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In this work we have used lattice Monte Carlo to determine the orientational order of a system of biaxial
particles confined between two walls inducing perfect order and subjected to an electric field perpendicular
to the walls. The particles are set to interact with their nearest neighbors through a biaxial version of the
Lebwohl-Lasher potential. A particular set of values for the molecular reduced polarizabilities defining the
potential used was considered; the Metropolis sampling algorithm was used in the Monte Carlo simulations.
The relevant order parameters were determined in the middle plane of the sample and for some cases across
the whole thickness of the sample. We have determined the temperature–electric field phase diagram for this
system and found, as expected, five different system configurations corresponding to three different mesophases.
At low temperatures and low fields the system finds itself in an undistorted biaxial phase. On increasing the field
at low temperatures, a Freedericksz transition takes place and the secondary directors reorient towards the field
while the primary director stays undistorted and parallel to the walls. On increasing the field further, a second
Freedericksz transition occurs and the primary director orients also towards the field direction. The orientational
order measured at the field strengths tested is not affected by the field. On increasing the temperature, a transition
to a uniaxial phase occurs and within the range of this phase a field increase leads also to a Freedericksz transition
where the main director reorients towards the field. At higher temperature a transition to a disordered phase is
found. We have performed finite size scaling analysis for the Freedericksz critical fields and found that they
scale with the distance L between the walls as L–1 as expected from continuum theory. From these fields we
have also determined the temperature dependence of two elastic constant ratios. Critical exponents and critical
temperatures for the order parameter and the correlation length for the biaxial-uniaxial phase transition and the
uniaxial to disordered phase transition were also determined by finite size scaling and are discussed.
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I. INTRODUCTION

Biaxial nematics have attracted significant attention from
liquid crystal researchers since the 1970s; the seminal works
of Freiser [1], Alben [2], and Straley [3] paved the way
for a large body of both theoretical and experimental stud-
ies dedicated to this subject. Considered by many as one
of the important problems in liquid crystal physics [4], it
is one more case where experimental evidence [5] lagged
behind theoretical predictions [1]. One of the techniques that
allowed significant progress in this area is Monte Carlo sim-
ulations that were used early in studying this problem [6]
and have been explored quite extensively ever since [7]. The
experimental evidence for the spontaneous formation of a
macroscopic thermotropic biaxial nematic monodomain, as
proposed by Freiser [1], has been lacking in low molecular
weight liquid crystals [4]. The known results are consistent
with the macroscopic ordering of local biaxial domains under
the effect of directional surface anchoring or applied aligning
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fields, which led to the development of the cluster model of
biaxial nematics. The basic assumption of this model is a
nematic phase consisting of biaxial microdomains which, in
the absence of external stimulus, are randomly distributed into
a macroscopically uniaxial nematic state [8].

The response of a bulk biaxial nematic to an applied ex-
ternal field has been studied by several authors [9–11]. In
Ref. [11] virtual molecular dynamics computer experiments
on biaxial Gay-Berne particles were analyzed and it was found
that switching of the secondary directors is up to an order
of magnitude faster than that of the main director. This fact
indicates that the biaxial elastic constants are expected to be
significantly weaker than the uniaxial ones.

Capacitance measurements were performed on an
organosiloxane tetrapode material as a function of the
applied AC voltage, exhibiting a biaxial nematic phase [12].
For a planar sample, in the uniaxial nematic (NU ) temperature
range, the Freedericksz transition occurs and the capacitance
starts to rise as V increases from the critical value, as the
director aligns with the applied field. In the biaxial nematic
(NB) phase it could be expected that beyond the field induced
reorientation of the primary director, a reorientation of the
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FIG. 1. Biaxial molecules with orthorhombic symmetry are con-
sidered; x, y, z: molecular principal axis.

secondary directors would occur. This occurrence was not
experimentally observed, although the secondary directors
could, in principle, reorient at either a much lower or
much higher threshold voltage than the primary director,
and in this way escape direct observation in the work by
Polineni et al. [12].

In this work, a sample geometry where the long axis and
the face of the molecules are anchored parallel to the wall and
the field is applied perpendicular to the wall is considered for
the Monte Carlo simulations. The MC simulations are carried
out using a biaxial version of the Lebwohl-Lasher potential
[13,14] with a particular set of values for the reduced molec-
ular polarizabilities defining the potential [15]. For several
values of the thickness of the cell, (1) we study the transition
from the surface aligned to the field aligned state of both
the principal and the secondary axes, and obtain the corre-
spondent Freedericksz critical fields; (2) we obtain the critical
temperatures and critical exponents of the uniaxial and (the
more relevant) biaxial order parameters, for a (weaker than
the critical) value of the applied field. The characterization
of the system is necessary in order to determine the biaxial
and the uniaxial range, in the first place. It is shown that at
low temperatures a biaxial phase and a subsequent uniaxial
phase are present and the field effect simulations can thus be
performed.

