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Optimal gaits for drag-dominated swimmers with passive elastic joints
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In this paper we identify optimal swimming strategies for drag-dominated swimmers with a passive elastic
joint. We use resistive force theory to obtain the dynamics of the system. We then use frequency-domain analysis
to relate the motion of the passive joint to the motion of the actuated joint. We couple this analysis with elements
of the geometric framework introduced in our previous work aimed at identifying useful gaits for systems in
drag-dominated environments to identify speed-maximizing and efficiency-maximizing gaits for drag-dominated
swimmers with a passive elastic joint.
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I. INTRODUCTION

A common strategy for locomotion by animals and robots
is to couple cyclical shape changes (gaits) to an interaction
with the environment. A long-term research focus of the ge-
ometric mechanics community has been to find geometric
principles that describe what makes a gait effective. Many
geometric tools resulting from this line of research have only
been developed for systems with fully actuated shape spaces.
Passive elastic joints, such as flexible fins and tails, however,
play an important role in locomotion in many systems [1].
In this paper we expand on the geometric framework that
was developed in [2,3] to identify optimal gaits for fully
actuated swimmers in low-Reynolds-number fluids, extend-
ing it to swimmers with passive elastic shape elements. We
then use this extended framework to identify optimal gaits
for swimmers in drag-dominated environments with passive
elastic shape elements.

Our analysis draws on a rich history of work in the geo-
metric mechanics community aimed at using concepts from
differential geometry to understand how systems locomote
in a low-Reynolds-number fluid, what the main factors that
determine the efficiency of gaits are, and what optimal gaits
look like for these systems. In particular, we know that the
efficiency of a gait (speed at a given power level or power
required at a given speed) depends on its path, period, and
pacing in the system’s shape space:

(i) The net displacement per cycle corresponds to the
amount of constraint curvature the gait encompasses. Gaits
that maximize displacement per cycle thus enclose sign-
definite regions of the system’s constraint curvature functions
(CCFs), which can be obtained from the dynamics of the
system [4,5].

(ii) At a given level of average power consumption, the
minimum time taken to execute one cycle of the gait cor-
responds to the path length of the gait trajectory under a
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Riemannian metric on the shape space, meaning that shorter
gaits can be executed more frequently or at a lower power
level than longer gaits [6].

(iii) Gaits that progress through their gait kinematics at
a steady pace have a lower average power cost for a given
frequency than those that surge and dwell at points in the cycle
or, equivalently, can be executed at a higher frequency for a
given average power cost [7].

The process of finding efficient gaits thus involves striking
a balance between maximizing the enclosed constraint cur-
vature and minimizing the metric-weighted perimeter of the
gait, and then finding a steady-pace parametrization of the
resulting curve. In [2,3,8] we built a variational framework
based on this geometric insight that identifies optimal gaits
for fully actuated drag-dominated kinematic systems.

In this paper we extend this framework to identify optimal
gaits for swimmers with passive elastic joints and demonstrate
the framework on systems with a single active and a single
passive joint. The ways in which the dynamics of swimmers
with passive elastic joints differ from the dynamics of fully
actuated swimmers are:

(a) Because of the coupling between the actuated and pas-
sive joints, passive swimmers can execute only a subset of the
gait kinematics that fully actuated swimmers can execute.

(b) This coupling between the actuated and passive joints
also endows each gait achievable by a passive swimmer with
a unique pacing. Hence, the pacing cost cannot be minimized
separately from the kinematic cost.

As illustrated in Fig. 1, we address the two problems in-
troduced by the presence of passive elastic joints. We first
use frequency-domain analysis to analytically approximate
the motion of the unactuated joint in response to the motion
of the actuated joint. We then combine this frequency-space
analysis with elements of the geometric framework introduced
in [8] to construct a gradient-descent algorithm that identifies
optimal gaits and the pacing associated with these gaits for
passive swimmers. The optimal gaits for passive swimmers
maximize the CCF integral relative to perimeter and pacing
costs, subject to amplitude and phase constraints of a first-
order system.
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FIG. 1. Effect of a passive elastic joint on the shape and pacing of the (speed-maximizing) optimal gait for a Purcell swimmer. (a) The
(speed- and efficiency-maximizing) optimal gait for the fully actuated Purcell swimmer overlaid on the curvature of the system dynamics.
(b) Illustration of the Bode plot of the response of the passive elastic joint to oscillations of the active joint. This response dictates the locus
of achievable gaits in the shape space for the passive swimmers. (c) The (speed-maximizing) optimal gait for the passive Purcell swimmer.
Whereas the optimal gait for the fully actuated Purcell swimmer is plotted with a line of uniform thickness indicating constant power dissipation
throughout the cycle, the optimal gait for the passive Purcell swimmer in (c) is plotted using a line of varying thickness, with thickness at a
point corresponding to the time spent traversing that section of the gait.

Drag-dominated swimmers with passive elements were
previously studied in [9–13]. Of these works, [9–11] are most
relevant to this paper, as they discuss the motion of swim-
mers with a harmonically driven active joint and a passive
joint. The analysis in [9] is particularly relevant, where, using
perturbation expansion, explicit expressions for leading-order
solutions were derived for harmonic input oscillations and
the optimal swimmer geometry was obtained for the Purcell
swimmer. In this paper, unlike in [9], we do not restrict our
input to simple harmonic oscillations and we use a higher-
order representation of the system dynamics:

The rest of the paper is organized as follows. In Sec. II
we review the geometric locomotion model and derive the
dynamics of the drag-dominated swimmers. In Sec. III we
present our frequency-domain analysis to relate the motion of
the passive joint to the motion of the active joint. In Sec. IV
we recall a few key elements of the gradient-descent algorithm
introduced in [8] and combine them with the frequency-
domain analysis of Sec. III to set up the stroke optimization
problem. In Sec. V we describe the process of finding the
speed-maximizing gaits for passive swimmers. In Sec. VI
we describe the process of finding the efficiency-maximizing
gaits for the passive swimmers.

II. SYSTEM DYNAMICS

In this section we review the dynamics of swimmers in a
low-Reynolds-number fluid. We focus here on the geometric
structure of the system dynamics and not on the explicit ex-
pressions. A more detailed discussion of how the dynamics
is obtained is presented in [4,6]. Some of the the materials
presented in this section also appear in [4,6].

A. System geometries

The Purcell three-link swimmer illustrated in Fig. 2(a)
is a classic example of a system with minimal complexity
that can swim in a low-Reynolds-number fluid (drag-

dominated environment) and was introduced in [14]. The
T-link swimmer illustrated in Fig. 2(b) is a modification of
the Purcell swimmer where one of the peripheral links is
attached to the center link at its midpoint. The T-link swimmer
was introduced in [10] as a simplified model to study the
swimming dynamics of Schistosoma mansoni. S. mansoni
causes schistosomiasis, a disease comparable to malaria in
socioeconomic impact [10].

In the passive Purcell swimmer, a torsional spring is at-
tached at the second joint as shown in Fig. 2(a) such that when
the joint angle α2 is zero, the spring is at its equilibrium. In
the passive T-link swimmer, the torsional spring is attached
between the middle link and the peripheral link attached at its
midpoint as shown in 2(b) such that when the joint angle α2 is
zero, the spring is at its equilibrium.

B. Geometric locomotion model

When analyzing a locomoting system, it is convenient to
separate its configuration space Q (i.e., the space of its gener-
alized coordinates q) into a position space G and a shape space
R such that the position g ∈ G locates the system in the world
and the shape r ∈ R gives the relative arrangement of the

(a) (b)

FIG. 2. Geometry and configuration variables of (a) the Purcell
three-link swimmer and (b) the T-link swimmer.
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FIG. 3. (a) Connection vector fields in the x direction for the
Purcell swimmer and T-link swimmer and (b) the corresponding
constraint curvature functions [4].

particles that compose it.1 The locomotion model we employ
in this paper was developed for systems in kinematic regimes
where no gliding can occur, i.e., where zero shape velocity
results in zero position space velocity.2 In this model, there
exists a linear relationship at each shape between changes in
the system’s shape and changes in its position,

g
◦ = −A(r)ṙ, (1)

in which g
◦ = g−1ġ is the body velocity of the system (i.e., ġ

expressed in the system’s local coordinates) and the local con-
nection A linearly maps joint velocities to the body velocity
they produce by pushing the system against its environment.
Each row of −A can be regarded as a body-coordinate lo-
cal derivative of one position component with respect to the
system shape. If we plot the rows of −A as arrow fields,
as in Fig. 3, this means that moving in the direction of the
arrows moves the system positively in the corresponding body
direction and moving perpendicular to the arrows results in no
motion in that direction [5,23].

