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Phase-field models for strongly anisotropic surface energy need to be regularized to remove the ill posedness
of the dynamic equations. Regularization introduces a new length scale, the corner size, also called the bending
length. For large corner size, with respect to interface thickness, the phase-field method is known to converge
asymptotically toward the sharp-interface theory when the appropriate approximation of the Willmore energy is
used. In this work we study the opposite limit, i.e., corner size smaller than the interface width, and show that
the shape of corners, at equilibrium, differs from the sharp-interface picture. However, we find that the phase
transition at the interface is preserved and presents the same properties as the classical problem.
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I. INTRODUCTION

Surface energy anisotropy is a predominant factor in in-
terface equilibria. Its effect on the equilibrium crystal shape
is a classical problem in material science [1–6]. For strong
anisotropy, the equilibrium shape may include sharp corners,
even for differentiable surface energy (i.e., no cusps). A corner
in an anisotropic crystal spans the so-called missing orien-
tations, i.e., interfacial orientations for which the energy is
nonconvex. The analogy to a phase transition is due to Cabrera
[4]. The equilibrium crystal shape corresponds to the convex
part of an appropriate potential, related to the form of the
surface energy, and the orientations on both sides of a sharp
corner are given by a common tangent condition. In between,
the missing orientations may be metastable or unstable when
the stiffness is negative. The latter instability is known as
spinodal of facets. In the case of negative stiffness, however,
the dynamic equations are backward parabolic, and the mathe-
matical problem is ill posed and needs to be regularized [4,7].

In the sharp-interface problem, for which the interface is
assimilated to a line (in two dimensions), regularization is
made by including higher order terms in the surface energy
[7–13]. In two dimensions, a curvature-dependent term is
added to the dimensionless surface energy γ̃ :

γ (θ ) = γ̃ (θ ) + α2

2
κ2, (1)

where θ is the surface orientation and κ is the curvature. The
curvature-dependent term is known to round the corners over
a length α and gives to corners an associated energy. This
results in equilibrium shapes with smoothed out corners and
circumvents the issue of low wavelength instability in the
dynamic setting. Thus, regularization introduces a new length
scale, α, to the original problem. Spencer [13] showed that
the regularized crystal shape converges asymptotically toward
the classical shape (with sharp corners) when α tends to
zero. This convergence guarantees the validity of the approach
in the sharp-interface framework when the corner size α is

small compared to the other physical lengths of the problem.
Spencer [13] also derived the analytical solution for a corner
at equilibrium.

On the other hand, interfaces are regarded as being dif-
fuse in many continuum theories. For instance, in phase-field
theory [14–16], rather than being sharp, the interface has a
nonzero thickness over which properties vary smoothly from
one set of bulk values to another. The phase-field model has
been widely used in material science to model microstructure
evolution in many different contexts [17]. It can be viewed
as a mathematical tool that allows a reformulation of sharp-
interface free-boundary problems [15]. Originally, surface
energy anisotropy was introduced in phase-field theories to
model dendritic growth [18]. Solidification of metals, one
of the main applications of the phase-field method, involves
rough interfaces of low anisotropy [19]. However, many other
systems, including semiconductor materials [20] and ceram-
ics or grain boundaries [21], to name a few, may require
the description of facets [22] or nearly faceted morphol-
ogy, for which the surface energy is strongly anisotropic. As
sharp-interface theories, phase-field models also need to be
regularized as the kinetic equations are backward parabolic for
negative stiffness. One possibility to regularize the model is to
convexify the surface energy [23–25] and therefore remove
the missing orientations; however, this also suppresses the
interfacial phase transition. Wheeler [26] proposed to supple-
ment the standard energy with the square of the Laplacian of
the phase field. This approach preserves the phase transition
at the interface, as shown by Wheeler [26], but the model does
not converge toward the regularized sharp-interface theory.
Significant progress was made by Torabi et al. [27]. In their
model, regularization is made using an appropriate approxi-
mation of the Willmore energy, and the model is constructed
such that the interface width is independent of its orientation.
It was shown in Refs. [27,28] that the model preserves the
phase transition at the interface while converging asymptoti-
cally toward the regularized sharp-interface theory when the
interface thickness ε is small compared to the corner size and
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the other length scales of the problem. As already mentioned,
the corner size α is also kept small in the sharp-interface
theory. Consequently, this phase-field model is a suitable re-
formulation of the original free-boundary problem in the limit
ε � α � 1.

