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Oscillatory pressure-driven rarefied binary gas mixture flow between parallel plates
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The rarefied, oscillatory, pressure-driven binary gas mixture flow between parallel plates is computationally
investigated in terms of the mixture molar fraction and molecular mass ratio of the species, in a wide range
of gas rarefaction and oscillation frequency. Modeling is based on the McCormack kinetic model. The output
quantities are in dimensionless form and include the flow rate, wall shear stress and pumping power of the
mixture, as well as the velocity and shear stress distributions and flow rates of the species. The presented results
are for He-Xe and Ne-Ar. The heavier species are affected more drastically than the lighter ones from the inertial
forces, resulting to large differences between the flow rate amplitudes of the species, which are increased as the
flow becomes less rarefied, provided that the oscillation frequency is adequately high. At very high frequencies
the ratio of the flow rate amplitudes of the light over the heavy species tends to the inverse of their molecular
mass ratio in the whole range of gas rarefaction. The velocity overshooting effect becomes more pronounced
as the molecular mass is increased. The mixture flow rate amplitude is larger, while its phase angle is smaller,
than the corresponding ones of single gas, and they both vary nonmonotonically with the molar fraction. The
effect of the mixture composition on the wall shear stress and pumping power is small. The present work may be
useful in the design of gas separation devices, operating at moderate and high frequencies in rarefied and dense
atmospheres.

DOI: 10.1103/PhysRevE.103.033103

I. INTRODUCTION

Oscillatory flows in the hydrodynamic regime are very
common. They are driven by moving boundaries [1] or pres-
sure gradients [2,3], oscillating harmonically in time with
some specified frequency. Similarly, rarefied oscillatory flows
are encountered in enclosures, driven by moving boundaries,
oscillating parallel or vertical to the main flow [4–8], and
in capillaries of various cross sections, driven by oscillating
or pulsatile pressure or force gradients [9–11]. Since in rar-
efied gas flows the classical Navier-Stokes-Fourier approach
is not applicable, kinetic modeling and simulations, based
on the computational solution of the Boltzmann equation or
of reliable kinetic model equations via deterministic [12] or
stochastic schemes [13], must be implemented. It is noted that
oscillatory gas flows are in the so-called hydrodynamic (or
viscous) regime, when both the mean free path and collision
frequency are much smaller than the characteristic length and
oscillation frequency respectively. When either of these re-
strictions is relaxed, the flow is classified as rarefied and may
be in the so-called transition or free molecular regimes de-
pending on the time and space characteristic scales [5,6,9,10].

Rarefied boundary-driven oscillatory flows of single gases
have been extensively investigated over the last two decades
[4–8,14–20]. These flows are present in a variety of sys-
tems, such as resonating filters, sensors and actuators, where
the computation of the damping forces is crucial in order
to control and optimize the resolution and sensitivity of the
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signal [21]. Combined effects of harmonically oscillating
both the boundary velocity and temperature, have been also
considered to enhance the acoustic transduction or even to
achieve acoustic cloaking [20,22]. Very recently, propagation
of sound waves due to mechanical and thermal excitation
through binary gas mixtures has been also considered [23–28].
The investigated setups include flow configurations in half-
space, slab, rectangular cavities, comb-drives, and nonplanar
geometries, and the implemented numerical schemes are
mainly based on the stochastic Direct Simulation Monte Carlo
(DSMC) method [4,14,19,20,22] and the deterministic so-
lution of kinetic model equations by the discrete velocity
method [5,6,26,27]. The latter approach is introduced when
the amplitude of the oscillatory velocity and/or temperature
driving the flow is small by applying the linearized Bhatnagar-
Gross-Krook (BGK) model [29] in single gas flows and the
McCormack model [30] in binary gas mixture flows.

On the contrary, rarefied pressure-driven oscillatory or
pulsatile gas flows have attracted much less attention. The
reported investigations refer to fully developed single gas
flows in capillaries [9–11,31], with applications in vapor
deposition [32], cryogenic pulse tubes [33] and microflu-
idic oscillators and pumps [34–37]. However, it is important
to note that in the hydrodynamic regime pressure-driven
oscillatory or pulsatile gas flows are encountered in nu-
merous technological fields, such as pneumatic lines and
control systems [38], reciprocating pumps [39], internal or
external manifolds of combustion engines [40], and bio-
engineering [41]. They are also encountered in mass and
heat transfer processes, where many investigations have been
performed to enhance, gas separation or mixing, species
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contaminants dispersion and thermal diffusion [42–47].
Therefore, taking into consideration that oscillatory pressure-
driven gas flows in the hydrodynamic regime are very
common, along with the progress in fabrication techniques of
micro devices (sensors/actuators, pumps/compressors, cool-
ing systems, piping manifolds, separators), it is reasonable
to expect that oscillatory pressure-driven rarefied flows of
single gases and gas mixtures have significant technological
potential and should be theoretically investigated.

Recently, rarefied, pressure-driven, oscillatory, fully devel-
oped single gas flows through tubes and rectangular ducts
have been investigated [9–11]. It has been found that var-
ious interesting effects (e.g., velocity overshooting, phase
angle lag between velocity and pressure gradient, etc.), well
known in corresponding viscous oscillatory flows [3], are still
present but higher oscillation frequencies are needed to trig-
ger these phenomena. No corresponding work for oscillatory
gas mixture flows is available. Of course stationary binary
and ternary gas mixtures flows through capillaries of various
cross sections in the whole range of the Knudsen number
have been extensively investigated [48–53]. These flows have
strong theoretical interest because, compared to the ones with
single gases, new nonequilibrium phenomena occur. One of
these phenomena is the so-called gas separation phenomenon,
which is contributed to the different molecular speeds of
the component of the gas mixture [54–57]. Gas separation
is almost always present in rarefied gas mixture flows and
depending upon the application it should be either enlarged or
reduced. Therefore, recently there has been substantial effort
in the design of devices controlling gas separation and/or
mixing. Some designs, based on the Knudsen pump operating
principal, have been materialized [58–60], while others are in
a preliminary conceptual stage [61–65].

In this context, the present work is devoted in the detailed
theoretical investigation of the rarefied oscillatory fully devel-
oped binary gas mixture flow between parallel plates due to
harmonically oscillating pressure gradient, imposed parallel
to the plates. The mixture consists of monatomic gases. Mod-
eling is based on the time-dependent linearized McCormack
kinetic model equation subject to diffuse boundary conditions
via the discrete velocity method. The investigation is focused
on the effect of the molecular mass ratio of the components
of the mixture and of its molar fraction on the oscillatory
behavior of the velocity distribution, flow rate, shear stress,
and pumping power of the species and the mixture, in a
wide range of the gas rarefaction and oscillation frequency.
Attention is also given to the effect of the oscillation frequency
on gas separation. The objective of the work is to provide
for various representative binary gas mixtures a complete and
detailed view of the flow characteristics of the light and heavy
species and of the mixture in the whole range of the molar
fraction, gas rarefaction and oscillation frequency. In parallel,
all involved flow phenomena are revealed and physically ex-
plained.

The remaining of the paper is structured as follows: In
Sec. II the flow configuration is described and all input
and output quantities, including the dimensionless parameters
characterizing the flow, are prescribed. In Sec. III the kinetic
formulation and the implemented numerical scheme are pre-
sented. The results are presented and discussed in Sec. IV,

which is divided for clarity purposes into three subsections.
The concluding remarks are outlined in Sec. V.

II. FLOW CONFIGURATION

Consider the rarefied oscillatory pressure-driven fully de-
veloped isothermal binary gas mixture flow between two
infinite long parallel plates. The flow is in the x′ direction
parallel to the plates, which are fixed at y′ = ±H/2. The flow
is caused by an externally imposed harmonically oscillating
pressure gradient of the form

dP̃

dx′ = R

[
dP(A)

dx′ exp (−iωt ′)
]
, (1)

where R denotes the real part of a complex expression,
P(A)(x′) and dP(A)/dx′ are the amplitudes of the oscillating
pressure and pressure gradient, respectively, i = √−1, t ′ is
the time-independent variable, and ω is the oscillation (cyclic)
frequency. Throughout the paper, quantities with tilde are real,
time-dependent quantities. In the hydrodynamic regime, this
flow configuration is a classical one and it is well described
in several mechanics textbooks [3,66], while corresponding
work in the transition and free molecular regimes is limited
only to single gases [9,10]. Furthermore, the assumption that
the fluid oscillates in bulk or en mass [3], i.e., that all quanti-
ties oscillate with the same frequency as the pressure gradient,
which is well established in oscillatory flows in rigid channels,
is also applied in the present work.

