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Minimizing deformation of a thin fluid film driven by fluxes of momentum and heat
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We consider a thin fluid film flowing down an inclined substrate subjected to localized external sources of
momentum and heat flux that induce deformations of the fluid’s free surface. This scenario is encountered in
several industrial processes and of particular interest is the case where these deformations are undesirable. When
the substrate is thin and the temperature along its underside is freely imposed by an active cooling mechanism,
temperature gradients are generated at the fluid surface which drive a thermocapillary flow and influence the
deformations. This naturally leads us to pose the optimal control problem of choosing the temperature profile
that minimizes the unwanted free-surface deformations. Numerical computations reveal that the external forces
generate deflections in a region near their peak beyond which all deflections are suppressed by the optimal
control. Where nonzero deflections occur, the control is of bang-bang type (taking either its upper or lower
bound), while the control is obtained in closed form for regions where the deflections are suppressed. Strikingly,
in switching between these regions the optimal control chatters, that is, it switches infinitely many times over
a finite interval. By appealing to Pontryagin’s maximum principle and leveraging a symmetry embedded in
the adjoint problem we uncover the underlying fractal structure of the chattering. Finally, we present practical
approaches to avoid the infinite switching while retaining significantly reduced free-surface deformations.
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I. INTRODUCTION

Thin fluid films are ubiquitous in both industrial and bio-
logical settings [1–3]. The prevalence of thin fluid films stems
from the rich set of behaviors they exhibit, which endows
them with a unique versatility and manipulability. In many
applications the fluid film is subjected to an external, spatially
varying pressure or heat load, which causes the surface to de-
viate from a flat profile by inducing a spatially inhomogeneous
flow. For example, in nuclear fusion research, which aims
at providing clean, safe, and fuel-abundant baseload power,
one technological roadblock is dealing with the heat load that
escapes the core confinement region and must be exhausted
within the vessel without causing excessive damage. A thin
liquid metal film covering a solid substrate is one promising
direction that may be capable of sustaining the predicted load
[[4–6], and references within]. Other industrial applications
are described by flow of a thin film along a substrate subjected
to an external pressure load, including material processing
such as jet-stripping and blade coating [[7–10], and references
within], microfluidics applications [11], biomedical engineer-
ing, as well as in the food and chemical industries [12]. This
catalog of applications motivates the present study, in which
we consider the flow of a thin incompressible, viscous fluid
down a thin inclined plane, driven by gravity and an external
jet of momentum and heat flux.

While in some instances it might be advantageous to in-
duce free-surface deformations (for example, to enhance heat
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transfer [13–15]), in this paper we are concerned with the
case when these deformations are unwanted. For example, in
the nuclear fusion context, deformations can make the fluid
susceptible to dangerous ejection and dry-out events. In blade
coating, the aim is to avoid deformations to produce a uni-
form coating. It is thus desirable to attempt to design relevant
system parameters to minimize deflections by, for example,
tuning the forcing magnitudes, carefully selecting material
properties, or customising the system geometry. Inspired by
the fusion context where the thermal load is significant, we
consider active substrate cooling where we may choose a
temperature profile to be imposed on the underside of the
substrate along which the fluid flows. The applied cooling
induces thermal gradients at the fluid surface, which drive a
thermocapillary flow and ultimately influence the free-surface
deflections. This naturally leads us to pose the optimal control
problem of selecting the cooling profile that minimizes the
free-surface deflections.

Two formulations for control problems appear in the lit-
erature: closed-loop control (also called feedback control)
describes where the state of the system is used as the control
input, while open-loop control is independent of system feed-
back but may depend on other independent variables (such as
time). Optimal control seeks to determine a control law that
optimizes some functional of the system dynamics and may be
posed in an open-loop or closed-loop formulation (see [[16],
Sec. 2.2] or [[17], Sec. 5.2]). An open-loop optimal control
may steer the system dynamics along an unstable trajectory or
might exhibit sensitivity due to model or actuator error [18].
It is thus typical to incorporate a feedback loop to stabilize
the optimal trajectory, ensuring the optimal control is realized
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robustly. In this way, open-loop optimal control and feedback
control can complement each other: feedback control can be
employed to robustly steer the system along an ideal sys-
tem trajectory determined by the open-loop optimal control
problem.

Precise control of fluid flow is necessary in several in-
dustrial and biological applications and has thus received
much attention in the literature. Feedback control of fluid
systems has been shown to stabilize contact line instabili-
ties [19], evaporatively driven instabilities [20], as well as
suppress Marangoni-Bénard [21] and Rayleigh-Bénard con-
vection [22]. All of these studies employ thermal effects to
influence the fluid dynamics. In addition to thermal influences,
nonuniform substrate topography [23], electromagnetic fields
[24–28], external air blowing and suction [29], and fluid in-
jection and extraction [30] have been explored as a source
of influence on the fluid interface. Feedback control using
fluid injection and extraction [31–33] has been employed to
suppress waves in weakly nonlinear models of thin films and
to optimize actuator placement. The case of open-loop optimal
control via fluid injection and extraction has also been recently
considered [34].

In this paper we focus on the open-loop optimal control
problem of minimizing the steady-state free-surface deflec-
tions by steady, spatially inhomogeneous substrate cooling.
We emphasize that the independent variable of the system
and control is typically time; however, in this steady formu-
lation the independent variable is space. Thus, to reiterate, we
aim to design the spatially inhomogeneous cooling profile so
as to minimize the film deformation. While we demonstrate
that studying the two-dimensional steady-state problem is
justified, this does not exclude three-dimensional instabilities,
which are not considered in this work.

Since the Bond number—representing the ratio of gravita-
tional forces to capillary forces due to surface curvature—is
typically large (see Appendix A), it might be tempting to ne-
glect the capillary forces in a leading-order model. However,
the importance of surface tension in the normal interfacial
stress condition, as first elucidated by Benney [35] and Gjevik
[36], plays an important role in thin-film flow [2], especially in
the presence of small-scale disturbances, such as narrow jets
impinging upon the fluid as present in this study. With this in
mind we present results for both cases: first neglecting stresses
due to surface tension in the normal direction of the fluid
interface and subsequently reinstating it. We henceforth refer
to the normal surface tension stress as “normal capillarity”
to distinguish it from the tangentially oriented Marangoni
stresses, which we refer to as thermocapillarity (and retain
in all cases, as this is the mechanism by which the control
acts). Neglecting the normal capillarity serves as an instructive
stepping stone to the full model. The stark difference between
the controls for these two cases reinforces the important role
surface tension plays in morphological control of thin films.
Moreover, the comparison provides analytical insight into the
system structure that gives rise to the chattering phenomenon
manifest in the full system.

In the first case, where normal capillarity is neglected, we
find that the deflections may persist only in the vicinity of
the peak forcing. In these regions the optimal control is of
bang-bang type, that is, the control takes the value of either

its upper or lower bound. Beyond these regions all deflections
are suppressed, and the optimal control is obtainable in closed
form.

In the second case, when the higher-order, normal capil-
lary terms are reinstated, we find similarly that the solution
comprises a region in the vicinity of peak forcing where
deflections may persist, beyond which deflections are sup-
pressed. However, the optimal control exhibits chattering at
the junctions (the points connecting these regions), whereby
the bang-bang control switches infinitely many times between
its upper and lower bound over a finite interval. We investi-
gate the chattering analytically using Pontryagin’s maximum
principle (PMP) and by approximating a function whose ze-
ros coincide with the points at which the bang-bang optimal
control switches value. The approximation respects a symme-
try that allows us to construct self-similar solutions, and we
show that the roots align remarkably well with the computed
chattering control.

In an industrial setting, a chattering active cooling strategy
is not feasible to implement. This motivates our discussion of
approaches that regularize the infinite switching. We highlight
one particular method that is simple to implement and exhibits
near-optimal performance.

