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Volume-constrained deformation of a thin sheet as a route to harvest elastic energy

Oz Oshri *

Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Received 8 November 2020; revised 2 February 2021; accepted 8 February 2021; published 2 March 2021)

Thin sheets exhibit rich morphological structures when subjected to external constraints. These structures
store elastic energy that can be released on demand when one of the constraints is suddenly removed. Therefore,
when adequately controlled, shape changes in thin bodies can be utilized to harvest elastic energy. In this paper,
we propose a mechanical setup that converts the deformation of the thin body into a hydrodynamic pressure that
potentially can induce a flow. We consider a closed chamber that is filled with an incompressible fluid and is
partitioned symmetrically by a long and thin sheet. Then, we allow the fluid to exchange freely between the two
parts of the chamber, such that its total volume is conserved. We characterize the slow, quasistatic, evolution of
the sheet under this exchange of fluid, and derive an analytical model that predicts the subsequent pressure drop
in the chamber. We show that this evolution is governed by two different branches of solutions. In the limit of a
small lateral confinement we obtain approximated solutions for the two branches and characterize the transition
between them. Notably, the transition occurs when the pressure drop in the chamber is maximized. Furthermore,
we solve our model numerically and show that this maximum pressure behaves nonmonotonically as a function
of the lateral compression.
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I. INTRODUCTION

Thin sheets are pliable solid objects that can undergo pro-
nounced morphological transitions when they are constrained
by external forces or internal geometric frustrations [1–19].
These morphological transitions release elastic energy that, if
properly managed, can be exploited for the purpose of energy
harvesting; see recent reviews on the subject in Refs. [20–29]
and references therein.

Herein, we study a mechanical system that converts the
elastic energy stored in a thin sheet, into a hydrodynamic
pressure that potentially can enable a flow. Our system con-
sists of an inextensible sheet that is laterally confined between
the two sides of a rectangular closed chamber (Fig. 1). Had
we kept the system in this configuration the sheet would
buckle to accommodate the external compression, which is
manifested by the first mode of buckling in the framework of
Euler’s elastica [30,31]. However, we further fill the chamber
with an incompressible fluid that fixes the volumes above
and below the sheet. This additional confinement requires the
sheet to accommodate a configuration that is higher in energy
compared with the trivial first mode of buckling. Then, we
connect the two sides of the chamber and allow an exchange
of fluid between them, i.e., essentially we remove the second
confinement while keeping the lateral compression fixed. The
system now becomes unstable because the sheet can sponta-
neously lower its bending energy by a proper transfer of fluid
between the two sides of the chamber. Therefore, the energetic
gap between the initial and final configurations is utilized to
create a pressure drop, and consequently a flow.
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Patterns’ transitions in thin sheets that are confined in
parallel by two or more constraints have been the subject of
several recent studies, either for the purpose of a fundamental
research or for practical usage in technological applications
[32–36]. In many cases, when one of the constraints is modi-
fied, or even completely removed, the system spontaneously
jumps between two of its equilibrium configurations. For
example, a thin arch that is uniaxially compressed from the
boundaries, and at the same time subjected to a concentrated
force at its midpoint, is known to undergo a rapid transition
to an inverted shape when the force exceeds a threshold value
[37,38].

This rapid transition between two possible solutions of the
equilibrium equations is called the “snap-through” instability
and is discussed in detail in Refs. [38–47].

Similar to the aforementioned studies, the thin sheet in
our system is expected to change its orientation rapidly when
the constraint over the volume is removed. While this rapid
transition can lead to a complex, time-dependent, behavior of
both the sheet and the fluid, as a first step of studying the
system we will neglect inertial effects and focus on its qua-
sistatic evolution. Under this limiting assumption we derive an
analytical model that predicts the elastic configuration of the
sheet as a function of the volume difference in the chamber.

Although our model yields a set of nonlinear differential
equations, in the limit of a small lateral confinement we obtain
exact and tractable solutions that shed light on the evolution
of the system. Similar to the analysis in Refs. [38,48] we find
that the system evolves in between two limiting configurations
that belong to two different branches of solutions. One is an
“asymmetric branch” that converges to the second, asymmet-
ric mode of buckling when the volume difference between the
two sides of the chamber vanishes and second is a “symmetric
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FIG. 1. Schematic overview of the system. Thin sheet with total
length L and bending modulus B is compressed symmetrically be-
tween the two sides of a rectangular closed chamber. The dimensions
of the chamber are Lx × Ly. A Cartesian coordinate system is located
on the left edge of the sheet at a height Ly/2 above the bottom
wall. In the initial setup the valve is closed and the two sides of the
chamber are filled with an incompressible fluid with equal volumes,
Vu = Vd. Under this setup the sheet accommodates an elastic shape
(solid-gray line) that is higher in energy compared with the first
mode of buckling (dashed-gray line). Then we open the valve and
allow a controllable exchange of fluid between the two sides of the
chamber. The sheet now spontaneously relaxes its bending energy
until it reaches the lower energetic state.

branch” that converges to the first, symmetric mode of buck-
ling when the volume difference reaches a maximum value.
During this evolution from the second to the first modes of
buckling, the pressure difference between the two sides of
the chamber increases from zero to some maximum value
and than decreases back to zero. Notably, we show that this
pressure difference is maximized at the critical point where
the asymmetric-to-symmetric transition occurs. We further
investigate the solution of our model numerically, beyond the
small amplitude approximation, and show that under some
predesigned conditions the maximum pressure behaves non-
monotonically as a function of the lateral compression.

The paper is organized as follows. In Sec. II we formulate
the problem and derive a closed set of differential equations
that determines the sheet’s configuration at a given volume
difference. In Sec. III we derive an approximated solution to
the asymmetric and the symmetric branches in the limit of a
small lateral confinement and analyze the transition between
them. In Sec. IV we solve our model numerically beyond
the small amplitude approximation and discuss the effect of
the lateral compression on the maximum pressure drop in
the chamber. In Sec. V we conclude and discuss possible
extensions for future studies.

II. FORMULATION OF THE PROBLEM

An inextensible thin sheet with bending modulus B, thick-
ness t , and total length L is confined between the two sides of
a rectangular closed chamber, see Fig. 1. The horizontal, the
vertical, and the width dimensions of the chamber are denoted

by Lx (L � Lx), Ly, and W , respectively. The two sides of the
chamber, above and below the elastic sheet, are filled with an
incompressible fluid with volumes Vu and Vd, respectively.

Initially, we set Vu = Vd. Then we connect the two sides
of the chamber and allow a controllable exchange of fluid
between them, see Fig. 1. Since under this initial setup the
elastic configuration does not accommodate its lowest ener-
getic state, we would expect it to snap and enhance the fluid
exchange. While this change in the sheet’s configuration can
result in a rapid and irreversible flow, in this work we neglect
dynamic effects and focus on the slow, quasistatic, evolution
of the system. The amount of fluid transferred between the two
sides of the chamber is our control parameter. An alternative
scenario in which the pressure difference in the chamber is the
control parameter is discussed in Appendix A.

