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Interacting hard-sphere fluids in an external field
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We present a method for studying equilibrium properties of interacting fluids in an arbitrary external field.
The fluid is composed of monodisperse spherical particles with hard-core repulsion and additional interactions
of arbitrary shape and limited range. Our method of analysis is exact in one dimension and provides demonstrably
good approximations in higher dimensions. It can cope with homogeneous and inhomogeneous environments.
We derive an equation for the pair distribution function. The solution, to be evaluated numerically, in general,
or analytically for special cases, enters expressions for the entropy and free energy functionals. For some one-
dimensional systems, our approach yields analytic solutions, reproducing available exact results from different
approaches.
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I. INTRODUCTION

Fluids of interacting particles, such as sticky or ionic fluids,
exhibit broadly varied and complex phenomena, even more
so in the inhomogeneous environment of an external field.
Although several experimental works have well characterized
the complex behavior of inhomogeneous interacting fluids, a
complete microscopic description of the observed behavior is
still missing. Driven by their widespread applications, includ-
ing microfluidic devices [1] and nanobiotechnological means
of drug delivery [2], a great deal of attention has recently been
given to models of interacting fluids [3–6].

Aiming to better understand equilibrium and nonequilib-
rium properties down to the nanoscale, a variety of analytical
and computational tools have been suggested. Density func-
tional theory (DFT) is a powerful method for investigating
equilibrium properties of interacting fluids [7–17]. However,
good approximations from equilibrium DFT have been lim-
ited to hard particles (via the fundamental measures approach)
or else to weakly interacting particles [18–25]. Constructing a
good approximation of density functionals for more general
interactions remains an open question.

To a large extent, the complex behavior of real fluids stems
from (i) the interaction potentials and (ii) the shapes of con-
stituent particles. In this work we aim to extend the DFT for
fluids of hard bodies beyond the hard-sphere models in the
line of aspect (i) by introducing nearest-neighbor interactions
of arbitrary profile and coupling strength and with a maximum
range of two molecular diameters.

Inspired by work of Percus on hard rods [26] and by the
probabilistic modeling of lattice hard rods with additional
interactions, we derive a recurrence relation for the pair distri-
bution function (PDF) of interacting hard-sphere fluids which
is valid in any dimension [27–32]. Using this recurrence
relation, we infer explicit expressions for entropy and free
energy as functionals of density and PDF. A key advantage

of our approach is that the total correlation function or the
radial distribution function can be determined directly from
the PDF without further differentiation of the free energy
functional, which circumnavigates the most laborious parts
of more commonly taken approaches. The close connection
between radial distribution functions and neutron scattering
cross sections makes the former a desirable object of theoret-
ical and computational investigations.

In this work we consider a fluid consisting of N identical
particles confined to some macroscopic region of space, in the
presence of an external potential Vex and a pair interaction po-
tential φ between neighbors within a limited range of mutual
distances. The total (potential) energy is [33,34]

H(r1, . . . , rN ) =
∑
i< j

φ(ri, r j ) +
N∑

i=1

Vex(ri ). (1)

The particles have a hard core of diameter σ . They are rods,
disks, and spheres in D = 1, 2, 3 dimensions, respectively. In
addition to hard-core repulsion, our model includes a central-
force pair interaction ε(r) of limited range and arbitrary
profile. We thus write

φ(ri, r j ) =
⎧⎨
⎩

∞, |ri − r j | < σ

ε(|ri − r j |), σ � |ri − r j | < ξ

0, |ri − r j | � ξ .

(2)

The restriction ξ < 2σ for the maximum interaction range in
combination with the hard-core repulsion [Fig. 1(a)] ensures
that the number of neighbors to which any particle is coupled
is limited by the number of nearest neighbors in a close-
packed configuration: 2 in D = 1, 6 in D = 2 (hexagonal),
and 12 in D = 3 (hcp or fcc).

In Sec. II we present the central idea behind the method-
ology, a recurrence relation for the PDF, that produces exact
results in D = 1 and approximations of promising quality
in higher D. The practical use of this recurrence relation in
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the functionals for the entropy and the free energy is de-
scribed in Sec. III for very general situations. In applications
to one-dimensional (1D) systems, all expressions simplify
considerably as is described in Sec. IV, and the approach
is exact as is demonstrated in Appendix A. The strength of
the methodology for three-dimensional (3D) applications is
shown in Sec. V in the context of three situations with inho-
mogeneous external potentials.

II. PAIR DISTRIBUTION FUNCTION

Direct correlation functions (DCF) are of central inter-
est in DFT. Generally, the DCF can be determined from
the free-energy functional via second derivative with re-
spect to the particle density. If the free-energy functional is
not known, it can be determined from the Ornstein-Zernike
(OZ) equation. But, here a closure relation is required be-
tween the two unknowns of the OZ equation, namely, the
DCF and the total correlation function. Different closure ap-
proximations have been proposed to solve the OZ equation,
including the Percus-Yevick [35], hypernetted chain [36,37],
Born-Green [38], and mean-spherical-model approximations
[39]. With the DCFs thus calculated, free-energy functionals
in various approximations are then being constructed and
evaluated.

