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Emergence of cooperatively reorganizing cluster and super-Arrhenius dynamics
of fragile supercooled liquids
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In this paper, we develop a theory to calculate the structural relaxation time τα of fragile supercooled liquids.
Using the information of the configurational entropy and structure, we calculate the number of dynamically free,
metastable, and stable neighbors around a central particle. In supercooled liquids, the cooperatively reorganizing
clusters (CRCs) in which the stable neighbors form “stable” nonchemical bonds with the central particle emerge.
For an event of relaxation to take place, these bonds have to reorganize irreversibly; the energy involved in
the processes is the effective activation energy of relaxation. The theory brings forth a temperature Ta and a
temperature-dependent parameter ψ (T ) which characterize slowing down of dynamics on cooling. It is shown
that the value of ψ (T ) is equal to 1 for T > Ta, indicating that the underlying microscopic mechanism of
relaxation is dominated by the entropy-driven processes, while for T < Ta, ψ (T ) decreases on cooling, indicating
the emergence of the energy-driven processes. This crossover of ψ (T ) from high to low temperatures explains the
crossover seen in τα . The dynamics of systems that may have similar static structure but very different dynamics
can be understood in terms of ψ (T ). We present results for the Kob-Anderson model for three densities and
show that the calculated values of τα are in excellent agreement with simulation values for all densities. We also
show that when ψ (T ), τα , and other quantities are plotted as a function of T/Ta (or Ta/T ), the data collapse on
master curves.
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I. INTRODUCTION

When a liquid is supercooled, bypassing its crystallization,
it continues to remain structurally disordered, but its dynamics
slows down so quickly that below a temperature, called the
glass temperature Tg, the structural relaxation takes such a
long time that it becomes almost impossible to observe [1].
The structural relaxation time, τα , represents the time required
for the liquid to return to equilibrium after a small pertur-
bation. The super-Arrhenius temperature dependence of τα

(or the viscosity) is the defining characteristic of a “fragile”
liquid [2,3]. The super-Arrhenius behavior suggests that the
effective activation energy for the relaxation in a fragile liquid
increases with decreasing temperature. The underlying reason
for such a behavior is understood in terms of increasing the
cooperativity of relaxation on cooling. The cooperativity can
be defined in terms of number of particles which move in
some sort of concert in order for an elementary relaxation
event to occur. These particles may be distributed in a region
without forming a compact structure and share the space with
other particles [4,5]. In such a situation, it would not be pos-
sible to characterize cooperativity in terms of a spatial length.
Alternatively, one can think of a compact cooperative region
defined by a length ξ ; the number of particles in the region
varies as ξ d , where d is spatial dimension [6,7]. To have a
precise picture of cooperativity (or the cooperative region), its
determination as a function of temperature and calculation of
the effective activation energy from microscopic interactions

between particles have been the major focus of the theoretical
description of supercooled liquids and the glass transition
[6–23].

Is there any local structural order in a liquid that grows
rapidly on cooling and can be associated with the coopera-
tivity? This question has been the subject of much activity of
the past several years [12–23], as its resolution would lead
to a better understanding of glassy phenomena and would
provide insights into the underlying microscopic mechanism
of the relaxation. However, liquid structure determined from
scattering experiments that give information at the level of
two-point correlation functions, such as the structure factor
and the pair correlation function shows no such local order.
This led to the conclusion that if at all there is any local order
linked to the cooperativity, it would have to be very subtle and
hidden to the pair correlation function. This spurred several
proposals of local preferred structure such as the “point-to-set
length” [17–20] and the “patch correlation length” [21–23]
with varying success. The main difficulty is that one does not
know how to distinguish an amorphous ordered structure from
the one that exists in a normal liquid [8].

In the Adam and Gibbs theory [6] as well as in the ran-
dom first-order transition (also known as the mosaic) theory
[7,24,25], the cooperative region is expressed in terms of the
configurational entropy. Adam and Gibbs visualized a super-
cooled liquid as progressively organizing in larger cooperative
regions that have to collectively reorganize and proposed
that the number of particles in a “cooperatively rearranging
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region (CRR)” is inversely proportional to the configurational
entropy Sc. Since the configurational entropy Sc(T ) decreases
on lowering the temperature, the number of particles in the
cooperative region increases. The relaxation time τα is the
time needed to rearrange the region and is given by

τα = τ0exp

[
A

T Sc(T )

]
, (1.1)

where A is a temperature-independent phenomenological pa-
rameter and τ0 is the microscopic timescale.