Additionally, we place the following three assumptions.
First, we assume that no contact occurs between the sheet
and the side walls of the chamber and no self-contact occurs
in the sheet. Second, we assume that the system remains
invariant along the W direction, and therefore, without loss
of generality set W = 1. Third, we assume that the volume
occupied by the elastic sheet is negligible compared with the
total volume of the chamber, i.e., tL/LxLy � 1, and as a result
Vu + Vd = LxLy.

To characterize the elastic configuration on the xy plane
we place a Cartesian coordinate system on the left edge
of the sheet, 0 � x � Lx and −Ly/2 � y � Ly/2, and define
the angle φ(s) between the tangent to sheet and the x axis.
With these definitions the position vector x(s) = [x(s), y(s)]
is given by

x(s) =
∫ s

0
cos φ(s′)ds′, (1a)

y(s) =
∫ s

0
sin φ(s′)ds′, (1b)

where s ∈ [0, L] is the arclength parameter.
Given the total volume of the chamber LxLy and the amount

of fluid filling the bottom part Vd, we look for the elastic
configuration that minimizes the following energy:

E = B

2

∫ L

0
φ̇2ds, (2)

where (˙) = d/ds. This energy, which accounts for the bend-
ing deformation of the sheet, must be minimized under three
constraints; two that account for the geometric relations,
Eqs. (1), and one that accounts for the volumes of the fluid
above and below the elastic sheet. Using Green’s theorem we
can relate the latter volumes to the sheet’s configuration by

Vi = 1

2

∫ L

0
x · n̂ids + LxLy

2
, (3)

where i = u, d and n̂i = ±(− sin φ, cos φ) is the outward nor-
mal vector to the enclosed area.

To obtain the equilibrium equations we first normalize
the energy by B/L, and all lengths by the total length
of the sheet L, say s → s/L such that s ∈ [0, 1]. Second,
we modify the energy, Eq. (2), to account for the various
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constraints

G =
∫ 1

0

[
1

2
φ̇2 − Qx(s)(ẋ − cos φ) − Qy(s)(ẏ − sin φ)

]
ds

+ Pud

(
1

2

∫ 1

0
x · n̂dds + Ly

2
− Vd

)
, (4)

where Qx(s) and Qy(s) are two Lagrange multipliers that ac-
count, respectively, for the two geometric constraints, Eqs. (1),
and Pud is a Lagrange multiplier that accounts for the con-
straint over the fluid’s volumes, Eq. (3). As a result, Pud =
Pu − Pd is the normalized pressure drop between the two sides
of the chamber (Pud → PudL3/B); Pu and Pd denote, respec-
tively, the normalized pressures above and below the sheet.
Note that, since we are considering the quasistatic evolution
of the system, these pressures remain constant in each side of
the chamber for a given volume difference.

Third, we minimize the total energy, Eq. (4), with respect to
{φ(s), x(s), y(s), Qx(s), Qy(s)}. This minimization yields the
following equilibrium equations:

φ̈ + Pud

2
(x cos φ + y sin φ) + Qx sin φ − Qy cos φ = 0, (5a)

ẋ − cos φ = 0, (5b)

ẏ − sin φ = 0, (5c)

Q̇x − Pud

2
sin φ = 0, (5d)

Q̇y + Pud

2
cos φ = 0. (5e)

Keeping in mind the order of these equations, and that Pud

is yet an unknown constant, we obtain a closure once we add
the following boundary conditions:

x(0) = 0, (6a)

x(1) = Lx ≡ 1 − �, (6b)

y(0) = y(1) = 0, (6c)

φ̇(0) = φ̇(1) = 0, (6d)

where in Eq. (6b) we defined the lateral compression � ≡
1 − Lx, and we specialized to sheets that are hinged to the
side walls of the chamber, Eq. (6d). In addition, instead of
accounting separately for the volume of the fluid below or
above the elastic sheet, as given by Eq. (3), we will account
for the volume difference

Vdu ≡ Vd − Vu =
∫ 1

0
x · n̂dds. (7)

Given Vdu we can determine the volume in each side of the
chamber from Eq. (3). In the following analysis we always
assume that the sheet buckles upward, i.e., Vdu > 0 and fluid
is transferred from the upper side of the chamber to the lower
side such that the pressure drop Pud > 0 remains positive. We
keep in mind that the system has a mirror symmetry around
the x axis, and therefore a deformation in the opposite direc-
tion, i.e., downward with Vdu < 0 and Pud < 0, would yield
the reflection of the former upward solution.

Although Eqs. (5) to (7) form closure, they can further
be simplified using direct integration of Eqs. (5d) and (5e).
Indeed, utilizing the geometric constraints, Eqs. (5b) and (5c),

we obtain, Qx(s) = Pudy/2 + Px and Qy(s) = −Pudx/2 + Py.
Substituting the latter expressions in Eq. (5a) gives

φ̈ + Pud(x cos φ + y sin φ) + Px sin φ − Py cos φ = 0. (8)

Equation (8) describes the balance of normal forces on a
finite element of the sheet. Within this balance of forces the
constants Px and Py denote the normalized reaction forces
(Px → PxL2/B) in the x and y directions that the chamber
applies on the sheet at s = 0. We note that Eq. (8) can further
be reduced into a canonical form from which an exact solution
in terms of the Jacobi elliptic functions can be derived [49].
For completeness, this solution is provided in Appendix B.
Nonetheless, in the present paper we will not make direct use
of this exact solution because it further requires the numer-
ical solution of transcendental equations that are related to
the boundary conditions [50,51]. The complexity of solving
these transcendental equations is similar to that of finding the
numerical solution of Eq. (8).

This completes the formulation of the problem. In sum-
mary, given the difference in volume between the upper and
lower sides of the chamber Vdu and the lateral compression
�, we can solve Eqs. (5) to (7) to obtain the spatial config-
uration x(s) and the pressure drop Pud. Alternatively, solving
Eqs. (5b), (5c), and (8), together with the boundary conditions,
Eqs. (6) and (7) yield the same solution.

Schematic evolution of the system

Before we proceed to derive an approximated analytical
solution to the system, we schematically describe its evolu-
tion. Our initial setup requires the volume difference in the
chamber to vanish Vdu = 0. One possible configuration that
naturally complies with this requirement is an asymmetric
shape of the elastic sheet. Not only does an asymmetric shape
satisfies Vu = Vd, it also implies that Pud = 0. This is because
of the up-down symmetry that this configuration acquires.
When the pressure drop vanishes in the chamber Eq. (8)
coincides with the theory of Euler’s elastica [52,53], which
describes the deformation a laterally compressed rod. Since,
in that theory the second mode of buckling has the lowest
energy among all other asymmetric solutions, it is the one that
is expected to appear in our system.

As long as no fluid is allowed to transfer between the two
sides of the chamber the asymmetric shape remains stable.
It becomes unstable once the two sides of the chamber are
connected. This is because the sheet can then spontaneously
relax its bending energy and thereby lower the total elastic
energy of the system. This spontaneous relaxation increases
the pressure drop in the chamber and essentially promotes
the fluid exchange. This process continues to occur until Pud

vanishes altogether, or equivalently until the sheet accommo-
dates its lowest energetic state. This state is again a solution
to Euler’s elastica because Pud = 0 and corresponds to the
first (symmetric) mode of buckling in this theory. Of course,
we keep in mind that our system behaves quasistatically, and
therefore the exchange of fluid is considered in a controllable
manner.