The route we take in this work is different and does not rely
on any closure relation. It aims instead for a hitherto unused
relation between the particle density

ρ(r)
.= 〈ρ̂(r)〉 = 1

N

〈
N∑

i=1

δ(r − ri )

〉
(3)

and the PDF [40]

ρ (2)(r, r′) = 〈ρ̂(r)ρ̂(r′)〉

= 1

N (N − 1)

〈∑
i, j �=i

δ(r − ri )δ(r′ − r j )

〉
, (4)

where 〈. . .〉 denotes the canonical ensemble average.
For the establishment of this relation between ρ(r) and

ρ (2)(r, r′), we introduce three auxiliary distribution functions
(ADFs) defined as follows:

ρ̃(r, r′) .=
〈
ρ̂(r′)

[
1 −

∫
V ′

d r̄2ρ̂(r̄2)

]〉
, (5)

ρ̃1(r, r′′) .=
〈[

1 −
∫

V
d r̄1ρ̂(r̄1)

]
ρ̂(r′′)

〉
, (6)

ρ̃0(r)
.=

〈[
1 −

∫
V

d r̄1ρ̂(r̄1)

][
1 −

∫
V ′

d r̄2ρ̂(r̄2)

]〉
, (7)

where the regions of integration are explained in Fig. 1(b).
The variable r is only implicitly present in these expressions.
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r
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FIG. 1. (a) The pair interaction ε(|r − r′|) between two hard-
core particles of diameter σ has range σ � |r − r′| � ξ . (b) Regions
of integration, named V and V ′, are shaded differently. Position r is
at the center of V , position r′ anywhere inside V , and position r′′

anywhere inside V ′.

The positions r′ and r′′ relative to the position r are limited to
the regions V and V ′.

These expressions can be interpreted as the probability
density (5) for a particle to be present at position r′ in region
V and no particle present inside region V ′, the probability
density (6) for a particle to be present at position r′′ in region
V ′ and no particle present inside region V , and the probability
density (7) for no particle to be present inside the combined
region VT

.= V ∪ V ′.
The ADFs are not independent of each other. All three can

be expressed as functionals of the density (3) and the PDF (4):

ρ̃(r, r′) = ρ(r′) −
∫

V ′
d r̄2ρ

(2)(r′, r̄2), (8)

ρ̃1(r, r′′) = ρ(r′′) −
∫

V
d r̄1ρ

(2)(r̄1, r′′), (9)

ρ̃0(r) = 1 −
∫

VT

d r̄ρ(r̄) +
∫

V
d r̄1

∫
V ′

d r̄2ρ
(2)(r̄1, r̄2). (10)

There is space for no more than one particle in region V . If a
particle is present in region V , then there is space for no more
than one particle in region V ′.

Next, we relate the PDF and the three ADFs to the joint
probability distribution (JDF) at thermal equilibrium

p(r1, . . . , rN ) = Z−1e−βH(r1,...,rN ), (11)

where

Z =
∫
V

dr1· · ·
∫
V

drN e−βH(r1,...,rN ) (12)

is the canonical partition function and V the space to which
the fluid is confined. Keeping in mind that here we are using
a canonical ensemble, the four distribution functions can be
represented as follows:

ρ (2)(r′, r′′) = 1

Z

1

N (N − 1)
e−β[φ(r′,r′′ )+Vex (r′ )+Vex (r′′ )]

∫
V ′

dN−2r e−βH1 , (13a)

H1(r′, r′′, r3, . . . , rN ) = H − φ(r′, r′′) − Vex(r′) − Vex(r′′), (13b)

ρ̃0(r) = 1

Z

1

N (N − 1)

∫
V ′

dN r e−βH, (14)
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ρ̃(r, r′) = 1

Z

1

N (N − 1)
e−βVex (r′ )

∫
V ′

dN−1r e−βH2 , (15a)

H2(r′, r2, . . . , rN ) = H − Vex(r′), (15b)

ρ̃1(r, r′′) = 1

Z

1

N (N − 1)
e−βVex (r′′ )

∫
V ′

dN−1re−βH3 , (16a)

H3(r1, r′′, r3, . . . , rN ) = H − Vex(r′′), (16b)

where V ′ is the complement to VT in V: V = V ′ ∪ VT , V ′ ∩ VT = ∅. We can thus write

ρ̃0(r)ρ (2)(r′, r′′)
ρ̃(r, r′)ρ̃1(r, r′′)

= e−βφ(r′,r′′ ) A(r, r′, r′′)
B(r, r′, r′′)

, (17)

where

A(r, r′, r′′) =
[∫

V ′
dN r e−βH

][∫
V ′

dN−2r e−βH1

]
, (18)

B(r, r′, r′′) =
[∫

V ′
dN−1r e−βH2

][∫
V ′

dN−1r e−βH3

]
. (19)

In what follows we shall use Eq. (17) for A = B with the understanding that, in general, it represents an approximation. We
shall argue that the approximation is good, in general. Indeed, there are nontrivial situations for which A = B is exact as shown
in Appendix A. In combination with expressions (13)–(16), the assumption A = B yields the following functional relation (the
desired recurrence relation) between the particle density and the PDF:

ρ (2)(r′, r′′) = e−βφ(r′,r′′ ) [ρ(r′) − ∫
V ′ d r̄2ρ

(2)(r′, r̄2)][ρ(r′′) − ∫
V d r̄1ρ

(2)(r̄1, r′′)][
1 − ∫

VT
d r̄ ρ(r̄) + ∫

V d r̄1
∫

V ′ d r̄2ρ (2)(r̄1, r̄2)
] , σ � |ri − r j | < ξ. (20)

For distances outside this range we have

ρ (2)(r′, r′′) =
{

0, |ri − r j | < σ

ρ(r′)ρ(r′′), |ri − r j | > ξ.
(21)

For specific 1D models this implicit relation can be solved into an explicit expression for the PDF as a functional of the particle
density. In general, we must solve Eq. (20) computationally.

The numerical results shown below in Sec. V justify the strength of the approximation A = B. For interacting systems, the
highly structured oscillations appearing in density profiles can be captured only by an advanced DFT approximation such as
the fundamental measure theory (FMT), but not by a simple DFT approximation such as the local density approximation (a
mean-field theory) and can only be partially captured by the weighted density approximation.