The binary gas mixture consists of two monatomic species
of molecular masses mα , with the index “α = 1, 2,” always
referring, without loss of generality, to the light and heavy
species of the mixture, respectively. The number densities ñα

of the species and the number density of the mixture ñ are
related to the corresponding partial pressures P̃α and total mix-
ture pressure P̃ = P̃1 + P̃2 with the equation of states as P̃α =
ñαkT and P̃ = ñkT , where T is the reference temperature,
remaining constant in the flow field, and k is the Boltzmann
constant. The mass densities of the species and the mixture
are defined as ρ̃α = mα ñα and ρ̃ = mñ, respectively.

The mixture pressure P̃α (x′, t ′) = R[P(A)
α (x′) exp (−iωt ′)]

oscillates harmonically in time t ′ with some frequency ω and
varies, as in steady-state fully developed flow, linearly with
x′. The same applies for the number density of the mixture
ñ, as well as the partial pressures P̃α and number densities
ñα of the species. Following common practice and without
loss of generality, the whole formulation is applied at some
arbitrary fixed position x′ along the plates. Therefore, in order
to simplify notation the x′ independent variable is not shown
in the macroscopic quantities.

The local number densities of the mixture components
oscillate harmonically as

ñα (t ′) = R
[
n(A)

α exp(−iωt ′)
]
, (2)

where n(A)
α , α = 1, 2, is the local amplitude of the oscillat-

ing number density of each species, while the local number
density of the mixture is ñ(t ′) = ñ1(t ′) + ñ2(t ′). The molar
fraction of the mixture is defined as the ratio of the number
density of the light species over the mixture number density,
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given by

C̃(t ′) = R[C(A) exp(−iωt ′)], (3)

with

C(A) = n(A)
1

n(A)
= n(A)

1

n(A)
1 + n(A)

2

(4)

being the local amplitude of the molar fraction. Since C(A) is
repeatedly used in the paper to simplify notation, the super-
script (A) is dropped and C(A) = C, while the molar fraction
amplitude of the heavy species is 1 − C. The mean molecular
mass of the mixture is given by m = Cm1 + (1 − C)m2.

Then, the deduced time-dependent local flow quantities of
practical interest include the bulk velocity Ũα (t ′, y′), shear
stress Π̃α (t ′, y′), and heat flow Q̃α (t ′, y′) of the two species
α = 1, 2, which depend on y′, the space-independent variable
vertical to the plates and vary harmonically with time t ′. They
may be written as

Z̃α (t, y) = R[Zα (y) exp (−iωt ′)], (5)

where Z̃α (t, y) = [Ũα (t, y), Π̃α (t, y), Q̃α (t, y)], while
Zα (y) = [Uα (y),Πα (y), Qα (y)] is a vector of the corre-
sponding complex functions. By combining Uα (y) and Πα (y)
the hydrodynamic velocity and shear stress of the gas mixture
are obtained as

U (y) = 1

ρ (A)

[
ρ

(A)
1 U1(y) + ρ

(A)
2 U2(y)

]

= m1

m
CU1(y) + m2

m
(1 − C)U2(y) (6)

and

Π (y) = 1

n(A)

[
n(A)

1 Π1(y) + n(A)
2 Π2(y)

]
= CΠ1(y) + (1 − C)Π2(y), (7)

respectively. In Eq. (6), ρ (A)
α = mαn(A)

α , α = 1, 2 and
ρ (A) = mn(A) are the amplitudes of the oscillating mass
densities of the species and the mixture, respectively. The
shear stress at the wall is denoted by ΠW .

In addition, of major theoretical and technological impor-
tance are the deduced oscillatory particle flow rates of the two
species

J̃α (t ′) = R[Jα exp (−iωt ′)], (8)

where Jα are complex functions, given by

Jα = n(A)
α

∫ H/2

−H/2
Uα dy′. (9)

The mixture particle flow rate is J̃ = J̃1 + J̃2, with J = J1 +
J2. As is well known in rarefied gas mixture flows, gas sep-
aration may occur due to the different molecular speeds of
the species [54,55]. In steady-state binary gas flows through
capillaries, gas separation is characterized by the ratio of the
flow rate of the light over the heavy species, and as this ratio
is increased, gas separation is also increased [57]. Similarly,
in oscillatory binary gas mixture flows, gas separation may be
quantified by the amplitude and the phase angle of the ratio of

the complex flow rates of the species

J1

J2
= J (A)

1

J (A)
2

exp
[
i
(
J (P)

1 − J (P)
2

)]
, (10)

where the superscripts (A) and (P) refer to the amplitude and
phase angle, respectively, of the flow rates. Obviously as the
amplitude ratio and/or the phase angle lag are increased, gas
separation is enhanced.

Another overall quantity of practical interest is the pump-
ing power needed to drive the oscillatory mixture flow. More
specifically, the pumping power to drive a unit depth fluid ele-
ment H × dx′ is given by the product of the net pressure force
dP̃ × H , acting on the cross section H of the element, times
the average hydrodynamic velocity of the mixture Ū ′(t ′), writ-
ten as [3,9]

Ẽ ′(t ′) = HdP̃(t ′)Ū ′(t ′)

= HdP(A) cos (ωt ′)R[Ū exp (−iωt ′)], (11)

where Ū ′ = ∫ H/2
−H/2 U dy′. The particle flow rates and the

pumping power are given in particles per second per meter
and in watts per meter, respectively.

Furthermore, the inertia (or acceleration), viscous and pres-
sure forces of the mixture acting on a fluid volume per unit
length (Hdx′) are given by

F̃I (t ′) = Hdx′ρ (A) ∂Ū ′(t ′)
∂t ′ , (12)

F̃V (t ′) = 2dx′Π̃W (t ′), (13)

and

F̃P(t ′) = HdP̃(t ′), (14)

respectively, Ū ′(t ′) is the average hydrodynamic velocity of
the mixture and Π̃W (t ′) is the wall shear stress of the mixture.
At any time over a cycle, since there is no net momentum
flux, the net sum of the inertia and viscous forces, which may
add or subtract to each other at different times within the
oscillatory cycle, must be equal to the pressure force driving
the oscillatory flow, i.e., F̃P(t ′) = F̃I (t ′) + F̃V (t ′).

At this stage it is convenient to introduce the dimensionless
independent variables

x = x′/H, y = y′/H, t = t ′ω, (15)

the dimensionless amplitude of the local pressure gradient

XP = H

P(A)

dP(A)

dx′ = 1

P(A)

dP(A)

dx
� 1, (16)

and the characteristic speed of the mixture υ = √
2kT /m.

The condition of XP � 1 is due to the fully developed flow
assumption. Then, the bulk velocity, shear stress, and heat
flow in Eq. (5) are nondimensionalized by (υXP ), (2P(A)XP ),
and (υP(A)XP ), respectively, to yield the following:

ũα (t, y) = R[uα (y) exp (−it )]

= R
[
u(A)

α (y) exp
{
i
[
u(P)

α (y) − t
]}]

= u(A)
α (y) cos

[
t − u(P)

α (y)
]
, (17)
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�̃α (t, y) = R
[
�α (y) exp (−it )

]
= R

[
� (A)

α (y) exp
{
i
[
� (P)

α (y) − t
]}]

= � (A)
α (y) cos

[
t − � (P)

α (y)
]
, (18)

q̃α (t, y) = R
[
qα (y) exp (−it )

]
= R

[
q(A)

α (y) exp
{
i
[
q(P)

α (y) − t
]}]

= q(A)
α (y) cos

[
t − q(P)

α (y)
]
. (19)

The superscripts (A) and (P) always refer to the real-valued
distributions of the amplitude and the phase angle respectively
of each complex quantity. Obviously, the dimensionless time-
dependent bulk velocity ũα (t, y), shear stress �̃α (t, y) and
heat flow q̃α (t, y) of the two species are not necessarily in
phase to each other and more importantly to the oscillating
pressure gradient in Eq. (1). The dimensionless velocity and
shear stress of the mixture [see Eqs. (6) and (7)] are denoted
by u(y) and � (y), respectively.