Consequently, the system is expected to evolve in between
two limiting configurations. The first limiting configuration
corresponds to the second (asymmetric) mode of buckling
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FIG. 2. Schematic phase diagram on the (�,Vdu) plane. As the
volume difference increases continuously from zero the system
evolves in between two different branches of solutions. While the
asymmetric branch dominates the system between 0 < Vdu < V cr

du

(light-blue shaded area) the symmetric branch dominates between
V cr

du < Vdu < V max
du (yellow-shaded area). The critical and maximum

volume differences, V cr
du and V max

du , are denoted by the solid blue and
red-dashed lines, respectively. In the small amplitude approximation
V cr

du is given by Eq. (13b) and V max
du = 8

π2 �1/2. The asymmetric-to-
symmetric transition is always of a second order. While at Vdu = 0
the system converges to the first limiting solution, i.e., the asymmet-
ric mode with Pud = 0, at Vdu = V max

du the system converges to the
symmetric mode of buckling that satisfies again Pud = 0. Increasing
the volume difference beyond V max

du requires that Pud < 0, and there-
fore is beyond the scope of our investigation.

within the theory of Euler’s elastica, which satisfies Vdu = 0
and Pud = 0. The second limiting configuration corresponds
to the first (symmetric) mode of buckling within that theory.
This symmetric configuration corresponds to the maximum
volume difference that the system can spontaneously ac-
quire Vdu = V max

du and satisfies again Pud = 0. In the following
analysis we will show that these two limiting configurations
originate from different branches of solutions that we will
call the “asymmetric” branch and the “symmetric” branch.
As a result, the evolution of the system includes a non-
trivial asymmetric-to-symmetric transition. Our analysis will
focus on the derivation of these two branches and the criti-
cal conditions at which the transition occurs. To remind the
reader of the different regions of the system, we point to
the “phase-diagram” in Fig. 2, where the stability regions of
these branches are plotted schematically on the (�,Vdu) plane.
We note that this schematic description is similar to that of the
force-displacement relation in Ref. [48], where the pressure
difference and the volume difference take, respectively, the
roles of the concentrated force applied on the midpoint of the
beam and its corresponding vertical displacement.

III. APPROXIMATED SOLUTION IN THE LIMIT � � 1
FOR HINGED SHEETS

In this section we derive an approximated solution to the
problem under the assumption that the lateral compression
� ≡ 1 − Lx remains small. This assumption allows us to ex-
pand the equilibrium equations to leading order in powers

of the profile’s amplitude y(s). Within this expansion, the
geometric constraints, Eqs. (5b) and (5c), reduce to x(s) �
s − 1

2

∫ s
0 φ(s)2ds and ẏ(s) � φ(s). Substituting these expres-

sions in Eq. (8) and linearizing gives

˙̇ ˙y + Pxẏ = −Puds + Py. (9)

The solution of this linear equation is given by

y(s) = a1 + a2 cos(
√

Pxs) + a3 sin(
√

Pxs) + Py

Px
s − Pud

2Px
s2,

(10)
where ai (i = 1 . . . 3), Px, Py, and Pud are six unknown
constants that are yet to be determined by the boundary con-
ditions, Eqs. (6b) to (6d), and the constraint over the volumes
Eq. (7). Note that in this leading-order approximation the
lateral compression of the sheet Eq. (6b) is approximated by
� = 1

2

∫ 1
0 ẏ2ds, and the volume difference Eq. (7) reduces to

Vdu = 2
∫ 1

0 y(s)ds.
Let us characterize now the evolution of the system from

the asymmetric branch to the symmetric branch. In the fol-
lowing three sections we first derive the solutions for these
branches and then analyze the transition between them.

A. Asymmetric branch

To derive the asymmetric branch we first fix the lateral
compression at a constant value Px = 4π2. Then we utilize
the boundary conditions Eqs. (6) and the linearized solution
Eq. (10) to obtain the height profile. The solution reads

y(s) = Pud

16π4
[2π2(1 − s)s + 1 − cos (2πs)]

+ 1

π

√
� − 15 + 2π2

768π6
P2

ud sin (2πs). (11)

Note that when Pud → 0 this configuration converges to
y(s) →

√
�/π2 sin(2πs), as expected from the second mode

of buckling in the theory of Euler’s elastica and in the
respected limit of the small amplitude approximation. To com-
plete the solution we also need to find the relation between the
volume difference Vdu and the pressure drop Pud. Using the
linearized form of Eq. (7) we obtain

Vdu = 3 + π2

24π4
Pud. (12)

Therefore, in the small amplitude approximation the Pud-Vdu

relation of the asymmetric branch is linear and independent of
�. Equations (11) and (12) essentially provide the complete
solution of the asymmetric branch.

Evidently, for a given lateral compression � the asymmet-
ric branch ceases to exist when the term under the square-root
in Eq. (11) becomes negative. This happens at the critical
pressure and volume difference

Pcr
ud =

√
768π6

15 + 2π2
�1/2, (13a)

V cr
du = 2(3 + π2)

π
√

3(15 + 2π2)
�1/2. (13b)
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FIG. 3. The evolution of the asymmetric branch when �/L = 0.05. The explicit normalization is presented in the axes of both panels.
(a) The spatial configuration of the sheet for several values of Vdu/V cr

du . The critical volume difference is given numerically by V cr
du/L2 � 0.169

and analytically by V cr
du/L2 � 0.179, see Eq. (13b). Note that the comparisons between the analytical and numerical solutions are presented

for the relative volume difference, Vdu/V cr
du , and not for the absolute value of Vdu/L2. While open circles correspond to the numerical solution

of Eqs. (5b), (5c), and (8), blue solid, red dashed, and black dotted lines correspond to the approximated analytical solution, Eqs. (11), (12),
and x(s) = s − 1

2

∫ s
0 ẏ(s′)2ds′. When Vdu/V cr

du = 0 the elastic configuration converges to the second (asymmetric) mode of buckling within the
theory of Euler’s elastica. (b) The volume difference is plotted as a function of the pressure drop, where the blue dashed line corresponds to
the analytical prediction, Eq. (12), and open circles to the numerical solution.

In Sec. III C we will show that these critical values coincide
with the critical point at which the asymmetric-to-symmetric
transition occurs.

This completes the solution of the asymmetric branch.
In summary, given the volume difference Vdu we obtain the
pressure drop Pud from Eq. (12) and the sheet’s configuration
from Eq. (11). This branch no longer exists beyond the critical
volume difference provided in Eq. (13b). In Fig. 3 we plot
this solution for � = 0.05 and for different values of Vdu/V cr

du ,
and compare the results with the numerical solution of the
nonlinear equations, Eqs. (5b), (5c), and (8). To obtain the
numerical solution in this branch we set Vdu = 0 in Eq. (7)
and place an asymmetric height function as an initial guess.
Then we continuously increase the volume difference by a
given increment and use the preceding numerical solution as
a guess function for the next iteration.