On the other hand, the mosaic theory assumes nucleation
of so-called “entropic droplets” between different metastable
configurations that makes the supercooled liquid as a patch-
work of local metastable configurations. A static length ξ in
terms of which the size of the droplet is expressed is shown
to be ξ = (Y (T )/T Sc)

1
d−θ , where d is the spatial dimension, θ

is an exponent related to the interface energy, and Y (T ) is the
surface tension [24,25]. The relaxation time is related to the
configurational entropy by the relation

τα = τ0exp

[
1

T

(
Y (T )

T Sc(T )

)φ]
, (1.2)

where φ = d
d−θ

. In order to find values of ξ (T ) and τα (T ), one
has to know values of Y (T ) and θ .

It has recently been shown [26] that in a supercooled
(supercompressed) liquid some particles get localized in po-
tential wells and form long-lived (stable) nonchemical bonds
between them. A cluster of these bonded particles collectively
rearranges and creates an effective potential energy barrier for
relaxation. The number of particles in the cluster is calculated
from the data of pair correlation function. In this paper, we
extend the theory and report results for a glass-forming liquid.

The system we consider is the Kob-Anderson 80:20 mix-
ture of Lennard-Jones particles consisting of two species of
particles a and b [27]. All particles have the same mass m and
the interaction between two particles of type α, γ ∈ [a, b] is
given by

uαγ (r) = 4εαγ

[(
σαγ

r

)12

−
(

σαγ

r

)6]
, (1.3)

with εaa = 1, σaa = 1, εab = 1.5, σab = 0.8, εbb = 0.5, and
σbb = 0.88. Length, energy, and temperature are given in units
of σaa, εaa, and εaa/kB, respectively. The particle momenta of
both species have identical Maxwell-Boltzmann distributions.

II. NUMBER OF “STABLE” AND “METASTABLE” BONDS
FORMED BY A PARTICLE WITH ITS NEIGHBORS

IN A LIQUID

In equilibrium, each particle of a liquid feels on the average
similar potential energy barrier due to its interactions with
neighbors, but its kinetic energy has a probability to have any
value given by the Maxwell-Boltzmann distribution. There-
fore, due to competition between the kinetic energy which
makes particles move and the potential energy barrier that
restricts particle motion, particles in a liquid acquire a wide
range of dynamical states. It is intuitively clear that all those
particles whose values of kinetic energy are high would be
able to overcome the potential barrier and move around as free

particles whereas all those particles whose values of kinetic
energy are low would be trapped by the potential barrier.
There are also particles whose values of kinetic energy are
not high enough, but fluctuations embedded in the system
may make them escape the barrier. We can therefore roughly
divide particles into three groups of dynamical states: (i) free
particles that move around and collide with other particles,
(ii) particles that remain trapped (localized) and execute vibra-
tional motions at well defined locations, and (iii) particles that
are intermittent between trapped and free. The concentration
of these particles depends on density and temperature, the
potential energy barrier becomes higher on increasing the
density and lowering the temperature, and the kinetic energy
of particles decreases on decreasing the temperature. A su-
percooled liquid can therefore be considered as a network of
particles connected with each other by (nonchemical) bonds
with lifetimes varying from microscopic to macroscopic time.
We now describe how to calculate the number of these parti-
cles from the data of radial distribution function.

A. Separation of g(r) into parts representing particles
of different dynamical states

The radial distribution function which for a simple liquid
is defined as [28]

g(| �r2 − �r1|) ≡ g(r) = 1

Nρ
〈

N∑
j

N∑
j �=k

δ(�r − �r j + �rk )〉, (2.1)

where N is number of particles, ρ is the number density, and
the angular bracket denotes the ensemble average, tells us
the probability of finding a particle at a distance r from a
reference (central) particle. The average number of particles
lying within the range r and r + dr from the central particle
in three dimensions is 4πρg(r)r2dr. Since g(r) defined by
Eq. (2.1) has no information about particle momenta, one
cannot say how many of these particles located in the region
at a given time will remain there forever unless disturbed
and how many of them will subsequently move away. To get
such information, we define g(r) of a binary mixture in the
center-of-mass coordinates as [26]

gαγ (r) =
(

β

2πμ

) 3
2
∫

dp e−β[ p2

2μ
+wαγ (r)]