Furthermore, the flow rates in Eqs. (8) and (9) are nondi-
mensionalized by (P(A)XPH/mυ ) to obtain the dimensionless
oscillatory particle flow rates of each species

G̃α (t ′) = R[Gα exp (−it )] = R
[
G(A)

α exp
[
i
(
G(P)

α − t
)
]
]

= G(A)
α cos

[
t − G(P)

α

]
, (20)

where

Gα = G(A)
α exp

(
iG(P)

α

) = 2
∫ 1/2

−1/2
uα dy. (21)

Also, it is readily deduced that the ratio J1/J2, defined in
Eq. (10), is rewritten as

J1

J2
= C

1 − C

G1

G2
, (22)

or in the more convenient form

J1

J2

1 − C

C
= G1

G2
= G(A)

1

G(A)
2

exp
[
i
(
G(P)

1 − G(P)
2

)]
. (23)

Thus, the ratio G1/G2 = (J1/J2)[(1 − C)/C] is equivalent to
the so-called separation parameter in [57] and fully char-
acterizes the gas separation intensity, which is specified by
computing the amplitude ratio G(A)

1 /G(A)
2 and the phase angle

difference G(P)
1 − G(P)

2 . Furthermore, the dimensionless oscil-
latory particle flow rate of the mixture is given by

G̃(t ) = R[G exp (−it )] = R[G(A) exp[i(G(P) − t )]]

= G(A) cos[t − G(P)], (24)

where

G = CG1 + (1 − C)G2. (25)

The pumping power in Eq. (11) is nondimensionalized by
(υXP )(XPHP(A) ) to find the dimensionless oscillatory pump-
ing power

Ẽ (t ) = dx cos (t )R[ū exp (−it )]

= 1

2
dx cos (t )R

[[
m1

m
CG1 + m2

m
(1 − C)G2

]
exp (−it )

]
,

(26)

needed to drive the dimensionless fluid element (1 × dx),
with dx = dx′/H . Here, the dimensionless mean velocity has
been substituted by the dimensionless flow rate, since it is
readily seen that Gα = 2ūα . By integrating Eq. (26) over one
oscillation cycle, the average pumping power over the cycle is
derived as

Ē = 1

2π

∫ 2π

0
Ẽ (t )dt

= 1

4
dx

[
m1

m
CG(A)

1 cos G(P)
1 + m2

m
(1 − C)G(A)

2 cos G(P)
2

]
.

(27)

It is pointed out that although the net flow rate over one cycle
is zero, a nonzero cycle-average pumping power is required
to maintain the oscillatory flow. In the low-frequency regime,
where the imaginary part of all macroscopic quantities is
gradually diminished and the phase angles tend to zero, the
steady-state solution is approached. In addition, the inertia,
viscous and pressure forces are all divided by (HP(A)XP ) to
yield the corresponding dimensionless ones:

f̃I (t ′) = 2dx
δ

θ

∂ ū′(t ′)
∂t

= dx
δ

θ

[
m1

m
CG(A)

1 sin
(
G(P)

1 − t
)

+ m2

m
(1 − C)G(A)

2 sin
(
G(P)

2 − t
)]

, (28)

f̃V (t ′) = 4dx�̃W (t ′) = 4dx� (A)
W cos

(
t − �

(P)
W

)
, (29)

f̃P(t ′) = dx cos t . (30)

The force balance expression in dimensionless form reads as

f̃P(t ) = f̃I (t ) + f̃V (t ), (31)

and substituting Eqs. (28)–(30) into Eq. (31) yields the force
balance expression in dimensionless form:

δ

θ

[
m1

m
CG(A)

1 sin
(
G(P)

1 − t
) + m2

m
(1 − C)G(A)

2 sin
(
G(P)

2 − t
)]

+ 4�
(A)

W cos
(
t − �

(P)
W

)
= cos t . (32)

The time-dependent force balance expression (32) is used
for confirming the accuracy of the computed amplitudes and
angle phases of the flow rate and the shear stress.

The objectives of the present work include the computation
of the macroscopic distributions of the velocity and shear
stress in Eqs. (17) and (18), the particle flow rates of the
species and the mixture in Eqs. (20)–(25), and the pumping
powers in Eqs. (26) and (27), in terms of the parameters
characterizing the flow. As in the case of oscillatory single
gas flow, the oscillatory binary gas mixture flow between
parallel plates is also characterized by the gas rarefaction and
oscillation parameters [5,6,10]. The gas rarefaction parameter
is proportional to the inverse Knudsen number, defined as

δ = P(A)H

υμ
, (33)

033103-4



OSCILLATORY PRESSURE-DRIVEN RAREFIED BINARY … PHYSICAL REVIEW E 103, 033103 (2021)

where H is the distance between the plates, υ is the character-
istic speed of the mixture, and μ is the viscosity coefficient
of the mixture at reference temperature T . The oscillation
parameter is the ratio of the intermolecular collision frequency
defined as ν = P(A)/μ over the oscillation frequency ω, given
by

θ = P(A)

μω
. (34)

The flow is in the hydrodynamic regime when both δ � 1 and
θ � 1 [12]. The steady-state conditions are reached as θ →
∞ (ω → 0). In addition to δ and θ , the composition of the
binary gas mixture, i.e., the molecular masses m1 and m2 of
the two monatomic components, as well as the amplitude of
the molar fraction C, must be specified.

Once the parameters δ, θ, m1, m2, and C are defined, the
input data are complete, and the flow behavior and charac-
teristics for any binary gas mixture in the whole range of
the gas rarefaction and oscillation frequencies may be investi-
gated. The solution is obtained based on the infinite capillary
theory via linear kinetic modeling described in the next
section.

Closing the flow configuration description, it is useful to
note that oscillatory pressure-driven gas flows, similar to the
one formulated here, are realized in the hydrodynamic regime
in several ways, including the oscillation of a piston [67] or a
membrane [47] or even of the channel itself [43]. Good agree-
ment between experimental and corresponding computational
results, based on the fully developed assumption has been
reported [46]. Similar setups are expected to be feasible also
in the transition regime, where damping forces are reduced
and the pressure gradient oscillation propagates easier through
the channel, in a wide range of frequencies. Therefore, the
flow characteristics are analyzed in the whole range of the gas
rarefaction and oscillation frequency parameters. Obviously,
any considerations or constraints present in viscous oscillatory
pressure-driven flows setups must be also taken into account
and reexamined in the case of rarefied gases.

III. KINETIC FORMULATION AND
NUMERICAL SCHEME

The steady-state fully developed binary gas mixture flow
between parallel plates, driven by pressure, temperature, and
molar fraction gradients, in the whole range of gas rarefac-
tion has been considered in [49]. Modeling has been based
on McCormack kinetic model [30], which has been proven

to be a very reliable model, fulfilling all associated require-
ments (satisfies the conservation laws and the H-theorem and
provides correct values for all transport coefficients). Here,
the work follows the formulation in [49] related only to the
pressure gradient part and it is accordingly extended to include
the oscillatory flow behavior.

Due to the condition of small local pressure gradient (XP �
1) the unknown time-dependent distribution function of each
species can be linearized in a standard manner as

fα (t, x, y, cα ) = f 0
α (cα )[1 + XPxR(e−it ) + XPh̃α (t, y, cα )],

(35)

where

f 0
α (cα ) = n(A)

α

(
m

2πkT

)3/2

exp
[−cα

2
]

(36)

is the absolute Maxwellian of each species, h̃α (t, y, cα )
are the unknown perturbed distribution functions and cα =
[cαx, cαy, cαz] is the dimensionless molecular velocity vector,
with α = 1, 2 always denoting the light and heavy species,
respectively. Furthermore, taking advantage of the harmonic
motion, the complex distribution function hα (y, cα ) is also
introduced so that

h̃α (t, y, cα ) = R[hα (y, cα ) exp (−it )]. (37)

Based on Eqs. (35) and (37), the problem under consideration
may by formulated in terms of hα (y, cα ) by the following
system of two linearized Boltzmann equations:

−i
δ

θ

√
mα

m
hα + cαy

∂hα

∂y
= ωα

2∑
β=1

Lαβhα − cαx, α = 1, 2.

(38)

In Eq. (38), ωα = δ(C/γ1 + (1 − C)/γ2)
√

mα/m, with γα de-
noting the collision frequencies of each species and Lαβ is
the linearized McCormack collision term. Both Lαβ and γα

are identical to the ones specified in [49]. However, for self-
containment purposes, they are also provided in the Appendix.
It is noted that Eq. (38) depends not only on the ratio δ/θ ,
but also on the gas rarefaction parameter δ appearing in the
expression for ωα , with ωα ∼ δ. Therefore, Eq. (38) depends
on both δ and θ .

