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Modeling of short-pulse laser-metal interactions in the warm dense matter regime
using the two-temperature model
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A numerical model for laser-matter interactions in the warm dense matter regime is presented with broad
applications, e.g., ablation, thermionic emission, and radiation. A unique approach is adopted, in which a
complete set of collisional and transport data is calculated using a quantum model and incorporated into the
classical two-temperature model for the electron and lattice-ion temperatures. The data set was produced by the
average atom model that combines speed, conceptual simplicity, and straightforward numerical development.
Such data are suitable for use in the warm dense matter regime, where most of the laser-matter interactions at
moderate intensities occur, thus eliminating deficiencies of previous models, e.g., interpolation between solid and
ideal plasma regimes. In contrast to other works, we use a more rigorous definition of solid and plasma states of
the metal, based on the physical condition of the lattice, crystalline (ordered) versus melted (disordered), rather
than a definition based on electron temperature. The synergy between the two-temperature and average atom
models has been demonstrated on a problem involving heating and melting of the interior of Al by a short-pulse
laser with duration 0.1–1 ps and laser fluences 1 × 103 − 3 × 104 J/m2(0.1–3 J/cm2). The melting line, which
separates the solid and plasma regimes, has been tracked in time and space. The maximum melting depth has
been determined as a function of laser fluence: lmelt (μm) ∼= 4 × 103F ( J

m2 ).

DOI: 10.1103/PhysRevE.103.033204

I. INTRODUCTION

Interaction of short-pulse lasers with metals at moderate
laser fluence (∼TW/cm2) generates, beneath and above the
surface, a nonideal plasma that is typically in the warm dense
matter (WDM) regime. It is characterized with electron den-
sity comparable to the solid density and electron temperature
of a few eV. Many phenomena are associated with such plas-
mas, most notably ablation [1–4], thermionic emission [5,6],
and bremsstrahlung radiation [7]. The laser energy absorption
and energy transfer to the lattice are often modeled using
the two-temperature model (Refs. [8–12], to name a few),
which treats the electrons and ions as two separate subsystems
governed by the equations
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where kB is the Boltzmann constant, Tα is the temperature, nα

is the density, C̄α = Cα/(kbnα ) is the normalized heat capacity,
and kα is the thermal conductivity of species α = e, i. The
parameter G is the rate of energy transfer from electrons to
ions and P is the local power absorption per unit volume from
the laser field (to be specified later). The term containing the
normalized latent heat of fusion, �H̄m = �Hm/R, accounts
for the solid to liquid transition at the melting temperature Tm

[13], in which the gas constant R = 8.3145 J/(mol K) is used
as a conversion factor.

Equations (1a) and (1b) are a subset of a more general
(three-dimensional) set of equations. We account for param-
eter variation only along the laser propagation direction, z,
and neglect transverse gradients. The latter is justified by the
characteristic dimensions of the system under consideration:
The transverse dimensions are comparable to the laser focal
spot diameter (∼1 mm), while the longitudinal dimensions are
on the order of a few microns (cf. Figs. 6 and 8). Equations
(1a) and (1b) are solved to yield the spatiotemporal evolution
of the electron and lattice-ion temperatures. For the purpose
of illustration of the concept proposed in this paper, i.e., the
synergy between a model for laser-matter interaction and an-
other model for computing a suitable set of collisional and
transport data (the average atom model), our study is limited
to heating and melting, providing a foothold for a wider range
of processes and phenomena such as the one mentioned above.

However, even in a process as “simple” as melting, we
must consider the material phases characterized by the pres-
ence of a regular ion lattice structure. In the early stage of
interaction (t < 1 ps) the lattice is still intact, while at later
times (t > 1 ps) the lattice melts, forming dense plasma. The
physical state of the metal is different during the two stages
of the interaction, and so are the coefficients in Eqs. (1a)
and (1b). In the former, the metal is in its solid state, i.e.,
spatially ordered crystal, and the coefficients are derived from
classical solid-state physics considerations. In the latter, the
lattice has collapsed to a dense mix of electrons and ions;
i.e., the system is now in a liquid, or plasma state. Obvi-
ously, the two states must be modeled with different sets
of parameters, and assumptions. For example, in the solid

2470-0045/2021/103(3)/033204(11) 033204-1 Published by the American Physical Society

https://orcid.org/0000-0002-9073-3659
https://orcid.org/0000-0001-5769-6326
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.033204&domain=pdf&date_stamp=2021-03-23
https://doi.org/10.1103/PhysRevE.103.033204