, (2.2)

where β = (kBT )−1 is the inverse temperature measured in
units of the Boltzmann constant kB and p is the relative mo-
mentum of a particle of mass μ = m/2. The effective potential
(potential of mean force) wαγ (r) = −kBT ln gαγ (r) is sum of
the (bare) pair potential energy uαγ and the system-induced
potential energy of interaction between a pair of particles of
species α and γ separated by distance r [28]. The peaks and
troughs of gαγ (r) create, respectively, minima and maxima in
βwαγ (r) as shown in Fig. 1 for species a at T = 0.45 and
ρ = 1.20. A region between two maxima, leveled as i − 1 and
i (i � 1), is denoted as ith shell and minimum of the shell as
βw(id )

αγ . The value of ith maximum is denoted as βw(iu)
αγ and its

location is given by rih.
In a classical system, all those particles in region of

ith shell whose energies are less or equal to βw(iu)
αγ , i.e.,
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FIG. 1. The reduced effective potential βwaa(r) between a pair
of particles of species α and γ separated by distance r (expressed
in unit of σaa) in a system of Lennard-Jones at a density ρ = 1.20
and temperature T = 0.45. βw(iu)

aa , rih are, respectively, value and
location of ith maximum and ril is the location on the left-hand side
of the shell where βw(i)

aa (r) = βw(iu)
aa (shown by dashed line). The

location r′′
il and r′′

ih are values of r on the left- and right-hand sides of
the shell where βw(i)

aa (r) = [βw(iu)
aa − ψ] (shown by full line). βw(id )

aa

is the depth of the ith shell.

β[ p2

2μ
+ w(i)

αγ (r)] � βw(iu)
αγ , will be trapped as they do not have

enough energy to overcome the barrier βw(iu)
αγ . These particles

can be considered to be bonded with the central particle. On
the other hand, all those particles whose energies are higher

than βw(iu)
αγ or momenta higher than

√
2μw

(iu)
αγ are free to

move around individually and collide with other particles as
long as their momenta remain higher than the value mentioned
above. When due to collisions a free particle loses its momen-

tum and falls below
√

2μw
(iu)
αγ , the particle gets trapped. At

a given temperature and density, an equilibrium between free
and bonded particles is established. The average number of
these particles can be found from g(r).

The averaged number of particles that form bonds with the
central particle can be found from a part of gαγ (r) defined as

g(ib)
αγ (r) = 4π

(
β

2πμ

)3/2

e−βw(i)
αγ (r)

∫ √
2μ[w(iu)

αγ −w
(i)
αγ (r)]

0

×e−βp2/2μ p2d p, (2.3)

where w(i)
αγ (r) is the effective potential in the range of ril �

r � rih of ith shell. Here ril is value of r where w(i)
αγ (r) = w(iu)

αγ

on the left-hand side of the shell (see Fig. 1. The number
of particles in the shell which form bonds with the central
particle of species α is

n(b)
α = 4π

∑
i

∑
γ

ργ

∫ rih

ril

g(ib)
αγ (r)r2dr, (2.4)

where summations are over all shells and over all species and
ργ is number density of γ species. This number n(b)

α increases

rapidly on lowering the temperature and increasing the den-
sity due to an increase in the number of shells surrounding
the central particle and increase in values of maximum and
minimum of each shell.

Since these bonded particles in each shell have a wide
range of energies lying between maximum and minimum of
the shell, they oscillate with a wide range of frequencies.
However, all those particles whose energies are close to the
maximum (barrier height) may not remain bonded for long
due to fluctuations embedded in the system (bath) which drive
them to escape the barrier. This is an entropy-driven process.
In the case of an athermal system where only packing con-
straints matter, there are no energy parameters whatsoever; the
bath drives all those particles of ith shell whose energies lie
between βw(iu)

αγ − 1 and βw(iu)
αγ out of the shell [26]. However,

in a thermal system, the entropy-driven process is opposed by
the energy-driven process; the system gains entropy but loses
internal energy when particles escape the shell and the reverse
happens when particles remain in the shell. This competition
results in a diminishing bath role in driving particles out of
shells. This led us to introduce a temperature-dependent pa-
rameter ψ (T ) (� 1) such that only those particles of ith shell
whose energy lies between βw(iu)

αγ − ψ and βw(iu)
αγ are able to

escape the shell. However, as is well known, the value of ψ in
a normal (high-temperature) liquid is one. The departure from
one is excepted to take place at lower temperatures where the
role of energy parameters become important. In Sec. II B, we
describe a method to determine its value.

