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Parametric transition from deflagration to detonation in stellar medium
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The nature of thermonuclear explosions of white-dwarf stars is a fundamental astrophysical issue, the first
principle interpretation of which is still commonly regarded as an unresolved problem. There is a general
consensus that stellar explosions are a manifestation of the deflagration-to-detonation transition of an outward
propagating self-accelerating thermonuclear flame subjected to instability-induced corrugations. A similar prob-
lem arises in unconfined terrestrial flames where a positive feedback mechanism leading to the pressure runaway
has been identified. The present study is an application of this finding to the stellar environment. Notwithstanding
a substantial modification of the equation of state the runaway effect endures. Approaching the runaway point
the pretransition flame may stay perfectly subsonic, which challenges the view that to ensure the transition the
flame should cross the threshold of Chapman-Jouguet deflagration.
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I. INTRODUCTION

Whereas deflagration-to-detonation transition (DDT) in
confined systems (e.g., tubes) is a matter of common
knowledge, feasibility of the transition in unconfined space
continues to be uncertain [1]. The present study is moti-
vated by the Deshaies-Joulin analysis [2] revealing positive
feedback between the advancing ideal gas flame and the
flame-driven pressure buildup resulting in the pressure run-
away when the flame speed reaches a critical level (see also
Refs. [3–10]). An application of this finding to the problem
of transition to detonation of a self-accelerating thermonu-
clear flame expanding in an unconfined stellar interior is
the main objective of this paper. As shown below, despite a
considerable change in the equation of state and the reaction
kinetics, the runaway effect survives. There is no substantial
difference between chemical and thermonuclear DDT events
as far as physical mechanisms are concerned. This similarity
has indeed been long anticipated [1,11] but has never as yet
been demonstrated on a simple one-dimensional model. The
first attempts to model unconfined DDT in a stellar medium
was based on the Zeldovich induction time gradient mecha-
nism requiring large-scale fine-tuned preconditioning of the
unburned gas [12,13]. This concept however, was later seri-
ously challenged as physically unlikely [14]. An alternative
interpretation of DDT (physically closer to the present study)
was based on three-dimensional direct numerical simulations
(DNS) of channel flames spreading through compressible
high-speed steadily driven turbulence [4,7]. The DNS solu-
tions obtained led the authors to the general conclusion that to
trigger DDT the flame should cross the threshold of Chapman-
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Jouguet (CJ) deflagration. Yet, as shown in the present study,
this requirement is actually too strong. The transition may
well be triggered by subsonic (sub-CJ) flames.

II. FORMULATION

The enhancement of the flame speed in unconfined me-
dia is typically caused by instability- or turbulence-induced
corrugations of the reaction zone. The impact of corrugations
may be accounted for even within the framework of a one-
dimensional model by merely replacing the reaction rate term
W by �2W with � being the degree of flame front folding
[2,5,6,8–10]. In the present formulation � is treated as a
prescribed time-independent parameter. The presence of the
�2 factor in the reaction term can be justified as follows. Ac-
cording to the classical Zeldovich-Frank-Kamenetskii theory
[15], for a low Mach number planar flame its propagation
velocity relative to the gas is proportional to the square root
of the reaction rate. On the other hand, the effective velocity
of the corrugated flame is proportional to its degree of fold-
ing �. Hence, the effective reaction rate of the corrugated
flame should be proportional to �2. Indeed, simulations of
the �2-based models corroborate this assessment, at least for
moderately high �s [5,6,9]. For general Mach numbers the
�2 model is clearly an extrapolation, expected to provide a
reasonably good description of the physics involved. Note that
the proposed �2 model relates to the deflagrative propagation
only and is not valid beyond the transition point. Similar to the
DDT in channels (Fig. 13 of Ref. [5]) the level of wrinkling
(�) is expected to drop dramatically upon the transition.