PETROV, DAVIDSON, GORDON, AND PEÑANO PHYSICAL REVIEW E 103, 033204 (2021)

0.1             1                10              100  Te(eV)

solid        warm dense matter    ideal

F=1 J/cm2

FIG. 1. Illustration of the various regimes encountered or tran-
sitioned through during short-pulse laser-matter interactions at
moderate intensities (∼TW/cm2). The warm dense matter regime
spans roughly from a fraction of an eV to ∼50 eV. The dashed
lines indicate the typical maximum electron temperature range for
commonly used metals (Al, Cu, and Au) at laser fluence 104 J/m2

(1 J/cm2) [8,9].

state the collisional and transport parameters are governed by
electron-phonon interactions, while in the plasma state the
interactions become electron-ion. The liquid (plasma) state
can be naturally extended to the vapor state, prevalent in phe-
nomena such as surface ablation, but it is not considered in this
work.

In the above, we consider thermal melting only. There
are other mechanisms that may come into play. Nonthermal
melting can occur due to excessive electron temperature or
removal of electrons, causing the lattice to collapse, i.e., “cold
ablation” (electrons pulling out ions from the lattice) [14],
Coulomb explosion [13], or fast (fs to ps) energy density de-
position. If pressure builds that exceeds the Young’s modulus,
a strong shock wave emerges that compresses the material and
causes structural damage [15].

Though the overall interaction dynamics is well known,
it is the distinction between the two states and definition of
coefficients we are concerned with. To date, the separation has
been based on “low” and “high” electron temperature with the
plasma state being inevitably modeled by some variation of
the Spitzer’s formulas for ideal fully ionized gas. However, at
solid densities the Spitzer’s formulas become applicable only
at large electron temperatures, in excess of 50–60 eV. Thus,
the vast majority of simulations take place neither in the solid,
nor in the ideal plasma limit, but rather in the intermediary
warm dense matter regime (Fig. 1).

In the last two decades a considerable body of work con-
clusively showed that the warm dense matter regime is a state
of matter in its own right that cannot be modeled by a simple
interpolation of adjacent regimes. A single, yet compelling
argument in favor of the last statement is conveyed by Fig. 2.

The momentum transfer cross section, which is at the heart
of nearly all collisional and transport coefficients, as well as
power absorption via Inverse bremsstrahlung, is plotted in
Fig. 2 as calculated by the quantum model discussed in Sec. II
(solid lines). The Spitzer’s Coulomb cross section is orders
of magnitude larger, a point recently made by Starrett [16].
The next candidate, the Born approximation, is quantum by
nature and offers an improvement, but it is valid only for
“weak” electron-ion interactions, i.e., high electron energies
(>100 eV). At low kinetic energies (1–20 eV), in which
we are primarily interested, it lacks accuracy and is still an
order of magnitude larger compared to the quantum model.
Thus, neither the classical Coulomb cross section nor the cross

FIG. 2. Electron-ion momentum transfer cross sections in atomic
units (2.8 × 10−21 m2) calculated using the average atom model for
Te = 0.1, 1, and 10 eV (solid lines), the Born approximation (dashed
line), and Spitzer’s formula with ln(L) = 2 (dashed-dot line).

section calculated in the Born approximation is adequate for
computing collisional rates and transport parameters.

The above arguments speak strongly of the need to perform
quantum-mechanical calculations to compute cross sections
and related transport parameters. In addition, it is imperative
to revisit the earlier distinction between solid and plasma
states. In this paper, we adopt a unique approach in which (i)
the two states are separated based on the physical condition of
the lattice: crystalline (ordered) versus “melted” (disordered),
which is related to the lattice temperature, rather than the
electron temperature; and (ii) we calculate the coefficients
in the plasma state by using a quantum model appropriate
for this state, i.e., warm dense matter. We dispose of the
Spitzer’s formulas except for the electron-electron collision
rate at high temperature. The interpolation between solid and
plasma states is preserved; however, in this work it is between
“crystalline” and “disordered,” not high and low electron tem-
perature and the transition point (the melting temperature) is
unambiguously defined. In Sec. II we recount the coefficients
in the solid state and introduce the coefficients in the plasma
state, and in Sec. III we present simulation results using
the two-temperature model. Section IV discusses the average
atom model in the context of other models, and we conclude
in Sec. V.