The bonded particles can be divided into two groups,
one that consists of particles that are able to escape
from the shell and the ones which survive fluctuations
and remain bonded unless disturbed. The first group of
particles consists of all those particles whose energies lie
between [βw(iu)

αγ − ψ] and βw(iu)
αγ and momenta between√

2μ[w(iu)
αγ − ψkBT − w

(i)
αγ (r)] and

√
2μ[w(iu)

αγ − w
(i)
αγ (r)].

These particles are called metastable particles and henceforth
referred to as m particles. During the time they remain
bonded, they oscillate in the shell with time periods depending
upon their energies. It is obvious that trajectories of these
particles are composed of a succession of periods of time
when particles simply vibrate around well-defined locations
(shells), separated by rapid jumps that are widely distributed
in time. This feature has been observed in the computer
simulation study of time-resolved square displacements of
individual particles. The plateau observed at intermediate
times in the mean-squared displacement is due to vibrations
within shells.

The part of g(r) that represents m particles in the ith shell
can be written as

g(im)
αγ (r) = 4π

(
β

2πμ

)3/2

e−βw(i)
αγ (r)

∫ √
2μ[w(iu)

αγ −w
(i)
αγ (r)]

√
2μ[w(iu)

αγ −ψkBT −w
(i)
αγ (r)]

×e−βp2/2μ p2d p, (2.5)

Value of g(im)
αγ (r) in a shell (see Fig. 5) starts from zero at

r = r′
il on the left-hand side and attains a maximum value at

a value of r where βw(i)
αγ (r) has its minimum value and then

decreases and becomes zero at r′
ih on the right-hand side of the

shell. The number of m particles around a particle of α species
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FIG. 2. Values of K as a function of temperature T found when ψ = 1 was taken in calculating values of number of s particles. The
deviation of value of K from its constant value at low temperature is due to the fact that taking ψ = 1 at T < Ta is not valid. Symbols represent
calculated values and curves are least-square fit.

is found from g(im)
αγ (r) using the relation

n(m)
α = 4π

∑
i

∑
γ

ργ

∫ r′
ih

r′
il

g(im)
αγ (r)r2dr. (2.6)

A length scale which can be associated with a cluster of
m particles formed around a central particle is equal to the
range of g(m)

αγ (r) 
 gαγ (r) − 1. This length increases upon
lowering the temperature and increasing the density. The av-
eraged number of m particles surrounding a central particle in
a binary mixture is

n(m) = xan(m)
a + xbn(m)

b , (2.7)

where xα is the concentration of species α.
The second group of bonded particles are those whose

energies are lower than [βw(iu)
αγ − ψ] and particles whose mo-

menta are lower than
√

2μ[w(iu)
αγ − ψkBT − w

(i)
αγ (r)]. These

particles form stable bonds with the central particle and are
referred to as s particles. The part of g(r) that corresponds to
these particles is

g(is)
αγ (r) = 4π (

β

2πμ
)3/2e−βw(i)

αγ (r)
∫ √

2μ[w(iu)
αγ −ψkBT −w

(i)
αγ (r)]

0

×e−βp2/2μ p2d p, (2.8)

where w(i)
αγ (r) is in the range r′′

il � r � r′′
ih. Here r′′

il and r′′
ih

are, respectively, value of r on the left- and the right-hand
sides of the shell where βw(i)

αγ (r) = βw(iu)
αγ − ψ . The number

of particles around an α particle is

n(s)
α = 4π

∑
i

∑
γ

ργ

∫ r′′
ih

r′′
il

g(is)
αγ (r)r2dr, (2.9)

The averaged number of s-particles bonded with a central
particle in a binary mixture is

n(s) = xan(s)
a + xbn(s)

b . (2.10)

We have to know value of ψ as a function of T and ρ to
calculate value of n(s)(T ) and n(m)(T ) in a given system.