In the present formulation the planar thermonuclear flame
(� = 1) is sustained by a single-step, Arrhenius-type reaction
rate specified as [16–18]

W = ZρnC exp

(
− 3

√
Ta

T

)
, (1)
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where T is the temperature; Ta, activation temperature; C,
mass fraction of the deficient reactant; ρ, gas density; n,
reaction order; and Z , reaction rate prefactor.

For dense stellar matter the caloric and thermodynamic
equations of state for enthalpy h and pressure p are
specified as

h = γ

γ − 1

(
p

ρ

)
, (2)

p = Aργ + Bρ2−γ T 2, (3)

where γ is the adiabatic index. The caloric Eq. (2) is struc-
turally similar to that of the ideal gas (see, e.g., Ref. [19], Eqs.
(56.8) and (61.5), where E = h/γ , V = 1/ρ). The thermody-
namic Eq. (3) is simply a unification of classical Sommerfeld
expansions pertinent to free election gas that dominates the
interior of white-dwarf stars. For the nonrelativistic and ul-
trarelativistic limits γ = 5/3 and γ = 4/3, respectively [see,
e.g., Ref. [20], Eqs. (13.2.35) and (13.2.47)]. A more detailed
discussion of the subject may be found in Ref. [21].

For further analysis it is convenient to express coefficients
A, B in terms of the initial pressure, densities, and tempera-
tures across the deflagration wave, assuming the latter to be
isobaric. Hence,

p0 = Aρ
γ

0 + Bρ
2−γ

0 T 2
0 (4)

and

p0 = Aργ
p + Bρ2−γ

p T 2
p , (5)

where ρ0, T0, ρp, Tp are densities and temperatures far ahead
and far behind the reaction zone in the planar isobaric flame,
respectively; from here on the subscripts 0, p stand for the
fresh mixture and products, respectively.

Equations (4) and (5) readily imply

A = p0
(
ρ

2−γ
p T 2

p − ρ
2−γ

0 T 2
0

)
ρ

γ

0 ρ
2−γ
p T 2

p − ρ
2−γ

0 ρ
γ
p T 2

0

, (6)

B = p0
(
ρ

γ

0 − ρ
γ
p
)

ρ
γ

0 ρ
2−γ
p T 2

p − ρ
2−γ

0 ρ
γ
p T 2

0

. (7)

Unlike chemical ideal gas flames, Eqs. (3)–(7) allow for
a significant increase of temperature (Tp � T0) under mild
thermal expansion (ρp � ρ0), typical of thermonuclear flames
[1,7,17,18,22]. Despite this distinction, the positive feed-
back mechanism of ideal gas flames appears to hold also
in thermonuclear flames. This may be demonstrated even
analytically adopting the Deshaies-Joulin approach [2] by
considering the distinguished limit combining the large ac-
tivation temperature with small Mach number while keeping
their product finite (see Appendix A for details).

In thermonuclear flames the energy transport prevails sub-
stantially over momentum and mass transfer thus allowing to
set the Prandtl number at zero and the Lewis number at infinity
[17]. In suitably chosen units the set of governing equations
for one-dimensional planar geometry read as follows:

Continuity,

∂ρ̂

∂ t̂
+ ∂ρ̂û

∂ x̂
= 0, (8)

Momentum,

∂ρ̂û

∂ t̂
+ ∂ρ̂û2

∂ x̂
+ 1

γ

∂ p̂

∂ x̂
= 0, (9)

Energy,

∂ρ̂Ê

∂ t̂
+ ∂ρ̂ûÊ

∂ x̂
+

(
γ − 1

γ

)
∂ p̂û

∂ x̂

= ε
∂2T̂

∂ x̂2
+ (1 − σp)�2Ŵ , (10)

where, accounting for Eq. (2),

Ê = 1

γ

(
p̂

ρ̂

)
+ 1

2
(γ − 1)û2, (11)

Mass fraction,

∂ρ̂Ĉ

∂ t̂
+ ∂ρ̂ûĈ

∂ x̂
= −�2Ŵ , (12)