II. COLLISIONAL AND TRANSPORT COEFFICIENTS

In the solid state the electron transport coefficients are
well known from both published papers [1,2,8–12,17–19] and
solid-state physics books [20,21] and will be only briefly
recalled. The electron-phonon and electron-electron collision
rates are (in SI units)

νe−ph(T�) = ks
e2

0

4πε0 h̄vF

kBT�

h̄
, (2)

1

ν2
ee(Te)

= 1

ν2
solid(Te)

+ 1

ν2
Spitzer (Te)

, (3)
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respectively, where νsolid(Te) = ke
kBTe
εF

kBTe
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)−3/2ni ln(
) are the rates in the solid and

plasma states, respectively. In Eqs. (2) and (3) e0 is the
magnitude of the electron charge, ε0 is the permittivity
of free space, h̄ is the reduced Plank constant, me is the

electron mass, and vF =
√

εF
2me

and εF = h̄2

2me
(3π2ne)2/3 are

the Fermi velocity and energy, respectively. The parameter
ln(
) = 1

2 ln(1 + b2
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min ) is the Coulomb log with bmin =
max( h̄

2mev̄
,

Z̄e2
0

4πε0mev̄2 ) and bmax = max(λDH, rWS) being the
minimum and maximum impact parameters in which v̄ is the
electron thermal velocity, Z̄ is the average ionization, rWS is
the Wigner-Seitz radius (defined later) and λDH is the Debye-
Hückel screening length (for details, refer to Ref. [16]).
Coefficients ks and ke are on the order of unity (typically
between 0.1 and 10) and are specific for each element. The
electron-electron collision rate, νsolid, has been derived in the
limit of zero temperature and is generally valid for Te � εF

[22,23]. Above the Fermi energy, the collision rate levels
off to a value on the order of ∼1015 s–1 (Fig. 1 in [23]).
Since we are not aware of analytical formulas for Te � εF ,
in order to prevent gross overestimation of the collision rate,
we suggest replacing the T 2

e in the formula for νsolid(Te) with
max{T 2

e , ε2
F }. Note also that the Fermi energy associated with

it may change due to finite-temperature effects. To account for
that, we correct the Fermi energy when the average ionization
and consequently, the electron density change. The normal-
ized electron heat capacity is an interpolation between the
degenerate and ideal plasma limits given by [8,9]

C̄e(Te) = 3π2kBTe√
36ε2

F + 4π4(kBTe)2
. (4)

The electrical and thermal conductivity are taken in their
standard form,

σdc = nee2
0

meve−ph
, (5a)

κdc = 1

3
Ce

v2
F

ve−ph
, (5b)

and the electron-phonon coupling constant G is taken from
the literature [24,25]. The electron-phonon rate enters the

local power absorbed by the plasma, P = e2
0E2

2me(ν2
e−ph+ω2

0 )
νe−phne,

where E =
√

2I (z,t )
ε0c and ω0 are the laser field and frequency,

respectively; I is the laser intensity; and c is the speed of
light. The laser intensity along z is modeled as I (z, t ) =
2AI (t ) exp(− 2z

�skin
) with �skin being the skin layer thickness

and A is the absorption coefficient, to be specified later. The

conventional skin depth, �skin = c
ωp

, where ωp =
√

n0e2
0

ε0me
is the

plasma frequency, was replaced by the collisional skin depth
[26]

�skin = c

ωp

[
2(1 + δ2)

1 + (1 + δ2)1/2

]1/2

, (6)

where the parameter δ = νmom
ω0

is the ratio of the electron colli-
sion frequency to the laser frequency.

In the solid state the average ion charge Z̄ is not known and
must be determined separately. In this work, it is calculated
from the average atom model and is used in both the solid and
plasma states. The electron density is calculated according to
ne = Z̄ni.

Less than a picosecond after the laser pulse interacts with
the metal surface, the lattice temperature reaches the melting
point and the lattice collapses into a mix of electrons and
ions. This is the plasma state. A “warm” plasma is formed
with electron temperature of a few eV, putting it in the warm
dense matter regime. There are numerous approaches with
various degrees of accuracy, e.g., density functional theory
(DFT), quantum molecular dynamics (QMD), and path inte-
gral Monte Carlo (PIMC), but they are computationally very
intense. A reasonable trade-off is the average atom model,
which, albeit approximate, is fully quantum and fast (a few
seconds of computation time), capable of producing large
data tables for any combination of ion density and electron
temperature. For this reason, all coefficients in the plasma
state are computed with the average atom model.