As it is well known, the z and x components of the
molecular velocity vector may be eliminated, greatly reducing
the computation effort of solving Eq. (38), by applying the
so-called projection procedure and introducing the following
reduced distribution functions:

Φα (y, cαy ) = 1

π

√
m

mα

∫ ∞

−∞

∫ ∞

−∞
hα (y, cα )cαx exp

[−cαx
2 − cαz

2
]
dcαxdcαz, (39)

Ψα (y, cαy ) = 1

π

√
m

mα

∫ ∞

−∞

∫ ∞

−∞
hα (y, cα )cαx

(
c2
αx + c2

αz − 2
)

exp
[−c2

αx − c2
αz

]
dcαxdcαz. (40)

Then, Eq. (38) is multiplied successively by the functions
√

m/mαcαx exp (−c2
αx − c2

αz )/π and
√

m/mαcαx(c2
αx +

c2
αz − 2) exp (−c2

αx − c2
αz )/π , and the resulting equations are integrated over cαx and cαz to deduce the following four coupled

equations for the four unknown reduced complex distribution functions:

−i
δ

θ

√
mα

m
Φα + cαy

∂Φα

∂y
+ ωαγαΦα − 1

2

√
m

mα

+ ωα

{
γαuα − v

(1)
αβ

(uα − uβ ) − 1

2
v

(2)
αβ

(
qα − mα

mβ

qβ

)
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+ 2
√

m

mα

[(
γα − v(3)

αα + v(4)
αα − v

(3)
αβ

)
�α + v

(4)
αβ�β

]
cαy

+ 2

5

[(
γα − v(5)

αα + v(6)
αα − v

(5)
αβ

)
qα + v

(6)
αβ

√
mβ

mα

qβ − 5

4
v

(2)
αβ

(uα − uβ )

](
c2
αy − 1

2

)}
, (41)

− i

√
mα

m

δ

θ
Ψα + cαy

∂Ψα

∂y
+ ωαγαΨα = 4

5
ωα

[(
γα − v(5)

αα + v(6)
αα − v

(5)
αβ

)
qα + v

(6)
αβ

√
mβ

mα

qβ − 5

4
v

(2)
αβ

(uα − uβ )

]
. (42)

In Eqs. (41) and (42) α, β = 1, 2, with α 	= β, while the
expressions for the quantities v

(k)
αβ are implemented based on

the intermolecular model potential. In steady pressure-driven
flows of single gases and binary gas mixtures through capil-
laries, the effect of the intermolecular potential model is very
small. In gas mixture flows, this has been clearly demonstrated
by comparing the species flow rates based on the hard sphere
model, with corresponding ones based on realistic [49], ab
initio [68] and Lennard-Jones [69] potentials. As stated in
Sec. IV, this is also valid in the present oscillatory, isothermal,
fully developed flow, and therefore the expressions for the
quantities v

(k)
αβ , in Eqs. (41) and (42), are based on the hard

sphere model, which is the simplest one, and are given in the
Appendix.

The macroscopic quantities uα,�α and qα at the right-hand
side of Eqs. (41) and (42) are defined in Eqs. (17), (18), and
(19), respectively, and after applying the linearization and
projection procedures, they are obtained as moments of Φα

and Ψα as follows:

uα (y) = 1√
π

∫ ∞

−∞
Φα exp

(−c2
αy

)
dcαy, (43)

�α (y) = 1√
π

√
mα

m

∫ ∞

−∞
Φαcαy exp

(−c2
αy

)
dcαy, (44)

qα (y) = 1√
π

∫ ∞

−∞

[
Ψα +

(
c2
αy − 1

2

)
Φα

]
exp

(−c2
αy

)
dcαy.

(45)

In the present work purely diffuse reflection at the walls is
assumed. It is readily deduced that the outgoing reduced dis-
tribution functions at the two walls are identically equal to
zero:

Φα (±1/2, cαy ) = Ψα (±1/2, cαy ) = 0, cαy
>
<0. (46)

Thus, the kinetic formulation of the problem is properly de-
fined by the system of Eqs. (41) and (42), subject to the
boundary conditions (46), along with the associated moments
(43)–(45).

It is interesting to analyze the behavior of Eqs. (41) and
(42) at limiting values of all involved parameters. As θ → ∞
(ω → 0), the inertia terms (first terms at the left-hand side of
the equations), along with the imaginary part of the distribu-
tion function and all associated macroscopic quantities tend
to zero and (41) and (42) tend to the corresponding steady-
state ones in [49]. In steady-state conditions the ratio G1/G2

decreases monotonically from
√

m2/m1 in the free molecular
regime down to one in the viscous regime. At the other end,
in the very high oscillation frequency regime, as θ → 0, a
scale analysis is performed to deduce that the inertia terms

of Eqs. (41) and (42) and the source term at the right-hand
side of Eq. (41) tend to zero in a slower pace than all other
terms yielding that

lim
θ→0

Φα = −i
θ

2δ

m

mα

and lim
θ→0

Ψα = 0. (47)

Substituting Eq. (47) into Eq. (43)–(45) it is seen that as θ →
0, uα = −i(θ/2δ)(m/mα ),�α = 0 and qα = 0. Also, from
Eq. (21) the flow rates are Gα = −i(θ/δ)(m/mα ), while the
flow rate ratio of the species is G1/G2 = m2/m1. In addition,
it is readily seen that as θ → 0, the amplitude of all quantities
is diminishing, while their phase angle tends to π/2. Further-
more, with regard to the gas rarefaction parameter, as δ → 0,
with θ > 0, Eqs. (41) and (42) tend to the corresponding
ones for steady-state binary gas flow in the free molecular
limit [49], while the flow is in the hydrodynamic regime
when both δ � 1 and θ � 1. Also, for C = 0 or for binary
gas mixtures with species having the same molecular mass
m1 = m2, Eqs. (41) and (42) are reduced to the corresponding
ones for oscillatory single gas flow [9]. All these remarks, in-
cluding the analysis in the high oscillation frequency regime,
are considered in the computational results to explain the flow
behavior and for benchmarking purposes.

The above set of equations is computationally solved based
on the discrete velocity method [12] in the cy space and on
the second-order diamond finite difference scheme [50] in
the y space. The continuum spectrum of cy ∈ (−∞,∞) is
properly transferred to [0,∞), and then, it is replaced by a
set of discrete velocities m = 1, 2, . . . , M, which are taken to
be the roots of the Hermite polynomial of order M, accord-
ingly mapped from (−∞,∞) to [0,∞). The macroscopic
distributions are numerically integrated by the Gauss-Hermite
quadrature scheme. The specific set of discrete molecular
velocities has been found to be very effective in the whole
range of gas rarefaction. The discretized equations are solved
in an iterative manner between the kinetic equations (41) and
(42) and the moment equations (43)–(45). Since the computed
quantities are complex their real and imaginary parts are ob-
tained. The iteration map is concluded when the following
criterion in terms of the bulk velocity and the heat flow of
the species is fulfilled:

ε
(κ )
j = max

i

{∣∣u(κ )
1, j,i − u(κ−1)

1, j,i

∣∣ + ∣∣u(κ )
2, j,i − u(κ−1)

2, j,i

∣∣
+ ∣∣q(κ )

1, j,i − q(κ−1)
1, j,i

∣∣ + ∣∣q(κ )
2, j,i − q(κ−1)

2, j,i

∣∣} < ε. (48)

Here, ε is the tolerance parameter, the superscript (κ ) is the
iteration index, the subscript j = R,� refers to the real and
imaginary part of the macroscopic quantity and the subscript
i = 1, 2, . . . , I refers to the node number in y ∈ [−1/2, 1/2].
The numerical parameters have been gradually refined to

033103-6



OSCILLATORY PRESSURE-DRIVEN RAREFIED BINARY … PHYSICAL REVIEW E 103, 033103 (2021)

ensure grid independent results up to several significant
figures. The implemented computational scheme has been
previously successfully applied to steady-state binary gas
mixture and oscillatory single gas flows [9,10,49,50].

Once the real and imaginary part of the macroscopic dis-
tributions and of the associated overall quantities (e.g., flow
rates) are obtained, it is straightforward to compute their
amplitudes and phase angles, as well as the corresponding
time-dependent quantities, presented and discussed in the next
section.

IV. RESULTS AND DISCUSSION

Computational results for the velocity and shear stress dis-
tributions, flow rates and some complimentary quantities (wall
shear stress and pumping power) are presented in Sec. IV A,
IV B, and IV C, respectively, in a wide range of the gas
rarefaction and oscillation parameters δ and θ , as well as
of the molar fraction C ∈ [0, 1] and molecular mass ratio
of the heavy over the light species m2/m1. Although sev-
eral binary gas mixtures have been considered, the effect of
m2/m1 is demonstrated by presenting results only for He-Xe,
with m2/m1 = 32.8 and Ne-Ar, with m2/m1 = 1.98, while the
corresponding molecular diameter ratios d2/d1 are 2.226 and
1.406. The molecular diameter ratios have been obtained via
Eq. (35) in [70] using the viscosity data in [71]. To better
demonstrate the flow characteristics in oscillatory binary gas
mixture flow, comparisons between the present results and the
corresponding ones for steady-state binary gas flow in [49]
and oscillatory single gas flow in [9] are performed.