B. Determination of temperature dependence of ψ and the
number of particles in a cooperatively reorganizing cluster

We call the cluster formed by n(s), s particles bonded with
the central particle as a cooperatively reorganizing cluster
(CRC). For an event of structural relaxation to take place,
the cluster has to reorganize irreversibly; the energy involved
in this rearrangement is the energy with which the central
particle is bonded with s particles. These particles are dis-
tributed in shells around the central particle where they share
the region with other (mobile) particles. As the structure of
the cluster is not compact, it cannot be measured in terms of
spatial length. The CRC, therefore, differs from the Adam and
Gibbs [6] “cooperatively rearranging region (CRR),” which
is taken to be a compact structure [6,17]. We have more to
say about this in Sec. V. The cooperativity here is defined in
terms of number of bonds, n(s), formed by a particle with its
neighbors. As the temperature is lowered, the number n(s) as
well as the energy of each bond in the cluster would increase.
As a consequence, the relaxation time growth with decreasing
temperature is super-Arrhenius, i.e., faster than an exponential
in inverse temperature.

Following Adam and Gibbs [6], we assume that the relation
between the number of particles in a CRC and the configura-
tional entropy can be written as

n(s)(T ) + 1 = K

Sc(T )
, (2.11)

where K is a temperature-independent constant and Sc is
the configurational entropy per particle of the system. Val-
ues of Sc as function of temperature are found from relation
Sc(T ) = Stotal (T ) − Svib(T ), where Stotal is sum of the ideal
gas entropy plus excess entropy arising due to interactions
between particles and Svib is the vibrational entropy arising
due to short-time vibrational motions in a local potential en-
ergy minimum. Ingenious simulation techniques developed
recently [29,30] have made it possible to find accurate values
of Sc in supercooled region. In the present calculations, we use
values of Sc reported in Ref. [31].

In order to determine the value of K , we first take ψ = 1
in Eqs. (2.8)–(2.10) and calculate n(s)(T ) at different tempera-
tures. Values of n(s)(T ) are then used in Eq. (2.11) to calculate
K . In Fig. 2, we plot K versus T at densities ρ = 1.2, 1.4,
and 1.6. In all the cases, we find that K is constant above
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TABLE I. Values of constant K , Ta, Tonset , and Tmc at different
densities.

ρ K Ta Tonset Tmc

1.2 3.10 0.68 0.77 0.43
1.4 2.80 1.43 1.50 0.93
1.6 2.75 2.68 2.86 1.76

a temperature denoted as Ta; both K and Ta depend on ρ.
However, for T < Ta, K deviates from its constant value; this
we attribute to the fact that taking ψ = 1 for T < Ta is not
valid. As argued above, the value of ψ is expected to decrease
from its high-temperature value on cooling below Ta due to
the increasing role of energy-driven processes which counter
the escape of particles from shells. We have more to say about
the constant K in Sec. V, where we calculate its value from the
data of τα and show that it is indeed temperature independent
and equal to the high-temperature value shown in Fig. 2.

Assuming that K remains constant at all temperatures and
has value determined from high-temperature result plotted
in Fig. 2 and listed in Table I, we determine n(s)(T ) from
Eq. (2.11). The known values of n(s)(T ) allow us to find the
temperature dependence of ψ from Eqs. (2.8)–(2.10). We plot
ψ (T ) versus T in Fig. 3. We note that in all cases ψ = 1
for T > Ta but decreases rather sharply for T less than Ta.
Values of Ta for the three densities are given in Table I.
In this table, we also list, for comparison’s sake, values of
“onset temperature” Tonset and mode-coupling temperatures
Tmc. The Tonset is defined as the crossing temperature of pair
and excess entropies [32] and Tmc is found by fitting data
of τα in a power law form, τα ∝ (T − Tmc)−γ , predicted by
mode-coupling theory (MCT) [33]. According to MCT, Tmc

is a temperature at which τα diverges, a prediction which is
not observed. The temperature Ta falls in between Tonset and
Tmc and seems to separate a high-temperature region, where
slowdown of dynamics is slower, from a low-temperature
region, where slowdown of dynamics is faster.

