
PHYSICAL REVIEW E 103, 033108 (2021)

Viscous energy dissipation in slender channels with porous or semipermeable walls
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We study the viscous dissipation in pipe flows in long channels with porous or semipermeable walls, taking
into account both the dissipation in the bulk of the channel and in the pores. We give simple closed-form
expressions for the dissipation in terms of the axially varying flow rate Q(x) and the pressure p(x), generalizing
the well-known expression Ẇ = Q �p = RQ2 for the case of impenetrable walls with constant Q, pressure
difference �p between the ends of the pipe and resistance R. When the pressure p0 outside the pipe is constant,
the result is the straightforward generalization Ẇ = �[(p − p0) Q]. Finally, applications to osmotic flows are
considered.
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I. INTRODUCTION

Channel flows—liquid flows confined within a closed con-
duit with no free surfaces—are omnipresent. In animals [1]
and plants [2] they serve as the building blocks of vascular
systems, distributing energy to where it is needed and al-
lowing distal parts of the organism to communicate. When
constructed by humans, one of the major functions of channels
is to transport liquids or gasses, e.g., water (irrigation and
urban water systems) and energy (oil or natural gas), from
sites of production to the consumer or industry.

In some cases, the channels have solid walls which are
impermeable to the liquid flowing inside. In other cases, the
channels have porous walls which allow the liquid to move
across the wall and thus modify the axial flow. If solutes are
present in the liquid, then the walls can be semipermeable,
allowing only the solvent to pass and thereby allow filtra-
tion or create osmotically driven flows due to concentration
differences between the inside and the outside. Flows with
impermeable walls have been studied in great detail, and ana-
lytical solutions are known in a few, but important, cases [3,4].
Flows with porous walls have received much less attention,
although they are equally important. The effect of porous
walls is especially important in the study of biological flows
[2,5,6] and in industrial filtration applications [7].

Exact solutions for the flow in porous walled channels are
known in a few important cases. Berman’s method [8] allows
for the solution of steady flows in geometries with symme-
tries, for example, between parallel plates or in a cylindrical
tube. The technique is closely related to those commonly used
in boundary layer theory [9]. By demanding that the solution
be of similarity form, Berman’s method reduces the Navier-
Stokes to a single nonlinear third-order differential equation
for the velocity potential in one space dimension. The flow
between parallel plates [8] and in a cylindrical [10,11] and
annular tube [12] have been analyzed in this way. Time-
dependent flows, high-Reynolds-number flows, and stability
and uniqueness of the solutions have since been address by

a large number of workers using analytical and numerical
methods, see, e.g., Cox [13], King and Cox [14], Majdalani
and Zhou [15], Dauenhauer and Majdalani [16], Kurdyumov
[17], Saad and Majdalani [18], Xu et al. [19], and Liu and
Prosperetti [20].

Despite our broad knowledge of transport characteristics
in porous channel flows, the energetic cost of flow remains
poorly understood. In conventional low-Reynolds-number
pipe flows, the relation between the flow rate Q and pressure
drop �p, and the energy dissipation rate is Ẇ = Q�p, anal-
ogous to an electrical circuit. However, in porous channels,
both the flow rate and pressure are position dependent, and
hence the standard result is inadequate.

In this paper we shall concentrate on the case of a long
cylindrical pipe or tube with porous or semipermeable walls.
We first (Sec. II) discuss the basic fluid dynamics based on the
solution by Aldis [11] for a long cylindrical porous pipe. In
Sec. III, we write down the general expression for the viscous
dissipation both in the bulk of the pipe and in its porous walls.
Finally, in the last section, we discuss two specific examples,
one where the porous inflow is constant and one where the
external conditions are constant.