All presented results are based on the hard sphere model.
However, in order to examine the effect of the intermolecular
potential, in addition to the hard sphere model, the realistic
potential model [49] has been also employed. In all cases
small discrepancies between the two models are observed
and they are always smaller than the corresponding steady
ones. It is concluded that in oscillatory pressure-driven fully
developed binary gas mixture flows, as in the steady ones,
the effect of the intermolecular potential is very small and
therefore, the associated results based on the realistic potential
are not included.

The accuracy of the computational scheme and the pre-
sented results has been accordingly validated by always
fulfilling the benchmark balance expression (32), as well as
by systematic comparisons with corresponding computational
and analytical results at the following limiting values of the
involved parameters: (a) steady-state binary gas mixture flow
(θ → ∞), (b) oscillatory single gas flow (C = 0), (c) high
oscillation frequency regime (θ → 0), and (d) oscillatory gas
mixture flow in hydrodynamic regime (δ, θ � 1). The numer-
ical grid is properly refined to ensure grid independent results
up to certain number of significant figures. The presented nu-
merical results are with M = 128 discrete velocities, I = 104

physical nodes and tolerance parameter ε = 10−8. It is con-
firmed that by successively increasing the number of discrete
velocities to M = 256 and 512, as well as the number of nodes
to I = 2 × 104 and 4 × 104, does not alter the flow rate of the
species more than 0.1% in the whole range of the involved
parameters(C, θ, δ) and for all tested gas mixtures. Therefore,
the aforementioned numerical parameters M = 128, I = 104,

FIG. 1. Velocity amplitude u(A)
α (y) and phase angle u(P)

α (y) (rad)
of each species of He-Xe, with C = 0.5, for δ = [0.1, 10] and θ =
0.1 (�), θ = 1 (�), θ = 10 (�) (He: solid lines, Xe: dashed lines).

are considered as adequate to capture the effects described in
the paper. All results are in dimensionless form.

A. Velocity and shear stress distributions

The amplitude and phase angle of the complex velocity
uα = u(A)

α exp (iu(P)
α ) of the species of the He-Xe gas mixture

are reported in Figs. 1, 2, and 3 for various values of δ, θ

and C. Also, in Fig. 3 some shear stress distributions �α =
� (A)

α exp (i� (P)
α ) are included.

In Fig. 1 the distributions of the velocity amplitude u(A)
α (y)

and phase angle u(P)
α (y) of each species of the He–Xe gas

mixture, with C = 0.5, are provided for δ = [0.1, 10] and
θ = [0.1, 1, 10]. The distributions of He and Xe present the
same qualitative behavior in terms of the gas rarefaction and
oscillation parameters, and they both also have a close qual-
itative resemblance with corresponding results for oscillatory
single gas flows [9,10]. Very briefly, it is observed that as
θ is decreased, the amplitude u(A)

α is decreased, while the
phase angle u(P)

α is increased. It is also seen that at small δ

and large θ (e.g., δ = 0.1 and θ � 1) the velocity amplitudes
have the expected shape with their maximum appearing at
the center of the flow field, while at large δ and small θ (e.g.,
δ = 10 and θ � 1) the velocity amplitudes are flattening in the
core of the flow and the maximum amplitudes are appearing
in thin layers adjacent to the walls. The corresponding phase
angles in the former case are small, while in the latter one are
large close to the limiting value of π/2. This is the so-called
“velocity overshooting” or “Richardson effect,” well known
for a long time in oscillatory viscous flows [3] and recently
reported in oscillatory rarefied gas flows [9,10]. The overall
behavior is due to the combined rarefaction and inertia effects.
In the present work, the investigation is focused in comparing
the above described flow patterns and characteristics between
the light and heavy species of the mixture.

It is readily seen, in Fig. 1 that the velocity amplitudes
of He are always about one order of magnitude larger than
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FIG. 2. Velocity amplitude u(A)
α (y) and phase angle u(P)

α (y) (rad)
of each species of He-Xe, with C = 0 (�), C = 0.1 (�), C = 0.5
(∇), C = 0.9 (©), for δ = 1 and θ = 1 (He: solid lines, Xe: dashed
lines).

the corresponding ones of Xe. It is well known from inves-
tigations in steady-state binary gas mixture flows that lighter
species travel faster than heavier ones, resulting in gas separa-
tion, which is increased as the gas flow becomes more rarefied
[49,50]. Therefore, the present results are expected. However,
it is interesting to note that as θ decreases, i.e., as the oscil-
lation frequency increases, the relative difference between the
velocity amplitudes of the light and heavy species increases.
This becomes more evident at δ = 10, where the amplitudes
of He and Xe for θ = 10 are relatively close to each other,
since the flow is close to the hydrodynamic regime, while
for θ = 1 and 0.1 the difference between them is gradually
increased. On the contrary, the velocity phase angles of He are
always smaller than the corresponding ones of Xe. In general,
the velocity phase angles are increased as θ is decreased. It
may be stated that as the oscillation frequency is increased
the velocity amplitude and phase angle of both species is
decreased and increased respectively. Clearly, however, the
difference between the velocity amplitudes of the light and
heavy species is increased with the oscillation frequency, not
only for small but also for large values of the gas rarefaction
parameter. It seems that in oscillatory gas mixture flows, gas
separation may be intensified as the oscillation frequency is
increased due to inertia forces, which affect differently the
light and heavy species. These remarks are in agreement with
the analytical results, given in Sec. III, as θ → 0 and are

FIG. 3. Velocity and shear stress amplitudes u(A)
α (y) and � (A)

α (y)
of each species of He-Xe, with C = [0.1, 0.4, 0.7, 0.9] for δ = 10
and θ = 0.1.

further investigated in the next subsection in terms of the
species flow rates.

In Fig. 2 the distributions of the velocity amplitude u(A)
α (y)

and phase angle u(P)
α (y) of each species of the He-Xe gas

mixture, with C = [0, 0.1, 0.5, 0.9], are provided for δ = 1
and θ = 1. Here, the effect of the molar fraction on the veloc-
ity amplitude and the phase angle is investigated for typical
values of the gas rarefaction and oscillation parameters. The
case of C = 0 corresponds to oscillatory single gas flow. As
C is increased from 0.1 to 0.9, i.e., the molar fraction of the
light species (He) is increased, the velocity amplitudes and
phase angles of both species are decreased and increased,
respectively. Of course, as C → 1, the single gas flow results
(C = 0) are recovered [49,50]. It is noted that the changes in
u(A)

1 (y) and u(P)
1 (y) of He in terms of C, compared to the cor-

responding ones u(A)
2 (y) and u(P)

2 (y) of Xe, both qualitatively
and quantitatively, on a relative base, are about the same.
This behavior remains the same in the whole range of gas
rarefaction and oscillation parameters.

In Fig. 3 the distributions of the velocity and shear stress
amplitudes u(A)

α (y) and � (A)
α (y) of each species of the He-Xe

gas mixture, with C = [0.1, 0.4, 0.7, 0.9], are provided for
δ = 10 and θ = 0.1. The specific values of the gas rarefaction
and oscillation parameters, associated with high-frequency
oscillatory flow between the transition and slip flow regimes,
are suitable for investigating the velocity overshooting phe-
nomenon in the components of the two mixtures. Observing
the velocity amplitudes of He and Xe, it is evident that with
these flow parameters, velocity overshooting is always present
(all C). For Xe, compared to He, the velocity overshooting
becomes sharper appearing, along with its maximum value,
closer to the wall inside a much thinner layer. In the core of
the flow, the flat velocity amplitudes of both He and Xe are
very close to the corresponding analytical amplitudes u(A)

α =
(θ/2δ)(m/mα ) obtained in Sec. III. In parallel, the shear stress
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FIG. 4. Mixture flow rate amplitude G(A) and phase angle G(P)

(rad) of He-Xe in terms of δ ∈ [10−4, 102], with C = [0, 0.25,

0.5, 0.75, 0.9] and θ = [1, 10, 102].

amplitudes for both He and Xe take their highest values at
the wall, and they are monotonically decreased towards the
channel center. The attenuation of the shear stress amplitude
of He is smoothly diffused in the whole distance from the wall
to the center, while the one of Xe is rapid in a narrow zone
close to the wall and far from the wall the shear stress of Xe
becomes zero. This description of the velocity and shear stress
amplitudes remains valid for all molar fractions tested. As it is
well known, velocity overshooting is due to the fact that close
to the wall viscous and pressure gradient forces actually add
to each other due to the large phase angle lag between them.
As a result, the combined effect accelerates the fluid to higher
velocities than those produced in the core by the pressure
gradient forces acting alone [66]. Therefore, since the viscous
forces in the case of He act in the whole distance between the
plates, while in the case of Xe only in thin zones close to the
walls, the above observations on the velocity overshooting of
He and Xe are both physically and computationally justified.
Corresponding results for other mixtures (e.g., Ne-Ar, He-Ar)
have a similar behavior. Therefore, it is stated that as the
molecular mass of the gas species increases, the species shear
stress, which is created at the wall and diffused into the flow,
attenuates more rapidly. In parallel, the Stokes layer becomes
thinner and the Richardson effect more pronounced.