We now review the average atom model and its building
blocks, which are outlined in a number of works [27–36]. It
is a fully quantum model that falls into the category of the
so-called cellular methods developed by Wigner and Seitz
[37,38]. A sphere surrounding an atom is defined by the
Wigner-Seitz radius rWS = (4πni/3)−1/3 (the average dis-
tance between atoms). An ion with charge Z is placed in
the center of the sphere with a cloud of electrons (bound
and free) around it. The average atom model is based
on the Hartree-Fock-Slater (HFS) model, which solves the
one-electron Schrodinger equation [− 1

2� + W (�r)]ψα (�r) =
εψα (�r) for each atomic orbital with effective potential energy
W(r) that includes the Coulomb potential of electrons and ion,
as well as an exchange potential in the local density approx-
imation. In practice, the wave functions are decomposed in a
spherical basis according to ψα (�r) = uα (r)

r Ylm(θ, ϕ), where Ylm

is a spherical harmonic, n is the principal, and l is the orbital
quantum number, and the radial part of the wave function uα is
calculated from the spherically symmetric radial Schrödinger
equation (atomic units used in this section),

[
−1

2

d2

dr2
+ �(� + 1)

2r2
+ W (r)

]
uα (r) = εαuα (r), (7)

for both bound (εα < 0), α = {n�} and continuum states
(εα > 0), α = {ε�}. For bound states, the radial part of
the wave function satisfies boundary conditions uα (r) =
0 at r = 0 and d

dr [ uα (r)
r ] = 0 at r = rWS and is nor-

malized according to
∫ rWS

0 u2
α (r) = 1 [29]. For scattering

states, the well-known scaling at the origin, uα ∼ r�+1, is
used to compute the first two values of the radial wave
function in order to start the outward integration. The
wave function is normalized by matching it to the ana-
lytical solution outside the Wigner-Seitz radius, uε,�(r) =√

2k
π

r[ j�(kr) cos(δε,�) − n�(kr) sin(δε,�)], where the potential
energy is zero. Here, jl and nl denote the spherical Bessel
functions of first and second kind, k = √

2ε is the wave vec-
tor, and δε,� is the phase shift [29]. The electron density is
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FIG. 3. Average ion charge (a), chemical potential (b), electrical (c), and thermal conductivity (d) for Al calculated by the average atom
model (solid lines) and compared to other published data.

calculated from the wave functions:

ne(r) = 1

4πr2

[∑
n,�

2(2� + 1) f (εn�)u2
n�(r)

+
∑

�

2(2� + 1)
∫ ∞

0
f (ε)u2

ε,�(r)dε

]
, (8)

and then used to determine the potential energy entering
Eq. (7):

W (r) = −Z

r
+

∫ rWS

0

ne(r′)d3r′

|�r − �r′| −
[

3ne(r)

π

]1/3

, (9)

where the function f (ε) = 1
1+exp[(ε−μ)/Te] is the Fermi statisti-

cal occupancy for electrons with kinetic energy ε. The first
two terms in Formula (9) comprise the Coulomb potential
energy (electron-nucleus and electron-electron), while the last
one is the exchange term in the limit Te → 0. For finite tem-
peratures, it is divided by a factor 1 + 3Te/(2εF ), as suggested
by Murillo et al. [30]. The combined formula reproduces the
limiting cases of zero and high electron temperatures derived
by Gupta and Rajagopal [39]. Equations (7)–(9) are closed by
the quasineutrality condition Z = ∫ rws

0 4πr2ne(r, μ)dr, which
is used to derive the chemical potential μ. The average ion
charge, Z̄ , is defined as the number of free electrons, which is
an integral of the second term in Eq. (8). The input parameters
in the average atom model are the atomic number Z, electron
temperature Te, and ion density ni. The model adopted is of

the simplest kind and more advanced versions exist that will
be discussed in Sec. IV.

The collisional and transport coefficients are calculated
from the electron-ion momentum transfer cross section
σmom(ε) = 4π

k2

∑∞
0 (� + 1)sin2(δ�+1 − δ�), which is

computed from the phase shifts δ�. The electron-ion
collision rate νei(Te) = 〈σmom(ε)v(ε)〉ni is calculated by
averaging the momentum transfer cross section over
the Fermi-Dirac distribution f (ε) and density of states
of free electrons g(ε), the latter also being computed
from the average atom model. The dc electrical and

thermal conductivities are σdc = K0 and κdc = K2−K2
1 /K0

Te
,

respectively, where Kn = − 1
3

∫ ∞
0 τc(ε)v2

e (ε)εng(ε) ∂ f (ε)
∂ε

dε

with τc(ε) = [σmom(ε)v(ε)ni]−1 being the energy-dependent
collision time [40,41]. The electron heat capacity,
Ce(Te) = ∂U (Te)/∂Te, follows directly from the internal
energy U (Te) = ∫ ∞