II. LOW-REYNOLDS-NUMBER FLOW IN A LONG
CYLINDRICAL, POROUS PIPE

We consider a tube of length L and characteristic transverse
dimension r0 embedded in a fluid-saturated medium (Fig. 1).
The channel walls of thickness d are permeable, characterized
by the Darcy permeability k, such that the transmembrane
velocity field is normal to the channel walls,

vm = − k

ηd
[pe(x, r0 + d ) − p(x, r0)]n̂

= −Lp[pe(x, r0 + d ) − p(x, r0)]n̂ = Lp δp(x) n̂, (1)

where pe and p is the external medium and channel pressure,
respectively; δp = p(x, r0) − pe(x, r0 + d ) is the pressure
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FIG. 1. A tube of length L and circular cross section of radius r0

is filled with a liquid of viscosity η and density ρ. Liquid is injected
from the surrounding medium (arrows) and creates a bulk flow of
speed u along the positive x direction of the tube.

drop across the membrane; and n̂ is the outward normal
[i.e., r̂ in cylindrical coordinates (x, r, φ)] and where we as-
sume axial symmetry. Further, Lp = k/(ηd ) is the membrane
permeability. A detailed model of Lp, assuming parallel cylin-
drical pores, is given in Appendix.

When we are dealing semipermeable membranes separat-
ing solutions with different solute concentrations, (1) takes the
form

vm = −Lp[�e(x, r0 + d ) − �(x, r0)]n = Lp δ�(x), (2)

where � is the water potential. The water potential (free en-
ergy) � = p − � includes the osmotic pressure �, which, for
low solute concentrations c, can be expressed using the van’t
Hoff relation � = RT c (see, e.g., Ref. [21]). Again, δ denotes
the jump across the membrane: δ� = �(x, r0) − �e(x, r0 +
d ). In the rest of the paper, we assume separation of geometric
scales, such that the channel is long in comparison to all other
lengths, i.e., L � r0 � d � √

k.
In steady low-Reynolds-number flow conditions, we base

our analysis on the Stokes equation,

∇p = η∇2v, (3)

for an incompressible fluid where ∇ · v = 0 and a constant
viscosity η and density ρ. Note that the no-slip conditions on
the channel boundaries correspond to v⊥ = vm and v‖ = 0.

We express the velocity using cylindrical coordinates, i.e.,
v = (vx, vr ), and thus assume rotational symmetry. In plants,
the sieve tubes of the phloem are roughly of this form, and
in the leaves their radii (r0) are in the μm regime while their
length (L) is centimetric. The slender (lubrication) approxima-
tion used by Aldis [11] to describe such flows is valid, since
Re � 1 and r0/L � 1. The stationary flow field then has the
form

vr (r, x) = f (r)v0(x), (4)

vx(r, x) = g(r)u(x), (5)

where

f (r) = r3

r3
0

− 2
r

r0
, (6)

g(r) = 2

(
1 − r2

r2
0

)
. (7)

The function v0(x) is the radial injection velocity

vr (r0, x) = −v0(x) = vm(x), (8)

where vm given by (1) or (2) such that a positive v0 denotes an
inflow. The mean axial flow speed is

u(x) = 2π

πr2
0

∫ r0

0
vx(r, x) rdr = v̄x(r, x) (9)

and the corresponding volumetric flow rate Q is

Q(x) = πr2
0u(x) = Q0 + 2πr0

∫ x

0
v0(x′)dx′, (10)

where Q0 is the inlet flow rate at x = 0. The average flow
speed is

u(x) = Q0

πr2
0

+ 2

r0

∫ x

0
v0(x′)dx′ (11)

or

u′(x) = 2

r0
v0(x) (12)

and

Q′(x) = 2πr0v0(x). (13)

In the lubrication approximation the pressure does not vary
over the pipe cross section, i.e., we can replace p by it’s
average value p(x) = p̄(r, x). Thereby the average velocity is
related to the axial pressure gradient as in standard Hagen-
Poiseuille flow

d p

dx
= −8η

r2
0

u(x) = − 8η

πr4
0

Q(x), (14)

and, finally, the inflow v0(x) = −vm is given by (1) or (2)
depending on whether the membrane is fully permeably or
only permeable to the solvent.