The radial distribution function and total correlation function follow directly:

g(r′, r′′) = ρ (2)(r′, r′′)
ρ(r′)ρ(r′′)

, h(r′, r′′) = g(r′, r′′) − 1. (22)

Even though the derivation of (20) has been worked out in the canonical ensemble, the result is independent of the ensemble in
use. It will be used in the grand canonical ensemble, to which we switch in Sec. III.

III. FREE-ENERGY AND ENTROPY FUNCTIONALS

DFT expresses the free energy (grand potential) as a functional

	̃ = 	̃[Ṽex, φ] (23)

of the external potential modified by the chemical potential

Ṽex(r)
.= μ − Vex(r), (24)

and the interaction potential φ(r, r′) such as introduced in (2). The density ρ(r) and the PDF ρ (2)(r, r′) are extracted from (23)
via functional derivatives:

ρ(r) = −δ	̃[Ṽex, φ]

δṼex
, ρ (2)(r, r′) = δ	̃[Ṽex, φ]

δφ
. (25)
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The functions ρ(r) and ρ (2)(r, r′) are conjugate to the functions Ṽex(r) and φ(r, r′), respectively, in a thermodynamic sense.
Performing a Legendre transform on (23) yields the expression [26]

∫
dr Ṽex(r)

δ	̃

δṼex(r)
+

∫
dr

∫
dr′ φ(r, r′)

δ	̃

δφ(r, r′)
− 	

= −μ

∫
dr ρ(r) +

∫
dr Vex(r)ρ(r) +

∫
dr

∫
dr′ φ(r, r′)ρ (2)(r, r′) − 	̃ = T S[ρ, ρ (2)]. (26)

The last equation in (26), which produces the entropy functional, is evident if we identify the first term as −G (Gibbs free
energy) and the sum of the next two terms as U (internal energy). For what follows, we introduce two kinds of entropy density
functionals by writing

S[ρ, ρ (2)] =
∫

dr
∫

dr′ S̃[ρ(r), ρ (2)(r, r′)], S̄[ρ, ρ (2)] =
∫

dr′ S̃[ρ(r), ρ (2)(r, r′)]. (27)

The free energy as a functional of density and PDF now reads as

	̃ = 	[ρ(r), ρ (2)(r, r′)] =
∫

dr dr′ρ (2)(r, r′)φ(r, r′) +
∫

dr ρ(r)Vex(r) − T S[ρ, ρ (2)] − μ

∫
dr ρ(r). (28)

The external potential and the interaction potential can be extracted from the entropy functional as

Ṽex(r) = −T
δS̄[ρ, ρ (2)]

δρ
, φ(r, r′) = T

δS̃[ρ, ρ (2)]

δρ (2)
. (29)

An alternative route to Eqs. (29) invokes extremum conditions for the free-energy functional (28):

δ	[ρ, ρ (2)]

δρ
= 0,

δ	[ρ, ρ (2)]

δρ (2)
= 0, (30)

previously employed in different contexts by Gonis et al. [41,42] and Bakhti [43]. Carrying out the operations in Eqs. (30) using
expressions (28) indeed reproduces the results of Eqs. (29).

Equations (29) state that if the entropy functional is known, the external potential and the interaction potential which generate
certain profiles for density and PDF can be calculated uniquely. Conversely, if the external potential and the interaction potential
are known, the density and the PDF can be determined by integrating Eqs. (29). We can thus start from the second equation (29)
and continue our analysis by inferring from it the relation (see Appendix B)

T S̃[ρ, ρ (2)] =
∫

φ(r, r′) dρ (2)(r, r′). (31)

In order to perform this integral, we rewrite the recurrence relation (20) in the form

βφ(r, r′) = − ln

[
1 −

∫
dr1ρ(r1) +

∫
dr1dr′

1ρ
(2)(r1, r′

1)

]
− ln ρ (2)(r, r′)

+ ln

[
ρ(r) −

∫
dr′ρ (2)(r, r′)

]
+ ln

[
ρ(r′) −

∫
dr ρ (2)(r, r′)

]
. (32)

The integral (31) can now be calculated without further approximations. It produces an explicit expression for the entropy as a
functional of density and PDF:

S[ρ, ρ (2)]/kB =
∫

dr
{
−

[
ρ(r) −

∫
dr′ρ (2)(r, r′)

]
ln

[
ρ(r) −

∫
dr′ρ (2)(r, r′)

]

−
[
ρ(r) −

∫
dr′ρ (2)(r′, r)

]
ln

[
ρ(r) −

∫
dr′ρ (2)(r′, r)

]
−

[
1 −

∫
dr1ρ(r1) +

∫
dr1dr′

1ρ
(2)(r1, r′

1)

]

× ln

[
1 −

∫
dr1ρ(r1) +

∫
dr1dr′

1ρ
(2)(r1, r′

1)

]
−

∫
dr′ρ (2)(r, r′) ln ρ (2)(r, r′)

}
+

∫
dr ρ(r) ln ρ(r),

(33)
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where the last term is an “integration constant,” added to accommodate the noninteracting limit φ(r, r′) → 0. When we now
combine Eqs. (28), (32), and (33), the free-energy functional acquires the form

β	[ρ, ρ (2)] =
∫

dr
{
ρ(r) ln

(
ρ(r) −

∫
dr′ρ (2)(r, r′)

)
+ ρ(r) ln

(
ρ(r) −

∫
dr′ρ (2)(r′, r)

)

+
[

1 −
∫

V
dr1ρ(r1)

]
ln

(
1 −

∫
V

dr1ρ(r1) +
∫

dr1dr′
1ρ

(2)(r1, r′
1)

)
− ρ(r) ln ρ(r) − βṼex(r)ρ(r)

}
. (34)

In the limit φ(r, r′) → 0, expression (34) neatly reduces to the free-energy functional of the hard-sphere model. The full
expression is consistent with the FMT functionals, reflecting the contributions from the one particle cavity (terms with ρ only),
and contributions from the two-particle cavity (terms with ρ and ρ (2)) [44].