Reaction rate [see Eq. (1)],

Ŵ = Ẑρ̂nĈ exp
[
Np

(
1 − T̂ − 1

3
)]

, and (13)

Thermodynamic equation of state [see Eqs. (3)–(7)],

p̂ = Âρ̂γ + B̂ρ̂2−γ T̂ 2, (14)

where

Â = σ
2−γ
p − θ2

p

σ
2(1−γ )
p − θ2

p

, (15)

B̂ = σ
2(1−γ )
p

(
1 − σ

γ
p
)

σ
2(1−γ )
p − θ2

p

. (16)

As may be readily checked,

p̂(ρ̂ = 1, T̂ = 1) = p̂
(
ρ̂ = σ−1

p , T̂ = θp
) = 1. (17)

In the above equations the basic reference scales are
ρp, Tp, p0, C0, hp = γ p0/(γ − 1)ρp, ap = √

γ p0/ρp, and
Up-velocity of a planar isobaric flame relative to the reaction
products.

Hence, t̂ = t/tp, x̂ = x/aptp, û = u/ap, ρ̂ = ρ/ρp,
p̂ = p/p0, Ĉ = C/C0, Ê = E/hp, Ŵ = W tp/ρpC0,
tp = λTp/ρphpU 2

p , ε = (Up/ap)2, σp = ρp/ρ0, Np = 3
√

Ta/Tp,
θp = T0/Tp, and λ is the thermal conductivity assumed to be
constant.

In Eq. (13) Ẑ = 1
3 Np(1 − σp) is the normalizing factor

to ensure that at high activation temperatures (Np � 1) and
isobaric conditions (ε � 1) the scaled flame speed relative
to the burned gas approaches �

√
ε (see Appendix B). Equa-

tions (8)–(16) are considered over a semi-infinite interval,
0 < x̂ < ∞.

The pertinent solution is required to meet the following
initial and boundary conditions:

Initial conditions,

T̂ (x̂, 0) = θp + (1 − θp) exp(−x̂/l̂ ),

Ĉ(x̂, 0) = 1, p̂(x̂, 0) = 1, û(x̂, 0) = 0,

ρ̂(x̂, 0) is a positive solution of Eq. (14). (18)
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Boundary conditions,

∂T̂ (0, t̂ )/∂ x̂ = 0, û(0, t̂ ) = 0, p̂(+∞, t̂ ) = 1,

T̂ (+∞, t̂ ) = θp, Ĉ(+∞, t̂ ) = 1,

ρ̂(+∞, t̂ ) = 1/σp, û(+∞, t̂ ) = 0. (19)

The parameters employed are specified as follows:

Np = 45, ε = 10−4, θp = 0.02, � � 1,

σp = 0.5, 0.85, γ = 4/3, 5/3, n = 2, 3. (20)

The hot spot width l̂ of Eq. (18) is chosen to initiate the
deflagrative mode. At � > �DDT the latter becomes unfeasi-
ble triggering transition to detonation. On the whole, 50

√
ε <

l̂ < 400
√

ε.

In dimensional units the parameter set (20) may corre-
spond, e.g., to Up = 100 km/s, ap = 10 000 km/s, T0 = 2 ×
109 K, Tp = 1011 K, Ta = 9.1 × 1015, ρ0 = 5 × 109 g/cm3,
ρp = 2.5 × 109 g/cm3, 4.25 × 109 g/cm3, which are quite re-
alistic [1,7,17,18].

III. NUMERICAL SIMULATIONS

The computational method and numerical strategy em-
ployed are similar to those of Ref. [8] dealing with terrestrial
flames. Spatial steps 
x̂ are determined by the resolution
tests conducted for � = 1 and � = 23.4. Specifically, 
x̂ =
0.00025 for 1 < � < 23.4 and 
x̂ = 0.000125 for � > 23.4
(see Appendix C).

Figures 1 and 2 show D̂ f (�) dependencies and spatial
profiles of state variables close to the DDT point.