The paper is organized as follows. In Sec. II we introduce
the steady thin-film equation to be controlled and formulate
the optimal control problem. In Sec. III we study the toy
model without normal capillarity, which serves as a simple
setting to discuss numerical approaches for the optimal con-
trol problem. In Sec. IV we reinstate normal capillarity and
analyze the chattering optimal cooling profile. In Sec. V we
consider practical techniques to regularize the chattering. Fi-
nally, in Sec. VI we summarize our findings.

II. THE STEADY THIN-FILM EQUATION AND PROBLEM
STATEMENT

A complete mathematical derivation from the governing
equations describing mass, momentum, and energy conser-
vation, including concrete dimensional parameter values and
associated scalings, may be found in Appendix A. We distill
from this analysis the steady-state formulation of the equation
governing the deviation of the fluid’s free surface from the
undisturbed profile. We consider the two-dimensional geome-
try illustrated in Fig. 1, where x is the downstream coordinate
parallel to the substrate, T −(x) is the idealized temperature
profile imposed at the substrate boundary, and p(x) denotes
the known profile of the imposed interfacial pressure and
normal heat flux (such as in [37]). The pressure and heat
source profile p(x) is stationary (not varying in time), spatially
inhomogeneous, localized at the origin, and decays in the far
field. It may be useful to think of the single source as a jet
imparting a flux of momentum and heat to the fluid. Should
one wish, there is no additional complexity in considering
the momentum and heat fluxes to have different spatial pro-
files. However, it is not atypical that a single impinging jet
is responsible for the transfer of both heat and momentum.
Tangential stresses have been neglected.

We note that the cooling mechanism illustrated in Fig. 1
employs discretely spaced cooling channels. This is merely
one potential implementation of active cooling, while other
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FIG. 1. Schematic of the flow configuration. Circles along the lower side of the substrate indicate cooling channels, which we idealize by
imposing an arbitrary temperature profile T −(x) on the underside of the substrate. The deviations from the undisturbed state (dashed line) are
denoted h(x).

implementations, such as coolant jets aimed at the underside
of the substrate, may in fact be continuous. We choose to
abstract away the precise mechanical implementation details
by modeling an idealized substrate temperature profile T −(x),
independent of the underlying mechanism.

Typically, thin-film equations describe the evolution of the
film thickness [1–3]. We emphasize that the central quantity in
this paper is the free-surface deflection, denoted h, defined as
the deviation of the film thickness from its undisturbed fully
developed state, that is, in the absence of external forcing and
active cooling. Using the lubrication approximation, one may
show that this quantity is governed by a thin-film equation of
the (dimensionless) form

Q(h)

(
1 − A

dp
dx

− α
dh
dx

+ β
d3h
dx3

)

− BT(h)

(
d

dx

[
(h + 1 + ι)p

] + dT −

dx

)
= Q(0), (1)

where Q and T are the flux functions associated with bulk
and thermocapillary forcing, respectively, A is the magnitude
of the external pressure forcing, α measures the effect of the
transverse component of gravity, β measures the normal capil-
lary forces due to surface tension, B measures the significance
of thermocapillary flow, and ι measures the thermal insulation
of the substrate. For the sake of completeness, in Appendix A
we derive Eq. (1) in the case of hydrodynamic flow, where Q
and T take the forms

Q(h) = (1 + h)3

3
, T(h) = (1 + h)2

2
, (2)

and the undisturbed film thickness is unity. We highlight that,
while we present numerical results exclusively for hydrody-
namic flow, the underlying phenomenon persists qualitatively
across other flow regimes. For example, the nuclear fusion
scenario introduced in Sec. I is characterized by magnetohy-
drodynamic flow, for which a thin-film equation of form (1)
may be derived with flux functions Q and T encapsulating
the magnetohydrodynamic flux [38]. The results in this pa-
per are qualitatively preserved in the magnetohydrodynamic
case [5].

We emphasize that only the steady-state formulation of (1)
is considered in this work, necessitating a discussion of the
stability of the free-surface flow. A more detailed account is

given at the end of Appendix A. In brief, as long as the lubrica-
tion approximation remains valid, the flow remains noninertial
and the Kapitza instability [39,40] will not manifest. Transient
nonlinear numerical simulations demonstrate the stability of
the two-dimensional problem. A noninertial source of interfa-
cial instability of thin nonisothermal fluid films stems from the
interaction between the film morphology, gravity, and thermo-
capillarity [41,42]. The influence of Marangoni stresses has
been shown to result in spanwise modes becoming unstable in
some region of parameter space, leading to the formation of
rivulets. Despite the physical parameters adopted in this work
being in the stable region of parameter space, the problem
studied in this work is not identical to those previously inves-
tigated, and thus its full three-dimensional stability (or that of
a magnetohydrodynamic counterpart) is yet to be established
but beyond the scope of this work.

For a general initial film profile, the deviation of the initial
conditions from the steady-state profile manifests in a deflec-
tion that is advected downstream from the origin as a traveling
wave. It might be tempting to think that this invalidates the
steady formulation. However, in practice the substrate is of
finite length, and such traveling waves are advected through
the outlet and out of the system. Thus, in considering the
steady state we implicitly consider a sufficiently large time
such that we may ignore the unsteady traveling wave that
has long since vanished and focus on the fully developed
steady-state profile to which the film relaxes.

Given the governing equation (1), we turn our attention
to the control aspect of the fluid deflections. The physical
quantity directly under our control is the temperature pro-
file T −(x). From the deflection equation (1), we see that
T − alters the deflections only through its gradient (as only
temperature gradients induce thermocapillary flow); there-
fore we take the temperature gradient to be the control law,
denoted u = dT −/dx. In practice, cooling channels (as il-
lustrated in Fig. 1) or impinging cooling jets are spaced
at some nonzero distance apart. Typically there will also
be constraints on the absolute temperature range in which
the system can operate, for example, to avoid evaporation,
boiling, and cavitation, as well as material constraints and
a limited available cooling power. The bound on absolute
temperature differences �T of sources separated by some �x
may be expressed as a bound on the admissible temperature
gradients, |u| � U := �T/�x.
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We now look to formulate a functional that quantifies the
deflections h(x). For the sake of simplicity, we begin the
analysis by considering the L2 norm of the deflections

‖h‖2
2 =

∫ X

−X
h(x)2dx (3)

over some finite (but sufficiently large) domain [−X, X ]. We
will subsequently see why there is no loss in generality from
considering the infinite domain. In Sec. V we will also discuss
more general norms, including terms involving the control u
and the derivative of h.

With this formulation we pose the optimal control problem,
namely,

min
|u|�U

1

2
‖h(x; u)‖2

2, (4)

where h is subject to the deflection equation (1).
At first glance it may seem that the physical problem (4) is

lacking boundary conditions for h. However, as an optimiza-
tion problem the presence of boundary conditions is implicit
[43]. To understand this, note that costate variables are intro-
duced in applying the PMP. The lack of boundary conditions
on the state results in additional boundary conditions on the
costate to produce a system of first-order ordinary differential
equations (ODEs) with the same number of boundary con-
ditions as unknown variables, as expected. In this particular
problem, this nuance is of little consequence: we will see
that sufficiently far from the origin all optimal deflections are
completely suppressed. Thus the support of the deflections h
will be confined to a region around the origin. It is for this
reason that choosing a finite domain [−X, X ] sacrifices no
generality, and we may choose to set h (and its derivatives)
to zero at the boundaries with no change to the results.

At the outset we may determine the unconstrained opti-
mizer. To do so we need a control that ensures the L2 norm
of h is minimal. The obvious candidate for h is the best-case
scenario: zero deflections. Substituting h = 0 into (1), we can
solve for the unconstrained optimal control u = u∞ to give

u∞ = −
(

AQ(0)

BT(0)
+ 1 + ι

)
dp
dx

. (5)

The solution (5) is nothing other than dp/dx scaled by a con-
stant. Physically, u∞ induces a thermocapillary forcing that
precisely balances the deflections driven by the thermocapil-
larity and pressure induced by the external forcing. We will
see that this unconstrained control provides a key ingredient
in the constrained optimal control problem.

