Tables I and II. In Fig. 3 we present the number of
populated configurations as a function of α, in comparison to
the combinatoric number of configurations over all ionization
levels [Eq. (8)] and over all ionization levels with occupation
probabilities larger than 10−2, 10−4, 10−5, and 10−6 [Eq. (9)]
as well as the number of configurations within populated
superconfigurations [Eq. (14)], with occupation probabilities
larger than 10−6, 10−7, and 10−8. These results are also given
explicitly in Table III. The strong dependence on α is evident,
and it seems, as expected, that a good choice is α = 6, which
corresponds to 3 standard deviations for the occupation of
each shell.

It is evident that the probability thresholds affect the re-
sulting number of configurations by about 1–2 orders of

TABLE I. The converged relativistic supershell structure (left
column) for iron at T = 182 eV, ρ = 0.13 g/cm3. The range for the
number of electrons in each supershell (middle column), chosen such
that the superconfiguration occupation is larger than 10−7, as well as
the total supershell degeneracy (right column), are also given. The
total number of superconfigurations is N� = 2880.

Supershell σ Qσ range Degeneracy gσ

(1s) [2,2] 2
(2s) [0,2] 2
(2p−) [0,2] 2
(2p+) [0,4] 4
(3s · · · 5 f−) [0,7] 74
(5 f+ · · · 8i+) [0,7] 294

magnitude, which is a reasonable accuracy for the number of
configurations, which can be of the order of 1015–1040. It is
evident that for the iron case the results for N combin

C (p) and
N in SCs

C (p) agree to within 1–2 orders of magnitude. However,
it is evident that for the gold case the N combin

C (p) values give
a severe overestimation (by about ten orders of magnitude)
compared to N in SCs

C (p), which represents the correct estimate
for the number of configurations that need to be taken into
account in opacity calculations. As mentioned in Sec. II, this
is to be expected since each charge state Q can correspond
to a huge number of configurations, some of which have
extremely low probabilities. This is more likely to happen
for a high-Z element, for which the supershell structure (see
Table II) gives rise to only a small fraction of all possible
configurations for some charge states. In this way N in SCs

C
only accounts for configurations with non-negligible proba-
bilities while N combin

C (p) accounts for all configurations for
non-negligible charge states, without taking into account the
confrontational structure [which determines the configuration
probability in Eq. (1)].

Figure 4 shows the charge state distributions, which were
obtained from converged STA calculations, together with the
combinatoric number of configurations as a function of the
number of bound electrons [Eq. (7)], for the iron and gold
cases. The exponential growth for the combinatoric number of
configurations for large values of bound electrons is evident,
as expected. We note that the number of configurations in
Eq. (9) is obtained by summing the number of configurations

TABLE II. Same as Table I, for gold at T = 200 eV, ρ =
0.1 g/cm3. The total number of superconfigurations is N� = 10400.

Supershell σ Qσ range Degeneracy gσ

(1s) [2,2] 2
(2s) [2,2] 2
(2p−) [2,2] 2
(2p+) [4,4] 4
(3s3p−3p+) [7,8] 8
(3d−3d+) [9,10] 10
(4s · · · 4 f+) [3,27] 32
(5s · · · 7d+) [0,12] 140
(7 f− · · · 8k+) [0,7] 208
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FIG. 3. The estimate given in Eq. (19) for the number of pop-
ulated configurations, as a function of the parameter α (red solid
lines), for iron at T = 182 eV, ρ = 0.13 g/cm3 (upper figure) and
gold at T = 200 eV, ρ = 0.1 g/cm3 (lower figure). Also shown
are the combinatoric number of configurations over all ionization
levels [Eq. (8), black dashed lines] and over all ionization levels
with probabilities larger than 10−2, 10−4, 10−5, and 10−6 respectively
[Eq. (9), magenta lines], as well as the number of configurations
within populated superconfigurations [Eq. (14)], with probabilities
larger than 10−6, 10−7, and 10−8, respectively [Eq. (14), blue lines].

TABLE III. Various values for the number of configurations for
the two cases shown in Fig. 3.