According to Fig. 1, in each case considered the flame
undergoes an abrupt runaway when its speed D̂ f reaches a
critical level. The transition invariably occurs at D̂ f < 1, i.e.,
below the threshold of the CJ deflagration, D̂ f = 1.

The profiles of Fig. 2 are quite in line with what is expected
for a subsonic deflagration propagating from the channel’s
closed end [23].

IV. TRAVELING WAVE SOLUTION

Behind the precursor shock the well-settled flame assumes
the form of a traveling wave (Fig. 2) whose structure may be
described by a single first-order ordinary differential equation
(ODE).

In the frame of reference attached to the flame front (x̂ =
D̂ f t̂) Eqs. (8)–(12) may be transformed to the following set of
ODEs:

d

dξ
(ρ̂v̂) = 0, (21)

d

dξ

(
ρ̂v̂2 + 1

γ
p̂

)
= 0, (22)

d

dξ

{
ρ̂v̂

[
p̂

ρ̂
+ 1

2
(γ − 1)v̂2 + (1 − σp)Ĉ

]}
+ ε

d2T̂

dξ 2
= 0,

(23)

d

dξ
(ρ̂v̂Ĉ) = �2Ŵ , (24)

where ξ = x̂ − D̂ f t̂, v̂ = D̂ f − û.

(a)

(b)

(c)

(d)

FIG. 1. Scaled pre-DDT flame speed D̂ f vs folding factor �.

Two curves on each figure correspond to γ = 4/3, 5/3, θp =
0.02, Np = 45. The values of other parameters are σp = 0.5, n =
2 (a); σp = 0.85, n = 2 (b); σp = 0.5, n = 3 (c); and σp = 0.85,

n = 3 (d).
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(a)

(b)

(c)

(d)

FIG. 2. Spatial profiles of density (a), pressure (b), gas veloc-
ity (c), and temperature (d) adjacent to the DDT point. Labels f
and s mark the flame front and the precursor shock (γ = 4/3, n =
3, σp = 0.5, θp = 0.02; Np = 45, � = 9.4). Similar profiles for
other cases of Fig. 1 are not shown.

Equations (21)–(24) are considered jointly with Eqs. (13)
and (14). To avoid the familiar cold-boundary difficulty the
reaction rate Ŵ is truncated at low enough temperatures, i.e.,
one sets

Ŵ (T̂ < T̂ign ) = 0, (25)

with T̂ign to be specified later.
Integrating Eqs. (21)–(24) subject to boundary conditions

Ĉ(±∞) = 0, 1, ρ̂(±∞) = ρ̂1,2, v̂(±∞) = v̂1,2,

p̂(±∞) = p̂1,2, T̂ (±∞) = T̂1,2, (26)

one obtains

ρ̂v̂ = ρ̂1v̂1 = ρ̂2v̂2, (27)

ρ̂v̂2 + 1

γ
p̂ = ρ̂1v̂

2
1 + 1

γ
p̂1 = ρ̂2v̂

2
2 + 1

γ
p̂2, (28)

ρ̂v̂

[
p̂

ρ̂
+ 1

2
(γ − 1)v̂2 + (1 − σp)Ĉ

]
+ ε

dT̂

dξ

= ρ̂1v̂1

[
p̂1

ρ̂1
+ 1

2
(γ − 1)v̂2

1 + (1 − σp)

]

= ρ̂2v̂2

[
p̂2

ρ̂2
+ 1

2
(γ − 1)v̂2

2

]
. (29)

Parameters ρ̂1,2, p̂1,2, v̂1,2 = D f − û1,2, may be expressed in
terms of the precursor shock velocity D̂s by employing con-
ventional Rayleigh and Rankine-Hugoniot relations across the
shock and the flame front (see Ref. [8]), augmented with the
equation of state (14).

Combining Eqs. (14), (22), and (28) one obtains the rela-
tion

ρ̂2
1 v̂2

1

ρ̂
+ 1

γ
p̂(ρ̂, T̂ ) = ρ̂1v̂

2
1 + 1

γ
p̂1, (30)

offering two solutions for ρ̂ = ρ̂(T̂ ). Only the solution for
which ρ̂(T̂1) = ρ̂1 is of physical interest.