Several efforts in the geometric mechanics community
(including our own) have aimed to use the structure of the
systems’ Lie brackets (a measure of how “noncanceling” the
system dynamics is over cyclic inputs) to understand the struc-
ture of the optimal solutions to the system equations of motion
[4,6,15–17,20,21,24]. The core principle in these works is that

1In the parlance of geometric mechanics, this assigns Q the struc-
ture of a (trivial, principal) fiber bundle, with G the fiber space and R
the base space.

2This kinematic condition has been demonstrated for a wide variety
of physical systems, including those whose behavior is dictated by
conservation of momentum [15,16], nonholonomic constraints such
as passive wheels [16–19], and fluid interactions at the extremes of
low [4,20] and high [4,21,22] Reynolds numbers.

because the net displacement gφ over a gait cycle φ is the line
integral of (1) along φ, the displacement can be approximated3

by an integral of the curvature D(−A) of the local connection
(its total Lie bracket, which is a measure of how much the
connection changes, over a surface φa bounded by the cycle)
[5]

gφ = − gA(r) (2)

≈ exp
∫∫

φa

−dA +
∑
i< j

[Ai, A j]

︸ ︷︷ ︸
D(−A) (total Lie bracket)

, (3)

in which dA is the exterior derivative of the local connection
(its generalized row-wise curl),

dA =
(

∂A j

∂ri
− ∂Ai

∂r j

)
dri ∧ dr j, (4)

which measures how A changes across the shape space and
the local Lie bracket term evaluates on SE(2) as

[
Ai, A j

] =

⎡
⎢⎣

Ay
i Aθ

j − Ay
jA

θ
i

Ax
jA

θ
i − Ax

i Aθ
j

0

⎤
⎥⎦dri ∧ dr j, (5)

which measures how forward and turning motions combine
into lateral motions via “parallel parking.”

In [5,23,27] we identified coordinate choices that make the
approximation in (3) accurate for large-amplitude gaits, which
allowed us to establish a geometric framework to identify and
compare gaits that maximized displacement for fully actuated
swimmers in drag-dominated environments. For systems with
just two shape variables, plotting the coefficients of the cur-
vature terms as scalar functions on the shape space reveals
the attractors that influence the optimal gait cycles: Gaits that
produce net displacement in a given (x, y, θ ) direction encircle
strongly sign-definite regions of the corresponding D(−A)
constraint curvature. For example, as illustrated in Fig. 3(b),
x-translation gaits encircle the center of the shape space for
the Purcell system. In this paper, as in [8], we seek gaits that
maximize speed and efficiency of motion in the x direction.

Because the scales of motion expected from these systems
are generally much larger than displacements produced by ex-
ecuting one gait cycle, the near-optimal way for these systems
to move from one point to another is to orient themselves
towards the goal and execute gaits that optimize motion in the
body x direction. From here on, gφ will refer to the displace-
ment produced in the x direction by the gait φ.

System dynamics using resistive force theory

In this paper, as in [4,6], we generate the dynamics for
our example systems from a resistive force model, in which

3This approximation (a generalized form of Stokes’s theorem) is a
truncation of the Baker-Campbell-Hausdorff series for path-ordered
exponentiation on a noncommutative group and closely related to the
Magnus expansion [25,26]. For a discussion of the accuracy of this
approximation and its derivation, see [5].
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each element of the body is subject to normal and tangential
drag forces proportional to their velocities in those (local)
directions.4 The normal drag coefficient is larger than the
tangential component (here, by a factor of 2:1), corresponding
to the general principle that it is harder to move a slender
object in a fluid or on a surface crosswise than it is to move it
along its length.5

We combine this linear drag condition with a quasistatic
equilibrium condition that the net drag force and moment
on the system are zero at all times (treating the system as
heavily overdamped, with acceleration forces much smaller
than drag forces). Because the drag forces are not isotropic,
the quasistatic condition does not prevent the system from
moving and the system can use the angle of attack of its body
surfaces to generate net motion.

The quasistatic condition imposes a Pfaffian constraint6 on
the system’s generalized velocity, which states that combina-
tions of body and shape velocities that are consistent with the
system physics must lie in the null space of a linear map from
the system velocities to the forces and moments acting on the
system’s body frame,⎡

⎢⎣
F b

x

F b
y

F b
θ

⎤
⎥⎦ =

⎡
⎣0

0
0

⎤
⎦ = ω(r)

[
g
◦

ṙ

]
. (6)

As discussed in [1], the matrix ω that maps the ve-
locities to the net forces on the body frame is a
pullback of the drag matrices of the individual links
via the system kinematics and depends only on the
shape r.

By separating ω into two subblocks ω = [ω3×3
g , ω3×n

r ], it is
straightforward to rearrange (6) into

g
◦ = −(ω−1

g ωr )ṙ, (7)

revealing the local connection as A = ω−1
g ωr . The expressions

for the dynamics are unwieldy (running to several pages of
trigonometric terms in even the simplest cases), so we do
not write them out in full here. [See [4] for a more detailed
treatment of (6) and (7) in the case of the three-link swimmer.]

Using the local connection A and the system’s internal
kinematics, we can obtain the Jacobian from the shape ve-
locity to the local velocity of each section of the body J (r, �),
where � is the location of the section on the body.7 We can use
this Jacobian to calculate a Riemannian metric M over the

4This model is most widely associated with swimmers at low
Reynolds numbers (see, e.g., [28]), but can also be regarded as an
informative general model for systems that experience more lateral
drag than longitudinal drag (see, e.g., [29]). Our choice of resistive
force here also does not preclude the use of more dejointed physical
models (see, e.g., [30]) to construct the local connection A.

5Note that a more complete fluid model for low-Reynolds-number
swimming including interbody flow interactions would change num-
bers in the dynamics but not the overall structure.

6A constraint that the allowable velocities are orthogonal to a set
of locally linear constraints, i.e., that they are in the null-space of a
constraint matrix ω.

7For detailed calculations please refer to [6].

shape space that encodes the cost of effecting a shape change
as

M(r) =
∫

body
[JT (r, �)]C [J (r, �)]d�, (8)

where C is the matrix of drag coefficients, which acts as a
local metric for the motion of each element of the body. For
the systems considered in the paper, we take this matrix as

C =
⎡
⎣2 0 0

0 1 0
0 0 0

⎤
⎦, (9)

indicating that for any infinitesimal element of a link, the re-
sistance to lateral motion is twice the resistance to longitudinal
motion and that the moment drag on a link is generated by the
translation of the longitudinal and lateral forces acting in the
local frame of the infinitesimal element to the body frame of
the system.8

As discussed in our previous work [4,5], the metric M
encodes a quadratic relationship between the shape velocities
and power dissipated into the surroundings, given by

P = ṙTM(r)ṙ, (10)

as well as the mapping from joint velocities to torques on the
joints,

τ = M(r)ṙ. (11)

Details of the calculations to generate the local connection A
and the Riemannian metric M for our example systems are
provided in [4,6].

In drag-dominated environments, a common measure of
the cost of any motion executed by a swimmer is the energy
dissipated into the surrounding fluid while executing the mo-
tion,

E =
∫ T

0
P(t)dt . (12)

Substituting the expression for power dissipated from (10)
provides a measure of the cost in terms of the metric and shape
trajectory,

E =
∫ T

0
P(t)dt =

∫ T

0
ṙTM(r)ṙ dt . (13)

This cost depends on the geometry, time period, and pacing
of a given gait. As discussed in [6,7,31], for fully actuated
swimmers this cost can be broken down into a combination
of a pacing-invariant cost that measures the path length s
of the trajectory through the shape space (weighted by the
shape-space metric M) and a pacing cost σ that measures the
deviation from optimal pacing. Finding a gait that minimizes
the energy dissipated into the surrounding fluid E is thus
equivalent to finding a gait the minimizes the metric-weighted

8This metric corresponds to approximating the viscous drag acting
on the swimmer via a local resistive force model. If we used a more
accurate fluid model, the drag on a low-Reynolds-number swimmer
would have the same form, except that C would also depend on r
and �.
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path length s and executing said gait at a constant-power
pacing to minimize σ .

The path length s of a curve r(t ) under a metric M is

s =
∮

ds =
∮ √

drTM(r)dr. (14)

Changing the variable of integration from shape r to time
t , we can relate the path length to the square root of power
expended,

s =
∫ T

0

√
ṙTM(r)ṙdt =

∫ T

0

√
P(t )dt . (15)

Because moving with constant power is the least-costly
pacing with which to execute a motion under viscous drag [7],
we can further simplify (15) as

s = √
PavgT, (16)

where Pavg is the average power utilized while executing the
motion. This path length provides a geometric cost for the
best-case execution of the kinematics in a gait cycle.