B. Symmetric branch

To obtain the symmetric branch we first calculate the con-
stants ai and Py using Eqs. (6c) and (6d). This gives the height
profile

y(s) = Pud

2Px
(1 − s)s + Pud

P2
x

[
1 − cos[

√
Px(s − 1/2)]

cos (
√

Px/2)

]
. (14)

Note that at this stage of the analysis the height profile does
not converge to the symmetric mode in the limit Pud →
0 because the constant Px is yet unknown. To determine
this constant and the pressure drop Pud, we need to satisfy
Eqs. (6b) and (7). These boundary conditions yield the fol-
lowing two transcendental equations:

Pud = 16
√

6u7/2| cos u|√
6u + 4u(6 + u2) cos2 u − 15 sin(2u)

�1/2, (15a)

Vdu = 2
√

2(u(3 + u2) − 3 tan u)| cos u|√
3u3/2

√
6u + 4u(6 + u2) cos2 u − 15 sin(2u)

�1/2,

(15b)

where u ≡ √
Px/2. Given the volume difference Vdu and the

lateral compression �, we can solve Eq. (15b) for the con-
stant u, or equivalently Px, and then substitute this solution in
Eq. (15a) to obtain the pressure drop Pud. Therefore, Eqs. (14)
and (15) provide the complete solution of the symmetric
branch.

Above the maximum volume difference Vdu ≡ V max
du =

8
π2 �

1/2 Eq. (15b) does not have a solution, and therefore
the symmetric branch with Pud > 0 does not exist. At V max

du
Eq. (15b) admits the lateral compression Px = π2 (u = π/2),
which gives the pressure drop Pud = 0, see Eq. (15a). Indeed,
this marginal solution recovers the first, symmetric mode of
buckling in Euler’s elastica. To show this explicitly we first
need to expand Eqs. (15) around u = π/2, and then solve
them perturbatively for Px and Vdu. The solutions read

Pud � 1: Px � π2 + 2

π2

Pud

�1/2
, (16a)

Vdu � 8

π2
�1/2 − b1Pud, (16b)

where b1 = (216 − π4 − 12π2)/(6π6) � 2.7 × 10−5 is a
positive constant. Second, we substitute Eq. (16a) in Eq. (14)
and take the limit Pud → 0. This gives the height profile
y(s) →

√
4�/π2 sin(πs), which coincides with the symmet-

ric mode of buckling in Euler’s elastica. We emphasize that
the symmetric branch can also be extended to a region where
Vdu > V max

du . Nonetheless, this extension requires that Pud < 0,
and therefore, it will not take place in the spontaneous, qua-
sistatic relaxation of the sheet.

This completes the solution of the symmetric branch. In
summary, given the volume difference Vdu and the lateral com-
pression � we need to solve Eq. (15b) to obtain u = √

Px/2.
Using this solution we calculate the pressure drop in the fluid
Pud from Eq. (15a) and the height profile from Eq. (14). In
Fig. 4 we plot these height profiles for several values of Vdu

and compare the resulting configurations with the numerical

033001-5



OZ OSHRI PHYSICAL REVIEW E 103, 033001 (2021)

0.0 0.2 0.4 0.6 0.8 1.0
−0.3

−0.2

−0.1

0.0

0.1

0.2

x(s)/L

y(
s)

/L

(a)

Vdu/Vdu
max=1

Vdu/Vdu
max=0.5

Vdu/Vdu
max=0 /L=0.05

0 10 20 30 40 50 60 70
0.00

0.05

0.10

0.15

0.20

PudL3/B

V
du

/L
2

(b)

Numerics
Eqs. (15)
Eq. (16b)

/L=0.05

FIG. 4. The evolution of the symmetric branch for �/L = 0.05. The explicit normalization is presented in the axes of both panels. (a) The
sheet’s configuration for several values of the relative volume difference Vdu/Vmax. The maximum volume difference is given numerically by
V max

du /L2 � 0.171 and analytically by V max
du /L2 � 0.181. Note that the comparison is given for the relative volume difference Vdu/Vmax and not
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2

∫ s
0 ẏ(s′)2ds′. When Vdu/Vmax = 1 the

system exhibits the first mode of buckling within the theory of Euler’s elastica. (b) Comparison between the analytical (dashed blue line) and
numerical (open circles) profiles of the Pud-Vdu relation. The analytical profile is obtained from the solution of Eq. (15). When Pud � 1 this
profile is approximated by Eq. (16b) (dotted black line).

solution of Eqs. (5b), (5c), and (8). To calculate the symmetric
branch numerically, we first set Pud = 0 in Eq. (8) and solve
it to obtain V max

du and its corresponding elastic configuration.
Then we reduce the volume difference by a given increment
and use the preceding numerical solution as a guess function
for the next iteration. Note that when Vdu → 0 the symmetric
branch converges to a configuration that is close in shape to
the third mode of buckling, see Fig. 4(a). In this shape we
have from Eqs. (16) that u � 4.68 and the pressure drop is
Pud � 42.5�1/2. In addition, we plot the numerical Pud-Vdu re-
lation and compare it with our analytical prediction, Eqs. (15),
see Fig. 4(b).

C. Asymmetric-to-symmetric transition

While the lateral force that the chamber applies on the
sheet remains constant in the asymmetric branch Px = 4π2, it
varies continuously in the symmetric branch, i.e., the param-
eter u = √

Px/2 depends on Vdu through Eq. (15b). For this

reason, we define m = √
π − u as the order parameter of the

asymmetric-to-symmetric transition; when m = 0 the system
is in the asymmetric branch and when m > 0 in the symmetric
branch. The control parameter of the transition is defined as
the volume difference Vdu. Note that the definition of the order
parameter is valid only in the limit � � 1, i.e., Px is not a
constant in the asymmetric branch beyond the small amplitude
approximation.

In Sec. III A we obtained that above Vdu = V cr
du [see

Eq. (13b)] the asymmetric branch ceases to exist. Let us now
show that at this critical point the asymmetric-to-symmetric
transition occurs, i.e., the energies of the two branches coin-
cide and the order parameter m starts to grow continuously
from zero [54].

To obtain the energy of the asymmetric branch we substi-
tute the height profile and the Pud-Vdu relation, Eqs. (11) and
(12), in the energy, Eq. (2), and integrate. Similarly, to obtain
the energy of the symmetric branch we utilize Eqs. (14), (15),
and (2). In their respected limits these energies read

asymmetric
(
Vdu < V cr

du

)
: E = 36π2�

15 + 2π2
+ Pcr

ud

2

(
V cr

du − Vdu
) − 6π4

3 + π2

(
V cr

du − Vdu
)2

, (17a)

symmetric
(
Vdu > V cr

du

)
: E � 36π2�

15 + 2π2
− Pcr

ud

2

(
Vdu − V cr

du

) + 2π4(105 + 8π2)

3(15 − π2)

(
Vdu − V cr

du

)2
, (17b)

where Pcr
ud is given by Eq. (13a). Indeed, at Vdu = V cr

du the energies of the two branches coincide. The first derivative of these
energies yields the pressure drop in the chamber across the critical point Pud = −2dE/dVdu [55]

asymmetric
(
Vdu < V cr

du

)
: Pud = Pcr

ud − 24π4

3 + π2

(
V cr

du − Vdu
)
, (18a)

symmetric
(
Vdu > V cr

du

)
: Pud � Pcr

ud − 8π4(105 + 8π2)