Let ξ = 0 be associated with the ignition point. The prob-
lem may then be considered over the semi-infinite interval,
−∞ < ξ < 0.

Since v̂ = v̂[ρ̂(T̂ )], p̂ = p̂[ρ̂(T̂ ), T̂ ], one ends up with the
system of two first-order ODEs

ρ̂1v̂1

[
p̂(T̂ )

ρ̂(T̂ )
+ 1

2
(γ − 1)v̂2(T̂ ) + (1 − σp)Ĉ

]
+ ε

dT̂

dξ

= ρ̂1v̂1

[
p̂1

ρ̂1
+ 1

2
(γ − 1)v̂2

1 + (1 − σp)

]
, (31)

ρ̂1v̂1
dĈ

dξ
= �2Ŵ [ρ̂(T̂ ), Ĉ, T̂ ], (32)

considered jointly with boundary conditions

T̂ (ξ = 0) = T̂ign, Ĉ(ξ = 0) = 1,

T̂ (ξ = −∞) = T̂2, Ĉ(ξ = −∞) = 0. (33)

The problem (31), (32), and (33) is clearly overdeter-
mined, which allows evaluation of �2(D̂ f ). Taking Ĉ as an
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independent variable,

dT̂

dξ
= dT̂

dĈ
· dĈ

dξ
= �2Ŵ

ρ̂1v̂1
· dT̂

dĈ
. (34)

Equations (31) and (32) reduce to a single first-order ODE for
T̂ (Ĉ) with the boundary conditions

T̂ (Ĉ = 1) = T̂ign, T̂ (Ĉ = 0) = T̂2. (35)

In numerical simulations the ignition temperature is set as
T̂ign = 1.01T̂1. Other relevant parameters are identical to those
of Sec. II.

Figure 3 displays emerging �(D̂ f ) -dependencies. As is
readily seen the traveling wave solution ceases to exist above
�max, which invariably falls at D̂ f < 1, i.e., below the CJ-
deflagration point.

A possibly unexpected outcome is that only part of the
�(D̂ f )-dependency appears to be dynamically feasible. The
transition to detonation actually occurs at �DDT < �max

(Figs. 1 and 4). The traveling wave solution pertaining to
�DDT < � < �max appears to be unstable yielding an abrupt
transition to the CJ detonation (Figs. 5 and 6):

D̂CJ =
√

(γ + 1)(1 − σp)

2
+

√
(γ + 1)(1 − σp)

2
+ σp; (36)

see Ref. [8]. Unlike deflagrations D̂CJ does not depend on �.
According to Fig. 6, nucleation of the detonative mode

occurs at the flame front and is accompanied by formation of
the retonation wave spreading leftward through the products.

V. SUMMARY AND CONCLUDING REMARKS

This study demonstrates that the parametric flame folding
model could fit the thermonuclear DDT. Moreover, approach-
ing the DDT point the pretransition flame may stay perfectly
subsonic, thereby challenging the view that to ensure the
transition the flame should cross the threshold of Chapman-
Jouguet deflagration.

In the present formulation the degree of folding � is
treated as a prescribed gradually increasing factor. In outward
propagating flames the growth of � is caused by the inverse
cascade mechanism characteristic of Darrieus-Landau and
Rayleigh-Taylor instabilities tending to adapt the speed of the
corrugated flame to the overall scale of the system, e.g., radius
of the expanding flame [10]. The �2-factor in the reaction rate
term is suggested by the Zeldovich-Frank-Kamenstskii theory
valid for low Mach numbers, D̂ f � 1 [15].

For general Mach numbers the model is an extrapolation,
expected to provide a reasonably good description of the
physics involved. It is certainly satisfying that transition to
detonation occurs at flame speeds D̂ f , considerably below
unity (see Fig. 3), which could not be foreseen in advance. In
any case it would be of value to extend the model to general
Mach numbers.