For the purpose of brevity, we do not explore the effects
of varying each of the system parameters or forcing profiles.
For an in-depth discussion of these results, we refer the reader
to [5,38]. Broadly speaking, the results presented in this study
are qualitatively robust to changes in system parameters and
the form of the external forcing. Therefore we will present
numerical results using the parameter choices

A = B = ι = 1, α = 0, p(x) = e−x2
. (6)

Choosing α = 0 corresponds to a purely vertical substrate and
produces more pronounced deflections, where the diffusive
influence of transverse gravity has vanished (for example,

see [44]). While the results are qualitatively the same for
α > 0, this choice allows us to focus on the suppression of the
deflections due the control and not the transverse component
of gravity.

Equipped with the optimal control problem (4), we now
analyze solutions in two cases: first, the limit of vanishing
normal capillarity, β → 0, followed by the limit in which
normal capillarity is non-negligible β = O(1). In each case
our strategy is to formulate the adjoint problem, apply PMP
to give the form of the optimal control, and present numerical
solutions.

III. OPTIMAL COOLING WITHOUT NORMAL
CAPILLARITY

For general theory and applications of optimal control the-
ory, we refer the reader to [[43,45,46], and references therein]
for the relevant technical conditions, proofs of PMP, and sev-
eral examples. For optimal control problems that are linear in
the control, we refer the reader to [47,48].

It is instructive to begin by considering a simplified form
of problem (4) relevant in the limit where the third-order nor-
mal capillarity term is negligible, β = 0. The leading-order
optimal cooling problem then reads

min
|u|�U

1

2
‖h‖2

2, (7a)

subject to the first-order deflection equation

dh
dx

= 1

αQ(h) + BT(h)p

[
Q(h)

(
1 − A

dp
dx

)
− Q(0)

−BT(h)

(
(h + 1 + ι)

dp
dx

+ u

)]
. (7b)

We transform Eq. (7b) into an autonomous system of two
ODEs by introducing the auxiliary variable a and writing

dh
dx

= f (h, a, u),
da

dx
= 1, (8a,b)

where the dynamics f are defined by

f (h, a, u) = 1

αQ(h) + BT(h)p(a)

[
Q(h)

(
1 − A

dp
dx

(a)

)

−Q(0) − BT(h)

(
(h + 1 + ι)

dp
dx

(a) + u

)]

(8c)

and are subject to the boundary condition

a(−X ) = −X. (9)

We now proceed to the adjoint formulation. Introducing the
two-dimensional costate λ = (λ1, λ2), the Hamiltonian H is
given by

H (h, a, λ, u) = λ1 f (h, a, u) + λ2 + λ0

2
h2, (10)

where λ0 is a constant. The costate satisfies the adjoint equa-
tions

dλ1

dx
= −λ1

∂ f

∂h
+ λ0h,

dλ2

dx
= −λ1

∂ f

∂a
, (11)
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subject to the boundary conditions

λ1(−X ) = λ1(X ) = λ2(X ) = 0. (12)

It follows from (11), (12), and the nontriviality of (λ0, λ) guar-
anteed by PMP that λ0 �= 0. Problems satisfying this condition
are referred to as normal, and by rescaling it may be assumed,
without loss of generality, that λ0 = 1.

With the forward problem (8) and (9) and the adjoint prob-
lem (10) to (12) in hand, we now apply PMP, which states that
for any optimal state trajectory and optimal control pair there
exists a nontrivial costate satisfying the adjoint equations such
that the Hamiltonian is minimized for all admissible control
values. That is, the optimal control u∗ satisfies

H (h, a, λ, u∗) = min
|u|�U

H (h, a, λ, u). (13)

The information in (13) characterizes the optimal control
parametrically. When the Hamiltonian H is affine with respect
to u, as it is in (10), since f given in (8c) is affine in u, the
Hamiltonian may be written as

H (h, a, λ, u∗) = uφ(h, a, λ) + ψ (h, a, λ), (14)

where φ = ∂H/∂u and ψ = H |u=0. It is then straightforward
to see that the optimal control (dropping the asterisk for con-
venience) is given by

u = −U sgn(φ), where φ �= 0. (15)

Since the optimal control switches sign with φ, it is commonly
known as the switching function.

For problem (7), the switching function is given by

φ = ∂H

∂u
= λ1

∂ f

∂u
= −λ1BT(h)

αQ(h) + BT(h)p(a)
. (16)

Since the flux functions Q and T are positive, it follows that
sgn(φ) = −sgn(λ1), and thus u = U sgn(λ1) during intervals
satisfying λ1 �= 0 (called nonsingular arcs). For intervals on
which φ = 0 identically, so-called singular arcs, we may de-
termine the optimal control by observing that λ1 = 0, and
therefore its derivatives also vanish. From (11) we infer that
h = 0, in which case the optimal control is given by the uncon-
strained optimum (5). We have thus completely determined
the optimal control parametrically, that is, as a function of the
yet unknown state and costate:

u =
{

U sgn(λ1), λ1 �= 0,

u∞, λ1 = 0.
(17)

We now check that singular arcs, if they exist, satisfy the
strengthened generalized Legendre-Clebsch (GLC) condition
[49]. The GLC condition is a second-order condition neces-
sary for optimality. First we must calculate the local order
of singular arcs, as detailed in [47]. Essentially, this involves
finding the lowest-order derivative of the switching function
φ which, when evaluated along a given singular arc, depends
explicitly on the control u. The local order of the singular arc
is defined as half the order of this lowest-order derivative. We
find that on all singular arcs dφ/dx = 0 and

(−1)
∂

∂u

(
d2φ

dx2

)
=

(
BT(0)

αQ(0) + BT(0)p(a)

)2

> 0. (18)

Therefore the local order of all singular arcs is 1, and the
strengthened GLC condition for singular arcs of order 1 [re-
quiring the left-hand side of (18) to be positive] is satisfied.

With the parametric form of the optimal control (17), we
seek numerical solutions of the optimal control problem (7).
The literature on numerical approaches to optimal control
problems is vast. We provide a brief outline in Appendix B,
focusing on the details most relevant to our problem. In sum-
mary, two central approaches are (i) indirect methods, which
seek to solve the (discretized) ODEs describing first-order op-
timality (that is, given by PMP); and (ii) direct methods, which
seek to solve a discretization of the constrained optimization
problem. These may be seen as (i) optimize–then–discretize
versus (ii) discretize–then–optimize.

Solutions of problem (7) using indirect and direct ap-
proaches are shown in Fig. 2(a), where we find good
agreement between the two methods. The rest of the nu-
merical results presented in this paper employ the direct
approach, since the sensitivity of the indirect approach to
the initial guess is prohibitive when the switching structure
is sufficiently dense [50], and the instability of the forward
problem as an initial value problem only compounds the
difficulty. The direct approach does not rely on the adjoint
formulation; nevertheless, the insights provided by the adjoint
problem alongside PMP are invaluable. Firstly, the paramet-
ric form of the optimal control shows that it belongs to the
subset of functions that (piecewise) coincide with either the
unconstrained optimum u∞ or the control bounds ±U . This
provides a sanity check for any numerical solution, including
direct methods. More importantly, we will see that the ana-
lytic information from the adjoint formulation and PMP will
prove indispensable in understanding the numerical solution
structure.

In Fig. 2(b) we plot the solutions for various control bounds
U . The control is of the form predicted by PMP (17): for
small enough U , the optimal control u is bang-bang [that is,
switches between values ±U as per (15)] in a region around
the origin where u∞ > U . Beyond this region the control co-
incides with the unconstrained optimum on singular arcs and
the deflections vanish. For larger U , an additional inner region
emerges in close proximity to the origin where the control
is singular, coinciding with the unconstrained optimal control
u∞. Outside this local inner region it takes on a constant value,
and finally, singular arcs extend beyond the bang-bang region
to the far field, just as for smaller U . The results depicted in
Fig. 2(b) confirm the claim made in Sec. II that deflections are
suppressed beyond a neighborhood of the origin.

With greater control (increasing U ) the deflections dimin-
ish. The force of gravity causes the upstream deflection to
be significantly more pronounced than its downstream coun-
terpart and is also the reason why the control switch (from
u = −U to u = U for the bang-bang controls with small U ,
or the center of the inner singular region for larger U ) occurs
downstream of the origin.