II. SINGLE SITE LATTICE MODEL

The liquid crystal is described by a collection of fixed
interacting sites on a three-dimensional (3D) lattice, with
orientational degrees of freedom. The interacting sites may
represent a single molecule or a uniformly oriented mi-
crodomain with orthorhombic symmetry, in the context of the
cluster model [8]. See Fig. 1.

The working lattice dimensions are d × L × d sites, with
L = 10, 20, 30, 40, and 60. The L dimension gives the thick-
ness of the cell, upon which are imposed rigid boundary
conditions corresponding to planar alignment of the uniaxial
director and with the faces of the molecules parallel to the
wall. On the two other directions periodic boundary condi-
tions are imposed. Values d = 6, 8, 10, 12, 14, 16, and 18,
were used, which allows a finite size scaling analysis to study
the thickness dependence of the Freedericksz critical fields

and of the critical temperatures and exponents of the relevant
order parameters, in both the biaxial and the uniaxial phases.

III. BIAXIAL SYSTEM AND INTERACTION POTENTIAL

The pair potential is a biaxial generalization to D2h

symmetry of the Lebwohl-Lasher potential [14] used by sev-
eral authors to study liquid crystal (LC) systems of biaxial
molecules [16–18] in Cartesian form [16]; it reads

U = − ε[(3V33 − 1)/2 − λ
√

6(V11 − V22)

+ λ2(V11 + V22 − V12 − V21)], (1)

where Vi j = (ui · v j )2 and ui, v j , i, j = 1, 2, 3, are the
three axes of the two interacting molecules. As shown in
Refs. [19,20], U is made up of couplings between the princi-
pal axes of neighboring molecules, and constitutes a particular
case of the more general potential studied there. ε is an
interacting energy between neighboring particles and λ is
a parameter depending on molecular properties. In the case
of dispersive interactions, and considering mesogens as rigid
boardlike particles, the parameter λ can be expressed in terms
of the diagonal elements of the reduced polarizability tensor
α of the molecule [16]:

λ =
√

3

2

αxx − αyy

2αzz − (αxx + αyy)
. (2)

The reduced energy U/ε is used in the simulations.
λ = 0 corresponds to the uniaxial system. The value λ =
1/

√
6 ∼= 0.408 characterizes the change from prolate to oblate

molecules. The following reduced polarizabilities, defined rel-
atively to the principal molecular axes [15], are used in the
simulations with the applied field: αzz = 0.6, αxx = 0.3, and
αyy = 0.1, which give λ ∼= 0.306, in the prolate region. The
choice of these values for the reduced polarizabilities was
motivated by their use in the mean field theory study reported
in Ref. [15]. Their study indicates that, in the prolate uniaxial
nematic NU phase, the axis associated with the largest polariz-
ability tends to align in a preferred direction, while the minor
axes associated with the smaller polarizabilities are randomly
distributed in a plane which is orthogonal to the preferred
direction of the largest axis. In contrast, in the biaxial NB phase
the minor axes show strong biaxiality ([15], p. 484).

IV. ORDER PARAMETERS

In this section we outline the calculation of the order
parameters necessary to describe uniaxial and biaxial order-
ing. For a rigid molecule or molecular segment this can be
achieved by the ordering matrix [21],

Si j
αβ = 〈

3
2 cos(θiα )cos(θ jβ ) − 1

2δi jδαβ

〉
, (3)

where 〈〉 denotes an ensemble average and θiα is the angle
between the i axis of the laboratory axes frame and the α axis
of the rigid molecule or molecular segment axes frame. δi j

is the Kronecker symbol. For a rigid molecule or molecular
segment with D2h symmetry and limiting the characterizable
systems to those with D2h symmetry or higher, the relevant
order parameters can be reduced to four by a proper choice of
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FIG. 2. Geometry of the sample.

both the molecule and the laboratory axes frames [21].

S ≡ SZZ
zz , (4a)

P ≡ SXX
zz − SYY

zz , (4b)

D ≡ SZZ
xx − SZZ

yy , (4c)

C ≡ SXX
xx − SXX

yy − SYY
xx + SYY

yy . (4d)

S gives the degree of uniaxial order and C is a measure
of intrinsic biaxiality and is the most appropriate quantity to
identify the biaxial phase. P is a phase biaxiality parameter
and D is a molecular asymmetry parameter [21].