3(15 − π2)

(
Vdu − V cr

du

)
. (18b)

Evidently, when Vdu → V cr
du the pressure drop converges

to Pud → Pcr
ud from both sides of the transition. Nonetheless,

the derivative of the pressure drop (second derivative of the

energy) is discontinuous. Note for the sign change and the rel-
atively big jump of this derivative. While dPud/dVdu � 181 in
the asymmetric branch, it changes into dPud/dVdu � −9313 in
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FIG. 5. Comparison between the approximated solution and the numerical minimization of the total energy. In both panels �/L = 0.05 and
the axes are presented in the explicit normalization. In addition, open-blue circles represent the numerical values, solid blue line the analytical
approximation of the asymmetric branch, and solid green and dashed green (light gray) lines the analytical approximation of the symmetric
branch. (a) The normalized elastic energy EL/B is plotted as a function of the normalized volume difference Vdu/L2. Theoretically, the energy
of the asymmetric branch is calculated from Eqs. (2), (11), and (12), and the energy of the symmetric branch from Eqs. (2), (14), and (15). The
asymmetric branch is energetically favorable over the symmetric branch when Vdu/V cr

du < 1. At Vdu/V cr
du = 1 the asymmetric branch ceases to

exist and the symmetric branch becomes stable. Since V cr
du/Vmax � 0.99 the region in which the symmetric branch is stable is hardly seen in this

figure. Discrepancies between the numerical and analytical predictions are attributed to the finite size of the sheet. (b) Comparison between
the numerical and analytical Pud-Vdu relations. Numerically, the pressure drop is obtained from Pud = −2dE/dVdu, where E is given in panel
(a). Analytically, the Pud-Vdu relation is given by Eq. (12) for the asymmetric branch and by Eqs. (15) for the symmetric branch. Note that Pud

is continuous at the transition, but its first derivative is discontinuous, see Eq. (18). To visualize the evolution of the elastic configuration as
Vdu/L2 is increasing, we added four labels (red triangles) that correspond, in part, to the shapes presented in Figs. 3(a) and 4(a). While labels
1 . . . 3 along the asymmetric branch mark the three shapes presented in Fig. 3(a), label 4 in the symmetric branch corresponds to Vdu/V max

du = 1
in Fig. 4(a). Note that, despite the relatively large change in the pressure difference between labels 3 and 4, the elastic configuration barely
changes.

the symmetric branch. Lastly, to obtain the order parameter m
close to the transition we substitute u = π − m2 in Eq. (15b)
and expand it to leading order in m. This gives

m �
√

2π (3 + π2)(15 + 2π2)

9(15 − π2)

(
Vdu − V cr

du

V cr
du

)1/2

, (19)

with a critical exponent of β = 1/2 that is expected from a
continuous second-order transition.

To verify the analytical analysis of this transition, we com-
pare our results with the numerical minimization of the total
energy, Eq. (2). This numerical minimization is carried out
using the built-in function FINDMINIMUM in MATHEMATICA©
[56], where the elastic sheet is discretized into N = 70 equally
spaced points, and Eqs. (1) and (7) are considered as external
constraints.

The results of this numerical analysis is presented in Fig. 5
and compared with the approximated solution derived in Secs.
III A and III B. In Fig. 5(a) we plot the total elastic energy of
the numerical solution and compare it with the energies of the
asymmetric and symmetric branches. We find that the global
minimizer of the system follows the asymmetric branch until
it ceases to exist. Discrepancies between the numerical and
analytical energies are attributed to the finite size of the sheet,
i.e., break down of the assumption that � � 1. In Fig. 5(b)
we plot the numerical Pud-Vdu relation and compare it with the
analytical prediction. When Vdu < V cr

du the asymmetric branch
dominates the system and the Pud-Vdu relation is approximated
by Eq. (12). At Vdu = V cr

du the asymmetric branch ceases to
exist and the transition occurs. While Pud is continuous across

the transition, its first derivative is discontinuous. Beyond
the critical point the Pud-Vdu relation follows the symmetric
branch, Eqs. (15). Note that the asymmetric branch dominates
the evolution of the system up to V cr

du/V max
du � 0.987, which

is similar to our analytical approximation V cr
du/V max

du � 0.99,
where V cr

du is given by Eq. (13b) and V max
du = 8

π2 �
1/2. To

follow the configuration of the sheet along the stable trajec-
tory of the system, we added labels to Fig. 5(b) that mark
the corresponding shapes in Figs. 3(a) and 4(a). Note that,
although the pressure difference changes considerably in the
symmetric branch, the elastic configuration almost remains
unchanged, compare the shapes corresponding to labels 3 and
4 in Fig. 5(b).

IV. NUMERICAL INVESTIGATION BEYOND THE SMALL
AMPLITUDE APPROXIMATION

In this section we minimize the elastic energy numerically
in a region of the parameter space that goes beyond the small
amplitude approximation. We emphasize that, different from
previous sections, where we normalized all lengths by L and
vary Lx, here, we fix the lateral dimension of the chamber,
say Lx = 1, and vary the total length of the sheet. We show
that under these conditions the critical pressure drop at the
asymmetric-to-symmetric transition Pcr

ud(L/Lx ) behaves non-
monotonically.

This section is divided into three parts. In the first part, we
investigate the numerical solution of our model at relatively
large values of L/Lx. In the second part, we modify the bound-
ary conditions on the sheet’s edges from hinged to clamped,
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FIG. 6. Numerical investigation beyond the small amplitude approximation. The explicit normalization is presented in the axes of both
panels. (a) The Pud-Vdu relation for different total lengths L/Lx . In all cases the pressure drop increases from zero up to some critical value
that marks the asymmetric-to-symmetric transition and then quickly decreases to zero. Despite the rapid reduction to zero the transition
is always of a second order, i.e., Pud is continuous at the transition, but its first derivative is discontinuous. (b) The critical pressure drop
as a function of L/Lx . While open-red circles correspond to the critical pressures obtained in panel (a), the blue line corresponds to the
analytical approximation, Eq. (13a). The Pcr

udL3
x /B is maximized at a critical length, L/Lx � 1.16, which agrees nicely with the analytical

prediction.

and show that this modification affects only quantitatively the
behavior of the system. Lastly, we examine the efficiency of
our proposed apparatus and discuss the effect of the boundary
conditions on this quantity.

A. Hinged sheets

In this section we investigate the behavior of the system
numerically, beyond the small amplitude approximation. To
do that, we fix the lateral length of the chamber Lx = 1 and
minimize the elastic energy Eq. (2) numerically over a wide
range of L/Lx. In each run we record the spatial configuration
of the sheet and the Pud-Vdu relation. First, we find that contact
between the sheet and the side walls of the chamber oc-
curs when L/Lx � 1.37 (we assume that Ly is large enough).
Therefore, the following discussion is restricted to the range
L/Lx ∈ [1, 1.37].