In the present paper, we investigate the opposite limit
for α < ε. We are interested in deriving the shape of a
semi-infinite corner at equilibrium in this regime. To our
knowledge, the only solution for a corner in phase-field theory
is due to Wheeler [26]. We apply the same methodology. A
corner is divided into three different regions, two adjoining
interfaces and the corner region, and the method of matched
asymptotic expansions is used to find the solution in the dif-
ferent regions. In Sec. II, we present the phase-field model
and perform the asymptotic analysis for a corner in Sec. III.
Wheeler showed that, in the phase-field formulation, the cor-
ner problem has the character of a phase transition and is
governed by a steady Allen-Cahn equation for the slope. We
find a different Allen-Cahn equation, and our solution does
not converge toward the Spencer calculation [13] for a cor-
ner at equilibrium. However, the interfacial phase transition
is preserved and presents the same features as the classical
problem.

II. PHASE-FIELD MODEL

We present here the main equations of the regularized
phase-field model and give the asymptotic result for the nor-
mal velocity of the interface in the classical limit ε � α � 1.

A. Governing equations

The free energy for the phase field u is given by [27]

F =
∫

f dV, (2)

where the energy density f is the classical phase-field energy
to which a regularization term is added:

f = �(−→n )

ε

(
�(u) + ε2

2
|−→∇ u|2

)
+ α2

2ε

(
�u(u)

ε
− ε
u

)2

.

(3)

ε is the interface width. The last term in Eq. (3) intro-
duces a new length scale, the bending length α. H�(u)
is a double-well energy density; here �(u) = 1

2 (1 − u2)2 is
dimensionless, and the constant H sets the height of the
double-well function. �u is the first derivative of � with
respect to the phase field u. �(−→n ) is a dimensionless function
encoding anisotropy and therefore depends on the orientation
of the normal vector −→n , defined as −→n = −→∇ u/|−→∇ u|. �(−→n )
sets the magnitude of the surface energy γ0�(−→n ), where γ0

sets the interfacial energy scale and is related to phase-field
parameters by γ0 = ãεH , with ã = 4

3 for our choice of �(u).
The regularization term in the energy density is an approxima-
tion of the Willmore energy and is due to De Giorgi [29–33].
The Allen-Cahn equation sets the dynamics:

∂t u = − 1

τ ′ ε
δF

δu
, (4)

FIG. 1. Schematic of the front ζ .

where

δF

δu
= 1

ε
[�(−→n )�u(u) − ε2−→∇ · −→m ]

+ α2

ε3
[�uu(u)w(u) − ε2
w(u)]. (5)

w(u) = �u(u) − ε2
u, and

−→m = �(−→n )
−→∇u + P

−→∇n�(−→n )

(
�(u)

ε2|−→∇ u|
+ 1

2
|−→∇ u|

)
, (6)

with the projection matrix P = I − −→n ⊗ −→n , where I is the
identity matrix, and

−→∇ n = d
d−→n . Lengths are then rescaled by

distance D such as ε̃ = ε/D � 1 and α̃ = α/D � 1. Time
is rescaled by τ = τ ′/ε2. τ ′ is related to the sharp-interface
mobility M by τ ′ = ε/(̃aHM ), such that τ = D2/(Mγ0). In
two dimensions, the dimensionless evolution equation reads

ε4∂t u = − ε2{�(θ )�u(u) − ε2[
−→∇ · (�(θ )

−→∇ u)

− −→∇ · (�θ (θ )
−→
∇⊥u)]}

+ α2[ε2
w(u) − �uu(u)w(u)], (7)

where tildes are omitted for the sake of clarity. θ is the tangent
angle to the interface, measured counterclockwise from the
x axis (Fig. 1). tan θ = −nx/ny, with nx and ny being the
components of the normal vector −→n . Along the front ζ , in
the direction of increasing arc length s, the solid domain (�+,
u = +1) lies on the right, and the liquid domain (�−, u = −1)

lies on the left. In Eq. (7),
−→∇⊥ = (∂y,−∂x ), and the asymptotic

result near the interface has been used, �(u) = ε2|−→∇ u|2/2.
In this approximation, −→m also reads −→m = −|−→∇ u|−→� , with−→
� being the dimensionless Cahn-Hoffman vector [5] (see
the Appendix). In two dimensions,

−→
� = −�−→n − �θ

−→
t , with

−ny and nx being the components of
−→
t , the tangent vector to

the interface. Compared with the classical definition for
−→
ξ ,

the minus signs come from the fact that with our definition
the normal and tangent vectors point in opposite directions.