The appropriate reference frames involved in the determi-
nation of the four order parameters S, D, P, and C include
the molecular frame x, y, z and the laboratory frame X , Y , Z .
The x, y, z molecular frame has its axes coinciding with the
symmetry axes of the D2h symmetric molecule and was de-
fined as the eigenframe of the molecular polarizability tensor.
Regarding the X , Y , Z laboratory frame, the Z axis is deter-
mined as the axis parallel to the eigenvector ûZ , of the Saupe
tensor Si j

zz associated with the largest eigenvalue. The tensor
Si j

xx was also diagonalized and the eigenvector ûX ′ , associated
with its largest eigenvalue modulus, was used to define the Y
axis through the relation ûY = ûZ × ûX ′

|ûZ × ûX ′ | . The tensors Si j
zz and

Si j
xx are calculated at the end of each Monte Carlo cycle for

the different L layers in the sample, using the laboratory fixed
reference frame (X0,Y0, Z0). The order parameters S, D, P,
and C can be cast in terms of the Euler angles ф, θ , � defining
the spatial orientation of the molecular x, y, z frame in the X ,
Y , Z laboratory frame.

At the walls, the long axis of the molecule points in the Z0

direction and the face is parallel to the wall. n0, l0, and m0

are the triplet of directors, corresponding to D2h symmetry,
at the walls and uniformly across the sample at the initial
configuration.

In the convention described in Fig. 2 [22], the order param-
eters can be written as [17]

S ≡ SZZ
zz = 〈

R2
0,0

〉 = 1
2 〈3cos2θ − 1〉, − 1

2 � S � 1, (5a)

P ≡ SXX
zz − SYY

zz =
√

6
〈
R2

2,0

〉 = 3
2 〈sin2θcos2φ〉, (5b)

D ≡ SZZ
xx − SZZ

yy =
√

6
〈
R2

0,2

〉 = 3
2 〈sin2θcos2ψ〉, (5c)

C ≡ SXX
xx − SXX

yy − SYY
xx + SYY

yy = 6
〈
R2

2,2

〉
= 3

〈
1
2 (cos2θ + 1)cos2φ cos2ψ

−cosθ sin2φ sin2ψ〉, −3 � C � 3, (5d)

where 〈〉 denotes an ensemble average.
In a Monte Carlo cycle (MCC), i.e., one run over the lattice,

in each step on consecutive sites one of the Euler angles is
randomly chosen with a value between 0◦ and 360◦, also
randomly chosen. This move is accepted or not according to
the Metropolis method [23]. For the calculation of the relevant
quantities, the Metropolis sampling algorithm is used. Two
million MCCs were used for equilibration and subsequently
the averages were calculated over 1 000 000 MCCs.

t
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FIG. 3. Comparison between the temperature dependencies of
the order parameters S and C for our y-bounded samples (filled
circles and triangles) with λ = 0.306, L = ny = 30, nx = nz = 10,
determined halfway between the y bounds and the S and C values
(marked with ∗) for unbounded samples, with λ = 0.3 and nx = ny =
nz = 10 [17].
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FIG. 4. Comparison between the temperature dependencies of
the order parameters S and C for our y-bounded samples (filled sym-
bols) with λ = 0.4, L = ny = 40, nx = nz = 10, determined halfway
between the walls and the S and C values (marked with ∗) for
unbounded samples with λ = 0.408 and nx = ny = nz = 10 [17].

V. THERMAL CHARACTERIZATION OF THE SYSTEM

The simulations are started with a uniformly oriented sam-
ple, where the molecules are ordered like books in a bookcase,
with strong anchoring at the walls. Our results for the or-
der parameters are consistent with the ones obtained from
calculations with respect to the instantaneous orientation in
unbounded samples [17,24] and references therein as shown
in Figs. 3 and 4. At low temperatures, a biaxial nematic phase
(NB) shows up, where the molecules or the clusters align not
only their major axes but also their faces. At higher temper-
atures, the plot of the order parameters as a function of the
reduced temperature t = kBT/ε shows two temperature driven
phase transitions: a biaxial-uniaxial transition to a uniaxial
nematic phase (NU ) and a uniaxial-isotropic transition to an
isotropic phase (I). These figures are shown just for the sake
of comparison with published results. In what follows we will
systematically study the critical temperatures for our systems.