While the �-model is helpful for exposing the
precompression-induced runaway, it conceals the explicit
relation between � and the flame front geometry. Due to
the enormous disparity between the spatial scales involved,
modeling and simulations of unconfined hydrodynamically
unstable flames from first principles, while resolving

FIG. 3. Folding factor � vs scaled flame speed D̂ f . Two curves
on each figure correspond to n = 2, 3, θp = 0.02, Np = 45. The
values of other parameters are γ = 4/3, σp = 0.5 (a); γ = 4/3, σp =
0.85 (b); γ = 5/3, σp = 0.5 (c); γ = 5/3, σp = 0.85 (d). Open cir-
cles mark the DDT points of Fig. 1.

033106-5



GORDON, KAGAN, AND SIVASHINSKY PHYSICAL REVIEW E 103, 033106 (2021)

FIG. 4. Illustrating the relation between the traveling wave so-
lution (dots) and its dynamical counterpart (Figs. 1 and 3) (γ =
4/3, n = 2, σp = 0.5, θp = 0.02, Np = 45).

all relevant scales, is not feasible either now or in the
foreseeable future. Yet rational development and exploration
of appropriately designed reduced models (accounting for the
principal physics involved) is not out of reach and is expected
to be highly educational.

For an outward propagating mildly disturbed two-
dimensional flame the folding factor may be expressed in
terms of the flame front profile, r = R(φ, t ) as

� = 1 + 1

2R̄2

(
∂R

∂φ

)2

, (37)

where the overbars mean the average over 0 < φ < 2π (see
Ref. [10] for details).
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FIG. 6. The upper panel (a) depicts the evolving pressure pro-
file under conditions of Fig. 5; t̂ = 0.05(n − 1), n = 1, 2, . . . , 11.

The lower panel (b) zooms the incipient dynamics of DDT, t̂ =
0.00008 + 0.0004(n − 1), n = 1, 2, . . . , 10. Bold lines in both pan-
els correspond to the initial profile-traveling wave solution.
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APPENDIX A: EXTENSION OF DESHAIES-JOULIN
ANALYSIS OVER THERMONUCLEAR FLAMES

Following Deshaies-Joulin [2], consider Rankine-
Hugoniot jump conditions on the precursor shock and the
flame front propagating from the closed end of a semi-infinite
interval, 0 < x < ∞. The pertinent gas-dynamic model
neglects transport effects as well as the reaction zone width.
The spatiotemporal structure of the developing profiles is
therefore expected to be of a self-similar nature, depending
only on x/t .

Figure 7 shows a typical profile of the flow velocity for a
subsonic (low Mach number) deflagration [23]. Here Ds, D f

correspond to velocities of the precursor shock and flame
front, respectively.

The conservation conditions of continuity, momentum and
energy across the precursor shock, x = Dst, may be written as

ρ0Ds = ρ1(Ds − u1), (A1)

p0 + ρ0D2
s = p1 + ρ1(Ds − u1)2, (A2)
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FIG. 7. Sketch of the self-similar flow-velocity u(x, t ) profile for
a subsonic deflagration.

h0 + 1
2 D2

s = h1 + 1
2 (Ds − u1)2. (A3)

Similarly, across the flame front, x = D f t, the conservation
equations read

ρ1(D f − u1) = ρ2(D f − u2), (A4)

p1 + ρ1(D f − u1)2 = p2 + ρ2(D f − u2)2, (A5)

h1 + 1
2 (D f − u1)2 + Q = h2 + 1

2 (D f − u2)2, (A6)

where Q is the heat release. Subscripts 0,1,2 correspond to the
regions ahead of the precursor shock, between the shock and
the flame, and the products’ side of the flame front, respec-
tively.