In Fig. 6(a) we plot the Pud-Vdu relation for several values
of L/Lx. This plot indicates that the behavior of the sheet
remains qualitatively unchanged compared with the small
amplitude approximation. This similarity is manifested in the
following two observations. (i) The system always exhibits
a continuous asymmetric-to-symmetric transition. Although
Pud is continuous at the critical point, its first derivative is
discontinuous. (ii) The asymmetric branch dominates most of
the system’s evolution, i.e., the transition occurs very close
to V max

du . Despite these two similarities, we note that when
L/Lx � 1.1 the Pud-Vdu relation in the asymmetric branch is
no longer linear, different from our prediction in Eq. (12).

Interestingly, Fig. 6(a) reveals that the critical pressure
drop Pcr

ud behaves nonmonotonically as a function of the lat-
eral compression L/Lx. It increases when L/Lx � 1.1 and
decreases beyond it. In Fig. 6(b) we plot the critical pressure
as a function of L/Lx and fit it with Eq. (13a). Retriev-
ing dimensions into the latter equation and rescale L by Lx

we obtain, PudL3
x/B =

√
768π6

15+2π2
[(L/Lx )−1]1/2

(L/Lx )7/2 , where we replaced

the pressure difference with Pud → PudL3/B and we used

the definition of the normalized lateral compression � =
1 − Lx/L. Although this region of the system is much be-
yond the strict limits of our approximated theory we observe
that it fits well with the numerical values. This observation
allows us to estimate the maximum pressure drop that the
system acquires under hinged boundary conditions. Solving
dPcr

ud/dL = 0 gives L/Lx = 7/6, and the maximum pressure

drop Pmax
ud L3

x/B = 3456π3

343

√
3

7(15+2π2 ) � 34.7.

B. Clamped sheets

To verify that our qualitative understanding of the system
remains valid even when the boundary conditions on the
sheet’s edges are modified, we replace Eqs. (6d) with clamped
boundary conditions, i.e., the tangent angle is zero at the
boundary, and minimize the elastic energy numerically. First,
we observe that self-contact occurs at L/Lx � 2.9. Therefore,
our investigation is focused on lower values of the total length,
see Fig. 7.

In Fig. 7(a) the configuration of the sheet is plotted for
several values of Vdu/V max

du when L/Lx = 1.5. As expected,
both of the limiting solutions at Vdu = 0 and Vdu/V max

du = 1,
coincide with the second (asymmetric) and the first (symmet-
ric) modes of buckling in the framework of Euler’s elastica,
and therefore satisfy Pud = 0. The complete Pud-Vdu relations
in between the two limiting solutions are plotted in Fig. 7(b)
for several values of L/Lx. Similar to hinged sheets, the
pressure drop in the chamber increases monotonically up to
some maximum value that coincides with the critical pressure
at which the asymmetric-to-symmetric transition occurs. Be-
yond the critical point the pressure drop decreases to zero. At
the transition the pressure drop remains continuous but its first
derivative is discontinuous. Nonetheless, note that in the case
of clamped sheets the symmetric branch dominates the system
at much wider region compared with hinged sheets.

Finally, we notice that the critical pressure drop in the
chamber Pcr

ud behaves nonmonotonically as a function of
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FIG. 7. Numerical investigation of a sheet that is clamped at both ends. The explicit normalization is presented on the axes of all panels.
(a) The configuration of the sheet for several values of the volume ratio Vdu/V max

du (V max
du /L2

x = 0.49) and for L/Lx = 1.5. The system exhibits
the second and first modes of buckling when Vdu/V max

du = 0 and Vdu/V max
du = 1, respectively. (b) The Pud-Vdu relations for several values of L/Lx .

In all cases the pressure drop increases from zero up to a critical value, which coincides with the the asymmetric-to-symmetric transition, and
then decreases back to zero. While the pressure drop is continuous at the transition its first derivative is discontinuous. (c) The normalized
critical pressure drop is plotted as a function of L/Lx . The case of a hinged sheet is plotted for comparison where the data points are taken from
Fig. 6(b). While dots corresponds to the numerical values, dashed lines are their interpolations. Qualitatively, in both cases of the boundary
conditions, the sheet exhibits the same nonmonotonic dependence. However, the maximum pressure drop in clamped sheets is higher by
approximately a factor of two compared with hinged sheets.

L/Lx. This behavior is depicted in Fig. 7(c) where the maxi-
mum pressure drop Pcr

udL3
x/B � 71 is obtained at L/Lx � 1.22;

compare these values with Pcr
udL3

x/B � 34.7 and L/Lx � 1.16
obtained for hinged sheet.

C. Energy difference and efficiency

The difference in energy between the two limiting so-
lutions essentially determines the total amount of work
that our apparatus can perform, i.e., �E ≡ E2 − E1 =
1
2

∫ V max
du

0 Pud(Vdu)dVdu, where E2 and E1 are the energies of
the second and the first modes of buckling, and we keep
in mind that Pud = −2dE/dVdu. Accordingly, we can define
the efficiency of this apparatus as the fraction of the elastic
energy, relative to E2 that is exploited to displace the fluid,
i.e., η ≡ �E/E2. In Fig. 8 we plot these two quantities, �E
and η, as a function of L/Lx for clamped and hinged sheets.

We mention three main findings regarding these plots.
First, the energy difference is higher for clamped sheets com-
pared with hinged sheets for all values of L/Lx. Second, while
for hinged sheets �E increases monotonically, for clamped
sheets we observe nonmonotonic behavior. Yet the critical
length at which the energy difference is maximized differs
from the critical length observed for Pcr

ud, see Fig. 7(c). Third,
in both cases the efficiency depends only weakly on L/Lx. In
addition, the efficiency of hinged sheets is higher (η � 0.75)
compared with clamped sheets (η � 0.5).

V. CONCLUSION

In this paper we studied a mechanical system that converts
the elastic energy stored in a thin body into a hydrodynamic
pressure that potentially can trigger a flow. We derived an an-
alytical model that predicts the slow, quasistatic, evolution of
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FIG. 8. Energy difference and efficiency for hinged and clamped sheets. The explicit normalization is presented in both panels. In addition,
dots correspond to the numerical data and dashed lines to the interpolation between them. (a) The difference in energy between the two limiting
solutions is plotted as a function of L/Lx . Clamped sheets have a higher energetical barrier between the first two modes of buckling, compared
with hinged sheets. In addition, this energy difference behaves nonmonotonically in the case of clamped sheets. (b) Efficiency as a function of
L/Lx . Hinged sheets are more efficient than clamped sheets. In both cases η decreases only slightly with an increase in L/Lx .
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the system given the volume difference between the two sides
of the chamber. Assuming that the lateral compression re-
mains small and that the sheet’s edges were hinged to the side
walls of the chamber, we obtained an analytical and tractable
solution to our model. This solution revealed that the system
progresses between two different branches of solutions, an
asymmetric branch and a symmetric branch. The asymmetric
branch dominates the system as long as it is available, and
once it ceases to exist the symmetric branch becomes ener-
getically favorable. We showed that the transition between the
two branches is continuous, i.e., of a second order.