VI. EFFECT OF AN APPLIED ELECTRIC FIELD

The goal is to calculate the effect of an applied electric
field normal to the boundaries (a) on the director deviations

Y
5 10 15 20 25 30

S
'

-0.6

-0.2

0.2

0.6

1.0

h=0 
h=0.148 
h=0.210 
h=0.257 
h=0.297 
h=0.332 
h=0.363 
h=0.392 

FIG. 5. Y dependence values for the order parameter S′ for t =
0.1 and different fields with strengths indicated, going above the
Freedericksz transition field for the main director. nx = nz = 10,
L = ny = 30.
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FIG. 6. Y dependence of the apparent values for the order pa-
rameter C′/6 for t = 0.1 and different fields strengths as indicated.
nx = nz = 10 and L = ny = 30.

from the boundary imposed orientation and (b) its effect on
the intrinsic nematic order.

The interaction energy of a single molecule with the ap-
plied field is given by

U = ξ E2
∑

i

εi, (6)

where ξ determines the sign and the strength of coupling with
the electric field E , and

εi = −αii
1
2 [3(ui · e)2 − 1], i = x, y, z, (7)

where the αii are the reduced polarizabilities, defined above,
such that

∑
i αii = 1, the ui are the three axes of the molecule,

and e is the direction of the applied field [15].
As in the calculations of the reduced anisotropic pair in-

teraction, the energy U/ε is used; the parameter entering the
simulations for the energy associated with the (local) field
strength acting on each site is h2 ≡ ξE2/ε. In the following,
we study both the effect, measured by the order parameters,
of the variation of the average orientation of the molecules
with respect to the anchoring walls and of the variation of the
intrinsic order (uniaxial or biaxial) with the applied field (see
Discussion). The results were obtained with the values of the
reduced polarizabilities given above.

h
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l  =18

FIG. 7. Field dependence of the apparent order parameter S′ de-
termined halfway between the sample walls for t = 0.1, ny = 30 and
different values of l = nx = nz ranging from 6 to 18.
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FIG. 8. Field dependence of the apparent order parameter C′/6
determined halfway between the sample walls for t = 0.1, ny = 30
and different values of l = nx = nz ranging from 6 to 18.

Order parameters

Figures 5 and 6 report the y dependence of the apparent
values for the order parameters S and C/6, named, respec-
tively, as S′ and C′/6 (as the values obtained for S and C are
not their true values because their expressions were evaluated
considering the laboratory frame X0, Y0, Z0 and not the X ,
Y , Z frame indicated above) within the sample for different
fields within the NB phase with t = 0.1. Figures 7 and 8 report
the electrical field dependence of the apparent values for the
order parameters S′ and C′/6 determined halfway between
the sample walls within the NB phase for t = 0.1, ny = 30,
and different values of l = nx = nz ranging from 6 to 18. The
Freedericksz transitions corresponding to the reorientation of
the primary and secondary directors n and m, l , respectively,
are clearly evidenced by the field dependence of the apparent
values of the order parameters S′ and C′/6, respectively. The
successive reorientation of the secondary (m, l) and primary
(n) directors as the applied field grows is schematically de-
picted in Fig. 9.

The behavior of the order parameters’ field susceptibil-
ities as a function of the applied field is a good indicator
of the onset of a phase transition. Here the interesting

ones are the S and C susceptibilities. These quantities are
calculated from the fluctuation-dissipation relations χS =
N (〈S2〉–〈S〉2)/(kBT ) and χC = N (〈C2〉–〈C〉2)/(kBT ), reduced
by the sample size, which allows direct comparison for differ-
ent sample sizes or the derivatives of the order parameters with
respect to the field and are reported in Figs. 10 and 11.

Figures 12–15 report a systematic determination of the
reduced temperature dependence of the order parameters S
and C and also their apparent values for h = 0.

VII. SYSTEM PHASE DIAGRAM

A phase diagram for the system was determined in the t-h
plane and is shown in Fig. 16. Five system configurations
and three phases are detected as expected. The transition lines
were determined from the peak positions of the order param-
eter temperature and field susceptibilities. The transition lines
are all continuous in this case due to the y confinement of
the system and the limited nx = nz size. The NB-NU phase
transition temperature shows an increase of 4.7% in the field
range of h = 0.1 to 0.2 while the NU -I (isotropic) phase
transition temperature shows a steady increase dt/dh of 0.37
for h in the interval 0.15–0.3. The Freedericksz critical fields
for the NB1-NB2 and NB2-NB3 transitions, respectively, E1c and
E2c, show relatively steady values over the majority of the NB

range and their ratio E2c/E1c = h2c/h1c varies between 1.43
and 1.74. Regarding the experimental accessibility of these
fields, the field E2c was easily reached in a tetrapode system
reported in Ref. [12] by Polineni et al. but as discussed before
E1c could not be experimentally detected in that work.