FIG. 5. Mixture flow rate amplitude G(A) and phase angle G(P)

(rad) of He-Xe and Ne-Ar in terms of the molar fraction C for δ = 1
and θ = [10−1, 1, 10, 50, 102].

Having obtained a description of the dependency of the
velocity distribution of each species of the binary gas mixture
on the molecular masses and molar fraction in a wide range
of the flow parameters, in the next section the corresponding
behavior of the flow rates is investigated.

B. Flow rates of the mixture and the species

The reported results include the complex flow rates of
the mixture G = G(A) exp (iG(P) ) (Figs. 4 and 5) and of the
species Gα = G(A)

α exp (iG(P)
α ) (Figs. 6, 7, and 8), as well

as of the time-dependent flow rate G̃(t ) = G(A) cos [t − G(P)]
(Fig. 9). The effect of the oscillation frequency on the gas
separation phenomenon is investigated by computing the am-
plitude ratio G(A)

1 /G(A)
2 and the phase angle difference G(P)

2 −
G(P)

1 of the two species.
In Fig. 4 the He-Xe flow rate amplitude G(A) and phase

angle G(P) are provided in terms of δ ∈ [10−4, 102], with
θ = [1, 10, 102] and C = [0, 0.25, 0.5, 0.75, 0.9]. The results
for oscillatory single gas flow (C = 0), previously reported
in [9], are also included here for comparison purposes. It is
seen that the flow rate amplitudes and phase angles of the
mixture (C 	= 0) depend on the flow parameters very similarly
to the corresponding single gas ones (C = 0). The behavior
of the single gas flow rate in terms of the flow parameters
has been analyzed in detail in [10], and it remains the same
in the binary gas mixture flow and therefore is not repeated
here. It is only pointed out that as θ decreases (the oscillation
frequency increases), the flow rate amplitude decreases and
phase angle increases. Focusing on the effect of the molar
fraction, it is seen that always the mixture flow rate amplitude
is larger and the phase angle is smaller than the corresponding
ones of the single gas. Also, G(A) and G(P) vary nonmono-
tonically with C. More specifically, as C is increased, G(A)

is initially increased until the molar fraction is in the range of
C ∈ [0.5, 0.75], and then it is decreased to reach the single gas
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FIG. 6. Ratio of flow rate amplitudes G(A)
1 /G(A)

2 of the species of
He-Xe in terms of δ ∈ [10−4, 102], with C = [0, 05, 0.35, 0.65, 0.95]
and θ = [0.1, 1, 10].

one, while G(P) varies in the opposite way, i.e., first decreases
and then increases. It is noted that the effect of C on G(A)

remains significant in all oscillation regimes, while its effect
on G(P) is important only in high and moderate frequencies
and becomes negligible at low frequencies. At large values
of the gas rarefaction parameter (δ � 10) the effect of C is
gradually diminished.

A more detailed view of the effect of the molar fraction on
the mixture flow rate is shown in Fig. 5, where its amplitude
G(A) and phase angle G(P) are provided for He-Xe and Ne-Ar
in terms of C for many values of θ = [0.1, 1, 10, 50, 102]
and the typical value of δ = 1. In the case of He-Xe, the
non-monotonic behavior of G(A) and G(P) in terms of C, along
with its dependency on θ , are clearly demonstrated. It is seen

FIG. 7. Ratio of flow rate amplitudes G(A)
1 /G(A)

2 of the species
of He-Xe and Ne-Ar, with C = 0.5, in terms of θ ∈ [10−4, 102] for
δ = [0.1, 1, 10].

that the amplitude G(A) strongly depends on C for all θ , but
it varies more significantly as the oscillation parameter is
increased. The phase angle G(P) depends on C for small values
of θ , while it is practically independent of C for θ � 10. This
behavior remains qualitative the same in the whole range of
gas rarefaction, with the general observation that the effect of
the molar fraction is more pronounced as δ decreases and the
flow becomes more rarefied. Also, as δ increases the maxi-
mum flow amplitude appears at larger C. In the case of Ne-Ar
both the amplitude and the phase angle depend very weakly
in the molar fraction since the molecular masses of Ne and
Ar are much closer to each other than of He and Xe. Also,
the flow rate amplitude and phase angle of Ne-Ar are smaller
and larger respectively, compared to the corresponding ones
of He-Xe.

The investigation is continued by considering the ampli-
tudes and the phase angles of the mixture components in terms
of C and m2/m1, which are of particular interest in investigat-
ing the gas separation phenomenon for various values of δ and
θ . In Fig. 6 the ratio of the flow rate amplitudes G(A)

1 /G(A)
2 is

provided in terms of δ ∈ [10−4, 102] for the He-Xe gas mix-
ture, with C = [0, 05, 0.35, 0.65, 0.95] and θ = [0.1, 1, 10].
At θ = 10 the ratio G(A)

1 /G(A)
2 varies qualitatively similarly as

in the steady-state binary gas flow setup. At very low values of
δ it is close to the limiting value

√
m2/m1 = 5.73. Then, it is

about constant or slightly reduced in the free molecular regime
and it is decreased in the transition regime, reaching finally,
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FIG. 8. Difference of the flow rate phase angles G(P)
2 − G(P)

1

(rad) of the species of He-Xe in terms of δ ∈ [10−4, 102], with
C = [0.05, 0.35, 0.65, 0.95] and θ = [0.1, 1].

in the slip and hydrodynamic regimes, asymptotically to one.
However, at θ = 1 and θ = 0.1 the behavior of G(A)

1 /G(A)
2 is

completely different. It remains about constant in free molec-
ular regime, but then, it is increased in the transition regime
and finally, as δ further increases, it keeps asymptotically
increasing to some constant value. This behavior, with the
minimum and maximum values of G(A)

1 /G(A)
2 appearing at

the free molecular and hydrodynamic limits, respectively, and
the increase in the transition regime (completely reversed
compared to the steady-state behavior) becomes more pro-
nounced as θ is decreased. It is evident that the oscillation
parameter θ has a dominant effect on the amplitude ratio of
He over Xe, which is significantly increased as θ is decreased
(at θ = 0.1 the flow rate amplitude of He is about 30 times
larger than of Xe). This behavior is due to the corresponding
behavior of the velocity amplitudes commented in Fig. 1, and
it is contributed to inertia forces, which are increased with
the oscillation frequency, and they influence the bulk velocity
amplitude of the heavy species much more than of the light
one. Therefore, as θ is decreased, the flow rate amplitude
of the heavy species decreases much more significantly than
the light one, and although both amplitudes are decreased the
velocity amplitude ratio of the light over the heavy species is
increased. This effect is magnified in the transition regime, as
the flow becomes less rarefied overcoming diffusion effects
due to increased intermolecular collisions and therefore as δ

increases the amplitude ratio keeps increasing. It is seen that

FIG. 9. Time-dependent flow rates G̃1(t ) of He, G̃2(t ) of Xe
and G̃(t ) of He-Xe, with C = 0.5, over one cycle t ∈ [0, 2π ] for
δ = [0.1, 10] and θ = [0.1, 10].

the effect of C with regard to these flow characteristics is
rather small and becomes even smaller as the oscillation fre-
quency is increased (θ is decreased). In general, the amplitude
ratio is slightly increased with the molar fraction.

The ratio of flow rate amplitudes G(A)
1 /G(A)

2 is presented
again in Fig. 7 in terms of θ ∈ [10−4, 102] for the He-Xe
and Ne-Ar gas mixtures, with C = 0.5 and δ = [0.1, 1, 10].
At high oscillation frequencies (θ � 10−2), although the flow
rate amplitude of each species is decreased, the ratios of the
species amplitudes take their highest values, which are almost
constant independent of the gas rarefaction parameter δ and
equal, as it is numerically found, with the molecular mass
ratio of the heavy over the light species m2/m1 (G(A)

He/G(A)
Xe =

32.8, G(A)
Ne /G(A)

Ar = 1.98). This is in accordance to the corre-
sponding analytical expressions in Sec. III, where as θ →
0, G1/G2 = m2/m1. Then, at moderate oscillation frequencies
(10−2 < θ < 10) the amplitude ratio is decreased in all gas
rarefaction regimes. Finally, at small oscillation frequencies
(θ � 10) the corresponding steady-state results are asymptot-
ically recovered. Obviously in oscillatory flows the effect of
the molecular mass ratio m2/m1 on the ratio of the flow rate
amplitude of the light over the heavy species is dominant in
the whole range of gas rarefaction.