Fe, T = 182 eV, Au, T = 200 eV,

ρ = 0.13 g/cm3 ρ = 0.1 g/cm3

N combin
C 9.78 × 1021 4.64 × 1039

N combin
C (10−2) 2.08 × 1013 2.71 × 1031

N combin
C (10−4) 6.34 × 1014 2.6 × 1032

N combin
C (10−5) 3.2 × 1015 5.39 × 1032

N combin
C (10−6) 1.53 × 1016 1.1 × 1033

N in SCs
C (10−6) 2.71 × 1013 9.01 × 1019

N in SCs
C (10−7) 1.22 × 1015 3.35 × 1021

N in SCs
C (10−8) 2.26 × 1016 1.1 × 1022

N approx
C (α = 6) 1.25 × 1016 1.63 × 1020

FIG. 4. The charge state distribution calculated using an STA
model (red dashed lines, left axis) and the combinatoric number of
configurations for each charge state [Eq. (8), blue lines, on the right
axis], for iron at T = 182 eV, ρ = 0.13 g/cm3 (upper figure) and
gold at T = 200 eV, ρ = 0.1 g/cm3 (lower figure).

per charge state in Fig. 4 in the overlapping range with the
charge state distribution.

Finally, we note that it is possible to overcome the binomial
approximation (17) using the correlated probability formal-
ism. In Ref. [57] electron-electron interactions are taken into
account in the screening constant model which is applicable
for small interactions. The resulting correlation coefficients
are calculated to second order in the interaction energy. As
noted by Perrot and Blenski in Ref. [58], this method is
complicated to implement in practice and performs poorly for
low temperatures. Perrot and Blenski introduced in Ref. [58]
a simple method, which overcomes these difficulties by re-
placing the binomial distribution with its correlated Gaussian
continuous limit, which is applicable for orbital shells with
large degeneracy and which are not close to being full or
empty. As was shown in Ref. [59], this approximation is
accurate to less than 1%. Hence, by using this Gaussian
approximation in order to calculate the population variance
of shells with a large degeneracy and which are not close
to being full or empty, and the binomial approximation for
the remaining shells (as was done above), can give a better
approximation for the number of configurations, which takes
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FIG. 5. Various color plots for silicone (Z = 14), as a function of temperature and density (left to right, top to bottom): the number of bound
shells Nshells, the combinatoric number of relativistic configurations N combin

C over all ionization levels [Eq. (8)] and over all ionization levels
with probability larger than 10−5 [Eq. (9)], the number of superconfigurations in a converged STA calculation N�, the number of configurations
within superconfigurations N in SCs

C [Eq. (14) with p = 10−7], approximated number of populated relativistic N approx
C and nonrelativistic N approx

C,NR

configurations, the average ionization Z , and the normalized chemical potential μ/kBT .

into account electron-electron interactions. However, this is
beyond the scope of this paper, and will be performed in a
future work.

V. RESULTS

Detailed finite temperature density functional theory
(DFT) calculations in the spherical average-atom approxi-
mation [33,37–45] followed by STA calculations using the
atomic code STAR [28,29], were performed over a wide
range of plasma temperatures, 100 eV–10 keV, and densities,
10−3–103 g/cm3, for the following low-, mid-, and high-Z ele-
ments: silicone (Z = 14), iron (Z = 26), xenon (Z = 54), and

gold (Z = 79). The results are shown in Figs. 5–8, and include
the average ionization, the chemical potential, the number
of bound shells, the combinatoric number of configurations
over all ionization levels [Eq. (8)] and over all ionization
levels with probabilities larger than 10−5 [Eq. (9); the charge
distribution was obtained from the STA calculations], the
number of populated superconfigurations in a the converged
STA calculation, the number of configurations within these
superconfigurations, and the approximated number of rela-
tivistic and nonrelativistic populated configurations. First, it is
evident that, as expected, the number of configurations grows
exponentially with the atomic number. It is seen that even for
mid-Z plasmas the number of populated configurations can
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FIG. 6. Same as Fig. 5, for iron (Z = 26).

be huge (larger than 1013) in a wide range of temperature
and density, and a detailed configuration accounting (DCA)
calculation may be extremely costly, while a full detailed-line-
accounting (DLA) calculation is probably impossible. For a
higher-Z plasma such as xenon and gold, there is a wide
range of temperature and density with a populated number
of configurations larger than 1020, which is completely in-
tractable for a DCA calculation, and highlights the need for an
STA [28,33,46–48,50–52] or average-atom [60–62] method
for opacity calculations.

A comparison of the number of configurations within
superconfigurations, N in SCs

C , and approximated number of
populated relativistic configurations, N approx

C , shows a good
qualitative and even quantitative agreement, which proves
that N approx

C is a very good simple estimate for the num-
ber of populated configurations. In addition, the plots for
the number of superconfigurations N� in a converged STA

calculation in comparison the the number of populated con-
figurations highlights the strength of the STA method: a
computationally tractable number of superconfigurations (in
the range of 103–105), which may contain a huge num-
ber of configurations (more than 1025 in some cases),
yields a converged opacity calculation which would have
been completely prohibitive in a configuration-based DCA
calculation.