B. Interface velocity in the classical limit

The method of matched asymptotic expansions [29,34,35]
was used to derive the normal velocity of the interface in the
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limit ε � α � 1. In two dimensions, we found [28]

vn = �̂(θ )κ − α2(κss + 1
2κ3), (8)

where �̂(θ ) is the dimensionless surface stiffness, �̂(θ ) =
�(θ ) + �θθ (θ ). κ = ∂sθ is the interface curvature. κ is pos-
itive when the front ζ is convex, and vn is positive when the
front moves toward �−, i.e., when crystal grows. Equation
(8) is also the dimensionless equation for the sharp-interface
velocity [7,28,36–38]. Therefore, in the limit ε � α � 1, the
sharp-interface result was recovered. As a consequence, a
corner of size α in the phase-field framework is expected to
reproduce, at equilibrium (vn = 0), the sharp-interface corner
configuration, for which the analytical solution is known [13].
This has been confirmed by phase-field simulations [27]. In
the opposite case, α < ε, the effect of regularization on corner
morphology remains unclear. This regime is investigated in
the next section. Our purpose is to determine if the phase
transition at the interface is preserved.

III. CORNERS

The sharp-interface problem for regularized corners at
equilibrium was solved by Spencer [13]. Using matched
asymptotic expansions, the explicit solution for a rounded
corner was determined. The regularized solution was shown to
approach the sharp corner (of the nonregularized equilibrium
shape) as the corner size α approaches zero. The shape of
a semi-infinite corner was also determined; let us succinctly
present this calculation.

A. Sharp-interface description

Consider a semi-infinite concave corner (κ < 0) in equilib-
rium. Equation (8), for vn = 0, can be written as

�̂(θ )
dθ

ds
− α2

[
d3θ

ds3
+ 1

2

(
dθ

ds

)3]
= 0. (9)

The function θ (s), which defines the interface profile, satisfies
the following boundary conditions: θ → θ±∞ and κ → 0 as
s → ±∞. θ±∞ are the far-field corner orientations, as given
by the common tangent construction on the appropriate sur-
face energy potential: g = �/ cos θ [13]. For concave and
symmetrical corners, θ−∞ = −θ+∞ > 0 with our definition of
θ . Orientations in between are the so-called missing orienta-
tions, spanned by the common tangent in the nonregularized
equilibrium crystal shape, and exist in the non-convex part
of the potential g. This analogy with phase transitions was
studied by Cabrera [4] and Herring [2]. The prescription of
four boundary conditions to this second order partial dif-
ferential equation imposes a compatibility condition on the
far-field orientations. Consider the inner length scale S = s

α

and �( s
α

) = θ (s), the arc length parametrization of the scaled
profile. The vanishing chemical potential condition [Eq. (9)]
becomes (

∂2
� + 1

)(
1
2K

2 − �
) = 0, (10)

with K = ∂Sθ . We have K(� = θ±∞) = 0 and K(�)∂�K →
0 as � → θ±∞. Moreover, K 	= 0 for all � between the far-
field orientations. Functions φ that are a multiple of cos � are

solutions of (∂2
� + 1)φ = 0. Therefore,

1
2K

2 = �(�) + A cos �, (11)

where A is a constant determined by the boundary conditions.
Substituting the expression for A in Eq. (11) gives

1

2
K2 = �(�) − �(θ±∞)

cos (�)

cos (θ±∞)
. (12)

Differentiating with respect to � and taking the limit � →
θ±∞ yield the common tangent condition:

∂��(θ±∞) + �(θ±∞) tan (θ±∞) = 0. (13)

As they must, the far-field orientations correspond to the
stable orientations from each side of the corners of the equi-
librium crystal shape. The parametrized curvature K(�) is
obtained from Eq. (12):

K = −
√

2

√
�(�) − �(θ−∞)

cos (�)

cos (θ−∞)
. (14)

Without loss of generality, the condition S = 0 in � = 0 is
imposed. Once K is known, the profile is constructed using

S =
∫ �

0

1

K(u)
du, (15)

which can be inverted to find �(S) [13,36,37]. Equation (15),
together with Eq. (14), gives the shape of a corner in the sharp-
interface picture.