III. VISCOUS DISSIPATION

We shall determine the viscous dissipation in the flows
studied in Sec. II by looking first at the dissipation in the bulk
flow and second at the flow through the porous semipermeable
walls and then putting them together. Finally, we shall verify
these expressions, by looking at the energy advection equa-
tion. The dissipated energy is given as (see e.g., Ref. [22])

Ẇ = 1

2
η

∫ ∑
i, j

u2
i jdV = 1

2
η

∫
Tr[u · uT ]dV, (15)

where ui j is the strain rate

ui j =
(

∂vi

∂x j
+ ∂v j

∂xi

)
(16)

and where the volume integral goes over the volume of the
flow. The sum in (15), being the trace of the product of u
matrices, is invariant with respect to transformations to other
(locally) orthogonal coordinates, and, in particular, i and j can
represent the cylindrical coordinates used above.

Note that this dissipative energy only represents the work
done by the viscous forces in the fluid. For osmotically driven
flows in plant leaves there would be an energy consumption
related to the transport of sugar into the tubes, which we are
not trying to account for here.
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The dissipation has the form

Ẇtot = Ẇbulk + Ẇwalls, (17)

with terms coming coming from the bulk flow and from the
flow in the porous walls.

The viscous dissipation for an axially symmetric flow, such
as the Aldis flow field given by Eqs. (4) and (5), can then be
written as

Ẇ = 2η

∫
dV

[(
∂vr

∂r

)2

+
(vr

r

)2

+
(

∂vx

∂x

)2

+ 1

2

(
∂vr

∂x
+ ∂vx

∂r

)2]
. (18)

For the Aldis flow we can write the velocity components
explicitly using (4)–(13). To obtain this solution, we made the
assumption that vr � vx and ∂/∂x � ∂/∂r, so the dominant
term in the dissipation is

Ẇbulk = η

∫
dV

(
∂vx

∂r

)2

= η

∫
dV (g′(r))2u2(x)

= 8η

πr4
0

∫ L

0
Q2(x)dx, (19)

where we have used that g′(r) = −4r/r2
0 (7). Using the

Hagen-Poiseuille relation (14) this can be written

Ẇbulk = −
∫ L

0
p′(x)Q(x)dx (20)

and for a normal Poiseuille flow in a cylindrical pipe with
solid walls (and therefore Q and p′ = �p/L constant) this
becomes Ẇbulk = Q�p as it should. The additional terms in
(18) can be written in descending orders of (L/r0)2 as

�Ẇadd

= 1

3π

η

r2
0

{
5
∫ L

0
(Q′)2dx + 8[Q′(L)Q(L) − Q′(0)Q(0)]

}

+ 11

48π
η

∫ L

0
(Q′′)2dx (21)

and in order of magnitude they correspond to replacing 2 or 4
factors of r0 by factors of L and it would thus not be justified
to keep them in the lubrication limit used to obtain Eqs. (4)
and (5).

To describe the dissipation in the porous tube wall, we use
Darcy’s law (1) or (2) in the form

v0(x) = k

ηd
δp = Lpδp, (22)

where δp is the pressure jump across the porous tube wall,
which, in osmotic flows, should be replaced by the jump
in water potential δ� = δp − RT δc. The corresponding en-
ergy dissipation per unit wall area is simply ẇmem = v0�p =
(v0(x))2/Lp and the total dissipation is

Ẇwall = 2πr0

∫ L

0
v0(x) δp dx = 2πr0

Lp

∫ L

0
(v0(x))2dx

= 1

2πr0Lp

∫ L

0
(Q′(x))2dx =

∫ L

0
δp(x) Q′(x)dx. (23)

The total dissipation is found by adding the wall contribu-
tion (23) to the bulk contribution (19) giving

Ẇtot = −
∫ L

0
[p′(x) Q(x) + δp(x) Q′(x)]dx, (24)

which can also be written

Ẇtot = 8η

πr4
0

{∫ L

0

[
Q2(x) + L2

0 (Q′(x))2]}
, (25)

where L0 is the “efficient length” introduced by Rademaker
et al. in the context of osmotically driven pipe flows [23]
and earlier by Landsberg and Fowkes in the context of water
motion through root hairs [24],

L0 =
(

r3
0

16ηLp

)1/2

=
(

r3
0d

16k

)1/2

. (26)

In (25) one clearly sees how the introduction of the second
term alters the simple expression Ẇtot = RQ2 for a pipe with
impenetrable walls.