We now reinstate normal capillarity by considering the
fully physical case of β = O(1) and proceed with an anal-
ogous approach. The results transpire to be remarkably
different from those for the first-order problem, uncovering
an interesting phenomenon regarding the transition between
nonsingular and singular arcs.
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(b)

FIG. 2. Solutions of the first-order problem (7) when β = 0 (a) using the direct (solid curves) and indirect (broken curves) numerical
approaches for U = 1; (b) for control bounds U ∈ {0.5, 1, 1.5, 2} using the direct approach. Other parameters are defined in (6). For the direct
approach, N = 1000 equispaced grid points were used.

IV. REINSTATING NORMAL CAPILLARITY

In this section we reinstate normal capillarity by taking
β = O(1). All numerical results will employ the value β = 1,
which is equivalent to rescaling the system length on the
capillary length scale (given at the end of Appendix A).

We transform Eq. (1) into a four-dimensional autonomous
system by introducing auxiliary variables a1, a2, and a3, and
writing

dh
dx

= a1,
da1

dx
= a2,

da2

dx
= f (h, a1, a3, u),

da3

dx
= 1,

(19a-d)

where the dynamics f satisfy

β f = Q(0)

Q(h)
−

(
1 − A

dp
dx

(a3) − α a1

)

+ BT(h)

Q(h)

(
(h + 1 + ι)

dp
dx

(a3) + a1p(a3) + u

)
, (19e)

and we impose the boundary condition

a3(−X ) = −X. (20)

We construct the adjoint problem by defining the Hamilto-
nian as

H = λ1a1 + λ2a2 + λ3 f (h, a1, a3, u) + λ4 + 1

2
h2

, (21)

where, as in the previous case, it may be shown that the
problem is normal. The four-dimensional costate λ satisfies
the adjoint equations

dλ1

dx
= −λ3

∂ f

∂h
− h,

dλ3

dx
= −λ2,

dλ2

dx
= −λ1 − λ3

∂ f

∂a1
,

dλ4

dx
= −λ3

∂ f

∂a3
,

(22)

subject to the boundary conditions

λ1(−X ) = λ2(−X ) = λ3(−X ) = 0,

λ1(X ) = λ2(X ) = λ3(X ) = λ4(X ) = 0.
(23)

The problem (4) is affine in the control, with the switching
function given by

φ = ∂H

∂u
= λ3BT(h)

βQ(h)
. (24)

As before, Q, T > 0, and we deduce that singular arcs
(intervals on which φ ≡ 0) are characterized by the equali-
ties λ1 = λ2 = λ3 = h = a1 = a2 = 0, from which it follows
that the optimal control will take its unconstrained value u∞.
Therefore the application of PMP determines the optimal con-
trol parametrically, namely,

u =
{−U sgn(λ3), λ3 �= 0,

u∞, λ3 = 0.
(25)

We now check the GLC condition. We find that for i =
1, . . . , 5, the expressions diφ/dxi do not depend explicitly on
u along singular arcs, while

(−1)3 ∂

∂u

(
d6φ

dx6

)
=

(
BT(0)

βQ(0)

)2

> 0, (26)

from which we conclude that the local order of all singu-
lar arcs is 3, and trajectories along singular arcs satisfy the
strengthened GLC condition.

Using the direct numerical method detailed in Appendix
B, we solve the full optimal control problem (4) with normal
capillarity reinstated β = 1. We plot the numerical solution
in Fig. 3(a) with bound U = 1. The film deflections h (solid
blue curve) are significantly reduced when compared with
the uncontrolled film (dashed blue curve). We see the op-
timal control appears to be of the form predicted by PMP
in (25): bang-bang (with many switches) in a nonsingular
region around the origin, and coinciding with the uncon-
strained optimum u∞ beyond this region. Despite the optimal
control form (25) being analogous to its first-order counter-
part (17), the computed control in Fig. 3(a) looks stunningly
different from those in Fig. 2, switching many more times
within the more extensive bang-bang region. To understand
what is happening we revisit an oft-forgotten optimal control
phenomenon: chattering.

A brief historical perspective and a complete exposition are
provided in Appendix C. It turns out that an optimal control
may switch (between its upper and lower bound) an infinite
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FIG. 3. (a) Optimal solution of problem (4) for β = U = 1 with N = 104 equispaced grid points, and the parameters defined in (6). For the
purpose of comparison, the dashed curve shows the uncontrolled film profile, h for U = 0. (b) A section of (a), where (x0, x1) ≈ (3.77, 4.04)
are the benchmark switching points (marked by solid black lines), and the geometric ratio J ≈ 0.575 736 is used to predict adjacent switching
points (dashed lines), as well as the junction point (dotted line).

number of times on a nonsingular arc in the vicinity of a junc-
tion point (a point where a nonsingular arc meets a singular
arc). This infinite switching is referred to as chattering. An
analysis local to the junction point reveals that the switching
function admits approximately self-similar solutions, which
results in a geometric sequence of switching points with ratio
J , which is a root of a particular polynomial and thus obtain-
able numerically. Therefore we may take any two adjacent
points as a benchmark and predict the entire infinite sequence.
In Fig. 3(b) we zoom in on a section of Fig. 3(a) and take the
two adjacent switching points (x0, x1) ≈ (3.77, 4.04) as the
benchmark interval (solid vertical lines). Using J ≈ 0.575 736
calculated in Appendix C, we predict adjacent switching
points (dashed lines) as well as their accumulation point, the
junction point (dotted line). For switching points beyond the
benchmark interval x > x1, including the junction point, we
find excellent agreement (we mark only four such switches
because the separation is no longer clearly visible). Switching
points preceding the benchmark interval x < x0 show slightly
diminishing agreement as the approximation [see (C2)] breaks
down towards the origin as we leave the vicinity of the junc-
tion point. We conclude that the self-similar structure derived
in Appendix C accurately characterizes the chattering struc-
ture. Having pinned down the chattering behavior, we proceed
to consider various approaches to tame the chattering.

V. REGULARIZING THE CHATTERING

The optimal control calculated in Sec. IV exhibits chat-
tering, characterized by an infinite number of switches in the
vicinity of the junction joining nonsingular and singular arcs.
In practice, such a cooling profile cannot be realized, and we
seek a practical regularization.

The direct numerical method discretizes the control and
thus cannot switch infinitely many times, offering one such
regularization. However, the switching still occurs at intol-
erably high frequency. While courser discretization would
suppress this, we seek a more robust formulation that offers
more freedom in the choice of switching points.

One successful approach taken in the literature [50] is to
add an additional penalty term to the objective function so
that it takes the form

1

2
‖h‖2

2 + ε TV(u), (27)

where TV denotes the total variation and ε is a small parame-
ter. Optimal solutions will be those of bounded variation and
thus can switch only a finite number of times. As ε → 0, the
number of switches diverges and thus the parameter ε > 0
does not generate a space of solutions that are feasibly en-
gineered.

Instead, we propose a more practical approach of keep-
ing the generic bang-bang or unconstrained form (25) while
predetermining a finite number of switches n. This reduces
the problem to an n-dimensional optimization problem of
determining the optimal switching locations.

In the case of n = 3, we denote the switching locations by
xL < xC < xR, where the control is given by

u(x) =

⎧⎪⎨
⎪⎩

u∞(x), x < xL,

−U, xL � x < xC,

U, xC � x < xR,

u∞(x), x � xR.

