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Field-theoretic model for chemotaxis in run and tumble particles
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In this paper, we develop a field-theoretic description for run and tumble chemotaxis, based on a density-
functional description of crystalline materials modified to capture orientational ordering. We show that this
framework, with its in-built multiparticle interactions, soft-core repulsion, and elasticity, is ideal for describing
continuum collective phases with particle resolution, but on diffusive timescales. We show that our model
exhibits particle aggregation in an externally imposed constant attractant field, as is observed for phototactic
or thermotactic agents. We also show that this model captures particle aggregation through self-chemotaxis, an
important mechanism that aids quorum-dependent cellular interactions.
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I. INTRODUCTION

Active matter consists of self-propelled particles (SPPs)
which convert stored energy into directed motion, thus
keeping the system perpetually driven out of equilibrium.
Interactions among such SPPs give rise to novel collective
behavior with no equilibrium analog. A class of collective
phenomenon that is widely studied is chemotaxis, the collec-
tive migration of active agents toward favorable environments
or away from unfavorable environments [1–5]. This chemo-
tactic motility depends on the ability of organisms to sense
spatial gradients and reorient themselves in the direction of
increasing attractant concentration, which could be a chemical
or an environmental stimulus such as light or heat. While
chemotaxis is observed in a wide variety of organisms, its
manifestation in bacteria is especially interesting because they
are physically too small to sense spatial gradients directly.
Certain bacteria like Escherichia coli overcome this handicap
by adopting a run-and-tumble approach, in which they move
ballistically in a given direction for a while, then pause to
tumble in space and choose a new direction forward. Di-
rected motion is achieved by reducing tumbling rates when
a favorable direction is identified. Chemotaxis as a means for
signaling gives rise to many complex spatial patterns, among
which the most basic and inevitable is aggregation [2,3,5–10].

How do the interactions between individual chemotactic
agents give rise to such complex collective phases? The clas-
sical Keller-Segel model [1] that is most commonly used to
study chemotaxis is a phenomenological continuum descrip-
tion of the interaction of the agents with their environment,
but ignores microscopic interactions among the agents them-
selves. Furthermore, it is purely deterministic and as such
unable to address questions related to the spatial structure
and correlations between agents. Stochastic generalizations
of this model have been formulated [11] but do not account
for collective migration through interactions among agents.
A mesoscopic description that has recently been shown to

successfully describe collective phenomenon in active sys-
tems is the active vacancy phase field crystal (VPFC) model
[12,13]. This is a field-theoretic model in which the den-
sity field is driven by a free energy that imposes a locally
periodic ground state. The peaks of the local density field
are interpreted as particles, which diffuse and collide with
other particles on the emergent lattice. This allows us to study
dynamic processes with particle resolution but on diffusive
timescales, making it much more efficient than molecular
dynamics (MD) simulations. This model has been shown to
capture long-range orientational ordering in SPPs by succes-
sive alignment of particles through inelastic collisions [12,13].
Such interactions are inherently multiparticle since each parti-
cle interacts with all its neighbors on the lattice. This has been
recently shown to be important for observing flocking in ac-
tive systems [14,15]. When modified to describe chemotaxis,
we expect the active VPFC framework to generate parti-
cle aggregation through the collective searching of attractant
gradients. The higher the density or the strength of chemo-
tactic interactions, the greater the chance of forming large
stationary aggregates, due to the cooperative aligning inter-
actions among closely spaced neighbors. For low chemotactic
strengths, we expect to recover the dynamics of the original
VPFC model, i.e., flocks with long-range orientational order.
For high chemotactic strength and low densities, we expect the
formation of scattered clusters but no large aggregates. In the
phase space of density and chemotactic strength, this can be
represented by the schematic phase diagram shown in Fig. 1.

It is important to note here that although in this paper we
focus chiefly on run-and-tumble particles, the mechanism for
aggregation prescribed by our model can be generalized to a
large class of social organisms. Insect swarms, for example,
have been shown to form stable cohesive groups even in the
presence of environmental noise [16–18], just like chemo-
tactic bacteria. Aggregation in social organisms is generally
attributed to individual agents interacting via long-range, cen-
trally attractive, gravitylike forces, making them analogous
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FIG. 1. Schematic phase diagram for a system of run-and-tumble
particles in the phase space of density and chemotactic strength.

to self-gravitating Brownian particles [19–21]. Recently, it
was shown that such long-range forces can emerge from the
interplay between two modes of flight in midges: the first,
a low-frequency maneuver consisting of mainly to-and-fro
movement (flying), and the second a high frequency nearly
harmonic oscillation in synchrony with another midge (hov-
ering) [22,23]. There is then a clear analogy between these
midges and run-and-tumble bacteria.