We now use value of ψ found at a given T and ρ in
equations derived above to calculate different parts of gαγ (r)
and number of m and s particles. In Fig. 4, we plot gαγ (r),
g(b)

αγ (r), and g(s)
αγ (r) as a function of distance r for two temper-

atures T = 0.45 and 1.0 and the density ρ = 1.2 to show their
temperature dependence. In Fig. 5, we explicitly show the

spatial range of gaa(r), g( f )
aa (r) = gaa(r) − g(b)

aa (r), g(m)
aa (r) =

g(b)
aa (r) − g(s)

aa (r), and g(s)
aa (r) for species a at ρ = 1.2 and T =

0.45. From the figure, one notes that while g(s)
aa (r) is confined

in the first shell with length scale of the order of one particle
diameter, g(m)

aa (r) extends to several shells with length scale
of the order of several particle diameters. In this context, it is
important to realize the role of ψ ; as ψ decreases on cooling
of the liquid, contributions to g(s)(r) start coming from other
shells, extending the associated length scale. At a tempera-
ture where ψ becomes zero, all bonded particles become s
particles and length scale of g(s)(r) will be same as that of
g(r) − 1.

In Fig. 6, we plot number of total particles [n(t )
1 (T )],

bonded particles [n(b)
1 (T )], m particles [n(m)

1 (T )], and s parti-
cles [n(s)

1 (T )] occupying the first shell as a function of inverse
of the temperature (1/T ). We note that at high temperatures
most particles are free, while few are m particles and very few
are s particles. As the system is cooled, n(m)

1 remains almost
constant but n(s)

1 increases slowly up to T = Ta. For T < Ta,
n(m)

1 (T ) decreases while n(s)
1 (T ) increases with increasing rate

at the cost of both free and m particles. As stated above, this
rate will rapidly increase on further lowering of temperature,
resulting in a rapid increase in the number of s particles. To
have a precise nature of this increase, we need to have data of
gαγ (r) at lower temperatures.

III. CALCULATION OF THE POTENTIAL ENERGY
BARRIER AND THE RELAXATION TIME

The potential energy barrier (activation energy) to relax-
ation, as stated above, is equal to the energy with which a
particle is bonded with s particles. Thus,

βE (s)(T, ρ) = 4π
∑

i

∑
γ

xγ ργ

∫ r′′
ih

r′′
il

[
βw(iu)

αγ − ψ (T )

−βw(i)
αγ (r)

]
g(is)

αγ (r)r2dr, (3.1)

where energy is measured from the effective barrier βw(iu)
αγ −

ψ (T ). In Fig. 7, we plot values of βE (s) versus 1/T for
different densities. In all the cases, we see sharp rise in βE (s)

below Ta.
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FIG. 3. Values of ψ (T ) as a function of temperature T at different densities. Symbols represent calculated values and curves are least-
square fit.
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and 1.0 and density ρ = 1.2.

The energy βE (s) can be considered as the activation en-
ergy in the Arrhenius law,

τα (T, ρ) = τ0 exp [βE (s)(T, ρ)]. (3.2)

In Fig. 7, we compare calculated results with values found
from computer simulations [31,34] for ρ = 1.2, 1.4, and 1.6.
In all the cases, we find very good agreement between calcu-
lated and simulation values.
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aa (r), and g(s
aa)(r) as a function of r at ρ = 1.2 and T =

0.45.
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IV. THE TEMPERATURE Ta AND THE DENSITY SCALING

The density dependence of Ta is shown in Fig. 8. In the
figure, full circles denote calculated values and the curve
represents a fit with a power law form; Ta = a0ρ

γ with a0 =
0.287 and γ = 4.757. If we renormalize the temperature T by
Ta and plot values of ψ (T ) as a function of T/Ta, we find a
very good collapse data of ψ at different densities as shown
in Fig. 9(a). Similarly, when we plot n(s)(ρ, T ), βE (s)(ρ, T ),
and τα (ρ, T )/τ0 as a function of Ta/T we find a very good
collapse on master curves as shown in Figs. 9(b), 9(c), and
9(d), respectively.

The thermodynamic scaling through the variable ργ /T ,
where γ is an intrinsic parameter stemming from the inter-
molecular interactions is found to be obeyed by a variety
of liquids which may or may not be “strongly correlating
liquids” [35–40]. The Lennard-Jones (L-J) liquid of Eq. (1.3)
is a strongly correlating liquid [35–37]; it has strong correla-
tions between their constant-volume equilibrium fluctuations
of potential energy U (t ) and virial W (t ) = −1/3

∑
i �ri ·

��riU ( �r1, . . . , �rN ), where U (t ) is the total potential energy
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FIG. 7. Values of activation energy βE (s) for the relaxation and
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denote simulation values and curves denote calculated values.
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FIG. 8. Dependence of the temperature Ta on density ρ is shown.
Full circles are calculated values and curve represents the fit Ta =
a0ρ