The additional cost for a nonoptimal pacing can be rep-
resented by squaring the difference between the average and
instantaneous rates at which the gait is being followed (mea-
sured as s per time) and then integrating over the time during
which the gait is being executed,

σ =
∫ τtotal

0

(
stotal

τtotal
− d

dτ
[s(τ )]

∣∣∣∣
τ=t

)2

dt, (17)

where τtotal is the time period of the gait, stotal is the length
of the gait under the metric M, and s is distance traveled
along the gait as a function of time corresponding to the given
pacing. If the gait is proceeding at constant power, stotal

τtotal
is equal

to the rate at which s changes with time, so σ measures the
extent to which the pacing lags and leads the optimal pacing.
Any pacing other than constant-power will make the trajectory
take longer for a given average power (or increase the average
power required to complete the motion in a fixed time).

III. FREQUENCY-DOMAIN ANALYSIS

The key difference in the dynamics of a swimmer with a
passive joint when compared to a fully actuated swimmer is
the coupling of the motion of the actuated and unactuated
joint. In this section we explore this difference further and
present a way of accurately approximating the motion of the
unactuated joint from the motion of the actuated joint using
frequency-domain analysis. The method of linearizing the
passive dynamics to obtain approximate limit cycles presented
in this section is in the same vein as the limit cycle analysis
presented in [13], where a two-link system with static separa-
tion between centers of mass and buoyancy was studied.

A. Dynamics of the passive elastic joint

As discussed in [4,5], the mapping between joint velocities
and torques on the joint in the fully actuated swimmers is
encoded in the metric calculated in (8),

τ = M(r)ṙ. (18)

Because the systems considered in this paper have only one
active and one passive joint, this relationship becomes[

τ1

τ2

]
= M(α1, α2)

[
α̇1

α̇2

]
. (19)

In the case of the swimmers with an elastic joint, because the
actuation in the second joint is replaced by an elastic element
with stiffness k, the torque τ2 is always equal to −kr2, i.e.,[

τ1

−kα2

]
= M(α1, α2)

[
α̇1

α̇2

]
. (20)

The first equation in this system of equations,

τ1 = M11α̇1 + M12α̇2, (21)

thus relates the torque in the actuated joint to the motion of
the joints and can be used to calculate the torque required to
effect any feasible motion. The second equation in this system
of equations,

−kα2 − M22α̇2 = M21α̇1, (22)

or equivalently

− k

M21
α2 − M22

M21
α̇2 = α̇1, (23)

encodes the dynamics of the passive elastic joint in terms of
the active joint and thus defines the space of feasible motions.

Because the joint α1 is taken as the actuated joint, we
assume full control of α̇1. The value of M depends on α1

and α2. Its dependence on α1 and α2 conveys how the shape
of the robot affects the effort required to move the joints.
If we consider gaits that are relatively small oscillations of
shape, we can approximate the value of M to be constant
throughout the gait. This assumption necessarily introduces
errors in our prediction of the motion of the passive joint when
the amplitude of input to the active joint is large.

For both the Purcell and T-link swimmers with passive
elastic joints, assuming the value of M to be constant does
not introduce significant errors for gaits of amplitude up to
1.5 rad: In Fig. 4 we illustrate the distortions caused in the
shape of the limit cycles when we assume M to be constant
throughout the shape space. Each black solid line represents
the motion of the full swimmer model when the input to the
actuated joint is a sinusoidal wave and the system starts with
both angles at zero. There is a transient term that dominates
before the system reaches the limit cycle. The red dashed
lines represent the shape of the limit cycles predicted when
we assume M is constant (we describe the calculation of the
limit cycle in the next section).

B. Transfer function analysis

In this section our goal is to obtain an analytical approxi-
mation of the response of the passive joint to input oscillations
of the actively controlled joint. We assume M to be con-
stant throughout the gait, which makes (23), the equation
that describes the dynamics of the passive elastic joint, a
linear first-order differential equation and thus well suited to
frequency-domain analysis.
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FIG. 4. Comparison of the exact stroke limit cycles with the
shape predicted by frequency-domain analysis. Each black solid line
represents the motion of the swimmer when the input to the actuated
joint is a sinusoidal wave. We can see that the motion converges to
a limit cycle. The red dashed lines represent the shape of the limit
cycles predicted by frequency-domain analysis presented in Sec. III.
The cartoons in the background show how the Purcell swimmer looks
at different points of the shape space. (a) Purcell swimmer and (b)
T-link swimmer.

We use the Laplace transform on (23) to obtain the dynam-
ics of the passive elastic joint in the frequency domain as

KeqL(α2(t )) + CeqsL(α2(t )) = sL(α1(t )), (24)

where Keq = −k
M21

and Ceq = −M22
M21

. These substitutions re-
veal that the dynamics of the passive joint are equivalent to
those of a massless particle attached to a fixed base through
a spring and being driven through a damper by a position
trajectory α1 as shown in Fig. 5. Note that the damping coeffi-
cient is completely dependent on the physics of the interaction
between the swimmer and the fluid.

KeqCeq

FIG. 5. Spring damper system whose dynamics is equivalent to
the passive dynamics of the Purcell swimmer with a passive elastic
joint.

We can rewrite (24) as a transfer function relation between
the active joint α1 and passive elastic joint α2,

L(α2(t )) = H (s)L(α1(t )), (25)

where H (s) = s
Ceqs+Keq

is the transfer function that encodes
the response of the passive elastic joint to osciallations of the
active joint. Equation (25) tells us how inputs to the controlled
joint α1 are mapped to the response of the passive joint in the
frequency domain. In order to find the response of the passive
joint to a sinusoidal oscillation of the actuated joint, we let
α1(t ) = sin(wt ). Then using (25) we obtain

L(α2(t )) =
H (s)︷ ︸︸ ︷
s

Ceqs + Keq

L(α1(t ))︷ ︸︸ ︷
ω

s2 + ω2
(26)

= A1

Ceqs + Keq︸ ︷︷ ︸
transient term

+ A2s + A3

s2 + ω2︸ ︷︷ ︸
phase−shiftedsinewave

, (27)

where A1, A2, and A3 can be obtained by equating the two
expressions for L(α2(t )) in (26) and (27) as

sω = A1(s2 + ω2) + (A2s + A3)(Ceqs + Keq) (28)

and equating the coefficients of powers of s on each side to
extract a system of three equations⎡

⎣ 1 Ceq 0
0 Keq Ceq

ω2 0 Keq

⎤
⎦

⎡
⎣A1

A2

A3

⎤
⎦ =

⎡
⎣0

ω

0

⎤
⎦, (29)

which can be easily solved to obtain A1, A2, and A3 as⎡
⎣A1

A2

A3

⎤
⎦ =

⎡
⎣ 1 Ceq 0

0 Keq Ceq

ω2 0 Keq

⎤
⎦

−1⎡
⎣0

ω

0

⎤
⎦. (30)

If our actuated joint follows a trajectory given by α1(t ) =
B1 sin(ωt ), after reaching the steady-state periodic orbit, the
unactuated joint therefore follows the trajectory

α2(t ) = B1A2 cos(ωt ) + B1A3 sin(ωt ). (31)

If our actuated joint follows a trajectory given by α1(t ) =
B1 sin(ωt ) + B2 cos(ωt ), after reaching the steady-state peri-
odic orbit, the unactuated joint follows the trajectory

α2(t ) = B1[A2 cos(ωt ) + A3 sin(ωt )]

+B2[−A2 sin(ωt ) + A3 cos(ωt )]. (32)

Note that the values of A2 and A3 depend on the value of
ω, the frequency of the sinusoidal input to the actuated joint.
The image of the gait in the shape space is thus coupled to the
pacing of the input to the actuated joint.

This coupling between the image of the gait in the shape
space and the input to the actuated joint is illustrated in Fig. 6.
Figure 6(b) illustrates the shape of the gait resulting from a
sinusoidal oscillation of the actuated joint of amplitude 1 and
frequency 0.5. Figure 6(a) illustrates the effect of increasing
the amplitude of oscillation on the shape of the gait: As we
have linearized the dynamics of the passive joint, a change in
amplitude without a change in frequency produces a scaled
version of the original gait. Figure 6(c) illustrates the effect
of decreasing the frequency of oscillation on the shape of the
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Change in amplitude 

of input

Change in frequency 

of input

(b) Amplitude=1, Frequency=0.5(a) Amplitude=1.2, Frequency=0.5 (c) Amplitude=1, Frequency=0.25

FIG. 6. Changes in the shape of a gait resulting from changes to the amplitude and frequency of the input oscillation. (a) The gait resulting
from a change in amplitude of the nominal input (black) is a scaled version of the gait corresponding to the nominal input actuation (red).
(b) Gait resulting from nominal input actuation. (c) Gait resulting from a change in the frequency of the nominal input (black). A change in
the frequency of the nominal input leads to a change in both the amplitude and phase of the response of the passive joint.

gait, with a slower oscillation leading to a weaker response (in
terms of magnitude) from the passive joint.