Any thermodynamic function and response function of interest can be inferred from (34). The expressions developed with
this methodology are valid for 3D systems. In general, the path to explicit results requires that we resort to a numerical analysis.
Three applications to colloidal systems in a heterogeneous, 3D environment are presented in Sec. V. Further applications are in
the works [45].

For 3D sticky-core fluids, the interaction range is reduced to the hard-sphere diameter (ξ → σ ). In consequence, the volume
integrals V ′ in Eq. (20) or (32) have to be replaced by surface integrals S over spheres of diameter σ . The regions S and V
represent the surface and the interior space of the sphere with diameter σ centered at position r, respectively. The vectors
r and r′ are related by |r − r′| = σ . Expressions (33) and (34) for the entropy and free-energy functionals must be adapted
accordingly.

We conclude Sec. III by reiterating that our approach bypasses the OZ equation. The extremum of the free-energy functional
produces one relation between the particle density ρ(r) and the PDF ρ (2)(r, r′). A second relation is Eq. (20), which, in general,
represents an approximation. The latter is inferred from (17), which is exact, but does not lead to closure, except under special
circumstances such as discussed in Sec. IV and Appendix A. The OZ formalism deals with the same problem differently. In both
methods, achieving closure comes, in general, at the cost of approximation.

IV. EXACT ANALYSIS FOR 1D SYSTEMS

The entropy and free-energy expressions developed above are amenable to an exact analysis for 1D systems with specific
interactions. Consider a system of hard rods of length σ confined to a channel and with the interaction potential (2) left
unspecified for now. Equation (20) then reads as

ρ (2)(y, y′) = e−βφ(y,y′ )

[
ρ(y) − ∫

dy′
1 ρ (2)(y, y′

1)
][

ρ(y′) − ∫
dy′

1 ρ (2)(y′
1, y′)

]
[
1 − ∫

dy′
1 ρ(y′

1) + ∫
dy′

1

∫
dy′

2 ρ (2)(y′
1, y′

2)
] . (35)

The range of y′ appearing in the integral of the PDF consists of two intervals: [y − ξ/2, y − σ/2] and [y + σ/2, y + ξ/2]. The
entropy expression (33) acquires the form

S[ρ, ρ (2)]

kB
= −

∫
dy

{[
ρ(y) −

∫
dy′ρ (2)(y, y′)

]
ln

(
ρ(y) −

∫
dy′ρ (2)(y, y′)

)

+
[
ρ(y) −

∫
dy′ρ (2)(y′, y)

]
ln

(
ρ(y) −

∫
dy′ρ (2)(y′, y)

)
− ρ(y) ln ρ(y) +

∫
dy′ρ (2)(y, y′) ln ρ (2)(y, y′)

+
[

1 −
∫

dy1ρ(y1) +
∫

dy1dy′
1ρ

(2)(y1, y′
1)

]
ln

(
1 −

∫
dy1ρ(y1) +

∫
dy1dy′

1ρ
(2)(y1, y′

1)

)}
. (36)

Our approach also produces an exact expression for the free energy:

β	[ρ, ρ (2)] =
∫

dy

{
ρ(y) ln

(
ρ(y) −

∫
dy′ρ (2)(y, y′)

)
+ ρ(y) ln

(
ρ(y) −

∫
dy′ρ (2)(y′, y)

)

+
[

1 −
∫

dy1ρ(y1)

]
ln

(
1 −

∫
dy1ρ(y1) +

∫
dy1dy′

1ρ
(2)(y1, y′

1)

)
− ρ(y) ln ρ(y) − βṼex(y)ρ(y)

}
, (37)

derived from expression (34) as a special case of much wider scope, albeit not exact in higher dimensions.
The entropy expression (36) coincides exactly with the result (2.21) of Percus in [26]. Given the completely different

nature of the two approaches, this is a remarkable convergence. In addition to the mathematical interest that exact solutions
draw quite generally, in the present context they are also of practical interest. Within the DFT formalism, exact solutions
for 1D systems present themselves as ingredients in the construction of approximate functionals in higher dimensions.
Moreover, 3D systems that are inhomogeneous in only one direction are often modeled (with tacit caveats) as effectively 1D
systems.
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Our approach has a remarkable simplicity for what it is capable to deliver. It certainly is much simpler than the inverse-
problem approach. There is a straightforward path to extend our method to situations with general nearest-neighbor and next-
nearest-neighbor interactions. This can be accomplished by introducing three-point auxiliary distribution functions. Contact can
then be made with the inverse-problem approach of Percus on a wider scope [46–49]. One strength of our approach is that
the higher-dimensional functionals are constructed without the FMT reference to dimensional crossover and zero-dimensional
cavity.