γ with value of exponent γ = 4.757. The value of Ta = 0.435 at
ρ = 1.1 was found from plotting τα values on the master curve.

at time t and �ri is the position of particle i at time t . The
correlation is characterized by a single parameter �, defined
by a linear fit through a scatter plot of time fluctuations of
U and W . For the strongly correlating liquids, � 
 γ . The
parameter γ found from the slope of correlation plot as shown
in Ref. [34] (see also Ref. [37]) has some arbitrariness; it
varies between 4.56 and 5.03 for the model of Eq. (1.3). If we
ignore this variation, the value can be considered to be in good
agreement with the one found from the density dependence
of Ta. This suggests that Ta is related to the “hidden scale
invariance” [35–37] and is a result of strong WU correlations.
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FIG. 9. Collapse of the data of ψ , n(s), βE (s) and τα at densities
ρ = 1.2 to ρ = 1.6. In (a) ψ is plotted as a function of T/Ta whereas
in (b), (c) and (d ) values of n(s), βE (s) and τα are, respectively plotted
as a function of Ta/T . In (a), (b) and (c) the (open) symbols represent
calculated values and solid line determined from least square fitting
is the master curve. In (d ) the (filled) symbols represent values found
from simulation [34]. This collapse of data on master curves shows
that Ta is a characteristic temperature of supercooled liquids and
intimately connected with fluctuations embedded in the system.

V. DISCUSSION

The theory described in this paper brings out several under-
lying features of the dynamics of fragile supercooled liquids.
The local structural order, conceptualized as something which
has to be a “very subtle and hidden to the pair correlation
function,” is shown to be the cooperatively reorganizing clus-
ter (CRC) formed by a central particle with its neighbors of
localized (s) particles and is determined from the radial dis-
tribution function, g(r), by including momentum distribution
in its definition. The particles in a CRC are distributed in co-
ordination shells surrounding the central particle (see Fig. 1)
and share the space with m particles. It is only at very low
temperatures (T � Tg), where ψ (T ) becomes zero, all bonded
particles become s particles, and CRC becomes a large and
compact object. However, at high temperatures, where ψ (T )
is nonzero, CRC structure is not compact as the region is also
occupied by m particles.

It may, however, be noted that a CRC is embedded at the
center of a larger cluster of m particles. The cluster con-
sisting of s and m particles, i.e., of n(b) particles, is large
compared to CRC and is relatively compact (see Fig. 5). Since
m particles are loosely bonded with the central particle, they
move individually or in group of few particles on timescales
much smaller than τα without affecting the structure of CRC.
On the other hand, when a CRC reorganizes at timescales
commensurable with τα , by moving its particles it may trigger
reorganization of all particles of the cluster turning, it into a
cluster of mobile particles. This picture seems to be in agree-
ment with molecular dynamics simulations result [41], where
α relaxation is found to be governed by rapid sporadic events
characterized by emergence of relatively compact clusters of
mobile particles. A similar result has also been found experi-
mentally [42] from analysis of trajectories of several thousand
suspended colloidal particles. Biroli et al. [43] developed
inhomogeneous mode-coupling theory of dynamical hetero-
geneity and found that the geometrical structure carrying the
dynamical correlations at timescales commensurable with that
of the α relaxation is similar to the one found in Ref. [41]. It
therefore seems that while the cluster that appears to take part
in α relaxation is a cluster of bonded (n(b) ) particles which is
large and relatively more compact than that of a CRC, it is the
reorganization of particles of CRC that triggers the entire clus-
ter to be mobile at timescales commensurable with τα; the en-
ergy involved in this is the energy of reorganization of a CRC.

The cooperativity of relaxation is defined in terms of the
number of particles (or bonds) n(s) which are connected with
the central particle in a CRC. For an event of relaxation to take
place, these bonds have to rearrange irreversibly; the energy
involved in this process is the effective activation energy βE (s)

of relaxation. As the system is cooled, both the number n(s)

and the energy of each bond increase; the combined effect
makes βE (s) increase rapidly as temperature is lowered. A fit
of (collapsed) data of βE (s) with a power law form βE (s) =
b0{n(s)}δ with b0 = 0.415 and δ = 1.73 is shown in Fig. 10.