The Bode plot of the transfer function H in (25), presented
in Fig. 7, illustrates the specific nature of the relationship. We
can see that if the frequency of the input to the controlled

FIG. 7. Bode plot of the transfer function relating the output of
the passive joint to the input of the actuated joint in the Purcell
swimmer with a passive elastic tail. The insets show how the periodic
orbits corresponding to the gain and phase at certain frequencies look
in the shape space. We can see that actuation at very low frequencies
leads to gaits that enclose very little surface area due to the amplitude
of the passive joint being low, while at very high frequencies the
surface area enclosed by the gait is low due to the almost 180◦ phase
shift between the oscillations of the actuated and passive joints.

joint is very high, the response of the passive elastic joint
is phase shifted relative to the actuated joint by almost 180◦,
resulting in a gait with a small area. At very low frequencies,
the magnitude of the response of the passive elastic joint is
small and results in a gait with a small area. At midrange
frequencies, however, the response of the passive elastic joint
has a larger amplitude and a phase shift that results in gaits
with larger areas.

IV. FINDING OPTIMAL GAITS

Optimal gait design has a long history of research in
the physics, mathematics, and engineering communities, as
part of the broader field of optimal control [32,33]. Notable
contributions to finding optimal gaits for swimmers in a
drag-dominated environment include those of Purcell, who
introduced the three-link swimmer as a minimal template
for understanding locomotion, a series of works [28,34–37]
aimed at numerically optimizing the stroke pattern, and the
observation in [7] that the optimal pacing for the gait keeps
the power dissipation constant over the cycle.

In drag-dominated environments, a common measure of
the cost of any motion executed by a swimmer is the power
dissipated into the surrounding fluid while executing the mo-
tion. A natural choice of definition for efficiency for these
systems is thus

η1 = gφ

E
, (33)

where gφ is the displacement produced in the x direction over
a gait cycle φ and E as defined in (12) is the total energy
dissipated into the surrounding while executing the gait φ.

Note that this definition of efficiency is the inverse of the
mechanical cost of transport used, e.g., in [31]. The mechan-
ical cost of transport is a widely used efficiency metric in the
robotics community, especially while studying legged loco-
motion. As explained in Appendix A, gaits which optimize
our criterion also optimize Lighthill’s efficiency [38], which
compares the power dissipated while executing the gait to the
power dissipated in rigidly translating the swimmer through
the fluid; this measure has an advantage over Lighthill’s in
that it allows for effective comparison between systems with
different morphologies and does not require designating a
reference shape for rigidly dragging the swimmer.
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As noted in Sec. II C, under optimal (constant-power) pac-
ing, the path length s defined in (14) and the total power
dissipated E are equivalent cost criteria. As detailed in [8], for
fully actuated swimmers this insight lets us restrict our opti-
mization to constant power trajectories and utilize a geometric
definition of efficiency

η2 = gφ

s
. (34)

Another important observation to be made here is that, as
noted in [2,3], for the fully actuated swimmers, the gaits that
optimized for forward velocity and efficiency were the same
within each system. There are two reasons for this property.

(i) At any given power level P, maximum forward speed
is attained by executing the efficiency-maximizing gait at a
pacing that has an even power usage instead of surging and
sagging.

(ii) The shape of the efficiency-maximizing gait is invariant
across power levels because the displacement resulting from,
and the cost incurred by, executing one cycle of any gait at
optimal pacing does not depend on the power level P.

The maximum power available P dictates the time period T
of the speed-maximizing gait. The attainable maximum speed
increases linearly with the amount of power available. For the
efficiency-maximizing gait, the path and pacing is invariant
across our choice of time period T because the displacement
resulting from and the cost incurred by executing one cycle of
any gait at optimal pacing does not depend on the power level
P. However, the maximum power available P sets a lower
bound on the possible range for T .

Moving from an active to a passive swimmer also affects
the gradient calculation process that forms the backbone of
the framework presented in [8]. In a passive swimmer, the
movement of the passive joint is coupled to the movement
of the active joint and therefore we cannot set the motion of
the passive joint independently of the motion of the active
joint. We discuss the implications of a passive joint on gait
parametrization and gradient calculation in Sec. IV B.

A. Efficiency for swimmers with passive elastic joints

In fully actuated swimmers, the transformation of effi-
ciency from the inverse of the cost of transport as defined
in (33) to a more geometric definition in (34) was possible
because we knew that the optimal pacing keeps the rate of
power dissipation constant [7]. In the case of swimmers with
passive joints, the response of the passive joint is dictated
by the dynamics of the active joint, as illustrated by the
Bode plots shown in Fig. 7. As a result, there is a unique
pacing associated with every gait the passive swimmer can
execute. Changing the pacing of the actuated joint changes
the response of the passive joint as shown in Sec. III, hence
the shape of the gait. Thus, to find the most efficient gait for
the Purcell swimmer with a passive elastic joint, we have to
directly use the definition of efficiency in (33).

While we could choose a constant power pacing for all
gaits for fully actuated swimmers, in the case of the Purcell
and T-link swimmers with a passive elastic joint, every gait
that respects the passive dynamics of the elastic joint comes
with an inherent pacing. Thus, for a given spring stiffness of
the passive joint, the gait that maximizes forward velocity
comes with a power requirement associated with it. Even if

we are capable of giving the system more power, there is no
way for the system to utilize that power to go faster. Hence, for
the swimming systems considered in this paper, there are two
meaningful measures for comparing different gaits that lead to
different definitions of gait optimality: Gaits can be compared
by comparing the average speeds they produce (η = gφ

T ) and
comparing their energetic efficiency [η1 in (33)].

B. Gait parametrization for passive swimmers

We use a truncated Fourier series to parametrize the gaits.
This choice of parametrization lets us accurately approximate
a large family of smooth periodic gaits. The framework in-
troduced in [8] uses a gradient-descent algorithm to identify
gaits that maximize efficiency as defined in (34). During the
gradient calculation process outlined in Appendix B, it is
useful to think of the gait as being parametrized by a series of
waypoints. We can generate these waypoints from the Fourier
parametrization. We use the gradients calculated at each of
these waypoints to calculate gradients with respect to the
Fourier-series parametrization.

In the case of swimmers with a passive joint, we let the ac-
tuated joint trajectory α1(t ) be given by a fourth-order Fourier
series

α1(t ) = a0 +
4∑

i=1

ai cos

(
2π i

T
t

)
+ bi sin

(
2π i

T
t

)
. (35)

Using (25), [the transfer function relating the movement of the
active and passive joints] we obtain the response of passive
joint to α1(t ) as

α2(t ) = L−1(H (s)L(α1(t ))). (36)

Using explicit evaluation of the transfer function from (27)
and (29), we can write the steady-state response of the passive
joint as

α2(t ) =
4∑

i=1

ci cos

(
2π i

T
t

)
+ di sin

(
2π i

T
t

)
, (37)

where ci and di are functions of ai, bi, and T . Using this
low-order Fourier-series parametrization of the gait, we can
generate the direct transcription waypoints, calculate the gra-
dient of the objective function at each waypoint (details of
this gradient calculation process for speed-maximizing and
efficiency-maximizing gaits are presented in Secs. V and VI,
respectively), and then project these gradients onto the Fourier
basis to obtain gradients with respect to the Fourier-series
parameters.

If the system were fully actuated, we could move the
Fourier-series parameters along these calculated gradient di-
rections to obtain the optimal gait. In the case of passive
swimmers, the Fourier coefficients of the unactuated shape
direction (ci, di ) are functions of the Fourier shape coefficients
of the actuated shape direction (ai, bi ). Therefore, to find the
correct gradient directions for the Fourier coefficients of the
actuated shape, we have to account for the change in the
unactuated shape direction that a change in the actuated shape
direction would produce.