The caloric and thermodynamic equations of state are de-
fined by Eqs. (2) and (3). The flame speed relative to the
unburned gas,

U = D f − u1, (A7)

is specified by the Zeldovich-Frank-Kamenetskii-like rela-
tion, which for the thermonuclear reaction rate (1) reads

U = �U0 exp [Np(T2 − Tp)/6Tp], (A8)

where � is the folding factor, U0 corresponds to a planar
isobaric flame (� = 1), Np = 3

√
Ta/Tp is the scaled activa-

tion energy assumed to be large, while (T2 − Tp)/Tp is small
(∼1/Np) [see also Eq. (13)]. Ahead of the precursor shock
the gas is quiescent, i.e., u0 = 0. For the subsonic deflagration
considered here the rarefaction wave is absent, i.e., u2 = 0.

For the small Mach number approximation (v, D f , u1 �
a0 = √

γ p0/ρ0) the relations (A1)–(A7), (2), and (3)
may be linearized about the zero Mach number state,
ρ0,p, T0,p, h0,p, p0,p, Ds = a0. Then for small perturba-
tions ρ1,2 − ρ0,p, T1,2 − T0,p, h1,2 − h0,p, p1,2 − p0,p, Ds −
a0, U, D f , u1 one ends up with a linear system. Using some
algebra, accounting for relations (6) and (7), one obtains

T2 − Tp

Tp
= F (γ , σp, θp)

(u1

a0

)
, (A9)

where

F = (γ − 1)
[
γ θ2

pσ
γ
p (1 − σp) + γ σ 2−γ

p − 2γ σ 2
p

+ 2(γ − 1)σ 3
p + (2 − γ )σ 3−γ

p

]
/2σ 2−γ

p

(
1 − σγ

p

)
; (A10)

see Fig. 8.

FIG. 8. F vs σp dependency defined by Eq. (A10) (γ =
4/3, 5/3; θp = 0.02).

For low Mach number flames propagating from the closed
end (Fig. 7), D f = U/σp, u1 = (1 − σp)D f . Hence,

u1 =
(

1 − σp

σp

)
U . (A11)

Equation (A8) may then be written as

U = �U0 exp [κ (U/U0)], (A12)

where

κ = NpF (1 − σp)Ma/6σp (A13)

and Ma = U0/a0.
Note that for chemical ideal gas flames,

F = 3σp(γ − 1), Np = Ta/Tp. (A14)

It is convenient to recast Eq. (A12) as

�κ = 1

m
ln m, (A15)

where m = U/�U0 (see Fig. 9). Here �κ = e−1, m = e cor-
respond to the deflagrability (DDT) threshold. At �κ > e−1

the system is expected to undergo an abrupt transition to
detonation.

FIG. 9. κ� vs m dependency defined by Eq. (A15).
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At large enough Np, other parameters being fixed,
D f ,DDT = UDDT/σp falls below ap = a0/

√
σp, i.e., below the

CJ-deflagration point, D f = ap.
Note that, according to Sec. III, the actual deflagrability

limit may prove to be lower than one suggested by Eq. (A15).

APPENDIX B: EVALUATION OF THE NORMALIZING
FACTOR Ẑ of Eq. (13)

To evaluate Ẑ we turn to the traveling wave solution of
Sec. IV. For isobaric limit the term v̂2 becomes negligibly
small and Eqs. (31) and (32), taking into account (27) and
(29), simplify to

ρ̂2v̂2

[
p̂

ρ̂
+ (1 − σp)Ĉ

]
+ ε

dT̂

dξ
= ρ̂2v̂2

(
p̂2

ρ̂2

)
, (B1)

ρ̂2v̂2
dĈ

dξ
= �2Ẑρ̂nĈ exp

[
Np

(
1 − T̂ − 1

3
)]

, (B2)

where

p̂ = p̂2 = ρ̂2 = 1, (B3)

and Eq. (14) then becomes

Âρ̂γ + B̂ρ̂2−γ T̂ 2 = 1. (B4)

Equations (B1) and (B2) may be converted into a single equa-
tion for Ĉ(T̂ ),

(ρ̂2v̂2)2

ε

[
1 − ρ̂(T̂ )