VIII. FREEDERICKSZ CRITICAL FIELDS
AND ELASTIC CONSTANTS

The Freedericksz transition fields shown in the systems’
phase diagram (see Fig. 16) can be used to determine relations
between the elastic constants and the electric permittivities as
defined in the continuous description of field induced nematic
distortions [25].

FIG. 9. Case (a) reports the initial director configuration, as in Fig. 2. [S′ = 1, C′/6 = 1/2 (athermal)]. Case (b) shows the directors
configuration after a 90◦ rotation around n0 (S′ = 1, C′/6 = –(1/2) (athermal)]. Case (c) reports the director configuration after a second 90◦

rotation around m1 [S′ = –(1/2), C′/6 = –(1/4) (athermal).
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FIG. 10. Order parameters’ susceptibilities as a function of ap-
plied field obtained from the fluctuation-dissipation relation, for the
apparent order parameters S′ and C′/6 reported in Figs. 7 and 8.

Considering the elastic free energy density for the biaxial
nematic phase proposed by Trebin [26] along with the sim-
plifying assumptions listed below and the nematic directors
n, m, and l parallel, respectively, to the Z , Y , X axes of the
laboratory frame expressed in terms of the Euler angles α,
β, and δ, one obtains for the elastic contribution to the free
energy density of the nematic the expression

2Fk =
{

kn1cos(α)2sin(β )2 + 1

4
kn2sin(α)2sin(2β )2

+ kn3

[
sin(β )2 − cos(α)2 − 1

4
sin(α)2sin(2β )2

]
+ km(1 + cos(β )2)

}(
∂α

∂y

)2

+ 1

2
(kn1 − kn2)

× sin(2α)sin(2β )

(
∂α

∂y

)(
∂β

∂y

)
+ {kn1sin(α)2cos(β )2

+ kn2cos(α)2 + kn3sin(α)2sin(β )2 + km}
(

∂β

∂y

)2

+ 2kmcos(β )

(
∂α

∂y

)(
∂δ

∂y

)
+ km

(
∂δ

∂y

)2

(8)
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FIG. 11. Order parameters’ susceptibilities as a function of ap-
plied field obtained from –dS′/dh, –d (C′/6)/dh, for the apparent
order parameters S′ and C′/6 reported in Figs. 7 and 8.

Expression (8) stems from Ref. [26] when the elastic con-
stants for the secondary directors are all assumed identical
to km and the cross terms between different directors are
neglected; also the Euler angles α, β, and δ are assumed
to be solely dependent upon the y coordinate which runs
normal to the boundary plates. The contribution to the free
energy from the interaction with the electrical field takes

t
0.8 1.0 1.2 1.4 1.6
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0.2

0.4

0.6

0.8
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l =8
l =10
l =12
l =14
l =16

FIG. 12. Reduced temperature dependence of the apparent or-
der parameter S′ determined halfway between the sample walls for
ny = 30 and different values of l = nx = nz ranging from 6 to 16 and
h = 0. The error bars indicate the standard deviation of the reported
values.
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FIG. 13. Reduced temperature dependence of the order parame-
ter S determined halfway between the sample walls for ny = 30 and
different values of l = nx = nz ranging from 6 to 16 and h = 0. The
error bars indicate the standard deviation of the reported values.

the form

2FE = −E2
y

{
εnnn2

y + εmmm2
y + εll l

2
y

}
, (9)

where εii are the electrical permittivities.
The total free energy density FK + FE along with the geom-

etry of the problem lead to the existence of two Freedericksz
transition fields E1c and E2c given by

E1c = π

L

√
2km

εll − εmm
= h1c

(
ε

ξ

)1/2

,

E2c = π

L

√
kn1 + km

εnn − εmm
= h2c

(
ε

ξ

)1/2

. (10)

E1c corresponds to the onset field for a distortion involving
exclusively a reorientation of the secondary directors l and m
and E2c corresponds to the onset field for a distortion involv-
ing the reorientation of the primary director n. Combining
the expressions in Eq. (10) with the known relations for the
permittivity tensor components [27] one obtains for the ratio

t
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FIG. 14. Reduced temperature dependence of the apparent or-
der parameter C′ determined halfway between the sample walls for
ny = 30 and different values of l = nx = nz ranging from 6 to 16 and
h = 0. The error bars indicate the standard deviation of the reported
values.

t
0.3 0.4 0.5 0.6 0.7 0.8

C

0.0

0.5

1.0

1.5

2.0

2.5
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l=8
l=10
l=12
l=14
l=16

FIG. 15. Reduced temperature dependence of the order parame-
ter C determined halfway between the sample walls for ny = 30 and
different values of l = nx = nz ranging from 6 to 16 and h = 0. The
error bars indicate the standard deviation of the reported values.