B. Diffuse corner theory

As we mentioned earlier, the present phase-field model
converges toward the sharp-interface results, Eqs. (8) and (9),
for ε � α � 1. In this regime, the two regularized models
coincide. Therefore, the shape of a corner in phase-field theory
will mimic Eqs. (14) and (15), which has been confirmed by
phase-field simulations [27]. We now investigate the oppo-
site limit for α < ε. The Allen-Cahn equation, Eq. (7), after
rescaling lengths by the dimensionless interface width ε, may
be written as

ε2∂t u = − �(θ )�u(u) + [
−→∇ · (�(θ )

−→∇ u)

− −→∇ · (�θ (θ )
−→
∇⊥u)]

+ α̂2[
w(u) − �uu(u)w(u)], (16)

with α̂ = α/ε. Consider the limit ε → 0, followed then by
the condition α̂ � 1. Therefore, we require α̂ � ε; that is,
the analysis is made in the particular limit ε2 � α � ε � 1.
A corner is pictured Fig. 2. Exterior to each side of the
corner, the regions are denoted regions 1 and 2 of Cartesian
coordinate systems (r1, q1) and (r2, q2), respectively. In the
inner corner region, the origin of the coordinate system (r, q)
is located in u = 0 and is common to the coordinate systems
of regions 1 and 2. In this problem there are two interfacial
layers; both u and

−→∇ u make a diffuse transition between their
bulk values, as we shall demonstrate. For such a corner at
equilibrium, the far-field orientations in regions 1 and 2, θ1

and θ2, respectively, will correspond to the thermodynamic
orientations, as given by the common tangent of the potential
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FIG. 2. Schematic of a corner in phase-field theory.

g; that is, the equilibrium values θ±∞ of the classical force bal-
ance at the edge, where the Cahn-Hoffman vectors coincide.

Leading order in ε gives

− �(θ )�u(u) + [
−→∇ · (�(θ )

−→∇ u) − −→∇ · (�θ (θ )
−→
∇⊥u)]

+ α̂2[
w(u) − �uu(u)w(u)] = 0. (17)

In region 1 (and region 2, by equivalence) the solution for the
phase-field profile is known [28]. Regularization was shown
to not modify, in this model, the interfacial profile of planar
interfaces in the limit ε � 1. Thus,

u(r1, q1) = tanh(−r1 + B1α̂), (18)

with B1 being a constant to be determined, which represents a
translation of the interface. In fact, the two interfaces (regions
1 and 2) adjoining the corner are translated by an extent O(̂α)
with respect to the corner.

Consider now the condition α̂ � 1. In the thin inner corner
region, the lateral coordinate q is scaled by α̂, l = q/α̂. The
phase-field in the inner corner region U (r, l ) is expanded in
powers of α̂:

U (r, l ) = U0(r, l ) + α̂U1(r, l ). (19)

In this coordinate system,

−→∇ u = Ur
−→
N + Ul

α̂

−→
M , (20)

−→
∇⊥u = −Ul

α̂

−→
N + Ur

−→
M , (21)


u = Urr + Ull

α̂2
, (22)


2u = Urrrr + 1

α̂4
Ullll + 2

α̂2
Urrll . (23)

Substituting those expressions in the Allen-Cahn equation at
leading order, Eq. (17), the leading order problem [at O(̂α−2)]
is

∂l (�(θ0)U0,l ) − U0,llll = 0. (24)

θ0 is defined from
−→∇ U at leading order. Matching with region

1 (or 2) requires

U0(r) = tanh[−r cos (θ1)]. (25)

In the following, we note tanh[−r cos (θ1)] = G(r).
The next order, at O(̂α−1), is

∂r (�θ (θ0)U0,l ) + ∂l (�(θ0)U1,l − �θ (θ0)U0,r ) − U1,llll = 0.

(26)
Then, we note v = U1,l . At leading order,

−→∇ U 0 = U0,r
−→
N + U1,l

−→
M = Gr

−→
N + v

−→
M (27)

as U0,l = 0. Thus, tan (θ0) = −v/Gr . Equation (26) may be
written as

−vlll + ∂l (�(θ0)v − �θ (θ0)Gr ) = 0 (28)

and is integrated once with respect to l:

−vll + �(θ0)v − �θ (θ0)Gr = C, (29)

with C being a constant. vll → 0 as l → ∞, with, concomi-
tantly, θ0 → θ1, for which the common tangent condition
imposes �(θ1) tan (θ1) + �θ (θ1) = 0; thus, C = 0. From v =
−Gr tan (θ0), we have

vl = −Grθ0,l sec2 (θ0) (30)

and

vll = −Gr

(
θ0,ll

1

cos2 (θ0)
+ (θ0,l )

22 tan (θ0)[1 + tan2 (θ0)]

)
.