(28)

The optimization problem is now reduced to minimizing the
objective over the finite-dimensional (xL, xC, xR) parameter
space. This problem is numerically tractable using general-
purpose optimization tools. In Fig. 4 we show the objective
function on subspaces of the parameter space. There is a
local minimum at (xL, xC, xR) ≈ (−2.30, 0.07, 2.14) where
the objective function takes the value of ‖h‖2 ≈ 0.240. The
high-frequency switching solution in Fig. 3 achieves ‖h‖2 ≈
0.217, showing that the relative increase in objective for the
significantly simpler control is around 10% but still signif-
icantly improved from the value of ‖h‖2 ≈ 1.276 attained
in the uncontrolled case. The deflection profiles for both of
these optima are shown in Fig. 5 along with the uncontrolled
deflections. The two optima are very similar in comparison to
the uncontrolled profile.
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FIG. 4. Value of the objective function ‖h‖2
2 when β = U = 1,

on subspaces of the (xL, xC, xR) parameter space in the vicinity of
the local minimum (xL, xC, xR) ≈ (−2.30, 0.07, 2.14) marked on the
contour plot in (a) by a star while (a) varying xL and xR, keeping
xC = 0.07, and (b) varying xC, keeping (xL, xR) = (−2.30, 2.14). All
other parameters are defined in (6).

A straightforward physical explanation of the convex op-
timality structure of Fig. 4 is available by exploring the
deflection profiles while varying xL and xR independently, as
shown in Fig. 6. In Fig. 6(a) we see that the effect of devi-
ations in the upstream control boundary xL from its optimal

z

FIG. 5. Deflection profiles h when β = 1 for the chattering op-
timum (U = 1, solid blue curve), the three-switch regularization
(U = 1, dashed black curve), and the uncontrolled profile (U = 0,
blue dashed curve). All other parameters are given in (6).

FIG. 6. Deflection profiles h [solutions of (4) with β = U = 1
and other parameters defined in (6)] using the three-switch con-
trol (28) with xC = 0.07 and (a) xR = 2.14, xL ∈ {−1, −2.30, −2.5};
and (b) xL = −2.30, xR ∈ {1, 2.14, 2.5}. The local minimum deflec-
tion profile is drawn as a black dashed curve.

value lead to amplified upstream features: a peak for xL = −1
(the yellow curve) and a trough for xL = −2.5 (the purple
curve). Similarly, in Fig. 6(b) we observe how changes to the
downstream control boundary location xR alter downstream
deflection features: increasing xR amplifies the downstream
peak, while decreasing xR affects more moderate change [visi-
ble also in Fig. 4(a)]. We deduce that localized control changes
drive localized deflections, with deviations from the optimum
becoming progressively worse as larger deformations are
induced.

We conclude with remarks regarding alternative objective
functions. When other Lp norms are used as the objective
functional we obtain comparable results to those presented in
this section. While it might be tempting to think that derivative
information of h is missing from the formulation, it transpires
that employing a Sobolev norm, where we minimize, say,
‖h‖2

2 + ‖dh/dx‖2
2, does not prevent chattering, nor does an L2

norm on the control [50].
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FIG. 7. Optimal solution of the augmented system obtained from
problem (4) with β = 1 by considering u as a state variable governed
by the control v via du/dx = v, and imposing |u|, |v| � 1, with N =
5000 equispaced grid points, and the parameters defined in (6).

The chattering control has a derivative of Dirac δ masses
at switching points. Therefore it might be tempting to think
that we can suppress chattering if we could bound the control
derivative. This can be achieved by employing higher-order
control (a technique common in feedback control [51]). For
the sake of concreteness, denoting the autonomous, controlled
dynamics and associated constraints by dy/dx = f (y, u) and
|u| � U , respectively, we consider the augmented dynamics
dy/dx = f (y, u), du/dx = v, along with the constraints |u| �
U and |v| � V . While u remains the input to the system that
influences the dynamics and thus must respect the bound U ,
we interpret it as a state variable (with a state constraint) since
we no longer fix u directly but instead fix the control v and
u is determined from the dynamics. This is a higher-order
control because instead of controlling the second argument
of the dynamics f (y, ·), we effectively control, and can thus
bound, its derivative.

There is an inherent tradeoff in choosing the new control
bound V . In the limit as V → ∞ we converge to the original
system, and thus to effectively suppress chattering we need
a relatively small value for V . However, decreasing V more
tightly constrains the control and thus results in increased
penalties. We show the solution for U = V = 1 in Fig. 7,
where we see that the chattering persists but is modulated
by a linear envelope. (Proceeding to higher order produces
polynomial envelopes of higher degree; however, the chatter-
ing persists.) The optimal solution in Fig. 7 achieves ‖h‖2 ≈
0.321, almost 50% worse than the optimum and vastly more
difficult to engineer than the regularized optimum. We deduce
that this poor performance is the result of the bounded deriva-
tive not providing sharp control, especially in the vicinity of
the origin.

VI. SUMMARY

In this paper we consider the steady free-surface flow
of a thin film of incompressible, viscous fluid along a
substrate, under the influence of gravity and an external source

of localized momentum and heat flux, and exposed to an
active cooling mechanism from underneath the substrate. We
are concerned with the case where the free-surface deforma-
tions caused by the external source are undesirable and pose
the optimal control problem of finding the cooling profile
that minimizes these deflections (where the active cooling
mechanism is subject to temperature gradient constraints).
We investigate the problem in two limits, with and without
the normal component of capillary stress at the fluid inter-
face. The striking difference between the results highlights
the importance of normal capillarity in the optimal control
problem.

In both cases numerical solutions show that the optimal
control succeeds in suppressing all deflections sufficiently
far from regions of peak external forcing. However, when
normal capillarity is present the solution is remarkably differ-
ent: the control chatters at junctions joining the nonsingular
arcs (where deflections are nonzero) and singular arcs (where
deflections are completely suppressed), that is, the control
switches from its upper bound to its lower bound an infinite
number of times in a finite vicinity of the junction.

To explore the switching, we turn to Pontryagin’s maxi-
mum principle and the adjoint problem, from which we derive
a nonlinear ODE whose solution approximates the switching
function. We exploit a symmetry of this nonlinear ODE to
construct self-similar solutions whose changes in sign accu-
rately predict the “fractal” switching structure.

For the purposes of practical implementation, several regu-
larization approaches to suppress the chattering are discussed.
Taking only a known, finite number of switches is a sim-
ple approach that has several key advantages. Firstly, of
key industrial importance, the simple control structure im-
posed ensures that the optimal strategy will be practical to
engineer. Secondly, given a forward model, optimizing the
design reduces to solving a classical optimization problem
where generic optimization tools are effective and widely
available. Finally, in terms of the objective function, the
price for deviating from the unregularized optimum can be
kept small. An example with typical parameters shows that
having just three switches results in only slightly worse per-
formance than the optimal strategy. The cooling strategy
obtained with this regularization is essentially uniform be-
yond a neighborhood of the origin, in which the substrate
temperature decreases around a point slightly downstream of
the origin.

While numerical results are presented only for hydrody-
namic flow, we reiterate that the results are universal and
remain qualitatively descriptive for similar flow regimes, such
as magnetohydrodynamic flow. We restrict our attention to
the steady-state problem formulation, which motivates a more
complete stability analysis of the three-dimensional hydrody-
namic (and magnetohydrodynamic) problem. In the dynamic
setting, unsteady forcing can excite resonant free-surface de-
flections [38]. How this affects the optimal control (and in
particular, the chattering) would be a fascinating topic for
future work. Further questions regarding the analysis and
characterization of the transition between the nonchattering
and chattering regimes could also shed more light on this
fascinating phenomenon.
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APPENDIX A: DERIVATION OF THE THIN-FILM
EQUATION

We present a brief derivation of the thin-film equation (1)
and 2 in the main text governing the evolution of the fluid’s
free surface. We refer the reader to [52] for an extensive
treatment of the relevant equations and boundary conditions
governing fluid motion.

We consider the two-dimensional configuration illustrated
in Fig. 1 of the main text, where (x, y) are Cartesian coordi-
nates. The fluid occupies the region 0 < y < h(x, t ), where
t denotes time and h(x, t ) denotes the fluid thickness. The
velocity v(x, y, t ) and pressure p(x, y, t ) satisfy the incom-
pressible Navier-Stokes equations describing the conservation
of mass and momentum, namely,

∇ · v = 0, (A1a)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + ρν∇2v + ρg, (A1b)

where g is gravitational acceleration, ρ is the fluid density, and
ν its kinematic viscosity. We assume that these quantities are
constant in the temperature range of interest.