Furthermore, we investigated the numerical solution of our
model at moderate values of the lateral compression for both
hinged and clamped sheets. We showed that in both cases our
qualitative understanding of the system, as depicted in the
small amplitude approximation, remains valid. Nonetheless,
we found that when the lateral compression is large the Pud-
Vdu relation is no longer linear. In addition, we showed that
when we fixed Lx and varied the total length of the sheet,
the critical pressure drop at which the transition occurred
behaves nonmonotonically as a function of L/Lx, i.e., Pcr

ud was
maximized at L/Lx � 1.16 for hinged sheets and L/Lx � 1.22
for clamped sheets. Furthermore, we showed that, although
the energetic gap between the two first modes of buckling
in clamped sheets is larger than in hinged sheets, the latter
boundary conditions were more efficient.

To get some physical intuition regarding the magnitude of
the pressure drop our system can acquire, assume that the
width of the chamber is Lx = 5 cm (Ly does not affect the
calculation) and the elastic sheet is made of PVS with Young’s
modulus Ẽ � 790 KPa, Poisson’s ratio ν = 0.4, and thickness
t = 3 mm, similar to the material used in Ref. [48]. In addi-
tion, suppose that the sheet is hinged to the side walls of the
chamber and its total length equals L = (7/6)Lx, such that the
pressure drop is maximized at the asymmetric-to-symmetric
transition. Under these conditions the maximum pressure drop
in the chamber would be Pcr

ud � 35B/L3
x � 600 Pa. Neglect-

ing all viscous effects and assuming that the fluid is made
of water, this pressure drop can potentially yield the fluid’s
velocity v = √

2Pcr
ud/ρ � 1.1 m/s, where ρ = 1 × 103 kg/m3

is the fluid’s density. Obviously, this velocity depends strongly
on the bending modulus of the sheet and the lateral dimension
of the chamber.

The pressure difference induced in the chamber can poten-
tially be exploited to perform work on external objects. Here
we mention three such potential applications. First, suppose
that the channel connecting the two parts of the chamber is
endowed with a flexible beam, as considered, for example, in
Refs. [42,46] that is coated with piezoelectric patches [20].
The pressure difference in the chamber will then be exploited
to displace the beam and to induce an electric voltage. Of
course, we must keep in mind that any external object that is
added to our device can affect its expected operation including
changes in the Pdu-Vdu relation, reduced efficiency, and quali-
tative changes in the bifurcation diagrams.

The second application is related to the design of mi-
cropumps that are of interest in the research of microfluidics
[57,58]. Since our device stores elastic energy that scales with
the thickness of the material, the energetic difference between
two consecutive modes of buckling significantly decreases

with a reduce in the thickness. Therefore, the device can
potentially store and release very small, but highly accurate,
amount of fluid in each loading cycle. This accuracy can be
utilized, for example, to pump liquids or nanosized particles
through microchannels. Lastly, we suggest that our apparatus
can be utilized as a microfluidic mixing device [59], i.e., if
the two parts of the chamber are filled with different fluids,
the elastic energy released from the sheet can be exploited
to mix between them. Of course, we keep in mind that these
applications will most probably operate more efficiently when
dynamic effects are taken under consideration. Nonetheless,
our quasistatic analysis provides guidelines to the design of
such applications.

An interesting observation raised in this study suggests
that the maximum pressure drop in the chamber depends
strongly on the boundary conditions. Indeed, Pcr

ud in clamped
sheets is almost double compared to its value in the case of
hinged sheets. One can then formulate a problem in variational
elasticity and ask which boundary conditions maximize the
pressure drop in the chamber. Along the same lines, another
interesting question would be to investigate which boundary
conditions maximize the energetic gap between the first two
modes of buckling and the efficiency of the device.

Despite the progress made here our study did not con-
sider the inevitable dynamic effects and pressure loss due to
friction, which will take place in any design of such energy
harvesting device. Therefore, our future study will focus on
the incorporation of these effects into the analytical model,
i.e., add inertial terms into the force balance equations de-
scribing the coupled motion of the fluid and of the elastic
sheet.

We hope that the proposed setup would be useful to eluci-
date the fundamental behavior of the snap-through mechanism
in a viscous medium. For example, it would be interesting
to investigate how viscosity affects the growth rate of the
instability. Hopefully, the answer to these fundamental ques-
tions will lay the groundwork for advanced technological
applications that exploit the snap-through instability to the
design of mechanical switches [19,60–62], or memcapacitors
in electrical circuits [63,64].
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APPENDIX A: EVOLUTION OF A
PRESSURE-CONTROLLED SYSTEM

In this Appendix we examine the evolution of the system
when the pressure difference, instead of the volume differ-
ence, is the control parameter. To do that, we slightly modify
the schematic overview of the system, Fig. 1, and consider
a chamber that is endowed with two pistons at its upper and
bottom walls. These pistons fix the upper and lower pressures,
Pu and Pd, respectively, as seen in Fig. 9. Initially we set
Pu = Pd (Pud = 0), and then we increase the upper pressure
while keeping the lower pressure fixed, i.e., Pud � 0. Given
the properties of the sheet, L and B, the dimensions of the
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FIG. 9. Schematic overview of the pressure-controlled system.
A closed rectangular chamber is filled with an incompressible fluid
and is divided into two parts by a thin sheet. The dimensions of the
chamber and the properties of the sheet remain unchanged compared
to the main text. The pressures above and below the elastic sheet,
Pu and Pd, are determined by the upper and lower pistons. When
Pud � 0, the system exhibits three different branches of solutions,
an unstable asymmetric branch (dashed gray line), a meta-stable
symmetric branch (solid gray line) and an inverted-symmetric branch
(dashed-dotted red line), which is globally stable.

chamber Lx × Ly, and the pressure difference Pud, we wish to
find the spatial orientation of the sheet. Note that, different
from the main text, in this Appendix the shape changes of the
sheet are not a result of a spontaneous process but they are
driven by the external pressures.

The elastic energy to be minimized under this setup has
two contributions. One from the bending energy of the sheet,
similar to Eq. (2), and second from the mechanical work
performed on the system by the external pressures. Following

our normalization convention in Sec. II the total energy is
given by

Epc = 1

2

∫ 1

0
φ̇2ds − PuVu − PdVd

=
∫ 1

0

(
1

2
φ̇2 + Pud

2
x · n̂d

)
ds + E0, (A1)

where E0 ≡ −PuLxLy is a constant, and to derive the second
equality we used Eq. (3) and the relation Vu + Vd = LxLy.

Keeping in mind the geometric constraints, Eqs. (1), min-
imization of the energy, Eq. (A1), with respect to the elastic
fields gives the same set of equilibrium equations as derived
in the case of a volume-controlled deformation, Eqs. (5) and
(6). Nonetheless, since Pud is now a known parameter, the con-
dition that relates the elastic shape to the volume difference,
Eq. (7), is unnecessary to form a closure.

Following the analysis in Sec. III, we investigated the
minimizers of the energy in the limit of the small amplitude
approximation. We identified three different branches of so-
lutions that govern the system. One is the asymmetric branch
that we derived in Sec. III A, second is the symmetric branch
derived in Sec. III B, and third is the inverted-symmetric
branch. The latter branch is just the mirror solution of the
symmetric branch, see Fig. 9. This inverted shape did not
play a role in our volume-controlled investigation because we
only considered cases in which Vdu > 0 (and Pud > 0). In this
Appendix the control parameter is Pud � 0, and therefore Vdu

can, in general, take negative values.
The elastic configurations of the symmetric and inverted-

symmetric branches are given by Eqs. (14) and (15a). When
Pud > 0 Eq. (15a) has two different solutions, one with u �
π/2, which corresponds to the symmetric branch, and second
with u � π/2 that yields the inverted branch [65].