0 εg(ε) f (ε, Te)dε and the electron-ion
coupling constant takes the conventional form G(Te) =
3me
Mi

νei(Te)ne(Te)kB.
The average atom model used in this work has been exten-

sively benchmarked. Sample results are plotted in Fig. 3 for
the average ion charge, chemical potential, and electrical and
thermal conductivities of Al, and compared to data published
in the literature [16,28,30,42–45]. For Te � 10 eV the average
atom model predicts Z̄ ∼= 3, in agreement with the fact that in
Al at solid density and room temperature three electrons out
of 13 are free and reside in the conduction band. The chemical
potential μ is also well reproduced. The model prediction for
the electrical conductivity is flat for Te < 3 eV, in contrast
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FIG. 4. Electron-ion coupling constant (a), normalized electron heat capacity (b), electron-ion momentum transfer collision rate (c),
electron-electron collision rate (d), electrical conductivity (e), and thermal conductivity (f) for Al calculated by the average atom model in
the plasma state (solid lines) and solid state (dashed lines).

to more advanced models such as the neutral-pseudoatom
approach and QMD, but still reasonably well reproduced by
the average atom model. The thermal conductivity increases
with Te, in agreement with other calculations.

The collisional and transport parameters for Al in the solid
and plasma states are plotted versus electron temperature in
Fig. 4. The data in the plasma state are calculated with the
average atom model developed in the work. The data in the
solid state are calculated using formulas (2)–(5). Only the
electron-ion coupling constant, plotted in Fig. 4(a), has been
taken from the literature (Refs. [24,46]). Unfortunately, in the
solid state it is available only for electron temperature Te <

2 eV. In the plasma state, it has been computed in the entire
temperature range of interest. For Te < 10 eVG is constant,

but for higher temperatures it increases, i.e., more energy is
transferred from electrons to ions. The increase is primarily
due to the increase of the average ion charge Z̄ [Fig. 3(a)]
and electron density ne = Z̄ni. In Fig. 4(b), the normalized
electron heat capacity, C̄e, is plotted in the solid and plasma
states. For both, it follows the same trend and is nearly equal
in both states (solid and plasma). It increases linearly with
Te, following the well-known scaling of strongly degenerate
plasma, C̄e(Te) = π2kBTe

2εF
[Eq. (4) in the limit Te � εF ], and

gradually transitions to the limiting case of an ideal gas, i.e.,
C̄e → 3/2. The electron-phonon collision rate is plotted in
Fig. 4(c) for lattice temperature 300 K. In the solid state,
it is constant according to Eq. (2) (only lattice temperature
dependence). In the plasma state, it increases with Te for the
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same reason the electron-phonon rate increases. For very large
electron temperatures (∼40–50 eV), it gradually transitions
into the classical (Spitzer’s) rate and starts to decrease. The
electron-electron collision rate is common for both the solid
and plasma states [Fig. 4(d)]. The electrical and thermal con-
ductivities are plotted in Figs. 4(e) and 4(f), respectively. The
electrical conductivity in the solid state, calculated by the
Drude model [Eq. (5a)], differs markedly from that in the
plasma state. The thermal conductivity follows a similar trend
(fast increase with Te) being larger in the solid state.

For convenience, a fit of the parameters in the plasma state
is listed below, valid for Te < 50 eV.

Z̄ (Te) = 3 + 2.5 × 10−3T 2
e

1 + 2.5 × 10−4T 2
e

, (10a)

C̄e(Te) = 3

2

Te√
22 + T 2

e

, (10b)

νmom(Te) = 2 × 1015 1 + 4 × 10−3T 2
e

1 + 5 × 10−5T 5/2
e

(s−1), (10c)

σdc(Te) = 3 × 106 1 + 4 × 10−5T 3
e

1 + 3 × 10−3T 2
e

(�−1 m−1), (10d)

ke(Te) = 1 × 103 1 + 1.5 × 10−3T 2
e

1 + 0.35Te
(W m−1 K−1), (10e)

G(Te) = 4.6 × 1017(1 + 0.1
√

Te) (W m−3 K−1). (10f)

Overall, the differences between the individual parameters
in the solid and plasma states are within a factor or 2 or less
(except for the electrical conductivity). A smooth interpola-
tion between them is given by the following formula:

X = e−(T�/Tm )2
X solid + (

1 − e−(T�/Tm )2)
X plasma, (11)

in which the transition point is the melting temperature of
the metal. However, the interpolation proposed in this work
differs from the conventional one [2,9] as depicted in Fig. 5.
The former interpolates between values for a fixed electron
temperature, while the latter interpolates between values from
temperature regimes that are far apart (below 1–2 eV and
above 50–60 eV). In the conventional scheme most of the
simulations are done are in the poorly defined interpolation
region between ∼2 and ∼50 eV, while in our scheme the
interpolation is between phase transitions that last a few fem-
toseconds only.