The functional relation (35) between density and PDF can be solved explicitly for ρ (2)(y, y′) if we restrict the interaction to a
sticky-core contact interaction, where we have ξ = σ . We can then express (35) in the form

ρ (2)(y, y′) = e−βφ(y,y′ ) [ρ(y) − ρ (2)(y, y′)][ρ(y′) − ρ (2)(y, y′)]
1 − L(y) + ρ (2)(y, y′)

, L(y)
.=

∫ y+σ/2

y−σ/2
dx ρ(x), (38)

and rewrite it as a quadratic equation for the PDF,

−[1 − L(y) + e−βφ(y,y′ )[ρ(y) + ρ(y′)]]ρ (2)(y, y′) + (e−βφ(y,y′ ) − 1)[ρ (2)(y, y′)]2 + e−βφ(y,y′ )ρ(y)ρ(y′) = 0

which has the unique physically relevant solution

ρ (2)(y, y′) = 1

2η
[K[ρ] −

√
K2[ρ] − 4η(η + 1)ρ(y)ρ(y′)], K[ρ]

.= 1 + e−βφ(y,y′ )[ρ(y) + ρ(y′)] − L(y), (39)

where η = e−βφ(y,y′ ) − 1 and y′ is now related to y by y′ − y = σ . The simplified expressions for the entropy (36) and for the free
energy (37), into which we can substitute the PDF (39), read as

S[ρ, ρ (2)]

kB
=

∫
dy{−[ρ(y) − ρ (2)(y, y′)] ln(ρ(y) − ρ (2)(y, y′)) − [ρ(y′) − ρ (2)(y, y′)] ln(ρ(y′) − ρ (2)(y, y′))

− [1 − L(y) + ρ (2)(y, y′)] ln(1 − L(y) + ρ (2)(y, y′)) − ρ (2)(y, y′) ln(ρ (2)(y, y′)) + ρ(y) ln ρ(y)}, (40)

β	[ρ, ρ (2)] =
∫

dy{ρ(y) ln(ρ(y) − ρ (2)(y, y′)) + ρ(y′) ln(ρ(y′) − ρ (2)(y, y′))

+ [1 − L(y)] ln(1 − L(y) + ρ (2)(y, y′)) − ρ(y) ln ρ(y) − βṼex(y)ρ(y)}. (41)

We are now ready to demonstrate the strength of our approach
by showcasing two inhomogeneous model systems.

V. APPLICATIONS

First, we investigate the sticky-hard-sphere (SHS) model in
the presence of an attractive Lennard-Jones (LJ) wall. Second,
we investigate the effect of gravity on the SHS system. These
two systems are of great importance for studying wetting
transitions, sedimentation, and interfacial phenomena in in-
teracting colloids. Our focus is on density profiles pertaining
to the 3D case.

A more systematic study of this system, including ef-
fects of longer-range interactions and lower dimensionality,
presently in the works [45], is of great importance for studying
glass transition under gravity. The SHS model [50] has proven
to be realistic for many physical phenomena including crys-
tallization of polymers [51], micelles [52], protein solutions
[53], DNA coated colloids [54,55], and ionic fluids [56]. In
the SHS model, the interaction between colloidal particles is
limited to an adhesive force upon contact.

It is well known that a significant attractive interaction be-
tween colloids results from the depletion forces, which come
into play when polymer globules or micelles are added to a
colloidal suspension. The range and strength of the attraction
can be varied continuously and independently by adjusting,
respectively, the concentration and size of the polymer. For
weak depletion, the colloidal particles are well described by
the SHS model.

Consider the square-well interaction potential

βφ(r) =
⎧⎨
⎩

+∞, 0 < r < σ

− ln [σ/12τ (σ − ξ )], σ < r < ξ

0, r > ξ

(42)

of width ξ , where τ has been named Baxter temperature. In
the limit SHS limit ξ → σ we can write

e−βφ(r) = θ (r − σ ) + σ

12τ
δ(r − σ ). (43)

Noninteracting hard spheres are recovered for τ → ∞.

A. SHS model with LJ adhesive wall

Here, we consider the effect of an attractive planar wall on
an SHS system. We construct an attractive external potential
via

Vext (z) = Ew

∫ ∞

−∞
dx′

∫ ∞

−∞
dy′

∫ 0

−∞
dz′

× φLJ(
√

x′2 + y′2 + (z − z′)2) (44)

from the LJ interaction

φLJ(r) =
{0, r � σw

4ε
[(σw

r

)12
−

(σw

r

)6]
, r > σw

(45)

where ε is the interaction strength. Setting σw = σ and per-
forming the integral yields an effective external potential of
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FIG. 2. Density profiles near LJ wall for parameter values σ = 4,
τ = 0.7, Ew = 8.0. The four curves pertain to average bulk densities
ρ̄b = 0.22, 0.40, 0.99, 2.03, controlled by the parameter values μ̄ =
−3.6, −3.0, −2.7, and −1.5, respectively.

the form

Vex(z) = Ew

[
−1

6

(σ

z

)3
+ 1

45

(σ

z

)9
]
, (46)

where Ew is an energy parameter and z the distance from the
wall.

An external potential of the type (46) was previously intro-
duced as a simplified model of substrate potential for alkaline
metals [57,58], notwithstanding the fact that there exist more
accurate models [59,60]. The unidirectional nature of the ex-
ternal potential reduces the 3D SHS problem technically to a
1D problem, the results of planar averaging [58,61,62]. Such
quasi-1D structures are, of course, very different from the
structures that characterize truly 1D systems.

From Eqs. (29) we derive the following general relation
between external potential, density, and PDF:

β[Vex(r) − μ]

= ln

[
1 −

∫
dr1ρ(r1) +

∫
dr1dr′

1ρ
(2)(r1, r′

1)

]

+ ln ρ(r) − ln

[
ρ(r) −

∫
dr′ρ (2)(r, r′)

]

− ln

[
ρ(r) −

∫
dr′ρ (2)(r′, r)

]
. (47)

This equation in combination with Eq. (32), which brings the
interaction potential into play, determines the density and the
PDF. We solved them numerically for the SHS interaction,
using the Newton and the Broyden algorithms. The chemical
potential and the temperature can be tuned independently to
fix the average bulk (reservoir) density via the relation

1

L

∫ L

0
ρ(z) = ρb, (48)

where ρb is the reservoir density. For consistency with nota-
tion found in the literature, we define the average density