of elastic constants km/kn1 and the reduced elastic constants
sum (kn1 + km)/ka the following expressions:

km

kn1
=

[
2

(
h2c

h1c

)2
α1(S+P/3)+α2(D/2+C/6)

2α1P/3+α2C/3
−1

]−1

,

kn1 + km

ka
= h2

2c [α1(S + P/3) + α2(D/2 + C/6)], (11)

where α1 ≡ αnn − (αll + αmm)/2, α2 ≡ αll − αmm, and ka ≡
3( L

π
)2 ε

ξ
χ̄ . χ̄ is the isotropic part of the electric susceptibility

tensor. The relations in Eq. (11) are graphed in Fig. 17 for the
temperature range 0.1–0.4. with ny = 30 and nx = nz = 16.

IX. FINITE SIZE SCALING ANALYSIS FOR THE
FREEDERICKSZ CRITICAL FIELDS

In this section we report the finite size scaling analysis for
the Freedericksz critical fields observed for slab thicknesses of
ny = L = 10, 20, 30, and 40 layers, respectively. The values
of the critical fields hc(d ) determined from the maximums of
the apparent order parameters’ S′ and C′/6 susceptibilities are
fitted with the values of d = nx = nz = 6, 8, 10, 12, 14, and

t
0.2 0.4 0.6 0.8 1.0 1.2

h

0.00

0.05

0.10

0.15

0.20

0.25

0.30

NU1

I

NU2

NB1

NB2

NB3

FIG. 16. System’s phase diagram in the t-h plane. NB1: undis-
torted biaxial nematic phase; NB2: biaxial nematic with secondary
director aligned with the field; NB3: biaxial nematic with main direc-
tor aligned with the field. NU1: undistorted uniaxial nematic; NU2:
uniaxial nematic with director aligned with the field. I: isotropic
phase.
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t
0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.00

0.04

0.08

0.12
Km/Kn1
(Kn1+Km)/Ka

FIG. 17. Temperature dependence of the elastic constant ratios
Km/Kn1 and (Kn1 + Km )/Ka, showing a sharp decrease of Km as the
NB-NU phase transition is approached.

16, using the following function:

1

hc(d )
= 1

hc(d → ∞)
− const.

nx
. (12)

See Figs. 18–20 and Table I. Figure 20 shows that both
hcS (∞) and hcC (∞) are both proportional to n(−1)

y as expected
from continuum theory [25].

X. CRITICAL TEMPERATURES
AND CRITICAL EXPONENTS

In this section we report on the critical behavior of the
order parameters S and C, and the correlation lengths for the
NU -I and NB-NU phase transitions as determined from finite
size scaling analysis using the data collapse method [28,29].
The analysis was carried out for L = ny ranging from 10
to 60 and for each ny, the set of collapsed order parameter
curves considered included l = nx = nz ranging from 6 to
20. In the vicinity of the NU -I transition which is continuous
in our confined system it is possible to write S ∝ |tr |β and
ξS ∝ |tr |–ν , where tr ≡ (t–tc)/tc, ξS is the correlation length,
tc is the reduced critical temperature for the transition, and
β and ν are critical exponents for the different quantities.

nx
-1

0.06 0.08 0.10 0.12 0.14 0.16

1/
h cS

0

2

4

6

8

ny=10

ny=20

ny=30

ny=40

FIG. 18. 1/hcS dependence on 1/nx for the samples with different
layers (ny = 10 to 40) used in the scaling analysis of the Freedericksz
critical fields for the main director reorientation.

nx
-1

0.06 0.08 0.10 0.12 0.14 0.16

1/
h cC

0

2

4

6

8

10

12

ny=10

ny=20

ny=30

ny=40

FIG. 19. 1/hcC dependence on 1/nx for the samples with dif-
ferent layers (ny = 10 to 40) used in the scaling analysis of the
Freedericksz critical fields for the secondary director reorientation.

Similar relations hold for C and ξc near the NB-NU transition
with different values for Tc, β, and ν. Following Ref. [28] we
consider a scaling function S̃ given by

S̃
(
l1/νtr

) = lβ/νS(tr ),

which in accord with scaling analysis is independent of the
system dimension l = nx = nz. Consequently, the different
curves for S̃ obtained from the data sets with different l should
coincide if Tc, β, and ν have the correct values for the tran-
sition. A similar calculation was carried out for the C order
parameter at the NB-NU phase transition. The curves for S and
the collapsed curves for S̃ are shown in Figs. 21 and 22. The
critical temperature and the critical exponents’ dependence on
ny for the order parameter S at the NU -I phase transition are
shown in Fig. 23; a plateau is approached as ny goes above
30.