If we go back to the variables p (or �) and Q, then we
can write these expressions in a more general way. In order to
treat the porous and the semipermeable case together, we shall
write the inflow condition (1) and (2) in general as

v0(x) = −Lp δ�(x), (27)

where the porous case is found by setting c = 0. Then, using
(13) and (14), we get

Ẇtot = −
∫ L

0
[p′(x) Q(x) + δ�(x) Q′(x)]dx, (28)

an expression which, like (24), is completely free of material
parameters.

IV. SPECIAL CASES

A. Constant inflow

If we assume a constant inflow v0, then we have Q(x) =
Q0 + 2πr0v0x and

Ẇtot = 8η

πr4
0

{∫ L

0

[
Q2(x) + L2

0 (Q′(x))2]}

= 32π
ηv2

0L3
0

r2
0

{[
(1 + b2)m + bm2 + 1

3
m3

]}
, (29)

where m = L/L0 and b = Q0/(2πr0v0L0) are dimensionless
numbers. For a tube closed in one end (like a pine needle)
Q0 = b = 0 and one can see that the membrane dissipation
dominates for small L � L0 and the bulk dissipation domi-
nates for large L � L0.

B. Constant external conditions

If the pressure outside the tube pe is constant, then we can
introduce the new pressure p → p − pe in (24) and get simply

Ẇtot = �[p Q] = p(0)Q(0) − p(L)Q(L), (30)

generalizing the Hagen-Poiseuille result Ẇ = Q �p.
Similarly, for the osmotic case, if both the pressure and

concentration outside the tube ce are constant, then we can
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introduce the relative concentration c → c − ce and similarly
� → � − �e to get [using (28)]

Ẇtot = −
∫ L

0
[p′(x) Q(x) + �(x) Q′(x)]dx

=
∫ L

0
{[RT c(x) − p(x)]Q′(x) − Q(x)p′(x)}dx

=
∫ L

0
RT c(x)Q′(x)dx −

∫ L

0

d

dx
(pQ)dx

=
∫ L

0
RT c(x)Q′(x)dx + �[p Q]

= �[� Q] −
∫ L

0
RT c′(x)Q(x)dx, (31)

where �[� Q)] = �(0)Q(0) − �(L)Q(L) and where we re-
cover (30) for c = 0.

If the concentration inside the tube is also constant, then
the dissipation for the osmotically driven flow is

Ẇtot = �[�Q], (32)

and if Q is zero at x = 0, then the analytical solution [23]

Q(x) = 2πr0LpL

m
[RT c − p(L)]

sinh
(
m x

L

)
cosh m

, (33)

RT c−p(0) = RT c − p(L)

cosh m
, (34)

gives the simple form for the dissipation

Ẇtot = −�(L)Q(L) = [RT c − p(L)]Q(L)

= 2πr0LLp[RT c − p(L)]2 tanh m

m
. (35)

The individual contributions are similarly

Ẇlub = πr0LLp[RT c − p(L)]2

(
− 1

cosh2 m
+ tanh m

m

)
(36)

and

Ẇmem = πr0LLp[RT c − p(L)]2

(
1

cosh2 m
+ tanh m

m

)
, (37)

so when we add these contributions the 1/ cosh2 m terms
cancel. For small m, Ẇlub is very small [O(m2)],

Ẇlub ≈ 1

6
m2πr0LLp[RT c − p(L)]2, (38)

whereas

Ẇmem ≈
(

2 − 5

6
m2

)
πr0LLp[RT c − p(L)]2, (39)

so Ẇmem dominates completely. At large m they become equal:

Ẇlub ≈ Ẇmem ≈ 1

m
πr0LLp[RT c − p(L)]2

= πr0LeffLp[RT c − p(L)]2, (40)

although Ẇmem > Ẇlub for all m.
The case c = 0 corresponds to a porous pipe in a constant

external pressure pe. Again, if the pipe is closed at x = 0
and open at x = L with pressure p(L) < pe, then we get the

exact same results, replacing RT c − p(L) by pe − p(L) in
(35), (36), and (37).