ρ̄ = ρσ 3 (49)

and control it with the parameter μ̄ = βμ.
The numerical results presented in Figs. 2–4 showcase

different aspects of the results. Figure 2 shows density profiles
at different values of the average reservoir density ρ̄b. We
observe the emergence of oscillations near the wall as ρ̄b

increases. They are the combined effect of wall attraction

z
0 5 10 15

ρ

0

0.05

0.1

0.15

(a)

τ = 0.5
τ = 0.7
τ = 1.5

z
0 5 10 15

ρ

0

0.1

0.2

0.3

0.4

0.5

(b)

τ = 0.5
τ = 0.7
τ = 1.5

FIG. 3. Density profiles near LJ wall at kBT = 1.0 (a) and kBT =
0.5 (a) for parameter values σ = 4, μ = −3, and Ew = 8.0, and
various strengths of stickiness.

and hard-sphere repulsion. Such highly structured oscillations
cannot be captured by DFT using the local density approxima-
tion or the weighted density approximation. It requires more
accurate functionals such as provided by FMT.

The dependence of the density profile on the stickiness
parameter at two different temperatures is shown in Fig. 3.
We see that the stickiness of the particle surface makes a
difference only at temperatures sufficiently low that the adhe-
sive energy between two particles prevails against the thermal
energy kBT . Larger particles produce oscillations near the wall
that have a larger amplitude, a larger wavelength, and a larger
depth into the bulk, as is evident in the results presented in
Fig. 4.

B. SHS model with hard walls

To make contact with previous results of the density func-
tional formalism, we switch off the LJ attraction and consider
the SHS system confined by two hard walls. In DFT, the
free-energy functional (34) is rewritten in the form

	[ρ(r)] = F1[ρ(r)] + F0[ρ(r)] +
∫

dr{Vex(r) − μ}ρ(r),

(50)

where

F0[ρ(r)] = β−1
∫

dr ρ(r){ln[ρ(r)3] − 1} (51)

is the ideal part and  the thermal wavelength. The excess part
F1 contains the particle interactions. To determine the density
profiles and the radial distribution functions (pair correlation

z
0 10 20 30

ρ

0

0.1

0.2

0.3

0.4 σ = 4
σ = 6
σ = 8

FIG. 4. Density profiles near LJ wall for parameter values
τ = 0.7, β = 0.6, μ = −3 and Ew = 9, and particles of various
diameters.

032604-7



BENAOUMEUR BAKHTI AND GERHARD MÜLLER PHYSICAL REVIEW E 103, 032604 (2021)

z/σ
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FIG. 5. (a) Density profiles of SHS in confinement between two
hard walls. Solid line represents our results and dots represent results
of the third order perturbation theory of DFT [64]. (b) Pair correlation
function of SHS at strong stickiness τ = 0.13 and at packing fraction
ξ = 0.164. Black line represents our results and blue line represents
results of the regulated FMT [65].

functions), the minimization equation is written in a form
more suitable for numerical implementation,

ρ(r) = ρb exp[−βVex(r) + c(1)[ρ(r), r] + βμ1], (52)

where

c(1)[ρ(r), r] = −β
δF1[ρ(r)]

δρ(r)
(53)

is the one-point direct correlation function. The excess
chemical potential μ1 can be calculated by considering the
minimization condition for the bulk fluid,

μ1 = c(1)
0 (ρb) = μ − β−1 ln(ρb

3). (54)

The radial distribution function is then evaluated using the
equation for density profiles, Eq. (52), by fixing a particle
at the origin and setting the external potential equal to the
particle interaction. In this case, we get g(r) = ρ(r)/ρb, and
write

g(r) = exp[−βφ(r) + c(1)[ρbg(r)] + βμ1], (55)

where φ(r) is the the particle interaction. For the SHS under
confinement as described, we again have a quasi-1D system.
Numerical results for the reduced density profiles ρ(z)σ 3 and
pair correlation function g(z) are shown Fig. 5.

The two confining walls are located at z = σ/2 and L −
σ/2. Our results are in good agreement with previous results
from a third-order perturbation theory of DFT [63,64] in
which the one-point direct correlation function c(1) has been
approximated via the Percus-Yevick scheme. At low bulk den-
sity, the particles segregate near the bottom wall. The density
is small or vanishes at high altitude. At higher bulk density,
the density profile is symmetric with respect to the middle of
the system. We only show the lower part. The pair correlation
function has one SHS particle fixed at z = 0.

Our results are a good fit with the Rosenfeld FMT, which
is known to satisfy the Percus-Yevick equation of state [65].
However, a comparison with Monte Carlo results indicates
that the Rosenfeld FMT is less accurate than White-Bear
version of the FMT, which satisfies the Carnahan-Starling
equation of state. On the other hand, our approach has the
advantage that it operates with arbitrary short-range interac-
tion, whereas in the FMT, the weighted densities must be

recalculated for each interaction, which is, in general, not a
simple task.

There are two well known procedures to get the bulk or
inhomogeneous equation of state from the free-energy func-
tional (34). For systems with a two-body interaction, a direct
and accurate method is to use the Irving-Kirkwood relation
[66]

p(r) = kBT
ρ(r)

m
− 1

2d

(
ρ(r)

m

)2 ∫
r′φ′(r′)g(r′)r′, (56)

where g(r′) ≡ g(r, r + r′) is the pair correlation function, m
is the mass of the particle, and φ′ is the derivative with respect
to r′ of the interaction potential. A second method is to use
the expression [67]

χ = kBT
∂ρ(r)

∂ p(r)
= 1 + ρ(r)

∫
[g(r′) − 1]dr′ (57)

for the isothermal compressibility. If g(r) is known exactly,
then the two procedures yield exactly the same results. Any
deviation from the exact g(r) produces a difference between
the results of the approaches [68]. In DFT, the equation of
state can also be calculated using the expression

βp(r) =
∑

i

ρi(r)
δ�[ρ(r)]

δρi(r)
− �[ρ(r)], (58)

where �[ρ(r)] is the density of free-energy functional and the
sum i extends over all weighted densities.