It should be noted that the melting temperature, Tm, is a
function of density. In Cowan’s quotidian equation of state
model, which is widely used in practice, the density de-
pendence of the melting temperature relates to the Debye
temperature, �D, via the Lindemann melting law Tm (ρ)

�D (ρ) =
α/ρ

2
3 [47]. In this work, we consider no density variation

and Tm is a fixed number. However, in hydrosimulations with
density variation, e.g., ablation, the melting temperature must
be adjusted accordingly.

III. SIMULATION RESULTS

In this section, numerical simulations for Al at solid den-
sity will be presented with emphasis on melting of the interior
of the metal. This is of particular interest to us since it sepa-

FIG. 5. Conventional interpolation scheme (a) and interpolation
scheme used in this work (b). The conventional scheme bridges a
wide temperature gap, while the one proposed in this work interpo-
lates between values for the same temperature.

rates the solid from the liquid phase and, more importantly, in
our model it delineates the switch from solid to plasma in the
warm dense matter regime. Upon melting, the collisional and
transport parameters in Eq. (1) must transition accordingly
with the interpolation given by formula (11). The target is
assumed to be infinitely long with the surface located at z = 0,
and infinitely wide. For both electrons and ions, Eqs. (1a) and
(1b) are solved with boundary conditions dT (t,z=0)

dz = 0 and
T (t, z = L) = 0, where L is the length of the computational
domain, typically L = 2 μm, and initial conditions T (t =
0, z) = 300 K. Energy losses due to blackbody radiation from
the surface have been neglected. Justification is provided in
the next paragraph. The laser pulse temporal intensity profile
is of the form I (t ) = AI0sin2( πt

2τ
) having peak intensity I0

and duration τ full width at half maximum (FWHM) (2τ at
the base). The laser fluence is F = ∫ ∞

0 I (t )dt = I0τ . A key
laser-target interaction parameter is the absorption coefficient
of the metal surface, A. While in some works it is calculated
dynamically (as a function of time) from the Maxwell equa-
tions using the Drude theory [8,9,11], we opted for a safer
and more reliable approach. We use the time-average (over the
whole laser pulse) absorption coefficient, which depends only
on the laser fluence: A(F ) = 0.13(1 + 3.2 × 10−5F 1/2) [8,48]
with the laser fluence in units of J/m2. The choice has been
motivated, in part, by the fact that experimental measurements
are usually time averaged and provide a single number for
a given laser fluence. The coefficients for electron-phonon
and electron-electron collision frequencies are ks = 18.8 and
ke = 1, respectively [19]. The thermodynamic data for Al are
listed in Table I. The normalized parameters in Eq. (1) are
�H̄m

∼= 1.29 × 103 K−1 and C̄i = Ci/R ∼= 2.9.
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TABLE I. Thermodynamic data for Al used in the two-
temperature model. The data are from Ref. [62].

Parameter Variable Value

Density ρ 2700 kg/m3

Melting temperature Tm 933 K
Heat of fusion �Hm 10.71 kJ/mol
Thermal conductivity ki 237 W/(m K)
Molar heat capacity Ci 24.2 J/(mol K)

The electron and ion temperatures inside the metal are
plotted in Fig. 6 for laser fluence 104 J/m2 (1 J/cm2). On the

left, the simulation results are for a “short” pulse with peak
laser intensity I0 = 1017 W/m2 and pulse duration τ = 0.1 ps,
while on the right the results are for a “long” pulse with peak
laser intensity I0 = 1016 W/m2 and pulse duration τ = 1 ps.
In all figures time t = 0 refers to the time when the front
of the laser pulse reaches the target surface. The first line
plots simulation results for time t = 0.2 ps, at the end of
the short laser pulse. The electron temperature reaches its
maximum of ∼4 eV. The lattice temperature is just above
the melting temperature; i.e., this is the moment the surface
starts to transition from solid to liquid. At later times, t = 2 ps,
the lattice-ion temperature near the surface is well above the
melting temperature and nearly half the electron temperature.