For an objective function f that depends on ai, bi, ci, and
di, we can calculate the total derivatives of f with respect to
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ai and bi as

df

dai
= ∂ f

∂ai
+ ∂ci

∂ai

∂ f

∂ci
+ ∂di

∂ai

∂ f

∂di
, (38)

df

dbi
= ∂ f

∂bi
+ ∂ci

∂bi

∂ f

∂ci
+ ∂di

∂bi

∂ f

∂di
, (39)

where ∂ci
∂ai

, ∂ci
∂bi

, ∂di
∂ai

, and ∂di
∂bi

are directly taken from the transfer
function coefficients (32)

∂ci

∂ai
= A2, (40)

∂ci

∂bi
= A3, (41)

∂di

∂ai
= −A2, (42)

∂di

∂bi
= A3. (43)

We use these total derivatives to calculate the correct gradient
directions for the Fourier coefficients of the actuated shape
variables, which account for the fact that in passive swimmers,
a change in the shape of the input to the actuated shape
variable affects the response of the passive elastic joint.

V. SPEED-MAXIMIZING GAITS

A major goal of this paper is to geometrically identify gaits
for the Purcell and T-link swimmers with an elastic joint that
will give it the maximum forward velocity. Therefore, the
objective function we set out to maximize is gφ

T , where gφ is
the displacement in the body x direction induced by executing
the gait φ, and T is the time period required to execute the
gait.

As explained in Sec. IV B, we parametrize the actuated
shape variable using a low-order Fourier series and obtain the
Fourier-series parametrization of the resulting motion of the
passive joint using the dynamics of the passive elastic joint
presented in Sec. III. With these Fourier-series parameters p f ,
we can obtain a sequence of waypoints pi (in our implemen-
tation we use 100 waypoints), equally spaced in time, that
describe the location of the discretization points in the shape
space. As illustrated in this section, we can then calculate the
gradient of speed with respect to each of these waypoints, i.e.,
calculate the effect moving the waypoints would have on the
forward speed attained by the swimmer on executing the gait.
We then project these gradients onto the Fourier-series basis
as explained in Sec. IV B to obtain the speed-maximizing gaits
using gradient descent.

We start from the basic variational principle that functions
reach their extrema when their derivatives go to zero. Given a
gait parametrization defined by waypoint parameters p, exe-
cuted in time T , the maximum-velocity cycle must satisfy the
condition that the gradient of forward velocity with respect to
the parameters p and T is zero, i.e.,

∂

∂ p

(gφ

T

)
= 1

T

∂gφ

∂ p
− gφ

T 2

∂T

∂ p
(44)

= 1

T

∂gφ

∂ p
= 0, (45)

Speed-maximization Efficiency-maximization

Fourier series parametrization
of input to actuated joint.
(a0,a1,...,a4,b1,...,b4)

Time period of input (T)

Displacement per cycle
(    ) 

Energy per cycle (E)

Parameters 
describing input to 
actuated joints

Optimality criteria

FIG. 8. Flowchart describing how the parameters describing our
input to the actuated joint affect the two optimality criteria in the case
of drag-dominated swimmers with a passive joint.

and
∂

∂T

(gφ

T

)
= 1

T

∂gφ

∂T
− gφ

T 2
= 0, (46)

where the term ∂T
∂ p in (44) can be taken as zero because T and

p are two independent variables describing the gait, i.e., the
time taken to complete a gait T does not depend on the shape
and pacing of the input to the actuated joint described by p.

Once we have the gradient of speed with respect to a
direct transcription parametrization p obtained from a Fourier-
series parametrization p f , we follow the process outlined in
Sec. IV B, specifically (38) and (39), to obtain the gradient
of speed with respect to the Fourier-series parametrization

∂
∂ p f

( gφ

T ). A graphical depiction of how elements of the Fourier-
series parametrization affect the gait optimization process is
presented in Fig. 8.

For suitable seed values p f 0 and T0, the maximum-velocity
gaits can thus be obtained by finding the equilibrium of the
dynamical system

ṗ f = ∂

∂ p f

(gφ

T

)
, (47)

Ṫ = ∂

∂T

(gφ

T

)
= 1

T

∂gφ

∂T
− gφ

T 2
. (48)

In the geometric framework we introduced in [2], we showed
that the process of finding efficient gaits for the Purcell swim-
mer is akin to the dynamics of a soap bubble in which internal
pressure and surface tension combine to determine the shape,
size, and surface concentration of the soap bubble. For the
fully actuated swimmer we can decouple the shape and size
optimization from the concentration optimization, but this is
not the case in swimmers with a passive elastic joint. Instead
of two independent processes, the optimization process for
finding the fastest gait is more unified where (B3) is the
equation that helps obtain the shape of the optimal input to
the actuated joint and (48) is the equation that helps obtain the
optimal pacing of the input.

A. Shape gradient of the optimal input to the actuated joint

As discussed in [8], the gradient that affects the shape
of the input to the actuated joint dgφ

d p pushes the gait to-
wards maximum displacement cycles. From (3) and the fact
that variations in p affect φ but not the underlying D(−A)
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structure, we can reduce this term to

∂gφ

∂ p
≈ ∇p

∫∫
φa

D(−A). (49)

A powerful geometric principle (the general form of the Leib-
niz integral rule [39]) tells us that the gradient of an integral
with respect to variations of its boundary is equal to the gradi-
ent of the boundary with respect to these variations, multiplied
by the integrand evaluated along the boundary, and allows us
to rewrite (49) in terms of the constraint curvature value and
how changes in parameter values move the gait’s trajectory
through the shape space.

Formally, the multiplication of the gradient of the boundary
and the integrand evaluated along the boundary is the interior
product (not the inner product; see [39] for more details) of
the boundary gradient with the integrand

∇p

∫∫
φa

D(–A) = (∇pφ) D(–A). (50)

In systems with just two shape variables, the interior product
reduces to a simple multiplication between the outward com-
ponent of ∇pφ and the scalar magnitude of the Lie bracket

∇p

∫∫
φa

D(−A) =
∮

φ

(∇p⊥φ)D(−A). (51)

This gradient calculation is illustrated in Fig. 15. The gradient
of the enclosed area with respect to variations in the position
of pi, i.e., ∇piφa in the e‖ and e⊥ directions, is the change in
the triangle’s area as pi moves. Because the triangle’s area is
always one-half the base times height (regardless of its pitch
or the ratio of its side lengths), this gradient evaluates to

∇piφa = [e‖ e⊥]

[
0
�
2

]
. (52)

Note that this term matches the right-hand side of (51), with
only normal motions of the boundary affecting the enclosed
area.

B. Frequency gradient of the optimal input to the actuated joint

In the case of the fully actuated Purcell swimmer, the
shape of the gait, and therefore the displacement produced by
executing the gait, is independent of the time taken to execute
the gait. This is not true in the case of the Purcell swimmer
with a passive elastic joint.

In this section we examine the gradient that guides the op-
timizer towards the optimal frequency of input to the actuated
joint. When the time period required to execute the gait is
changed, the shape of the gait changes due to the coupling
between the frequency of the input to the actuated joint and the
response of the passive joint as described in Sec. III. Changing
the time period T thus changes not only the frequency of the
gait cycle but also the displacement produced per cycle.

We use the chain rule to calculate this gradient,

∂

∂T

(gφ

T

)
= 1

T

∂gφ

∂T
− gφ

T 2
(53)

= 1

T

(
∂gφ

∂α1

∂α1

∂T
+ ∂gφ

∂α2

∂α2

∂T

)
− gφ

T 2
. (54)

Because α1 is the actuated shape variable and the shape of the
input actuation is independent of the frequency of actuation,
∂α1
∂T reduces to zero. Therefore, the gradient of speed with
respect to T reduces to

∂

∂T

(gφ

T

)
= 1

T

(
∂gφ

∂α2

∂α2

∂T

)
− gφ

T 2
. (55)

The first term on the right-hand side of (55) captures the
contribution to the velocity of the gait caused by the change in
the shape of the gait resulting from a change in T . The second
term accounts for the fact that, even without a change in the
shape of the gait, an increase in the time required to execute
the gait would result in a decrease in the velocity of the gait.

C. Passive Purcell and T-link swimmers

We implemented the optimizer described in the Sec. V
in MATLAB by providing (47) and (48) as the gradient for
the fmincon optimizer using the sqp algorithm. The shape
of the gait obtained is illustrated in Fig. 9(a). Figure 9(b)
shows the power input to the actuated joint over the cycle.
Figure 9(c) shows a comparison of the speeds achievable by
the passive and fully actuated Purcell swimmers at different
power levels. Figure 10 shows the same results for a passive
T-link swimmer.

The transfer function relating the response of the passive
joint to oscillations of the input joint is given by (26), H (s) =

s
Ceqs+Keq

. Therefore, a change in the value of the spring stiff-
ness does not affect the fundamental shape and nature of the
response shown by the Bode plot in Fig. 7, but it does shift the
entire bode plot to the left or right along the frequency axis.
Thus an increase in spring stiffness shifts the Bode plot to the
right, which results in the shape of the speed-maximizing gait
remaining the same, but the time period required to complete
the gait decreases, leading to faster speeds.