If we impose a hard wall at the origin (z = 0), which
prevents particles to be at this position, the second term in
Eq. (56) vanishes and we get a hard-wall sum rule as for the
standard DFT:

p = kBT ρ(0+). (59)

The pressure profile becomes

βp(r) = − ln

[
1 −

∫
dr1ρ(r1) +

∫
dr1dr′

1ρ
(2)(r1, r′

1)

]
,

(60)

which for bulk fluids satisfies Eq. (59) with contact density
taken from the solution of Eq. (47).

C. SHS model with sedimentation under gravity

Here, we consider a fluid bounded by two hard, horizontal
walls, a distance L apart, with a uniform vertical gravitational
field acting on SHS colloidal particles of diameter σ toward
sedimentation. This amounts to an external potential of the
form

Vex(z) =
⎧⎨
⎩

+∞, z < σ/2
mGz, σ/2 < z < L − σ/2
+∞, z > L − σ/2

(61)

where mG is the (effective) gravitational force acting on the
colloid. The effects of gravity become pronounced inside
the colloidal regime close to the boundary with the granular
regime, i.e., for colloids with diameters of several hundred
nanometers.

Such systems are of great importance for studying inter-
facial and solvation phenomena. They have previously been
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FIG. 6. One-particle distribution function g(z) versus altitude z
for SHS with with parameter values as stated. For diameter σ = 2
we have set L = 5σ and for diameter σ = 4 we have set L = 11σ .
For all cases we have set k1 = 1.0.

investigated via different approaches, including the OZ inte-
gral equations formalism combined with a Percus-Yevick [62]
or a hypernetted-chain [61] closure relation. They have also
been studied by Monte Carlo simulations [69].

In order to facilitate contact with previous studies including
Refs. [61,62], we introduce the scaled quantities

k1 = σmG

kBT
, k2 = σμ

kBT
, (62)

where k1 controls the strength of the gravitational potential
and k2 controls the average colloidal density via the relation
(48).

The system of Eqs. (47) and (32) for the external potential
(61) and the SHS interaction (43) can be solved numerically to
high precision using Newton, Broyden, or spectral collocation
methods. Numerical results for the one-particle distribution
are shown in Figs. 6–8. In our graphical representations we
use the one-point distribution function

g(z) = ρ(z)

ρb
, ρ̄b

.= ρbσ
3. (63)
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FIG. 7. One-point distribution function versus altitude for SHS
with diameter σ = 4 and L = 10σ at high temperature (weak grav-
ity) and low temperature (strong gravity). The stickiness parameter
is fixed to τ = 0.7. We have set k2 = −3.0.
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FIG. 8. One-point distribution function versus altitude for SHS
with different diameters. The parameter values are set at ρ̄b = 0.111,
L = 10σ , τ = 0.7 and k1 = 1.0. The chemical potentials which
correspond to ρ̄b = 0.111 are μ = −0.1 for σ = 2, μ = −9.5 for
σ = 6, and μ = −18.9 for σ = 8.

The four panels in Fig. 6 present variations of the one-point
distribution functions for sticky hard spheres of diameters σ =
2 and 4 under the effect gravity.

When the gravitational energy is comparable or greater
than the thermal energy, we can see pronounced oscillations in
the one-point distribution with amplitudes increasing when re-
ducing the chemical potential. These oscillations, which arise
from the hard wall combined with strong repulsive interaction
of the hard spheres, are a signature of layering in the fluid
that proceeds the condensation of the fluids on the surface
of the wall. Reducing the stickiness parameter enhances the
oscillations because of the dependence of the former on tem-
perature via (42). Parameters for the σ = 4 case are taken
from [61] to compare with the results found there. Our results
are manifestly in good qualitative and quantitative agreement
with those derived from the OZ approach using the Percus-
Yevick approximation as a closure relation [62] and from the
hypernetted chain and OZ equation [61].

Increasing the effect of gravity or reducing the temperature
enhances the oscillatory regime at the bottom of the wall
leading to condensation of the SHS. This is demonstrated in
Fig. 7. Only at high temperature or weak gravity (meaning dif-
ferential in mass density) do the colloids reach high altitude.

A noteworthy feature is the dependence of the (number)
density profile on the diameter of the colloids as shown in
Fig. 8 at fixed bulk (number) density. The increase in structure
for decreasing diameter is quite remarkable, far from obvious.

VI. CONCLUSION

We have introduced an approach for studying the ther-
modynamics of interacting hard-sphere fluids in an arbitrary
external field. The key accomplishment is a functional relation
between density and PDF that works for cases of inho-
mogeneous fluids with general finite-range nearest-neighbor
interactions. We have been able to construct from this func-
tional relation explicit entropy and free-energy functionals.

For the special 1D case of hard rods confined to a narrow
channel and interacting upon contact, our results coincide
with Percus’ results [26] obtained via rigorous analysis. Exact
solutions in explicit form can then be worked out. To test
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the strength of our approximation in higher dimensions, we
have considered a system of sticky hard spheres with different
external fields.

The results demonstrate that our approach is in good agree-
ment with corresponding results inferred from commonly
used approaches such as Percus-Yevick and OZ and the hy-
pernetted chain and OZ equation and also with Monte Carlo
simulation. Extensions of this work to mixtures of inter-
acting fluids in arbitrary, inhomogeneous external fields are
in progress. Extensions to molecules of different sizes and
shapes, which require the inclusion of orientational degrees
of freedom, are within the range of our methodology.

ACKNOWLEDGMENTS

We thank M. Krüger, A. Klümper, and M. Karbach for
valuable discussions.