In Fig. 8 the difference of the flow rate phase angles G(P)
2 −

G(P)
1 is provided in terms of δ ∈ [10−4, 102] for the He-Xe gas

mixture, with C = [0.05, 0.35, 0.65, 0.95] and θ = [0.1, 1].
At θ = 1, as well as for θ > 1 (not shown here), the difference
of the flow rate phase angles G(P)

2 − G(P)
1 is monotonically

increased with δ, with the increase mostly occurring at in-
termediate values of δ in the transition regime. This is not
the case at θ = 0.1, where the difference G(P)

2 − G(P)
1 is first

increased, reaching some maximum value in the transition
regime, and then it is decreased reaching asymptotically some
constant value. This behavior is also present at θ < 0.1 (not
shown here), with the maximum value appearing at lower δ, as
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θ is decreased. In general, it is demonstrated that there is phase
angle difference between the flow rates of the two species of
the mixture.

In Fig. 9 the phase lag between the oscillatory pressure
gradient and flow rates of each species and the mixture is
demonstrated, by plotting the time-dependent flow rates G̃1(t )
of He, G̃2(t ) of Xe, as well as G̃(t ) = CG̃1(t ) + (1 − C)G̃2(t )
of the He-Xe gas mixture with C = 0.5, over one cycle t ∈
[0, 2π ] for δ = [0.1, 10] and θ = [0.1, 10]. It is noted that
the dimensionless time-dependent pressure gradient is equal
to cos (t ). In the case θ = 10 (low oscillation frequency) and
δ = 0.1 all quantities are in phase to each other, and as δ is
increased they are gradually getting out of phase (at δ = 10
they are out of phase). In the case θ = 0.1 (high oscillation
frequency) and δ = 0.1 all quantities are almost in phase to
each other. Again the phase lag is further increased with δ and
at δ = 10 the phase angle lag is almost equal to π/2. Always,
the phase angle lag of the flow rate of Xe is larger than the
one of He, and the phase lag of the mixture flow rate is, as
expected, between the phase lags of the two species, while the
amplitudes of the oscillatory He flow rate are much larger than
the corresponding ones of Xe. It is noted that results obtained
with the same ratio δ/θ vary to each other for different values
of δ [10]. This is well expected since the governing equations
depend on both δ and θ , and not only on the ratio δ/θ , with
the effect of the inertia forces attenuating as the flow becomes
more rarefied. All these remarks are in agreement with the
discussion presented in terms of the amplitudes and the phase
angles of the species flow rates in Figs. 6–8. Overall, it may
be stated that the oscillatory flow rates and pressure gradient
are in phase when δ � θ and completely out of phase when
θ � δ, with the heavier species have larger phase angle lags
compared to the lighter ones.

It is noted that the flow rates of other mixtures (e.g., He-
Ar), as well as of their species, have been computed, in the
whole range of the molar fraction and for various values of
the flow parameters. The flow rate amplitude ratio G(A)

1 /G(A)
2

and phase angle difference G(P)
2 − G(P)

1 of the species of all
binary gas mixtures tested have a close resemblance with the
corresponding ones for He and Xe. However, quantitatively
the results are different with the values of G(A)

1 /G(A)
2 and

G(P)
2 − G(P)

1 becoming much smaller and gradually indepen-
dent of C, as the molecular mass ratio m2/m1 is decreased,
recovering the oscillatory single gas behavior as m2/m1 → 1.
This remark, well known in steady-state flows, remains valid
also in oscillatory gas mixture flows. Characteristic is the case
of Ne-Ar, with molecular mass ratio equal to about two, where
for δ = [0.1, 1, 10] and θ ∈ [10−1, 102], the flow rate ampli-
tude G(A) and the phase angle G(P) of the mixture in terms
of C, are becoming flat completely independent of the molar
fraction. The results for He-Ar, Ne-Ar, and other mixtures of
monatomic gases are not presented here, but they are available
upon request.

Probably, the most interesting finding concerning the flow
rates is that, independent of the molar fraction and gas rar-
efaction regime, the amplitude ratio of the oscillatory flow
rates of the light over the heavy species is significantly in-
creased as the oscillation frequency is increased. Clearly,
these results may be of major technological importance in

FIG. 10. Wall shear stress amplitude �
(A)

W and phase angle �
(P)

W

(rad) of He-Xe in terms of C for θ = [0.1, 1, 10, 50, 102] and δ = 1.

several technological applications, including the development
of gas separation apparatus in the whole range of the Knudsen
number.

C. Wall shear stress and pumping power

Complementary quantities of the oscillatory binary gas
mixture of practical interest, namely the wall shear stress
�W = �

(A)
W exp (i� (P)

W ) (Fig. 10), as well as the oscillatory
cycle-average pumping power Ē (Fig. 11), given by Eq. (27),
are here considered.

In Fig. 10 the wall shear stress amplitude �
(A)

W and phase
angle �

(P)
W are provided in terms of C ∈ [0, 1] for θ =

[0.1, 1, 10, 50, 102] and the typical value of δ = 1. It is read-
ily seen that as the molar fraction varies between zero and
one, both the wall shear stress amplitude and phase angle
remain constant for θ = [10, 50, 102] and vary slightly for
θ = [0.1, 1]. It is evident that the dependency of the shear
stress on the molar fraction is very weak and this behavior
remains the same in the whole range of gas rarefaction. As
expected �

(A)
W is decreased and �

(P)
W is increased as θ is

decreased. Actually, �
(A)

W almost diminishes at very high os-
cillation frequencies. Furthermore, as θ is increased and the
oscillation frequency tends to zero, the shear stress amplitude
�

(A)
W approaches the limiting value of 0.25, which is the

steady-state dimensionless wall shear stress, independent of
δ [72], while the shear stress phase angle �

(P)
W approaches

zero. These results further validate the accuracy of the present
oscillatory binary gas mixture computational approach.
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FIG. 11. Normalized cycle-average pumping power Ē/dx of
He-Xe and Ne-Ar in terms of C for δ = 1 and θ = [0.1, 1, 10, 102]
(ĒS is the steady-state pumping power).

The time-dependent pumping power Ẽ (t ) of the binary
gas mixture, defined by Eq. (26) may be readily computed.
The corresponding results are not presented here because the
dependency of the mixture pumping power on the flow param-
eters is similar to the one observed in oscillatory single gas
flow [9,11], i.e., as θ is decreased its amplitude is decreased
and its phase angle lag is increased. Furthermore, the effect of
the molar fraction C on the amplitude and phase angle of the
mixture pumping power is very small.

Obviously, the pumping power has two peaks within each
oscillatory cycle because it consists of the product of the
oscillatory flow rate times the oscillatory pressure gradient
and its integral over one cycle is not zero in order to drive
the mixture flow, although the oscillatory net flow is zero.
Therefore, by integrating Ẽ (t ) over one cycle, according to
Eq. (27), the average pumping power is obtained. In Fig. 11
the normalized cycle-average pumping power Ē/dx for the
binary gas mixtures of He-Xe and Ne-Ar in terms of C is
plotted for various values of θ = [0.1, 1, 10, 102] and the typ-
ical value of δ = 1. The corresponding steady-state pumping
power ĒS of the binary gas mixture flow of He-Xe and Ne-Ar
are also plotted for comparison purposes. In general, as θ

is decreased the cycle-average pumping power is decreased,
which is expected since as the oscillation frequency is in-
creased the flow rate amplitude is decreased. At large values
of the oscillation parameter (θ � 10), as the flow becomes
stationary the cycle-average pumping power becomes half of

the corresponding steady-state one. The same trend has been
observed in oscillatory single gas flows [9,11]. Furthermore,
the effect of the molar fraction on the cycle-average pumping
powers of He-Xe and Ne-Ar is very weak.