VI. ENERGY-EFFICIENT GAITS

In this section we describe the gradient calculations in-
volved in identifying the gait that maximizes the efficiency of
the swimmers. The objective function we set out to maximize
is

η = gφ

E
, (56)

where gφ is the displacement produced on executing the gait
φ and E is the total energy expended by the robot executing
the gait, i.e.,

E = PavgT . (57)

As explained in Sec. IV B, we parametrize the actuated
shape variable using a low-order Fourier series p f and obtain
the Fourier-series parametrization of the resulting motion of
the passive joint using the dynamics of the passive elastic joint
presented in Sec. III. With these Fourier-series parameters,
we can obtain a sequence of waypoints pi equally spaced in
time that explicitly define the location of the discretization
points in the shape space. These waypoints form a direct-
transcription parametrization of the gait p, obtained from the
Fourier-series parametrization p f . In this section we present
the calculation of the gradient of efficiency at each of these
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FIG. 9. Gaits that maximize speed along the x direction for the Purcell swimmers. (a) Optimal gait for the passive Purcell swimmer (red)
and optimal gait for the fully actuated Purcell swimmer (black). The thickness of the line corresponds to the time spent traversing that section
of the gait. (b) Power required to execute the optimal gait for the passive Purcell swimmer and input to the actuated joint over one gait cycle.
(c) Comparison table of the speeds achieved by the passive and fully actuated Purcell swimmers at different power levels.

points with respect to p. We then project these gradients onto
the Fourier-series basis as explained in Sec. IV B to obtain the
efficiency maximizing gaits using gradient descent.

The maximum-efficiency cycle must satisfy the condition
that the gradient of efficiency with respect to the parameters p
and T is zero, i.e.,

∂

∂ p

(
gφ

E

)
= 1

E

∂gφ

∂ p
− gφ

E2

∂E

∂ p

= 0 (58)

and

∂

∂T

(
gφ

E

)
= 1

E

∂gφ

∂T
− gφ

E2

∂E

∂T

= 0. (59)

Once we have the gradient of efficiency with respect to a
direct transcription parametrization p obtained from a Fourier-
series parametrization p f , we follow the process outlined in
Sec. IV B to obtain the gradient of efficiency with respect to
the Fourier-series parametrization ∂

∂ p f
( gφ

E ).

Thus, for suitable speed values of p f 0 and T0, the maximum
efficiency gaits can be obtained by finding the equilibria of the
dynamical system

ṗ f = ∂

∂ p f

(gφ

E

)
, (60)

Ṫ = 1

E

∂gφ

∂T
− gφ

E2

∂E

∂T
. (61)

Thus the process of finding the most efficient gait is the result
of a unified process where (60) is the equation that helps find
the shape of the input to the actuated joint and (61) is the equa-
tion that helps find the optimal pacing of the input. Note that
as in Sec. V, the two equations do not operate independently;
the gradient of shape depends on the time period T and the
gradient of the time period depends on the shape of the gait.

A. Shape gradient of the optimal input to the actuated joint

The shape of the optimal input to the actuated joint is
affected by two gradients ∂gφ

∂ p and ∂E
∂ p (60). The details of

how ∂gφ

∂ p is calculated are explained in Sec. V A. Whereas ∂gφ

∂ p
pushes the gait towards maximum displacement cycles, E is a
measure of the cost required to execute the gait and ∂E

∂ p pushes
the gait towards low-cost shapes. At the most efficient gait,

FIG. 10. Gaits that maximize speed along the x direction for the T-link swimmers. (a) Optimal gait for the passive T-link swimmer (red)
and optimal gait for the fully actuated T-link swimmer (black). The thickness of the line corresponds to the time spent traversing that section
of the gait. (b) Power required to execute the optimal gait for the passive T-link swimmer and input to the actuated joint over one gait cycle.
(c) Comparison table of the speeds achieved by the passive and fully actuated T-link swimmers at different power levels.
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Fully Actuated 
Purcell Swimmer

Passive gait same 
speed 1.33

Ac ve gait same 
speed

1.99

221.62

Passive Purcell 
Swimmer

Units=

= length of the swimmer
= stiffness of the passive joint

(c)(b)(a)

FIG. 11. Gaits that maximize efficiency along the x direction for the Purcell swimmers. (a) Optimal gait for the passive Purcell swimmer
(red) and optimal gait for the fully actuated Purcell swimmer (black). The thickness of the line shows the magnitude of power required at
different points of the gait. (b) Power required to execute the optimal gait for the passive Purcell swimmer and input to the actuated joint over
one gait cycle. (c) Comparison table of the efficiencies achieved by the passive and fully actuated Purcell swimmers moving forward at the
same speed as the passive swimmer. Note that for the passive Purcell swimmer, the optimizer stops because reducing the frequency further or
making the gait smaller does not provide any meaningful increase in efficiency. This observation is in line with the results in [9].

these two opposing gradients cancel each other out and we
get an equilibrium for the gait-optimization process.

Over a gait cycle, no energy is stored in the spring. Hence
we can calculate the energy expended P while executing a gait
by integrating the power flow through the actuated joint (α1)

E =
∫ T

0
α̇1(t )T τ1dt (62)

=
∫ T

0
α̇1(t )TM1(t )α̇(t )dt, (63)

where M1(t ) is the first row of the power metric M(t ). The
gradient of cost with respect to the shape of the gait ∂E

∂ p is then
calculated by applying the product rule for derivatives

∂E

∂ p
= ∂

∂ p

∫ T

0
α̇1(t )TM1(t )α̇(t )dt (64)

=
∫ T

0

(
∂α̇1

∂ p
M1α̇

+ α̇T
1 M1

∂α̇

∂ p
+ α̇T

1
∂M1

∂ p
α̇

)
dt . (65)

B. Frequency gradient of the optimal input to the actuated joint

The equation that governs the optimization process for
finding the time period of the most efficient gait is described
by (61). The term ∂gφ

∂T is calculated as described in Sec. V B.
The second gradient on the right-hand side of (61) is calcu-
lated as

dE

dT
= ∂E

∂α1

∂α1

∂T
+ ∂E

∂α2

∂α2

∂T
+ ∂E

∂T
. (66)

Because α1 is the actuated shape variable and the shape of the
input actuation is independent of the frequency of actuation,
∂α1
∂T reduces to zero. Therefore, the gradient of energy with

respect to period reduces to

dE

dT
= ∂E

∂α2

∂α2

∂T
+ ∂E

∂T
. (67)

The first term accounts for the fact that a change in frequency
would change the response of the passive joint α2, resulting
in a change in the shape of the gait and hence a change in the
power dissipated while executing the gait. The second term
accounts for the fact that even if the shape of the gait remains
unchanged, a change in the frequency of input to the actuated
joint will change the time required to execute the gait and
hence would change the power dissipated while executing the
gait.

C. Passive Purcell and T-link swimmers

We implemented the optimizer described in the Sec. VI in
MATLAB by providing the gradients of efficiency with respect
to shape and time period, calculated using (60) and (61), re-
spectively, to the fmincon optimizer using the sqp algorithm.
The shape of the gait obtained is illustrated in Fig. 11(a) for
a Purcell swimmer. Figure 11(b) shows the power input to
the actuated joint over the cycle. Figure 9(c) shows a com-
parison of the efficiencies achievable by the passive and fully
actuated Purcell swimmers when the forward speed for all the
systems is fixed to be equal to the forward speed achieved by
the passive swimmer when executing its maximum efficiency
cycle. Figure 12 shows the same results for a passive T-link
swimmer. Note that for the Purcell swimmer, the optimizer
stops because reducing the frequency further or making the
gait smaller does not provide any meaningful increase in effi-
ciency. This observation is in line with the results from [9],
where the efficiency was found to asymptotically approach
a maximum value as the frequency of gait oscillations ap-
proached zero. The maximum efficiency gait for the passive
T-link swimmer is much larger compared to the maximum
efficiency gait of the passive Purcell swimmer and does not
approach the limit of a zero-amplitude gait because a larger
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Units=

= length of the swimmer
= stiffness of the passive joint

 

(a) (b) (c)

FIG. 12. Gaits that maximize efficiency along the x direction for the T-link swimmers. (a) Optimal gait for the passive T-link swimmer
(red) and optimal gait for the fully actuated T-link swimmer (black). The thickness of the line corresponds to the magnitude of power required
at different points of the gait. The maximum efficiency gait of the passive T-link swimmer is much larger than the maximum efficiency gait
of the passive Purcell swimmer because a larger gait helps exploit the presence of two peaks in the constraint curvature function of the T-link
swimmer. (b) Power required to execute the optimal gait for the passive T-link swimmer and input to the actuated joint over one gait cycle.
(c) Comparison table of the efficiencies achieved by the passive and fully actuated T-link swimmers moving forward at the same speed as the
passive swimmer.

gait helps exploit the presence of two peaks in the constraint
curvature function of the T-link swimmer.