The conservation of energy within the fluid is described
by an advection-diffusion equation governing the evolution of
temperature T (x, y, t ), namely,

∂T

∂t
+ v · ∇T = κ∇2T, (A2)

where κ denotes the thermal diffusivity of the fluid. The
substrate occupies the region −hs < y < 0, where hs denotes
the constant substrate thickness, in which the temperature,
denoted T s, evolves according to

∂T s

∂t
= κs∇2T s, (A3)

with κs denoting the thermal diffusivity of the substrate.
We now describe the boundary conditions at each material

interface. Motivated by the fusion context in which there is
a vacuum above the fluid, we assume that the ions impact,
and are absorbed by, the fluid (as in in an attached diver-
tor regime), conferring a flux of momentum [53] and heat
[37]. These are captured at the interfacial boundary conditions
due to the fact that the ions have energies on the order of
O(100) eV [54], which result in their penetrating only the tini-
est fraction of the fluid film [55]. Tangential stresses due to the
impinging jets have been neglected following Refs. [53,56].

At the vacuum-fluid interface, the free surface y = h(x, t ),
we impose the kinematic condition, normal and tangential

stress balances, and the normal heat flux condition, which take
the forms

1√
1 + (∂h/∂x)2

∂h

∂t
= v · n, (A4a)

ρν[
(∇v + (∇v)T

) · n] · n = p − P − γ (∇ · n), (A4b)

ρν[
(∇v + (∇v)T

) · n] · t = −dγ

dT
∇T · t, (A4c)

k∇T · n = H, (A4d)

where n and t are, respectively, the (upward) normal and
tangential unit vectors, γ is the surface tension of the fluid,
P(x) and H (x) are, respectively, the pressure imposed and heat
transferred to the fluid from the external source impinging
upon the fluid, and k is the thermal conductivity of the fluid.

At the fluid-substrate interface, we impose a no-slip bound-
ary condition, along with continuity of temperature and
thermal flux, which take the forms

v = 0, T = T s, k∇T · n = ks∇T s · n, (A5a-c)

with ks denoting the thermal conductivity of the substrate.
Finally, we represent the active cooling mechanism via a

Dirichlet temperature boundary condition on the underside of
the substrate, y = −hs, namely,

T s = T −(x). (A6)

Writing v = (v,w), where v and w denote the horizontal and
vertical velocity components, respectively, we integrate (A1a)
and impose (A4a) and (A5a) to obtain a relation describing
the net conservation of mass:

∂h

∂t
+ ∂

∂x

(∫ h

0
v dy

)
= 0. (A7)

Relation (A7) replaces the need to solve for the verti-
cal component of the velocity w. Given the horizontal
velocity component v, Eq. (A7) provides the free-surface
dynamics.

We now proceed to nondimensionalize the governing equa-
tions and boundary conditions Eqs. (A1)–(A6). Our aim is
to apply the lubrication approximation to exploit the physi-
cally relevant limit in which the film is thin compared to the
substrate length and provide a leading-order asymptotic ap-
proximation for the horizontal velocity and temperature. This
leading-order solution, in conjunction with (A7), provides a
leading-order equation governing the free-surface evolution.

We scale our dimensional variables with characteristic
magnitudes via

x = L x′, y = εL y′, t = L
U

t ′,

v = U v′, w = εU w′, p = ρνU
ε2L

p′,

h = εL h′, P = P0p, T = T0 + εLH0

k
T ′,

hs = εL hs′, H = H0p, T − = T0 + εLH0

k
T −′

,

(A8)

where L, U, P0, and H0 denote characteristic scales of length,
velocity, externally applied pressure, and thermal flux, ε
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TABLE I. Dimensionless quantities and the asymptotic limits of interest.

Dimensionless quantity Notation Description Asymptotic limit

Flow aspect ratio ε = H
L

Fluid thickness

Divertor extent
ε � 1

Reynolds number Re = εUL
ν

Inertia

Viscosity
ε Re � 1

Péclet number Pe = εUL
κ

Advection

Thermal diffusion
ε Pe, ε Pe κ/κ s � 1

Bond number Bo = ε2L2ρ|g| sin θ

γ

Gravity

Surface tension
Bo = O(ε3) and Bo � ε3

Marangoni number Ma = − dγ

dT

ε2L2H0

ρνκk

Thermocapillary

Thermal diffusion
ε Ma / Pe = O(1)

denotes the small aspect ratio of the flow (the ratio of the
typical film thickness to the substrate length), and p(x) rep-
resents the profile of the pressure and heat source, that is, the
spatial distribution of their magnitude, being localized in the
vicinity of the origin and decaying in the far field. We assume
that these emanate from the same source and thus model them
with different magnitudes but the same spatial profile p. The
temperature scale reflects the absolute temperature reference
T0 dictated by the cooling mechanism, say, T0 = minx T −(x),
and the temperature jump, dictated by the external heating
and thermal conductivity of the fluid. We nondimensionalize
T s identically to T . We henceforth drop the primes to reduce
clutter.

We may deduce the gravity-driven velocity scale by
considering a dominant balance between gravitational and
viscous forces in (A1b), from which we find that

U = ε2L2|g| sin θ

ν
. (A9)

We are interested in the case of a thin film, where the
aspect ratio is small, ε � 1, and proceed to derive a reduced
model in the asymptotic limit as ε → 0. We are interested
in the distinguished limit in which k/ks = O(1), while we
assume that ε Re, ε Pe, and ε Pe κ/κs are all negligible as
ε → 0, and we neglect terms of these orders, or higher, in the
leading-order system, as is typical in lubrication theory. The
Reynolds and Péclet numbers, Re and Pe, respectively, are
dimensionless quantities defined in Table I. We retain all other
terms, for instance, we consider the distinguished limit where
θ = O(ε), whereby we retain the transverse contribution of
gravity.

To justify these asymptotic limits concretely, we con-
sider characteristic orders of magnitude relevant to the fusion
context. To this end we refer the reader to [57,58] for a compi-
lation of the physical properties of liquid lithium and stainless
steel, a leading candidate for liquid metal and substrate ma-
terial in fusion applications [4,6,61–64]. For the typical film
dimensions as well as heat flux and pressure magnitudes and
profiles, we refer to the relevant modeling [6,53,59] and ex-
perimental [37,60] literature.

In Table II we tabulate the fusion-relevant physical pa-
rameters necessary to calculate the dimensionless limits of
interest in Table I. We find that the reduced Reynolds number
ε Re ≈ 10−3 and the scaled Péclet number ε Pe ≈ 10−4 are
negligibly small. We deduce that the flow is noninertial. The

normal capillary coefficient ε3/ Bo ≈ 10−5 is small, however,
since it is the coefficient of a high-order derivative it becomes
relevant in the presence of small-scale disturbances. The ther-
mocapillary contribution ε Ma / Pe lies between (10−2, 10−1).

We assume that, in the temperature range of interest, the
physical properties of the fluid and substrate are constant
to leading order. This assumption is physically reasonable
since the external heat source is localized [37] and the film
has a small aspect ratio; therefore, even though temperature
gradients might be large, the change in absolute temperature
is limited. In fact, the dimensional temperature scale in (A8)
is on the order of 10 K.

Assuming that both the surface tension and its gradient
are constant to leading order is justified when surface tension
varies sufficiently linearly in the temperature range of interest,
and the variation does not have a significant effect on the
surface tension magnitude, that is, the ratio γ /(dγ /dT ) is
significantly larger than the temperature variation in the sys-
tem. For liquid lithium the linearity assumption is exceedingly
accurate, and the above ratio is on the order of 104 K, far
exceeding the magnitude of the temperature scale [58].

With the leading-order reductions physically motivated, we
proceed to write down the leading-order system. Equations
(A1b) and (A2) in the fluid layer, 0 < y < h, take the leading-
order dimensionless forms

∂ p

∂x
= ∂2v

∂y2
+ 1,

∂ p

∂y
= −ε cot θ,

∂2T

∂y2
= 0, (A10a-c)

TABLE II. Typical dimensional parameter values [6,57–60].