FIG. 6. Electron and ion temperatures as a function of spatial position for times 0.2 ps (a,b), 2 ps (c,d), 20 ps (e,f), and 200 ps (g,h). Left:
peak laser intensity 1017 W/m2, pulse duration τ = 0.1 ps. Right: peak laser intensity 1016 W/m2, pulse duration τ = 1 ps. The laser fluence
is 104 J/m2 for both cases.
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FIG. 7. Electron and ion temperatures on the surface of the metal as a function of time for laser fluences 103 J/m2 (a,b), 3 × 103 J/m2 (c,d),
104 J/m2 (e,f), and 3 × 104 J/m2 (g,h). The pulse duration is τ = 0.1 ps for all cases. The melting temperature is plotted with a gray dashed
horizontal line.

At later times, the electron and ion temperatures equilibrate.
In addition, thermal diffusion causes both temperatures to
gradually penetrate the interior of the metal to a distance
of about 1 μm. There is an additional energy loss from the
metal surface due to blackbody radiation, but it is negligi-
ble: only 0.11 J/m2, which is <0.01% of the absorbed laser
energy.

The temperatures on the metal surface are critical for phe-
nomena such as thermionic emission and ablation. Figure 7
plots the temporal evolution of the surface electron and ion
temperatures for various laser fluences. The pulse duration
is set to τ = 0.1 ps. Equilibration occurs on a picosecond
timescale, between 1.5 and 5 ps depending on the laser flu-

ence (left panels). The surface reaches melting temperature
in about 0.2 ps. During melting, the lattice-ion temperature
flattens for about ∼0.1 ps since during the solid to liquid phase
transition energy is absorbed (the latent heat of formation), but
the temperature stays constant (equal to the melting tempera-
ture). After equilibration, the surface temperatures gradually
decrease with a time constant of 0.5–1 ns (right panels). It
takes between one and several nanoseconds for the surface to
cool off, which may have implications for processes such as
thermionic emission of electrons.

As stated at the beginning of this section, melting of the
metal interior is of primary interest to this study. The energy,
which is deposited in a skin layer of roughly 20–30 nm,
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FIG. 8. Melting depth of Al versus time for various laser flu-
ences. The pulse duration is τ = 0.1 ps.

spreads inward due to thermal diffusion. In Fig. 8, we track
the progress of this inward energy transfer by looking at the
“melting line,” i.e., the position z where the lattice temperature
reaches the melting temperature. This is denoted as “melting
depth.” As discussed in Fig. 6, for laser fluence 104 J/m2

at time t = 0.2 ps surface melting has already commenced.
Following the line in Fig. 8 for that fluence (second line from
top), we see that at that time the metal has melted to a depth
of ∼20 nm. With time the melting rapidly progresses inward
and at t = 0.5 ns it levels off at a depth of ∼350 nm. This is
the maximum melt depth for that laser fluence. The pattern is
similar for all laser fluences under consideration. As expected,
at lower laser fluence saturation is reached faster since there
is less energy (per unit area) to spread, and the melt depth
is smaller. For the lowest laser fluence of 103 J/m2 it is only
∼35 nm, barely larger than the skin depth. In contrast, for
laser fluence 3 × 104 J/m2 the heat wave keeps going inward
for ∼3 ns to a melt depth of 1.5 μm.

The results are summarized in Fig. 9, where we plot the
melting depth versus laser fluence. For reference we plot the
peak surface electron and lattice-ion temperatures (Fig. 9, left
panel). The data are taken at the end of the laser pulse. The
lattice-ion temperature increases linearly with laser fluence.
The electron temperature increases sublinearly due to two
factors: the electron heat capacity, which is a function of Te,
and the thermal conduction, a strong function of Te itself,
which conducts more heat at higher electron temperature, thus
reducing the electron temperature on the surface. The melting
depth increases linearly with laser fluence. This relationship
can become important in a more practical sense being relevant
to the so-called heat affected zone [49,50] that affects the
chemical and material composition and has implications in
material processing. The melting depth, however, should not
be identified as ablation depth.

FIG. 9. Electron and ion temperatures on the surface of the metal
(a) and melting depth (b) as a function of laser fluence. The pulse
duration τ = 0.1 ps.

Since the main purpose of the proposed methodology is
to use rigorously computed data, we benchmarked our simu-
lation results with published data. Figure 9(a) compares the
computed maximum electron temperature on the metal sur-
face with other sources [8,51]. Both the magnitude and trend
of the electron temperature with laser fluence are in agreement
with other sources.