APPENDIX A: EXACTNESS OF ANALYSIS IN D = 1

Here we present a proof that the functional relation (20) is
rigorous for 1D systems, which implies that the expressions
derived from it in Sec. IV are exact and ready to be evaluated
for any application of choice. The proof uses the fact, which
only holds in D = 1, that the integrals in Eqs. (18) and (19)
are factorizable. The conclusion that A = B follows from this
attribute.

Consider a system of N hard rods (1D hard spheres) with
diameter σ confined to a region of space. Without loss of
generality, we order the positions of rods (their centers of
mass) as x1 < x2 < · · · < xN .

Introducing the functions

h(x) = e−βVex (x), f (x, y) = e−βφ(x,y) (A1)

allows us to rewrite Eqs. (13)–(16) in more compact form as
follows:

ρ (2)(xi, xi+1) = 1

Z
h(xi ) f (xi, xi+1)h(xi+1)

×
∫ i−1∏

k=1

dxkh(xk ) f (xk, xk+1)

×
∫ N∏

k=i+2

dxkh(xk )
N−1∏

k=i+1

f (xk, xk+1), (A2)

ρ̃0(x) = 1

Z

∫ i−1∏
k=1

dxkh(xk )
i−2∏
k=1

f (xk, xk+1)

×
∫ N∏

k=i+2

dxkh(xk )
N−1∏

k=i+2

f (xk, xk+1), (A3)

ρ̃(x, xi ) = h(xi )

Z

∫ i−1∏
k=1

dxkh(xk ) f (xk, xk+1)

×
∫ N∏

k=i+2

dxkh(xk )
N−1∏

k=i+2

f (xk, xk+1), (A4)

ρ̃1(x, xi+1) = h(xi+1)

Z

∫ i−1∏
k=1

dxkh(xk )
i−2∏
k=1

f (xk, xk+1)

×
∫ N∏

k=i+2

dxkh(xk )
N−1∏

k=i+1

f (xk, xk+1). (A5)

Next, we process the product in the first line of (A2):

ρ̃(x, xi )ρ̃1(x, xi+1) f (xi, xi+1)

= 1

Z2
h(xi ) f (xi, xi+1)h(xi+1)

×
∫ i−1∏

k=1

dxkh(xk ) f (xk, xk+1)

×
∫ N∏

k=i+2

dxkh(xk )
N−1∏

k=i+2

f (xk, xk+1)

×
∫ i−1∏

k=1

dx′
kh(x′

k )
i−2∏
k=1

f (x′
k, x′

k+1)

×
∫ N∏

k=i+2

dx′
kh(x′

k ) f (xi+1, x′
i+2)

N−1∏
k=i+2

f (x′
k, x′

k+1).

(A6)

When we interchange xk and x′
k in (A6), we recognize the

exact relation

ρ̃(x, xi )ρ̃1(x, xi+1)

eβφ(xi,xi+1 )
= ρ (2)(xi, xi+1)ρ̃0(x) (A7)

between the four distribution functions (A2)–(A5). The three
ADFs (8)–(10) simplify into

ρ̃(x, x′) = ρ(x′) −
[∫ x−σ/2

x−ξ/2
+

∫ x+ξ/2

x+σ/2

]
dx′

1ρ
(2)(x, x′

1),

(A8)

ρ̃1(x, x′′) = ρ(x′′) −
∫ x+σ/2

x−σ/2
dx′

1ρ
(2)(x′

1, x′′), (A9)

ρ̃0(x) = 1 −
∫ x+ξ/2

x−ξ/2
dx′

1ρ(x′
1)

+
∫ x+σ/2

x−σ/2
dx′

1

[∫ x−σ/2

x−ξ/2
+

∫ x+ξ/2

x+σ/2

]
dx′

2ρ
(2)(x′

1, x′
2).

(A10)

Substitution of Eqs. (A8)–(A10) into Eq. (A7) yields the exact
relation (35) used in Sec. IV for the further exact analysis.

APPENDIX B: JUSTIFICATION OF EQ. (31)

Even though ρ and ρ (2) are not independent, as is manifest
in Eq. (20), in the integral (31) with respect to ρ (2), we keep
ρ fixed. This course of action requires justification. We can
express the differential of the free-energy functional in the
form

d	[Ṽ , φ] = δ	

δṼ

∣∣∣∣φdṼ + δ	

δφ

∣∣∣∣
Ṽ

dφ = −ρ dṼ + ρ (2)dφ,

(B1)

where we have used the DFT relations (25). From the
first Eq. (25), the density profiles ρ can be calculated by
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differentiating the free energy with respect to the external
potential at fixed interaction potential. Differentiation with
respect to the interaction potential at fixed external potential
produces the PDF ρ (2). Substitution of

d (ρṼ ) = ρ dṼ + Ṽ dρ, d (ρ (2)φ) = ρ (2)dφ + φ dρ (2)

into Eq. (B1) yields

d	[Ṽ , φ] = −d (ρṼ ) + Ṽ dρ + d (ρ (2)φ) − φ dρ (2),

(B2)

which we rewrite as follows:

Ṽ dρ − φ dρ (2) = d (	[Ṽ , φ] + ρṼ − ρ (2)φ) = −d (TS )

= −T
δS
δρ

∣∣∣∣ρ (2) dρ − T
δS

δρ (2)

∣∣∣∣
ρ

dρ (2). (B3)

In consequence we can write

Ṽ = −T
δS
δρ

∣∣∣∣
ρ (2)

, φ = T
δS

δρ (2)

∣∣∣∣
ρ

. (B4)

From the second relation (B4) we conclude that the entropy
functional S follows via integration of the interaction poten-
tial φ with respect to ρ (2) at fixed ρ.
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