Dimensional quantity Symbol Value

Film thickness H 10−4 m
Divertor extent L 0.1 m – 1 m
Kinematic viscosity ν 10−6 m2/ s
Thermal conductivity (fluid) k 50 W/ m K
Thermal conductivity (substrate) ks 20 W/ m K
Thermal diffusivity (fluid) κ 10−5 m2/ s
Thermal diffusivity (substrate) κ s 5 × 10−6 m2/s
Density ρ 500 kg/m3

Thermal load H0 107 W/m2

Surface tension γ 0.5 N/m
Surface tension gradient −dγ /dT 10−4 N m/K
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while in the substrate, −hs < y < 0, the leading-order tem-
perature is governed by

∂2T s

∂y2
= 0. (A11)

At the free surface, y = h, boundary conditions (A4) take
the leading-order forms

p − Ap + ε3

Bo

∂2h

∂x2
= 0, (A12a)

∂v

∂y
+ B

(
∂T

∂x
+ ∂h

∂x

∂T

∂y

)
= 0, (A12b)

∂T

∂y
= p, (A12c)

where we introduce the dimensionless coefficients A and B,
representing the significance of the pressure and thermocapil-
larity, respectively, defined by

A = ε2LP0

ρνU
, B = ε Ma

Pe
, (A13)

with Bo and Ma denoting the Bond and Marangoni numbers
defined in Table I.

We look to retain the thermocapillary flow and the ef-
fects of both externally applied sources, and thus consider
the distinguished limit in which A = O(1) and B = O(1) as
ε → 0. At the fluid-substrate interface, y = 0, the boundary
conditions (A5) become

v = 0, T = T s, k
∂T

∂y
= ks ∂T s

∂y
. (A14a-c)

Finally, on the lower side of the substrate, y = −hs, the cool-
ing profile (A6) is imposed:

T s = T −. (A15)

To begin solving the leading-order system (A10) to (A12),
(A14)), and (A15), we first integrate the decoupled tem-
perature equations (A10c) and (A11), imposing boundary
conditions (A12c), (A14b–c), and (A15), to find that

T (x, y) = p(x)(y + ι) + T −(x), (A16a)

T s(x, y) = k

ks
p(x)(y + hs) + T −(x), (A16b)

where ι = hsk/ks measures the effective thermal insulation of
the substrate.

Next we integrate (A10b) and impose (A12) to give the
leading-order pressure in the fluid, namely,

p = Ap − ε3

Bo

∂2h

∂x2
+ ε cot θ (h − y). (A17)

Substituting (A17) into (A10a), we derive an equation gov-
erning the horizontal velocity, namely,

∂2v

∂y2
= −1 + A

∂p
∂x

+ ε cot θ
∂h

∂x
− ε3

Bo

∂3h

∂x3
=: �(x, t ).

(A18)

Integrating (A18) and imposing boundary conditions (A12b)
and (A14a) yields

v = y(y − 2h)

2
�(x, t ) − By

∂

∂x

(
(h + ι)p + T −)

. (A19)

Substituting the horizontal velocity v into the net mass rela-
tion (A7), we obtain the thin-film equation, namely,

∂h

∂t
+ ∂

∂x

[
h3

3

(
1 − A

∂p
∂x

− α
∂h

∂x
+ β

∂3h

∂x3

)

− B
h2

2

∂

∂x

(
(h + ι)p + T −(x)

)] = 0, (A20)

where we have defined α = ε cot θ and β = ε3/ Bo. In the
absence of the external (nongravitational) forcing, that is,
when dT −/dx = A = B = 0, Eq. (A20) admits the steady
solution h ≡ 1 without loss of generality. Denoting the steady
free-surface deflections caused by steady external forcing by
h, defined by h(x) = 1 + h(x), we find that h is governed
by (1) of the main text, where h and its derivatives vanish
in the far field, and Q and T are defined in (2) of the main
text. We note that the choice of β = 1 may always be realized
by rescaling the length scale according to the capillary length
scale Lc := L

√
εγ /ρ|g| sin θ .

The study of the steady-state thin-film deflections necessi-
tates some remarks regarding the stability of the full problem.
The lubrication approximation we employ neglects inertia at
the leading order of the governing equations. Similarly, in
the conduction-dominant limit, the temperature is steady to
leading order. This ensures that the flow remains a quasisteady
function of the film thickness [41]. Therefore the Kapitza
instability [39,40], whose onset leads to the development of
roll waves [65], is not manifest. To demonstrate this, a linear
stability analysis may be performed whereby perturbations to
the velocity and temperature fields are quasisteady (with ex-
clusively parametric time dependence through the dependence
on the film thickness), since all inhomogeneities are steady
and thus time derivatives vanish at all orders. Therefore the
stability of the two-dimensional system depends on the valid-
ity of the lubrication approximation and the stability of the
evolution of the film thickness. To study this we simulate the
fully nonlinear transient dynamics of the thin-film equation
(A20) using the discretization presented in [66]. Our numeri-
cal simulations (not shown here) demonstrate that the steady
profiles studied in this work are stable to perturbations for the
parameters used in this work. No transient phenomena were
observed that would lead to the breakdown of the lubrication
approximation (such as steep film gradients, thick regions of
film, film dryout, etc.).

The thermocapillary instability introduced in Sec. I is pre-
dicted to manifest when an associated Marangoni number,
equivalent to the quantity ε Ma / Pe in this study, exceeds a
critical value (that depends on other system parameters [42]).
The critical values predicted theoretically lie approximately
in the interval (4,10), with experimentally observed criti-
cal values slightly smaller. For the parameters in this study,
the quantity ε Ma / Pe may be up to two orders of magni-
tude smaller than this critical value. Nevertheless, the model
considered in this study is not identical to those previously
investigated. In [41,42] there is no external pressure applied
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to the film, and the thermal boundary conditions at the free
surface describe Newton’s law of cooling, capturing the heat
exchange between the ambient gas and the fluid. In this study
there is an external pressure source, and we impose a spatially
inhomogeneous thermal flux at the free surface, since in the
fusion context the fluid is in contact with a vacuum; thus no
heat exchange occurs with the surroundings by Newton’s law
of cooling. A full three-dimensional stability analysis for the
model we study is beyond the scope of this work.

Thin-film equations governing the evolution of a free sur-
face, such as (A20), are often referred to as Benney equations,
having been first derived by Benney [35]. While some such
models prove to exhibit nonphysical features such as finite-
time blowup, the fact that inertial effects are negligible and the
material properties of interest are taken to be constant in this
study suggests that the model will be a good approximation of
the physical process [67].

APPENDIX B: NUMERICAL APPROACHES IN OPTIMAL
CONTROL

For more comprehensive surveys, we refer the reader to
[[68–70], and references therein]. For our purposes it suffices
to outline two major directions: indirect and direct numerical
approaches. The indirect approach seeks to solve the forward
and adjoint equations. This so-called two-point boundary
value problem comprises the four ODEs given in Eqs. (8) and
(11) and the four boundary conditions of Eqs. (9) and (12).
While many classical boundary-problem techniques, such
as shooting, may be employed, we implement the forward-
backward method [71,72]. An initial guess is made for the
control u and boundary condition h(X ). The dynamics 7b are
integrated forward (that is, from x = −X through to x = X )
numerically to give the first iterate of the state h(x). This
iterate is then employed in integrating the adjoint problem
backwards (that is, from x = X through to x = −X ) to pro-
duce the first iterate of the costate. Using the first iterates
of state and costate, we update the control via (17). This
procedure is repeated until iterates converge and the boundary
conditions are satisfied.

This indirect method is plagued by high sensitivity to the
initial guess [68,73], which is particularly challenging for the
current problem since its ellipticity renders it ill posed as an
initial value problem (IVP). When reinstating normal capil-
larity [the case of β = O(1)], the two-point boundary value
problem is formally ill posed due to the infinite switching [50].