IV. DISCUSSION

The collisional and transport parameters of the two-
temperature model have been calculated rigorously using a
quantum-based model. In this work, we implemented the
basic version of the average atom model, which is straightfor-
ward and not difficult to develop, but is sufficient to convey the
main point of the paper. In this section, we will discuss possi-
ble extensions and improvements. Ever since its first practical
implementation by Liberman [27], the average atom model
underwent numerous improvements. Some of them are only
marginally relevant to this work, for example, relativistic cor-
rections [28,29]. Starrett and Saumon took the average atom
model to the next level by accounting for both the electronic
and ionic structures of plasma. In particular, ion correlation ef-
fects have been included that take into account the penetration
of adjacent ions into the ion sphere under consideration [52].
Thiele et al. included the effect of screening on the atomic
orbitals, work that includes subtle effects, but is more relevant
to the bound states [53]. Some of the improvements, directly
relevant to our work, are the inclusion of the ion structure
factor S(k) into the electron-ion momentum transfer cross
section [32,54]. It can be incorporated particularly easily into
the basic version of the average atom model, when adjacent
ions do not penetrate into the Wigner-Seitz sphere, since an
analytical form of S(k) exists [54]. The procedure for comput-
ing the momentum transfer cross section is only marginally
more complicated since it involves the computation and inte-
gration of the differential cross section rather than integrated
cross section directly. On the theoretical side, more rigorous
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derivation and use of the average atom model based on the
variational principle was proposed by Piron and Blenski [55].

The average atom model has undergone development in
another direction, pioneered by Dharma-wardana and Perrot
in the early 1990s [56,57]. They developed the so-called
neutral-pseudoatom approach (NPA) [30,44,58–60], which
overcomes many of the limitations of the original average
atom model. In particular, the electron wave functions are no
longer confined to the Wigner-Seitz sphere, but allowed to ex-
tend far beyond its boundary in a natural way into a correlation
sphere with radius ∼10 rws. The accuracy is improved albeit at
the cost of complexity and computation time. The latter is still
reasonable (minutes/run) and can be used for mass production
of collisional data.

Finally, it is worth noting that other options for generation
of complete data sets exist. A notable example is Ref. [11], in
which an analogous set of data for Cu was produced by the
full-potential linear muffin-tin orbital model, but the average
atom model has several unique features that make it highly
desirable. In addition to being fully quantum, it has the virtues
of conceptual simplicity and straightforward numerical devel-
opment. Speed, robustness, and versatility make it the method
of choice when large data sets are required in problems
such as ablation. Last, but not least, the average atom model
can be applied to a variety of metals, e.g., Na, Be, Fe, Cu,
and Au.

The second discussion point is the data implementa-
tion. We restricted ourselves to a relatively straightforward
application for constant ion density, but the consequences are
far reaching. More advanced models of laser ablation based on
hydrosimulations can benefit from the proposed approach too,
except a data table should be made in the density-temperature
configuration space rather than temperature dependent only
as was done in this work. Since the average atom model is ex-
tremely fast and can cover smoothly the density-temperature
domain in a very wide range of conditions, appropriate tables

for each parameter can be easily generated, including equation
of state (EoS), pressure as a function of density and tempera-
ture [61]. Thus, the applicability of the proposed approach can
be extended far beyond what was demonstrated here to tackle
more complex problems.

V. CONCLUSIONS

Analytical formulas for collisional and transport parame-
ters of Al in the solid state are combined with data calculated
from the average atom model for the plasma state to pro-
duce a complete set for modeling laser-metal interactions at
moderate intensities (103–105 J/m2). The separation between
solid and plasma states is based on the physical condition of
the lattice with a uniquely defined transition point, which is
in contrast to other models that use the electron temperature
as a demarcation line. Another critical difference is the use
of a fully quantum model suitable for plasmas in the warm
dense matter regime instead of Spitzer-like models adopted in
previous works. Thus, the accuracy of power deposition rate,
and collisional and transport parameters has been improved.

The data were incorporated into a two-temperature model
and applied to the important case of lattice melting. Surface
heating and melting depth have been calculated as a func-
tion of temperature for laser fluences varying from 103 to
3 × 104 J/m2. It was found that the melting depth increases
linearly with laser fluence.

The approach proposed in this work can be extended to
more complex situations such as laser ablation that involve
hydrodynamic motion of the plasma.
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