As discussed in Sec. V C , changing spring stiffness does
not affect the shape and nature of the response of the passive
joint but shifts the bode plot shown in Fig. 7 to the left or
right along the frequency axis. An increase in spring stiffness
shifts the bode plot to the right, which results in the shape of
the efficiency maximizing gait cycle remaining the same, but
the time taken to execute the gait will decrease. The energy
required to execute a gait is inversely proportional to the time
taken to execute the gait. Therefore, more energy is required
to execute a gait faster. Thus, increasing spring stiffness will
result in an overall decrease in the efficiency of swimming.

VII. COMPARISON WITH PREVIOUS WORK

Passive swimmers have been previously studied, e.g., in
[9–13]. Of these works, [9–11] are most relevant to this paper,
as they discuss the motion of swimmers with a harmonically
driven active joint and a passive joint. The T-link swimmer
used in this paper was introduced in [10] as a simplified
model to study the swimming dynamics of Schistosoma man-
soni. The analysis in [9] is particularly relevant, as it applies
perturbation theory to investigate the motion of the Purcell
swimmer.

The approximation used in the perturbation analysis in [9]
is equivalent to assuming that the displacement produced by
executing a gait is equal to the area enclosed by the gait in the
shape space multiplied by the constraint curvature value at the
center of the gait,

gφ ≈
∫∫

φa

D(−A)|0 = φa · D(−A)|0. (68)

This approximation has been used in several works from
the geometric mechanics community to identify useful shape
oscillations that resulted in useful net displacements, e.g.,
[18,40].

Using the approximation in (68), the authors of [9] con-
cluded that for harmonic inputs, the speed of the swimmer
monotonically increases with frequency and asymptotically
approaches a maximum value as the actuation frequency ap-
proaches ∞. They similarly concluded that the efficiency of
the swimmer asymptotically approaches a maximum value as
the actuation frequency approaches zero.

A drawback of this approximation is that its the accuracy
falls steeply with increasing gait size, as a larger gait would
mean larger variations in the value of the CCF inside the
region bounded by the gait. Our analysis improves on this
approximation in three ways. First, our use of a body-averaged
frame instead of the link-attached frame in [9] “flattens” some
of the nonlinearity in the system, expanding the domain of gait
amplitude for which the perturbation analysis gives accurate
results. Second, our use of the full integral of the constraint
curvature over the area enclosed by the gait,

gφ ≈
∫∫

φa

D(−A), (69)

absorbs much of the remaining nonlinearity. Third, we use
(69) only to calculate gradients and numerically evaluate the
value of gφ at each step of the gradient-descent process de-
scribed in Secs. V and VI to avoid compounding errors from
any residual nonlinearity.

Figures 13(a) and 13(b) show the effect on swimming
speed from changing the frequency of the input stroke for
Purcell and T-link swimmers, respectively. The red solid
lines and the red circles show the speeds predicted by nu-
merical simulation and the area integral of the curvature,
respectively. The black and gray solid lines show the speeds
predicted by the constant-CCF assumption used in [9] in the
link-attached coordinates for optimally shaped and sinusoidal
inputs, respectively. The speeds predicted by the constant-
CCF assumption are higher than the actual speeds obtained
by numerical simulations, and our integral of the CCF is a
good approximation of the ground-truth simulation.
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Speed vs Frequency Efficiency vs Frequency Efficiency vs Stroke AmplitudeSpeed vs Stroke Amplitude

(a)

(b) 

(c)

(d) 

(e)

(f) 

(g)

(h) 

Optimal Input

Sinusoidal 
Input

FIG. 13. In all plots the red solid lines and the red circles show the speeds and efficiencies predicted by numerical simulation and the
integral of the CCF, respectively. The black solid lines show the speeds and efficiencies predicted by the constant-CCF assumption used in
[9] in the link-attached coordinates. Illustrated is the speed of (a) the Purcell swimmer as a function of actuation frequency when the input to
the controlled joint is a sinusoidal oscillation of unit amplitude and when the input to the controlled joint has the optimal shape and (b) the
T-link swimmer as a function of actuation frequency when the input to the controlled joint has the optimal shape as obtained in Sec. V. In
(a) the gray line shows the speed predicted by the constant-CCF assumption for a sinusoidal input. The small-amplitude perturbation analysis
in [9] predicts speed to be a monotonically increasing function of frequency for all inputs. The speed is a monotonically increasing function
of frequency for the sinusoidal input. However, it is not monotonically increasing for the optimal input, contrary to the prediction from the
small-amplitude perturbation analysis in [9]. Also shown is the efficiency of (c) the Purcell swimmer and (d) the T-link swimmer as a function
of actuation frequency when the input to the controlled joint has the optimal shape as obtained in Sec. VI. The (e) and (f) speed and (g) and
(h) efficiency of (e) and (g) the Purcell swimmer and (f) and (h) the T-link swimmer are shown as a function of the magnitude of the optimally
shaped input actuation obtained from Sec. VI.

We can also see from Fig. 13(a) that the velocity obtained
by the Purcell swimmer does not monotonically increase with
frequency for all inputs to the actuated joint. This results in
the speed-maximizing gaits found in Sec. V having an opti-
mal frequency associated with them, rather than exhibiting a
monotonic increase in speed with frequency.

In the case of efficiency-maximizing gaits, for the optimal
gait shape obtained in Sec. VI, the efficiency does asymptot-
ically approach a maximum value as shown in Figs. 13(c)
and 13(d) as the frequency approaches zero. However, the
value is different from the maximum efficiency predicted by
applying the small perturbation analysis from [9] to the T-
link swimmer, showing that small perturbation analysis does
not completely characterize optimal performance. In the case
of the Purcell swimmer, the efficiency-maximizing gait is
small enough for the perturbation analysis to yield accurate
results.

Figures 13(e)–13(h) illustrate how the constant-CCF as-
sumption can introduce errors in identifying optimal actuation
shape. Figures 13(e) and 13(f) illustrate the effect on the
swimming speed from changing the size of the input stroke
(the reference input is the optimal input obtained in Sec. V).
Figures 13(g) and 13(h) illustrate the effect on the swimming

efficiency from changing the size of the input stroke (the
reference input is the optimal input obtained in Sec. VI).
The red solid lines and the red circles show the speeds and
efficiencies predicted by numerical simulation and the integral
of the CCF, respectively. The black solid lines show the speeds
and efficiencies predicted by the constant-CCF assumption
used in [9] in the link-attached coordinates.

We can see that in the case of the Purcell swimmer, the
constant-CCF assumption used in [9] incorrectly predicts a
monotonic increase in speed with an increase in the ampli-
tude of the input to the actuated joint. In the case of the
T-link swimmer, the constant-CCF assumption used in [9]
incorrectly predicts an increase in efficiency as we shrink the
optimal gait. The efficiency would go down if we shrink the
optimal gait, because the CCF value for the T-link swimmer
is higher at the edges than at the center of the shape space.
When we shrink the gait, it loses these regions of high value,
leading to a decrease in efficiency, which is not captured by
the constant-CCF assumption.

The T-link swimmer was first introduced in [10]. The anal-
ysis in this paper agrees with the most relevant results from
[10], which are that when the actuated joint is driven by a sim-
ple harmonic input there exists a linear relationship between
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the speed-maximizing value of spring stiffness and frequency
of actuation and that the average swimming speed increases
monotonically as the amplitude of actuation is increased from
π
2 rad to 11π

9 rad. In Sec. V C we noted that an increase or
decrease in spring stiffness shifts the Bode plot of the response
of the passive joint to the right or to the left without changing
the shape of the Bode plot, resulting in the frequency of the
speed-maximizing input being linearly related to the stiffness
of the passive joint.

In Fig. 10(a) we can see that the CCF value for T-link
swimmer is higher at the edges than at the center of the shape
space. Thus an increase in the amplitude of actuation would
enclose more of the high-value region, leading to an increase
in speed.

VIII. CONCLUSION

In this paper we have identified the geometric structure
of optimal gaits for viscous swimmers with passive elastic
joints by combining the constraint-curvature analysis in [8]
with frequency-response models for the steady-state motion
of driven oscillators. We use this structure to identify both
speed-maximizing and efficiency-maximizing gaits. The op-
timal gaits for passive swimmers maximize the CCF integral
relative to perimeter and pacing costs, subject to amplitude
and phase constraints of a first-order system.