The curves for C and the collapsed curves for C̃ as a
function of the reduced temperature are shown in Figs. 24 and
25. Figure 26 reports the reduced Tc, β, and ν dependencies
on the system dimension l for the NU -NB transition. A plateau
is approached as l increases.

The extrapolation of the values of the above critical ex-
ponents and critical temperature for S at the I-N transition

ln(ny)
2.0 2.5 3.0 3.5 4.0

-3

-2

-1

0

ln(hcS)
slope=-1.0036

ln(hcC)
slope=-1.0147

FIG. 20. Fit of ln[hc∞(ny )] vs ln(ny ), L = ny = 10, 20, 30, 40—
circles: hcS; squares: hcC . Linear fit equations: S: 1.80–1.0036x; C:
1.3747–1.0147x. Thus hc∞(ny ) ∝ ny

−1, as expected from the contin-
uum theory [25].
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TABLE I. Fitting parameters 1/hcS (∞), const.S , 1/hcC (∞), and
const.C obtained by fitting Eq. (12) to the data shown in Figs. 18
and 19.

ny 1/hcS (∞) const.S 1/hcC (∞) const.C

10 1.66 ± 0.02 0.3 ± 0.2 2.58 ± 0.02 1.4 ± 0.2
20 3.36 ± 0.05 0.5 ± 0.5 5.33 ± 0.07 3.4 ± 0.7
30 5.12 ± 0.08 1.8 ± 0.8 8.30 ± 0.08 6.9 ± 0.8
40 6.6 ± 0.2 0.1 ± 1.7 10.3 ± 0.2 3.9 ± 2.0

when L → ∞ gives ν = 0.522 ± 0.008 (0.512 ± 9 × 10–4),
β = 0.281 ± 0.003 (0.278 ± 3 × 10–6), and Tc = 1.1160 ±
2 × 10–7; the values parenthesized and Tc were obtained with-
out the first point.

Using the following relations between the critical expo-
nents [30],

Josephson: (2−α)/νd = 1, where α is the heat capacity
critical exponent and d the dimension,

Rushbrooke: α + 2β + γ = 2, where γ is the order param-
eter susceptibility critical exponent,

and taking d = 3, gives α = 0.434 (0.464), γ =
1.004 (0.982) that, together with the value(s) found for
β, approach the values expected for a tricritical point [30]:
α = 0.5, β = 0.25, γ = 1, which could be indicating the
proximity of a tricritical point.

Parameter C

The extrapolation of the values of the above critical ex-
ponents and critical temperature for C at the biaxial-uniaxial
transition for L → ∞ gives ν = 0.677 ± 0.006 (0.672 ±
9 × 10–4), β = 0.316 ± 0.003 (0.313 ± 8 × 10–6), and Tc =
0.4305 ± 5 × 10–8, the values parenthesized and Tc were ob-
tained without the first point, as before.

Using the Josephson and the Rushbrooke relations between
the critical exponents and taking d = 3, as for the parameter
S, we find α = −0.031 (−0.016), γ = 1.398 (1.390). These

t
0.9 1.0 1.1 1.2 1.3

S

0.0

0.2

0.4

0.6

0.8
l=6
l=8
l=10
l=12
l=14
l=16
l=18
l=20

FIG. 21. Reduced temperature dependence of the order parame-
ter S over the transition NU -I for eight different values of the system
size in the x and z directions, l = nx = nz ranging from 6 to 20 and
ny = 40.

(l1/v tr)

-60 -40 -20 0 20 40

S

0

1

2

3
l=6
l=8
l=10
l=12
l=14
l=16
l=18
l=20

S~  

FIG. 22. S̃ scaling function curves as a function of (l1/νtr ) for
eight different values of l = nx = nz ranging from 6 to 20 and ny =
40; the curves collapse can be observed.

values suggest that this transition belongs to the 3D XY model
universality class [31,32].

XI. DISCUSSION AND CONCLUSIONS

The order parameters’ t-h dependencies obtained show that
the system exhibits five different configurations compatible
with three distinct phases in the t-h range explored. The
phases observed comprise an isotropic phase at higher temper-
atures, a uniaxial nematic at intermediate temperatures, and a
biaxial nematic at the lowest temperatures. This is a particular
case of the more general related system behavior studied in
Refs. [19,20]. The electric field is seen to drive Freedericksz
transitions in both the uniaxial and the biaxial nematics with
the presence of two such transitions in the biaxial nematic, one
occurring at the lower field associated with the reorientation of
the secondary directors and the other occurring at higher field
associated with the reorientation of the main director. The
intrinsic order quantified by order parameters S and C seems
largely unaffected by the electric field in the range explored.
All the phase transitions observed either t driven or h driven

ny

10 20 30 40 50 60
0.0

0.5

1.0

1.5

tC
v
B

FIG. 23. Sample thickness L = ny dependence of the critical
temperature Tc and the critical exponents ν and β for the order
parameter S at the NU -I phase transition. The dotted lines are guides
to the eye.
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t
0.35 0.40 0.45 0.50 0.55