(31)
Hence, Eq. (29) may be written as

θ0,ll
1

cos2(θ0)
+ (θ0,l )

22 tan(θ0)[1 + tan2(θ0)]

− �(θ0) tan(θ0) − �θ (θ0)

= 0, (32)

which gives the orientation profile along the corner θ0(l ). In-
troducing the slope q0 = tan (θ0), we can deduce an equation
for the slope in the inner corner region:

q0,ll = �(q0)q0 + �q0 (q0)
(
1 + q2

0

)
, (33)

which can be written as

�(q0)q0,ll = 1
2Gq0 (q0), (34)

with G = g2. As g is a double-well potential, from which the
thermodynamic orientations are derived by construction of the
common tangent, the potential G is also. We find, therefore,
a stationary Allen-Cahn equation for the slope, as in Wheeler
[26], which is characteristic of a phase transition at the inter-
face. This equation guarantees that the inner edge solution, at
leading order, satisfies the common tangent condition, even if
the orientation profile is, in this specific regime, quantitatively
different from the sharp-interface regularized result, the solu-
tion of Eq. (9).

Then, U1 can be determined from

U1 = −Gr

∫ l

0
q0dl + Q(r), (35)
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FIG. 3. A corner at equilibrium as given by a phase-field sim-
ulation for α̂ = 1/3. The color scale varies from black (u = +1)
to gray (u = −1). Level sets of u are represented by black solid
lines for the numerical solution and by white dotted lines for the
asymptotic solution. The solution for a corner in equilibrium in the
sharp-interface model is also shown (white solid line) at an arbitrary
location (near the level set u = 0 in this example).

with Q(r) being a yet undetermined function. Therefore, the
phase-field solution in the inner edge region is given by

U (r, l ) = G(r) + α̂[−GrP(l ) + Q(r)], (36)

with P(l ) = ∫ l
0 q0dl = R(l ) + l tan (θ1), where R(l ) =∫ l

0 [q0 − tan (θ1)]dl . Thus,

U (r, l ) = tanh[−r cos (θ1)]

+ α̂ tanh′[−r cos (θ1)][l sin (θ1)

+ R(l ) cos (θ1) + S(r) cos (θ1)], (37)

with S(r) = −Q(r)/Gr being still undetermined. The phase-
field profile in region 1, tanh (−r1 + B1α̂), can be written, for
small α̂, as

U (r, l ) = tanh[−r cos (θ1)] + α̂ tanh′[−r cos (θ1)]

× [l sin (θ1) + B1] (38)

since r1 = r cos (θ1) − q sin (θ1). Matching the inner corner
region (l → ∞) with region 1 determines the constants B1 =
R(∞) cos (θ1) and Q(r) = 0. Finally, once the slope profile
q0(l ) is known, from Eq. (34), the phase-field solution in the
inner corner region can be approximated by

U (r, l ) = G[r − α̂P(l )] (39)

for α̂ � 1. This asymptotic solution is compared to a phase-
field simulation for a corner at equilibrium (for α̂ = 1/3; see
Fig. 3) and for an arbitrary surface energy of stable orien-
tations given by the common tangent condition ±π/4. Very

good agreement is found. The sharp-interface solution for
a corner in equilibrium [Eqs. (14) and (15)] is also shown
in Fig. 3 for the sake of comparison. The slight differences
between the sharp-interface solution and the level sets of the
asymptotic solution are almost indistinguishable on the scale
of the interface width. The asymptotic solution, Eq. (39), is
quantitatively different from the corner solution derived by
Wheeler [26] since both anisotropy and regularization are
implemented in different ways. However, the two solutions
are, by nature, very similar. The connection with the Wheeler
model is made in the Appendix. The interface orientation
varies smoothly within the corner region through the range
of missing orientations, and the two interfaces adjoining the
corner are translated by an extent O(̂α). In this regime (α <

ε), the phase transition at the interface is therefore preserved.
The interface orientation satisfies the same common tangent
construction as the classical problem, even if the corner shape
is different from the sharp-interface result. In the opposite
limit, α > ε, the present model converges asymptotically to-
ward the sharp-interface theory, and by extension, the corner
shape is given by Spencer’s calculation; that is not the case for
Wheeler’s model [26].