As discussed in Sec. IV, for the fully actuated swimmers,
the maximum forward speed achievable is only restricted by
the maximum power we are able to supply the joints, but for
the swimmers with the passive elastic joint, even with more
powerful actuators, there is a theoretical maximum forward
speed the system can achieve dictated by the stiffness of the
passive joint. The important factor that makes the performance
of the fully actuated swimmers superior to that of the swim-
mers with the passive elastic joint in terms of energy efficiency
is the fact that not only can the fully actuated swimmers
execute a much larger set of gaits, they can execute any gait
the passive swimmer can execute at a pacing that is just as
good as or better than the pacing dictated by the dynamics of
the passive joint.

This property raises the question of what benefits, e.g.,
simplicity of construction, does having a passive elastic
member give to biological organisms that locomote in a low-
Reynolds-number fluid? Most biological organisms have tails
that resemble an elastic filament. The propulsive and flexive
dynamics of such filaments have been well studied [1,41–
43]. Artificial microscopic swimmers with elastic filaments
have been proposed based on this body of work [44,45]. An
interesting line of future work would involve investigating the
tradeoff between elastic element inefficiencies and structural
complexity of being fully actuated.

This work is a step towards expanding the applicability
of the geometric framework presented in [2,3,8] to systems
where underactuated shape parameters play a role in the
dynamics of the system. In the case of the passive Purcell
swimmer, assuming the torque required to effect a desired
shape change did not depend on the current shape of the swim-
mer and did not introduce significant errors in the prediction
of the limit cycle corresponding to inputs to the actuated joint
as shown in Fig. 4. This might not always be the case in all

the swimmers we consider. A future line of research would be
to improve our frequency-domain analysis by using nonlinear
perturbation theory to obtain more accurate predictions of
limit cycles.

Another line of future work would involve studying the
shape of optimal gaits in swimmers with more than one pas-
sive joint (e.g., a four-link swimmer with two passive joints).
The relationship between design choices (e.g., ratio of link
lengths and ratio of joint stiffness) and the shape of the opti-
mal gaits would also be an interesting question to answer in
systems with more than one passive joint.
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APPENDIX A: COMPARISON WITH LIGHTHILL
EFFICIENCY

Lighthill’s efficiency, defined as the (reciprocal) ratio be-
tween the average power consumed by a given stroke and the
power that would be required to drag the swimmer at the same
average velocity as that produced by the stroke,

ηLH = Pref

Pavg
, (A1)

is a commonly used measure of swimming performance. Be-
cause the drag force acting on the swimmer is proportional
to the velocity of its motion, it is readily shown that for a

Surface tension from 
distance metric

Outward 
pressure from 

Lie bracket

FIG. 14. Our algorithm in [8] maximizes gait efficiency in fully
actuated swimmers by finding cycles in the space of body shapes that
enclose the most curvature of the system dynamics (measured via
the Lie bracket) while minimizing their cost to execute (measured
as the metric-weighted lengths of their perimeters). This process is
analogous to the process by which air pressure and surface tension
combine to produce the shape and size of a soap bubble. Shown on
top is the forward progress of a locomoting system as it executes a
gait cycle.
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Gait described by
parameters p.

Moving in the direction produces
no change in area 

Change in area produced due to
movement along direction

Movement in the        direction does not 
change position of    along the     axis 

Movement in the      direction balances 
the side lengths 

Change in metric and segment 
length with movement of point 

FIG. 15. Changes in area caused by moving in the two coordinate directions in the local frame. Moving in the tangential direction e‖
produces no change in area, as the area of the triangle given by half the product of base length and height remains the same.

given swimmer, Lighthill’s efficiency is proportional to
v2

avg

Pavg

[9]. Ignoring the proportionality factor, we can thus take the
Lighthill efficiency as

ηLH = v2
avg

Pavg
, (A2)

where vavg is the average velocity of the swimmer.
In [8] we used a geometric measure of efficiency η2 defined

in (34) as the ratio of displacement produced per cycle to the
path length of the cycle in the shape space (weighted by the
shape space metric M),

η2 = gφ

s
, (A3)

to identify optimal gaits for fully actuated swimmers. In this
Appendix we demonstrate that for fully actuated swimmers a
gait that maximizes η2 maximizes Lighthill’s efficiency and
vice versa.

Because s is equal to the time integral of the square root of
instantaneous power expended, we can rewrite η2 as

η2 = gφ∫ T

0

√
P(t )dt

. (A4)

From [7] we know that the optimal pacing for any gait utilizes
a constant power pacing and hence for all t ,

P(t ) = Pavg. (A5)

Substituting (A5) into the expression for η2 provides

η2 = gφ√
PavgT

(A6)

= vavg√
Pavg

(A7)

= √
ηLH. (A8)

Because the square root is a monotonic function, a gait that
maximizes our definition of efficiency with respect to the
path and is executed at constant power pacing also maxi-
mizes the Lighthill efficiency optimized over the path and
pacing and vice versa. Note that this conclusion does not
hold for the underactuated systems we consider in this pa-
per, for which the path and pacing cannot be controlled
individually.

APPENDIX B: SOAP-BUBBLE GAIT OPTIMIZATION

In this Appendix we present a brief overview of the frame-
work introduced in [8] to identify optimal gaits for fully
actuated drag-dominated swimmers. In Secs. V and VI we
build on this framework to identify efficiency-maximizing
and speed-maximizing gaits for passive swimmers with one
passive and one active joint. The framework uses a gradient-
descent algorithm to identify gaits that maximize efficiency as
defined in (34).

Given a gait parametrization p, maximum-efficiency cycles
satisfy the condition that the gradient of the efficiency ratio is
zero,

∇p
gφ

s
= 1

s
∇pgφ − gφ

s2
∇ps = 0. (B1)

For suitable speed values p0, solutions to (B1) can therefore
be reached by finding the equilibrium of the dynamical system

ṗ = ∇p
gφ

s
. (B2)

The stable equilibria on the right-hand side of (B2) are gaits
in the same “image families” as the system’s optimally effi-
cient gaits (i.e., they follow the same curves as the optimal
gait, but not necessarily at the same pacing). To construct the
optimal gait, we can either optimize via (B2) and then choose
a constant-metric-speed parametrization, such that the pacing

032605-16



OPTIMAL GAITS FOR DRAG-DOMINATED SWIMMERS … PHYSICAL REVIEW E 103, 032605 (2021)

penalty σ from (17) goes to zero, or directly include ∇pσ in
our optimizer.9

Combining the gradient of the pacing term with the gra-
dient of the image-optimizer places the maximum-efficiency
gait as the equilibrium of

ṗ = ∇pgφ − gφ

s
∇ps + ∇pσ (B3)

[from which we have factored out a coefficient of 1
s from

(B1)]. As illustrated in Fig. 14, this differential equation is
directly analogous to the equations governing the shape of
a soap bubble: ∇pgφ takes the Lie bracket as an internal
pressure seeking to expand the gait cycle to fully encircle a
sign-definite region, ∇ps is the surface tension that constrains
the growth of the bubble, and ∇pσ is the concentration gradi-
ent that spreads the soap over the bubble’s surface.

9Including ∇pσ in the optimizer works best for parametrizations
in which ∇pσ is orthogonal to ∇p

gφ

s , such as waypoint-based di-
rect transcriptions. For other parametrizations, e.g., Fourier series,
the gradients may not be orthogonal and a two-step procedure of
optimizing the image and then the pacing will produce better results.
For waypoint-based parametrizations, the ∇pσ term has a secondary
benefit of helping to stabilize the optimizer by maintaining an even
spacing of points, thereby preventing the formation singularities in
the curve.

For the fully actuated swimmers, we parametrize the gait
as a sequence of waypoints pi such that the gait parameters
pi explicitly define the location of the discretization points.
As illustrated in Fig. 15, each waypoint pi forms a triangle
with its neighboring points and we can define a local tangent
direction e‖ as

pi+1 − pi−1 = � e‖ (B4)

and a local normal direction e⊥ orthogonal to e‖.
We selected this direct-transcription parametrization be-

cause it facilitated visualizing the workings of our optimizer
(and thus the dynamics governing any other optimization
applied to this problem). Additionally, it allowed us to il-
lustrate simultaneous optimization of the gait path and its
pacing. We could also parametrize the gait using a Fourier
series or Legendre polynomials. In this case, the pacing
optimization should be done after the image of the opti-
mal gait has been found because finding an optimal pacing
can no longer be formulated as a process orthogonal to the
gradient-descent process for finding the image of the optimal
gait.
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