The parameter ψ (T ) which is introduced to measure the
effect that the bath creates to stabilize the size of CRC gives
insight into the processes underlying the slowdown of dynam-
ics. The value of ψ (T ) takes a turn from its high-temperature
value of 1 at T = Ta and starts decreasing as T is lowered.
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represents a fit βE (s) = b0{n(s)}δ , where b0 = 0.415, δ = 1.73, and
n(s) is the number of bonds in a CRC [see Fig. 9(b)].

There is a crossover region (see Figs. 3 and 9) which separates
the high-temperature behavior from the low-temperature be-
havior. Exactly the same behavior is seen (see Figs. 7 and 9) in
τα; a crossover from the high-temperature (T > Ta) behavior
to the low-temperature (T < Ta) behavior takes place in the
same way as happens in the case of ψ . This is more clearly
seen in Fig. 11, where we marked the two regions with straight
lines to separate the crossover region. This brings forth the
underlying cause for the temperature dependence of τα . The
crossover region marks the change from the dominance of the
entropy-driven process to the dominance of the energy-driven
processes in the system on cooling.

Both ψ and Ta depend on details of the interparticle in-
teractions. The value of temperature Ta is sensitive to the
attraction in the potential; its value would increase upon
increasing the attraction. Since the rate of slowdown of dy-
namics increases for T < Ta, the two systems with the same
repulsion but a different attraction in the pair potential would
show very different dynamics while g(r) of the two systems
may appear similar. This will be investigated in detail in our
next publication.
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line) are drawn to separate out the crossover region.
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FIG. 12. Plot of number of particles n(s) + 1 in a CRC vs 1/Sc at
densities ρ = 1.2, 1.4, and 1.6. Lines show that the number n(s) + 1
is inversely proportional to the configurational entropy Sc and the
proportionality constant is temperature independent. Values of con-
stants determined from the slope of these curves are 3.13, 2.81, and
2.75, respectively for ρ = 1.2, 1.4, and 1.6, which are nearly same
as the one given in Table I.

We wish to emphasize that though Eq. (2.11) lacks the-
oretical rigour [17,44] it, as has been shown in Sec. II B,
correctly describes the relationship between number of par-
ticles in a CRC and the configurational entropy. Here, we
adopt a method different from the one described in Sec. II B
and show that the number of particles in a CRC are inversely
proportional to the configurational entropy and calculate the
constant K . In particular, we now use data of τα/τ0 determined
from simulations in Eq. (3.2) to calculate βE (s) at different
temperatures and then use these values in Eqs. (2.8)–(2.10)
to calculate values of ψ (T ) and n(s)(T ) [45]. The plot of
n(s)(T ) + 1 versus 1/Sc(T ) in Fig. 12 for the three densities
show that n(s)(T ) + 1 is indeed inversely proportional to Sc

and the proportionality constant K is temperature indepen-
dent. Values of K found from the slope of curves of different
densities are 3.13, 2.81, and 2.75, respectively for ρ = 1.2,
1.4, and 1.6, which are nearly same as the one given in Table I.

In summary, by including momentum distribution in the
definition of the radial distribution function g(r) and using
the information of the configurational entropy Sc, we calcu-
lated the numbers of free, metastable, and stable particles
distributed in coordination shells surrounding a central par-
ticle at different temperatures and densities. It is shown that in
supercooled liquids the slowdown of dynamics is due to the
emergence of cooperatively reorganizing clusters (CRCs) in
which the central particle forms (nonchemical) “stable bonds”
with neighboring stable particles. The CRC is embedded at the
center of a larger and relatively compact cluster of n(b) parti-
cles. The number of bonds with which the central particle is
bonded with neighbors defines the cooperativity of relaxation.
For an event of relaxation to take place, these bonds have
to reorganize irreversibly. Reorganization of bonds in a CRC
triggers reorganization of all n(b) particles of the cluster, turn-
ing it into a cluster of mobile particles. The energy involved
in this process is the effective activation energy βE (s) of re-
laxation. The number of bonds and the energy of each bond of
the CRC increase in lowering the temperature and increasing
the density. When βE (s) is substituted in the Arrhenius law,
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a super-Arrhenius feature emerges. Results found for τα for
the Kob-Anderson model system are in very good agreement
with simulation results. The temperature dependence of τα is
explained, in terms of the parameter ψ (T ) which measures
the effect of fluctuations embedded in the bath on stabilizing
the size of CRC.
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