These obstacles motivate the second numerical approach,
known as the direct approach, whereby the optimal control
problem is discretized and solved directly as a nonlinear
program (NLP) using generic mathematical programming
techniques. This approach dichotomy may be thought of
as optimize-then-discretize versus discretize-then-optimize.
Each approach has advantages and disadvantages, and which
is more suitable depends on features of the problem at hand
[68–70].

There are several classes of direct numerical solutions, and
we follow [[69], Sec. 8.6] in broadly categorizing them as
sequential and simultaneous. In direct sequential solvers, only
the control is discretized. The constraining ODE is solved in
an inner loop, and the control is updated in an outer loop.

This approach (called shooting methods in [68,70], although
distinct from the boundary-value shooting mentioned above)
is easy to implement but suffers from several drawbacks,
including convergence issues [70] due to the highly nonlinear
behavior of the constraints with respect to the variables [68].
The reason for this is that small changes at the beginning of
the domain may evolve into large deviations as they propagate
through the domain. In our setting this problem is exacerbated
since the ODE constraint is not well posed as an IVP and
thus is highly sensitive to small changes. A common way
to remedy this sensitivity is to apply multiple shooting [74],
where the domain of integration is split into several intervals,
and new decision variables are added as initial conditions on
each new interval. Continuity constraints are added so that the
solution may be continuously patched together. The result is a
higher dimensional NLP (since the initial conditions on each
interval are now decision variables), but because each interval
is integrated independently, small changes in the initial con-
ditions are propagated only in each interval but not the entire
domain. This reduced sensitivity makes the multiple shooting
a more robust approach. However, as will be demonstrated
when reinstating normal capillarity, we need particularly fine-
grained resolution of the control.

Simultaneous solvers are best suited for this purpose,
where the full problem is discretized, that is, both the control
and the state. We choose a simple finite-difference scheme to
discretize the ODE, encoding the discrete formulation using
CASADI [75], a framework that performs automatic differen-
tiation to pass gradient information to the IPOPT solver [76],
which employs an interior-point method. In this way we lever-
age the power of state-of-the-art NLP architecture to obtain
high resolution in the control. While we found the solution
to be largely insensitive to the finite-difference scheme, we
found that the smallest stencils yielded the finest control reso-
lution.

APPENDIX C: CHATTERING

In the 1960s Fuller [77] first considered the seemingly
simple optimal control problem of minimizing the square
displacement of a particle while controlling its acceleration:

min
|u|� 1

1

2

∫ ∞

0
x1(t )2dt, (C1a)

subject to

dx1

dt
= x2,

dx2

dt
= u, (C1b-c)

along with some nontrivial initial condition. Incredibly, it
turns out that the bang-bang control that solves (C1) switches
infinitely many times in a finite interval before arriving at the
origin. This control behavior is called Fuller’s phenomenon
or chattering (or sometimes Zeno behavior in reference to
Zeno and his paradox [17], see also [78–81] for discussions
about related but distinct notions of chattering). Chattering
was for a long time considered anomalous until the seminal
work by Kupka [82] proved that for sufficiently high-order
systems chattering is ubiquitous (see [83] for a more extensive
treatment and extension of Kupka’s results).
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A junction is a point at which nonsingular and singular arcs
meet. The junctions in Fig. 3(a) are located relatively far from
the origin, |x| ≈ 5, and since p(x) = e−x2

, the external forcing
near these points is exceedingly small. Similarly, since h is
continuous and identically zero on the singular arc, we may
assume that h and its derivatives are vanishingly small near
the junctions. When these terms are neglected, f defined in
(19e) admits the approximation

f ≈ BT(0)

βQ(0)
u. (C2)

From (19), (22), (24), and (C2) we deduce that, local to the
junction in the nonsingular region, assuming that derivatives
diφ/dxi are negligible for i = 0, . . . , 5, the switching func-
tion is approximated by the solution of the nonlinear ODE

d6φ

dx6
≈ U

(
BT(0)

βQ(0)

)2

sgnφ. (C3)

Equation (C3) is homogeneous with respect to x, and therefore
solutions are translation invariant and we consider the junction
to be located at the origin x = 0 without loss of generality. To
further simplify the presentation, we scale x with the inverse
of the sixth root of the coefficient U [BT(0)/βQ(0)]2 to obtain
the scaled approximation

d6φ

dx6
= sgnφ. (C4)

Adapting the analysis of Fuller’s original problem in [78],
we note that the switching equation (C4) is invariant under
the transform φ(x) �→ J6φ(x/J ). We leverage this symme-
try to uncover the structure of the switching by seeking
a self-similar solution of (C4). Our aim is to construct a
smooth solution of (C4) on an interval where φ is of one
sign, vanishing at the endpoints. We then extend this solu-
tion self-similarly to an adjacent interval. Enforcing sufficient
smoothness will allow us to determine valid values of J and
thus determine φ. Note that the form of the symmetry vali-
dates the earlier assumption of vanishingly small derivatives
up to fifth order near the junction.

We assume that a solution φ has adjacent zeros at x0 and x1

where x0 < x1 < 0 and is positive in the intervening interval.
Integrating (C4) we find that, on [x0, x1], φ takes the form

φ(x) = ϕ(x) := x6

6!
+

5∑
i=0

cix
i, for x ∈ [x0, x1]. (C5)

We use the symmetry parameter J to construct a self-similar
copy on the adjacent segment defined by [x1, x2] = [x0J, x1J].
In defining the adjacent segment with x0J = x1 > x0, we im-
plicitly require that 0 < J < 1 (since xi are negative, and
we neglect J < 0 since the adjacent segment must remain
on the same side of the junction which is taken to be the
origin). This assumption is without loss of generality, as J > 1
could equally be considered, with the adjacent segment being
[x−1, x0] = [x0J, x1J]. The former construction has adjacent
segments of decreasing length converging to the origin, while
the latter has adjacent segments of increasing length diverging
from the origin. Thus the construction with J and the adjacent
interval to the right is equivalent to that with 1/J and the
interval to the left.

−1.0 −0.5 0.0 0.5 1.0
J

0

5

10

15

P

FIG. 8. Polynomial P(J ) defined in (C8).

On the adjacent segment, the solution is given by

φ(x) = −J6ϕ(x/J ), for x ∈ [x1, x2]. (C6)

Requiring continuity of derivatives up to fifth order at the
shared boundary point x = x1 yields six constraints:

lim
x↑x1

diφ

dxi
(x) = lim

x↓x1

diφ

dxi
(x), for i = 0, . . . , 5, (C7)

which suffice to determine the six unknowns ci. Finally, en-
forcing the zero φ(x1) = 0, we find that J is a root of the
polynomial P given by

P(J ) = J8−7J7−2J6+8J5+17J4+8J3−2J2−7J+1.

(C8)

It follows from the symmetry of the coefficients of P that
P(J ) = 0 if and only if P(1/J ) = 0, reflecting the aforemen-
tioned equivalence. Therefore all roots of P are characterized
by roots in the interval J ∈ [−1, 1], and we see by plotting
P(J ) in Fig. 8 that there are two: J ≈ 0.141 408 and J ≈
0.575 736.

It is worthwhile to briefly take stock of what we have
achieved. We have neglected exceedingly small terms to ob-
tain an equation (C4) approximately governing the switching
function φ. We then utilized an invariance of (C4) to construct
self-similar solutions. The zeros of these solutions form a geo-
metric sequence with ratio J , given by a root of the polynomial
(C8), and thereby give rise to a “fractal” optimal control. As
discussed at the end of Sec. IV, the analytical switching points
predicted by this solution structure agrees remarkably well
with the numerical solution [see Fig. 3(b)].

Notably, the first-order system and its adjoint (8), (9), (11)
and (12) admit an analogous approximate switching equation
when α > 0, namely,

d2φ

dx2
≈ −U

(
BT(0)

αQ(0)

)2

sgn(φ). (C9)

It is straightforward to show that any nontrivial solution of
(C9) is a concatenation of identical parabolic arcs of alternat-
ing sign; all roots are uniformly separated, thus no switching
can occur (in regions where this approximation is valid).
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