ρ̂(T̂ )
+ (1 − σp)Ĉ

]
dĈ

dT̂

= �2Ẑρ̂n(T̂ )Ĉ exp
[
Np

(
1 − T̂ − 1

3
)]

. (B5)

As mentioned in Sec. II, the normalizing factor Ẑ is chosen to
meet the condition

ρ̂2v̂2 = �
√

ε. (B6)

Equation (B5) then assumes a form not involving parameters
ε and �, [

1 − ρ̂(T̂ )

ρ̂(T̂ )
+ (1 − σp)Ĉ

]
dĈ

dT̂

= Ẑρ̂n(T̂ )Ĉ exp
[
Np

(
1 − T̂ − 1

3
)]

. (B7)

At Np � 1, similar to chemical ideal gas flames [15], the bulk
of the reaction rate term is localized in the N−1

p vicinity of
T̂ = 1. Within the reaction zone the exponent and ρ̂(T̂ ) may
then be simplified to

exp
[
Np

(
1 − T̂ − 1

3
)] � exp

[
1

3
Np(T̂ − 1)

]
, (B8)

ρ̂(T̂ ) � 1 + d ρ̂(1)

dT̂
(T̂ − 1), (B9)

where, according to Eq. (B4),

d ρ̂(1)

dT̂
= − 2B̂

γ Â + (2 − γ )B̂
. (B10)

As a result, for the leading order asymptotics (Np � 1),
Eq. (B7) becomes

(1 − σp)
dĈ

dT̂
= Ẑ exp

[
1

3
Np(T̂ − 1)

]
. (B11)

TABLE I. Data for the resolution test.


x̂ D̂ f

0.0005 0.013107
0.00025 0.013112
0.000125 0.013116

Equation (B11) should be considered jointly with boundary
conditions,

Ĉ(T̂ = 1) = 0, Ĉ(T̂ = −∞) = 1. (B12)

Here the first condition pertains to the deficient reactant con-
sumption behind the reaction zone, while the second condition
ensures asymptotic matching with T̂ -independent profile,
Ĉ = 1, ahead of the reaction zone. Equations (B11) and (B12)
then readily imply

Ẑ = 1
3 Np(1 − σp). (B13)

APPENDIX C: LOCALIZING THE RUNAWAY POINT AND
RESOLUTION TESTS

Localizing the runaway point is done in the following way.
For each parameter set considered simulations commence
from the case of � = 1 associated with the planar flame. The
subsequent simulations are conducted for � > 1 with the step

� = 1, up to the runaway event. Here two last �-points
determine the interval covering the runaway. Thereupon one
employs the bisection method decreasing the �-interval from

� = 1 down to 
� = 0.1. The midpoint of the latter is
defined as the runaway point with the error ±
� = 0.05. The
right end of the interval corresponds to the detonation.

The resolution test is conducted for the flame speed D̂ f , the
principal parameter of the problem. The test is based on the
assumption that for small enough spatial step 
x̂ the flame
speed may be represented as

D̂ f = D̂0
f + a(
x̂)q. (C1)

Here D̂0
f is the limit value of D̂ f as 
x̂ → 0, q is the degree of

convergence, and a is the prefactor. Table I displays results of
simulations conducted for three spatial steps 
x̂ for the case
of � = 1 and γ = 5/3.

Each line of Table I provides data for three unknown
parameters of Eq. (C1), yielding D̂0

f = 0.013132, q =
0.32, a = 0.0002846. The positive sign of q ensures con-
vergence D̂ f → D̂0

f as 
x̂ → 0. The accuracy (error) of the
simulation is assessed by the ratio

� =
∣∣D̂ f (
x̂ = 0.00025) − D̂0

f

∣∣
D̂0

f

= 0.0015 = 0.15%, (C2)

which is sufficiently good for the purposes of this study.
As one might expect, the resolution worsens with growth of

�. So the resolution test was repeated for � = 23.4, yielding
� = 0.06% for 
x̂ = 0.000125.
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