It is seen that the μ/kBT contours are approximately
straight lines (when the density and temperatures are plotted
on a logarithmic scale), a fact which agrees with the ideal gas
result,

μideal = kBT ln
(
	3n̄

)
, (20)

where n̄ is the number density and 	 = (2π h̄2/mkBT )
1
2 is

the thermal wavelength, so that, in the thermodynamic range
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FIG. 7. Same as Fig. 5, for xenon (Z = 54).

studied here, the chemical potential is a decreasing function of
temperature and an increasing function of density, as shown in
Figs. 9 and 10.

It is also evident from Figs. 5–8 that the combinatoric
number of configurations over all ionization levels correlates
perfectly with the number of bound shells that exists in the
atomic potential. This is to be expected since this number
of configurations depends on temperature and density only
through the number of existing bound shells, and not on their
properties (i.e., bound energies, wave functions, etc). As was
explained in the previous section, since we are concerned
in the number of configurations which should be taken into
account in opacity calculations, the number of bound shells
is limited here to 64, which results in a sharp front in the
plots for the combinatoric number of configurations. It is also
evident that N combin

C (p = 10−5) has a better agreement with
N in SCs

C and N approx
C for the lower-Z elements and for cases

with a smaller number of bound orbitals. As was discussed in
the previous section, this is to be expected, since, as opposed
to the superconfiguration accounting approach, the charge
probability distribution does not contain information about the
configuration structure and as a result some charge states may
contain a huge amount of very low probability configurations,
which are taken into account in Eq. (9).

Next, we discuss the temperature and density behavior for
the populated number of configurations. As expected, it is
seen in Figs. 5–8 that the number of populated configurations
has a maximum as a function of temperature and density. For
low temperatures, most shells have energies εs < μ and are
therefore “frozen” either full or empty (see Fig. 1), while for
moderate temperatures (which are different for each element
and density) the Fermi-Dirac distribution has a shape of a
step function, but with a finite width which allows large fluc-
tuations for the occupation numbers of shells with energies
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FIG. 8. Same as Fig. 5, for gold (Z = 79).

near the step (see Fig. 9). For higher temperatures, on the
one hand, more shells are ionized, which results in a decrease
in the number of populated configurations, and on the other
hand the number of bound shells can be larger, due to a wider
spatial extent of the atomic central potential, which reduces
the effect of pressure ionization, as seen in the plots of the
number of bound shells. The latter effect results in the slightly
tilted maxima for the number of populated configurations as
a function of temperature and density, seen in Figs. 5–8. In
addition, it is evident that for low densities the number of
populated configurations is small due to the decrease in the
chemical potential (see Fig. 10), which reduces the number of
fluctuating shells, while for very high densities most shells
are pressure ionized (as seen in the plots of the number
of bound shells) and those which are not are occupied and
frozen, which leads again to a small number of populated
configurations.

VI. SUMMARY

Two useful methods for the estimation of the number of
populated configurations in a hot dense plasma were studied.
In the first method, an exact calculation of the total combi-
natoric number of configurations within superconfigurations
in a converged super-transition-array (STA) calculation was
used. In the second method, electron exchange and correla-
tion effects are neglected, leading to a multivariate binomial
distribution for the electronic occupation numbers, whose
multidimensional width is an approximation for the num-
ber of populated configurations. The mechanism which leads
to the huge number of populated configurations—namely,
the fluctuations of electronic occupation numbers of bound
shells nearby the Fermi-Dirac step—is demonstrated and
discussed in detail. Comprehensive average-atom finite tem-
perature DFT calculations are performed in a wide range of
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FIG. 9. The Fermi-Dirac distribution (solid lines) and the occu-
pation fluctuation δq2

s /gs [dashed lines, see Eq. (18)] as a function of
orbital energy, for iron at ρ = 0.1 g/cm3, and different temperatures
in the range 102–104 eV (lines are arranged from right to left.

temperature and density for several low-, mid-, and high-Z
plasmas, showing a good agreement between these two meth-
ods. In addition, the temperature and density dependence is
discussed and explained.

The second method is much more simple than the first: only
the bound shells and chemical potential are needed, so that
the estimate for the number of populated configurations can
be obtained, for example, by solving the Dirac equation in a
Thomas-Fermi potential or in a more advanced average-atom
model potential. This simple estimate can be very useful in

FIG. 10. The Fermi-Dirac distribution (solid lines) and the occu-
pation fluctuation δq2

s /gs [dashed lines, see Eq. (18)] as a function of
orbital energy, for iron at T = 182 eV, and different densities in the
range 10−3–103 g/cm3 (lines are arranged from left to right).

order to assess the computational ability to perform configu-
ration based, or even line based opacity and equation of state
calculations.
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