IV. SUMMARY

In deriving the analytical solution for a diffuse corner in
the present phase-field model [27,28], we have shown that
the phase transition at the interface is also preserved in the
limit α < ε. As in Wheeler [26], the model presents two
types of phase transitions involving the phase field u and its
gradient

−→∇ u. In the region of a diffuse corner, both u and
the orientation of the interface, as given by

−→∇ u, vary con-
tinuously between their equilibrium values. It was found that
the interface orientation satisfies the same common tangent
construction as the classical problem and varies smoothly
through the range of missing orientations in the corner region.
As shown by Spencer [13], the regularized models require
α � 1. As a consequence, the classical limit ε � α is rather
restrictive in the phase-field method from a numerical stand-
point. Our calculation justifies larger interface widths while
preserving the interfacial phase transition and its properties,
but the asymptotic convergence toward sharp-interface cor-
ners is lost.
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APPENDIX: THE WHEELER MODEL

Kobayashi [18] was among the first to include surface
energy anisotropy in phase-field models in order to simulate
dendritic growth. In this class of phase-field models, the gra-
dient energy term is dependent on the interface orientation.
A similar formulation was studied by Taylor and Cahn [39]
in the case of faceting. In this context, the energy density

032801-5



THOMAS PHILIPPE PHYSICAL REVIEW E 103, 032801 (2021)

reads

f = 1

ε

[
�(u) + ε2

2
�

2
(
−→∇ u)

]
. (A1)

The isotropic case is recovered when �(
−→∇ u) = |−→∇ u|. Sur-

face energy anisotropy is reproduced when �(
−→∇ u) is an

appropriate function of −→n [39]. The consequences of nondif-
ferentiability and nonconvexity of gradient energy terms were
presented in the Taylor analysis [39]. Nondifferentiability is
out of the scope of our paper, but the problem was solved
by Taylor and Cahn [39]; however, in practice, this solution
is almost never used. The usual method consists of regular-
izing the cusps [40–42]. As is known, nonconvexity leads
to ill-posed equations. Convexification [23,39] of the surface
energy removes the ill posedness but also the interfacial phase
transition. In order to preserve the phase transition Wheeler
proposed to regularize the model by adding the square of the
Laplacian of the phase field to the energy density, Eq. (A1).
Furthermore, in the Wheeler formulation, the connection with
the Cahn-Hoffman

−→
ξ vector was made in choosing �(

−→∇ u) =
|−→∇ u|�(−→n ). This connection originates from the more general
definition of the Cahn-Hoffman vector provided by Taylor
et al. [43] where �(−→p ) = |−→p |�(

−→p
|−→p | ) for all nonzero vectors

−→p and where the components of the dimensionless Cahn-

Hoffman
−→
ξ vector are given by �i = − ∂�(−→p )

∂ pi
. The minus

sign comes from the fact that, compared to the classical def-
inition for

−→
ξ ,

−→∇ u and thus the normal vector point inside
the crystal in our model. With those definitions and adding
the regularization term α2ε

2 (
u)2 to the energy density, the

dimensionless Allen-Cahn equation can be written as

ε2∂t u = −�u(u) + −→∇ · [−�(
−→∇ u)

−→
� (

−→∇ u)] − α̂2
2u.

(A2)

Lengths have been scaled by the interface thickness. Applying
the definition for

−→
� , it can be shown that

−�(
−→∇ u)

−→
� (

−→∇ u) = �
2
(−→n )

−→∇u + |−→∇ u|�(−→n )P
−→∇n�(−→n ),

(A3)

where we recognize our definition for −→m , up to a factor
�(

−→∇ u), once the asymptotic result near the interface is intro-
duced in the variational expression for −→m , Eq. (6). Therefore,
the right-hand side reads �(

−→∇ u)−→m . As the asymptotic result
near the interface is used to express −→m in the current formula-
tion of our model, there is, in principle, a first order correction
in the corner region since the interfacial profile deviates from
the tanh solution. It can be shown that this correction has
no effect on the asymptotic analysis up to first order in α̂.
Therefore, our corner solution is also the solution of the vari-
ational model. Equation (A3) shows that the Wheeler model
and our phase-field model are connected to the Cahn-Hoffman
vector in a similar way, even though implementation of sur-
face energy anisotropy is quantitatively different. The other
difference is regularization, but our asymptotic analysis in
the limit of small corner size (Sec. III B) demonstrates that
only the square of the Laplacian of the phase field of Will-
more’s regularization intervenes in the Allen-Cahn equation
at O(̂α−2) and O(̂α−1), Eqs. (24) and (26). Therefore, up to
first order in α̂, the effect of regularization is identical in the
two phase-field models. As a result, the physics of corners is
similar in both models in the limit of only small corner size.
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