C

0

1

2

l=6
l=8
l=10
l=12
l=14
l=16
l=18
l=20

FIG. 24. Reduced temperature dependence of the order param-
eter C over the transition NB-NU for eight different values of the
system size in the x and z directions; l = nx = nz ranging from 6
to 20 and ny = 40.

were found to be continuous, and while this was expected for
the h driven transitions, for the order-disorder transition this is
most probably a consequence of the confinement and limited
size of the systems studied.

Regarding the system’s field response, in the frame of the
sample, the apparent uniaxial order parameter S′ decreases
weakly up to reduced fields h ≈ 0.02 in the bulk, as the main
director is strongly anchored to the wall and at the working
temperature the uniaxial elastic constants are very strong. The
marked decrease to negative values after the plateau indicates
the onset of the Freedericksz transition of the main director.
At stronger fields a saturation transition is expected, where
S → −1/2, i.e., n aligning with the field in the bulk of the
sample [33]. A similar prediction was made using a Landau
theory for molecules with cylindrical symmetry in a biaxial
phase [34].

In the frame of the sample, the biaxial directors are strongly
affected by the applied field in the bulk, as indicated by the
behavior of the apparent order parameter C′ taking negative
values as the field increases (the faces of the molecules tend

(l1/v tr)
-20 -10 0 10 20

C

0

2

4

6

8

10

l=6
l=8
l=10
l=12
l=14
l=16
l=18
l=20

C~ 

FIG. 25. C̃ scaling function curves as a function of (l (1/v)tr ) for
seven different values of l = nx = nz ranging from 6 to 20 and ny =
40; the curve collapse can be observed.

ny

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

tc
v
B

FIG. 26. Sample thickness L = ny dependence of the critical
temperature Tc and the critical exponents ν and β for the order
parameter C at the NB-NU phase transition. The dotted lines are
guides to the eye.

to turn away from the surface, as sketched in Fig. 9). The
Freedericksz transition of the secondary directors occurs at
weaker field values than for the main director, due to the
weaker values of the biaxial elastic constants. Interestingly,
the curve of the C′ parameter vs the field inverts its descent
at the critical field for the S′ parameter. Our simulations show
that there is a metastable state where the S′ plateau goes on
for higher values of its critical field and, accordingly, the
parameter C′ continues its descent for the saturation transition
(simulations not shown in this work).

The determined Freedericksz transition fields in the biaxial
nematic phase allowed the calculation of two elastic constants
ratios; one of them shows that the biaxial elastic constant
decreases continuously on approaching the NB-NU phase tran-
sition and stays always below 11% of the main director splay
constant. Finite size scaling analysis of the Freedericksz crit-
ical fields show that both Freedericksz transition fields in the
biaxial phase scale with the inverse of the system thickness L
in accord with continuum theory.

Finite size scaling analysis was used to obtain the criti-
cal temperature and critical exponents for the N-I transition
and the NB-NU transition. Regarding the N-I transition, it
is well known that the Lebwohl-Lasher model has a dis-
continuous isotropic-nematic transition in three dimensions
[35] while in two dimensions it seems to exhibit a type
of Berezinskii-Kosterlitz-Thouless–like transition [36,37]. In
our case a biaxial extension of the Lebwohl-Lasher potential
is used and the system is confined in one spatial direction
with boundary surfaces inducing perfect order. The system
thicknesses investigated ranging from 10 to 60 spin layers
fall below the critical value for a discontinuous order-disorder
transition to occur, leading to a continuous transition with the
critical exponents β and ν for the relevant order parameter S
for L → ∞ (and α and γ using the Josephson and the Rush-
brooke relations between critical exponents) pointing for the
proximity of a tricritical point. The NB-NU transition is also
continuous, and the results obtained for the critical exponents
β and ν of the relevant order parameter C for L → ∞ (and
α and γ using the Josephson and the Rushbrooke relations as
for S) suggest that this transition belongs to the 3D XY model
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universality class [31,32]. This model in two dimensions (2D)
exhibits a Berezinskii-Kosterlitz-Thouless–like transition, and
in 3D is relevant to the critical behavior of a number of
physical systems, such as magnetic and superfluid 4He phase
transitions; see [31], and references therein.
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