V. CONCLUDING REMARKS

The rarefied oscillatory pressure-driven fully developed
isothermal binary gas mixture flow between parallel plates
is computationally investigated in terms of the mixture mo-
lar fraction C ∈ [0, 1] and the molecular mass ratio m2/m1

of the heavy over the light species, in a wide range of
the gas rarefaction parameter δ and oscillation parameter θ ,
which are inversely proportional to the Knudsen number and
the oscillation frequency respectively. Modeling is based on
the McCormack kinetic model equation, subject to diffuse
boundary conditions. The computed output quantities are in
dimensionless form and include macroscopic quantities of
theoretical and technological importance. More specifically,
the amplitude and phase angle of the velocity distributions
and flow rates of the two species, as well as of the flow rate
and wall shear stress of the mixture are reported. In addition
the time evolution of the mixture flow rate and the pumping
power, as well as the cycle-average pumping power are pro-
vided. The results refer to the binary gas mixtures of He-Xe
and Ne-Ar, while corresponding results of other mixtures are
available upon request. The numerical work has been suc-
cessfully validated in various ways, including grid refinement,
fulfillment of the derived force balance benchmark expression
and the analytical solution as θ → 0, as well as with system-
atic comparisons with corresponding works, available in the
literature, at limiting conditions, such as steady-state binary
gas flow as θ → ∞ [49] and oscillatory single gas flow when
C = 0 or m1/m2 = 1 [9].

The flow rate, wall shear stress, and pumping power of the
oscillatory binary gas mixture flow have qualitative resem-
blance with the corresponding ones in oscillatory single gas
flow, in terms of δ and θ , but there are quantitative deviations
particularly in the flow rates depending on C and m2/m1. As in
the case of single gases, as θ decreases (oscillation frequency
increases), the amplitude of all quantities decreases and their
phase angle increases. Also, inertia effects attenuate as the
flow becomes more rarefied. The effect of the mixture compo-
nents and its molar fraction is very important on the velocities
and the corresponding flow rates of the species of the mixture,
as well as on the ratio of their flow rate amplitudes.

Concerning the mixture quantities, it has been found that
as m2/m1 is increased, the mixture flow rate amplitude is
larger and the phase angle is smaller than the corresponding
ones of the single gas. The variation with respect to C is
nonmonotonic, taking the maximum and minimum values for
the amplitude and the phase angle respectively at intermediate
values of the molar fraction. The variation of the flow rate
amplitude and the phase angle is more significant at small and
large frequencies respectively. The time evolution of the mix-
ture flow rate is in phase with the oscillatory pressure gradient
when δ � θ and completely out of phase when θ � δ. On the
contrary, it has been found that the mixture wall shear stress
and pumping power depend very weakly on C and m2/m1 in
the whole range of δ and θ .
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Concerning the species quantities and starting with the
velocity distributions, it has been found that as the oscillation
frequency is increased, although the velocity amplitudes of
both species are decreased, the relative difference between the
velocity amplitudes of the light and heavy species is increased.
This behavior is observed at small δ and it becomes more
pronounced as δ is increased, which is not expected, since as it
is well-known gas separation effects are decreased as the flow
becomes less rarefied and is dominated by intermolecular col-
lisions. In parallel, the velocity phase angles of both species
are increased, without observing a specific pattern with regard
to their phase angle difference. Obviously, a similar behavior
has been observed in the corresponding flow rates, which
has been systematically investigated mainly in terms of the
ratio of the flow rate amplitude of the light over the heavy
species. As this ratio is increased gas separation is enlarged.
In small oscillation frequencies (large θ ), the variation of
the ratio of the flow rate amplitude is the expected one, i.e.,
it is decreased as the flow becomes less rarefied. However,
at moderate and high oscillation frequencies the behavior is
reversed and the ratio of the flow rate amplitude is increased
as the flow becomes less rarefied. It has been found that as
θ decreases, the flow rate amplitude of the heavy species
decreases much more significantly than of the light one and
therefore, the ratio of the flow rate amplitude of the light
over the heavy species is increased. This behavior, which is
confirmed by the analytical solution at the high-frequency
oscillation limit, is due to inertia effects, which are increased
with the oscillation frequency, and they influence the velocity
(and flow rate) amplitude of the heavy species much more than
of the light one. This effect is further amplified as decreases,
the flow rate amplitude of the heavy species decreases much
more significantly than of the light one and therefore, the ratio
of the flow rate amplitude of the light over the heavy species is
increased. This behavior, which is confirmed by the analytical
solution at the high-frequency oscillation limit, is due to iner-
tia effects, which are increased with the oscillation frequency,
and they influence the velocity (and flow rate) amplitude of the
heavy species much more than of the light one. This effect is
further amplified as δ is increased and the flow becomes less
rarefied, overcoming diffusion effects due to intermolecular
collisions, provided that θ is sufficiently small. This behavior
depends weakly on C but very strongly on m2/m1. It has been
confirmed, both analytically and computationally, that at high
frequencies the flow rate amplitude ratio of the light over the
heavy species, independent of δ, tends to the molecular mass
ratio of the heavy over the light species m2/m1. In addition it
has been physically explained and computationally prescribed
that as the molecular mass of the gas species is increased, the
velocity overshooting effect, well known in oscillatory flows,
occurs in a thinner zone close to the wall and becomes more
pronounced. Furthermore, it is worthwhile to note that the
phase angle lag of the velocity and the flow rate of the heavy
species are always larger than the corresponding ones of the
light one.

It has been demonstrated that in oscillatory mixture flows,
the difference between the velocities (and flow rates) of the
light and heavy species, resulting to gas separation, may be
increased as the gas rarefaction is reduced, provided that the

flow is subject to adequate high oscillation frequency. This is
not the case in steady-state flow, where gas separation phe-
nomena are diminished as the flow becomes less rarefied and
tends to be in the hydrodynamic regime. However, oscillatory
flows are in the hydrodynamic regime, only when the flow
becomes less rarefied and oscillates at low frequencies and
therefore in adequately high oscillatory flows, gas separation
remains present in the whole range of gas rarefaction.

The present results may be useful in the design of var-
ious technological devices operating at moderate and high
frequencies in the whole range of gas rarefaction, applicable
in various technological fields. In addition to the McCormack
model, BGK-type binary gas mixture models [69,73] may also
be implemented.

However, since in oscillatory flow the net flow rate of
each species is zero, it may be useful to point out that in the
case of real gas separator apparatus, gas separation will be
enhanced compared to the stationary flow, only if the reverse
part of the oscillatory flow is significantly reduced or even
completely eliminated compared to the forward part. This may
be achieved by using a reciprocating pump or a check valve
limiting the reverse flow. Another option is the implementa-
tion of a tapered channel to create a nonzero flow rate in the
diverging direction of the channel, by exploiting the so-called
diode effect [74]. More complex designs may also be consid-
ered by adjusting the channel length to be shorter than the tidal
(gas) displacement of the light species and longer than the
one of the heavy species. This way more particles of the light
species compared to the heavy one will reach the downstream
vessel, which should be accordingly evacuated, every half a
cycle, to significantly reduce the reverse flow. All these are
preliminary concepts explaining how the present results may
be used in the design of oscillatory type gas separators even if
the actual flow conditions are different than the ones assumed
in the present flow configuration.
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APPENDIX: THE LINEARIZED MCCORMACK
COLLISION TERM

The linearized McCormack collision term in Eq. (38) for
fully developed flow between parallel plates may be written
as [49]

Lαβha = −γaha + 2

√
ma

m

[
γαβua − v

(1)
αβ

(ua − uβ )

− 1

2
v

(2)
αβ

(
qa − ma

mβ

qβ

)]
cax

+ 4
[(

γαβ − v
(3)
αβ

)
Πa + v

(4)
αβΠβ

]
caxcay
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+ 4

5

√
ma

m

[(
γαβ − v

(5)
αβ
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qa + v

(6)
αβ

√
mβ

mα

qβ

− 5

4
v

(2)
αβ

(ua − uβ )

]
cax

(
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a − 5

2

)
, (A1)

with α = 1, 2, β 	= α. The collision frequencies γa = γaa +
γαβ are expressed as

γα = SaSβ − v
(4)
αβv

(4)
βα

Sβ + v
(4)
αβ

, (A2)

where Sa = v(3)
aa − v(4)

aa + v
(3)
aβ with α = 1, 2, β 	= α. The

quantities v
(1−6)
αβ are given by

v
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αβ = 16

3

mαβ

ma
nβΩ11

αβ, (A3)
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and

mαβ = mamβ

(ma + mβ )
. (A9)

The Chapman-Cowling integrals Ω
(i j)
αβ for the rigid sphere

interaction are written as

�
(i j)
αβ = ( j + 1)!

8

[
1 − 1 + (−1)i

2(i + 1)

](
πKT

2mαβ

)(1/2)

(da + dβ )2,

(A10)

where da, a = 1, 2 is the diameter of the molecule of each
species.
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