V. CONCLUSIONS

We have studied the viscous energy dissipation in pipe
flows with permeable or semipermeable walls in order to
generalise the result Ẇ = Q �p valid for pipes with imperme-
able walls. We have obtained a surprisingly simple expression
valid for Stokes flow in long, thin, cylindrical pipe using
the slender approximation and representing the porous wall
as a collection of cylindrical pores. For a pipe of length
L, the dissipation given in Eq. (25) is expressed in terms
of the axially varying flow rate and its derivative as well as
the material parameters: pipe radius, wall permeability, and
liquid viscosity. For semipermeable pipes, where the water
uptake is governed by osmosis, the viscous dissipation, given
in Eq. (31), is expressed entirely in terms of the fundamental
variables: the flux, the pressure and the osmotic pressure (or
concentration) without any material parameters. This suggests
that the result it is much more general than our derivation in
terms of cylindrical pores would imply.

ACKNOWLEDGMENTS

We are grateful for support from the Danish Council for In-
dependent Research–Natural Sciences (Grant No. 12-126055)
and from Villum Fonden through Research Grant No. 13166.

APPENDIX: DETAILED MODEL OF THE PERMEABILITY
Lp FOR A CYLINDRICAL TUBE WITH A POROUS WALL

PERFORATED BY CYLINDRICAL PORES

As an example we can compute the dissipation through a
porous tube membrane modelled as a solid surface with N
same-sized, cylindrical pores of radius a and length d , where
d is the thickness of the membrane (see Fig. 2). We expect
this model to be useful, even though, in the context of plant
leaves the pores (aquaporins) are of nanometric size, which
implies that neither the approximation of cylindrical pores nor
the validity of the Navier-Stokes equation is well founded.
The density n of pores, per length, is assumed constant, so
n = N/L. Through each of the pores we assume a Poiseuille

L

a

r0

dqi

FIG. 2. A sketch of the flow in the membrane pores showing a
tube with pores of radius a and length d .
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flow with resistance

Ri = 8ηd

πa4
. (A1)

The total resistance R of N noninteracting pores in parallel is
related to the permeability Lp of the membrane as

1

R
= N

Ri
= Nπa4

8ηd
≡ 2πr0LLp, (A2)

giving the relation

Lp = na4

16ηdr0
(A3)

or

k = ηLpd = na4

16r0
. (A4)

The dissipation inside the pore is dependent on the choice of
pore radius a and covering fraction φ, since this determines
the actual inflow velocity vi through pore number i and the
corresponding flux qi = πa2vi. They are connected to the
continuous inflow v0(x) as

v0(x) = φ vi, (A5)

with the covering fraction

φ = nπa2

2πr0
= na2

2r0
, (A6)

in terms of which

Lp = φa2

4ηd
, (A7)

and

k = ηLpd = 1

4
φa2. (A8)

The viscous dissipation through all pores in the membrane
is [by (19)]

Ẇmem = 8ηd

πa4

N∑
i=1

q2
i

= 8ηd

πa4

nπ2a4

φ2

∫ L

0
v2

0 (x)dx

= 2πr0

Lp

∫ L

0
v2

0 (x)dx (A9)

= 1

2πr0Lp

∫ L

0
(Q′(x))2dx. (A10)

One might wonder whether it is valid to retain this term
compared to the terms in Eq. (21), which we discarded. In
particular, the first term in (21) has precisely the same form as
(A10) but with a different prefactor. However, Lp is assumed
to be small due to the smallness of a/r0 and φ. The ratio of
this latter term to (A10) is roughly (η/r2

0 )r0Lp = ηLp/r0 =
φa2/(4r0). The covering fraction φ must be less than unity
(typically it is much less) and since a/d < 1 and a/r0 � 1
this ratio is typically very small.
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