To analyze the stability of the system with respect to the
three branches, we first calculate their total energy. In the
small amplitude approximation Eq. (A1) reduces to Epc −
E0 = ∫ 1

0 ( 1
2 ÿ2 + Pudy)ds and the energies read

asymmetric: Epc = 4π2� + (3 + π2)P2
ud

96π4
, (A2a)

symmetric/inverted-symmetric: Epc = 6u + 4u(9 + 2u2) cos2 u − 21 sin(2u)

384u5 cos2 u
P2

ud. (A2b)

While the energy of the asymmetric branch, Eq. (A2a),
exhibits the explicit dependence on the control parameter
Pud, the energies of the symmetric and inverted-symmetric
branches are given parametrically, i.e., given Pud we need
to solve Eq. (15a) for u = √

Px/2 and then substitute this
solution back in Eq. (A2b).

Figure 10 presents the typical evolution of the system for
the case where � = 0.05. In Fig. 10(a) we plot the energies of
the three branches. When Pud = 0 the system has three poten-
tial minimizers. One is the second mode of buckling, and the
other two are the first mode of buckling with the sheet either
oriented upwards or downwards, see Fig. 9. Indeed, when the
pressure difference vanishes, these three minimizers coincide
with the modes of buckling in the theory of Euler’s elastica.

The local stability of these solutions has been investigated,
for example, in Ref. [66], who showed that while the second
mode of buckling is unstable, the first mode of buckling is
stable and represents the minimum of the energy. Therefore,
we would initially expect the system to accommodate either
the symmetric branch or the inverted-symmetric branch.

When Pud > 0 the energies of the latter minima splits.
While the energy of the symmetric branch increases, i.e.,
it becomes a metastable state, the energy of the inverted-
symmetric branch decreases, i.e., it remains the global
minimizer. Therefore, had the system initially been in the
inverted-symmetric state, it would have stayed in this branch
for any Pud > 0. However, had the system initially been in
the symmetric branch, the behavior would have been more
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FIG. 10. Typical evolution of the pressure-controlled system. The explicit normalization is presented on the axes in all panels. (a) The
normalized energy, Eq. (A1), as a function of the normalized control parameter PudL3/B. While the energy of the asymmetric branch is given
by Eq. (A2a), the energies of the symmetric and inverted-symmetric branches are given by Eqs. (A2b) and (15a). The asymmetric branch
is always higher in energy compared to the other branches. While the energies of the symmetric and inverted-symmetric branches coincide
at Pud = 0, they deviate for any Pud > 0. While the symmetric branch represents a local minimum of the energy (metastable solution), the
inverted-symmetric branch represents the global minimum, i.e., it has the lowest energy among all three branches. (b) The Pud-Vud relations
for the three branches. Had the system initially been in the symmetric branch (the point A1), it would have remained in this branch (solid blue
line) until the system crossed some energetic barrier. Numerical investigation shows that this happens very close to Pcr

ud (the point A2). (c) One
possible evolution of the elastic configuration form A1 to A2 in the symmetric branch, and then a snap to A3 in the inverted branch [see panel
(b)]. Note that there is almost no change in the elastic shape when the system evolves along the symmetric branch.

complex, and would resemble the evolution of a von Mises
truss [37,67]. Namely, the system can remain in the local
minimum until it overcomes some energetic barrier, or until
the symmetric branch ceases to exist, see the so-called limit
point in Fig. 10(b). The difference between the two scenarios
are discussed in Ref. [40]. Numerical minimization of the
energy indicates that the symmetric branch becomes unstable
close to the intersection with the unstable asymmetric branch,
i.e., close to the critical pressure difference Pcr

ud, Eq. (13a).

APPENDIX B: EXACT SOLUTION TO EQ. (8)

To derive the exact solution of the problem we first ma-
nipulate Eq. (8) to describe the balance of forces over an
infinitesimal (rather than finite) length of the sheet. To do that,
we multiply Eq. (8) with φ̇ and integrate the equation with
respect to s. This gives the following constant:

H = 1

2
φ̇2 + Pud(x sin φ − y cos φ) − Px cos φ − Py sin φ,

(B1)
which is conserved over the spatial configuration of the sheet,
i.e., H is independent of s. Then we differentiate Eq. (8) with
respect to s and utilize Eq. (B1) to simplify the result. This
gives

˙̇φ̇ +
(

1

2
φ̇2 − H

)
φ̇ + Pud = 0. (B2)

Equation (B2) describes the balance of normal forces on an
infinitesimal element of the sheet. The investigation of this
equation has been the subject of many recent studies that
are related to cylindrical configurations of fluid membranes
[51,68,69], folding of pressurized rings [70,71], deformation
of a carbon nanotube [72], and the mathematical investigation
of area-constrained elastica [50,73,74].

Not only does Eq. (B2) acquire an exact solution in terms
of the Jacobi Elliptic functions, its corresponding embed-
dings, i.e., the configuration on the xy plane, are given as a
function of the tangent angle φ(s) and its derivatives alone

[68]. Indeed, we can exploit Eqs. (8) and (B1) to obtain the
following trajectory:

x(s) = − φ̈

Pud
cos φ − φ̇2 − 2H

2Pud
sin φ + xo, (B3a)

y(s) = − φ̈

Pud
sin φ + φ̇2 − 2H

2Pud
cos φ + yo, (B3b)

where the constants xo and yo correspond to a rigid shift of the
elastic shape, and are yet to be determined by the boundary
conditions.

Following Ref. [51] the solution of Eq. (B2) is given by

φ(s) = Aβ − Bα

A − B
s + (A + B)(α − β )

2u(A − B)

×


(
− (A − B)2

4AB
, am(us + c, k2), k2

)

+ α − β

2u
√

k2 + (A−B)2

4AB

arctan

×
(√

k2 + (A − B)2

4AB

sn(us + c, k2)

dn(us + c, k2)

)
+ φ̄, (B4)

where φ̄ and c are arbitrary constants, and the functions cn,
am, dn, and 
 denote the elliptic functions [49,56,75]. In
addition, the various constants used in Eq. (B4) are given by

u =
√

AB

4
, A =

√
4η2+(3α + β )2, B =

√
4η2+(α+3β )2,

k2 = 1

2
− 4η2 + (3α + β )(α + 3β )

2AB
, (B5)

where α, β, and η are related to the roots of the polynomial
P(κ ) = 2e − 1

4κ4 + Hκ2 − 2Pudκ , and e is an unknown con-
stant. While α and β (α < β) correspond to the real roots
of P(κ ), the parameter η equals the imaginary part of the
complex conjugate pair of P(κ ).

This completes the analytical solution. In sum-
mary, to obtain the configuration of the sheet on the
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xy plane we first need to determine the constants
{xo, yo,H, φ̄, c, e, Pud} from the solution of the boundary
conditions, Eqs. (6) and (7). Then we can substitute

these constants in the tangent angle, Eqs. (B4) and
(B5), and utilize it to obtain the configuration from
Eq. (B3).
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