Our broader goal is thus to establish the active VPFC
model as a framework for studying collective phases in a wide
variety of active systems. The usefulness of this framework
lies in its ability to capture the emergence of macroscopic
collective behavior through multibody interactions among in-
dividual agents. Most important is the contribution it can
make in studying the emergent material properties of these
collective phases, such as elasticity and surface tension. Insect
swarms have been shown to exhibit macroscopic mechanical
properties, such as collective viscoelasticity as a response
to oscillatory visual stimuli, as well as solidlike properties
such as a finite Young’s modulus and yield strength [24–26].
Schools of phototactic freshwater fish exhibit linear elasticity
when spatially and temporally varying light fields are used
as stressors [27]. In general, the cohesivity of individuals
within a stable aggregate presupposes emergent rigidity. An
aggregate of particles may be thought of as achievement of
local crystalline order. Here, we argue, lies the advantage of
our field-theoretic framework. The starting point of the active
VPFC model is the equilibrium phase field crystal (PFC)
model [28], which is a minimal description for crystalline
materials. It is the PFC free-energy functional that imposes
crystalline order on the evolving density field by penalizing
deviations from spatial periodicity. This not only makes it
possible for us to interpret the peaks of the density field as
particles and study their dynamics, but the resulting density
field also retains the crystallographic and elastic properties
of the material in question. This is in contrast to phase field
descriptions such as the Keller-Segel model [1], which do
not permit the study of either individual particle dynamics or
emergent mechanical properties. The equilibrium PFC model
is implicitly elastic because any deformation of the under-

lying crystalline lattice increases the free energy [29,30].
Small deformations result in a quadratic increase in energy,
thus capturing linear elasticity. If the deformation is large,
the elastic response is nonlinear. This underlying elasticity
of the equilibrium theory is inherited by the nonequilibrium
active VPFC framework, which extends the equilibrium PFC
model to describe active crystals [12,13], where individual
components are self-propelled and penalized or rewarded for
aligning with their neighbors. This is then the natural way to
combine the study of emergent collective behavior in active
systems with the investigation of the material properties as-
sociated with a particular collective phase. For example, the
emergent elasticity of chemotactic aggregates can be studied
with the active VPFC model by introducing deformations on
the locally crystalline steady state.

It would be useful to compare the current framework with
multi-phase-field descriptions, where each individual agent is
assigned a phase field which takes unit a value inside the
spatial extent of the agent and zero elsewhere. These agents
then interact through their phase fields in various ways, in-
cluding but not limited to excluded volume, adhesion, and
response to chemical cues. Such models have been success-
fully employed to capture collective cell migration and unlike
the active VPFC model, are better able to account for individ-
ual cell morphologies, cell deformability, and other important
features of cell-to-cell interactions [31–34]. However, they
are constrained by an upper bound on the system size due
to the computational cost of evolving many fields simultane-
ously. Moreover, they do not provide a simple way to study
the material properties of collectively moving aggregates, as
does active VPFC. The choice between these complementary
methods then rests on the focus of the investigation.

As a demonstration of the efficiency of this approach, here
we develop an active VPFC model for run-and-tumble chemo-
taxis, which retains the microscopic details of interactions
among individuals while also being numerically tractable. The
paper is organized as follows. In Sec. II, we derive the active
VPFC model from a density-functional description of indi-
vidual particles to develop the general framework on which
modifications can be made to study special cases of collec-
tive behavior in active systems. We show that this model is
able to describe long-range orientational ordering in active
systems, through inelastic collisions among individual agents.
In Sec. III, we derive the active VPFC chemotaxis model and
study it for two different cases of attractant fields, one constant
and externally imposed, and the other secreted by the particles
themselves and diffusing in the same medium. We show that
in both cases, our model captures the essential features of
particle aggregation as expected. In Sec. IV, we end with a dis-
cussion on further applications of the active VPFC framework,
especially to study emergent material properties of collective
phases.

II. THE ACTIVE VACANCY PHASE
FIELD CRYSTAL MODEL

We will first derive the active VPFC model starting from
density-functional theory. The time evolution of the single
particle density f (û, r, τ ) of agents at position r and time τ ,
moving along the direction of the unit vector û, is given in 2D
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by

∂τ f (û) = D̃T ∇2

(
δF

δ f (û)

)
+ D̃R∇2

û

(
δF

δ f (û)

)
− ṽ∇ · ( f (û)û).

(1)

The first term represents translational diffusion of the particle
with coefficient D̃T , which we consider to be isotropic for
simplicity. The second term denotes rotational diffusion of
the particle’s orientation and has the coefficient D̃R. The last
advective term accounts for the self-propulsion of the particle
and the constant velocity ṽ is a measure of the activity of the
system. The equilibrium free-energy functional F that drives
the single particle density will be specified later.

The first and second moments of the single particle density
f (û, r, τ ) are the local density field ρ(r, τ ) and the local
polarization field P̃(r, τ ):

ρ(r, τ ) = 1

2π

∫
dû f (û), (2)

P̃(r, τ ) = 1

π

∫
dû û f (û). (3)

Expanding the single particle density in terms of its moments
up to the second order, we have

f (û, r, τ ) = ρ(r, τ ) + P̃(r, τ ) · û. (4)

Inserting this expansion into Eq. (1), we can derive dynamical
equations for the moments ρ and P̃ (see Sec. I of the Supple-
mental Material [35]):

∂τρ = D̃T

2π
∇2

(
δF
δρ

)
− ṽ

2
∇ · P̃, (5)

∂τ P̃ = D̃T

π
∇2

(
δF
δP̃

)
− D̃R

π

(
δF
δP̃

)
− ṽ∇ρ. (6)

The free-energy functional F is specified in terms of the two
order parameters ρ and P̃,

F[ρ, P̃] = FVPFC[ρ] + FP̃[P̃]. (7)

The first contribution to F is FVPFC[ρ], a functional of the
order parameter ρ only. It is given by

FVPFC[ρ] =
∫

dr
[
ρ

2

[ − ε + (
q2

0 + ∇2
)2]

ρ + ρ4

4

]

+ 1

6

∫
dr H (|ρ|3 − ρ3). (8)

The first term of FVPFC corresponds to the equilibrium PFC
model, which describes dynamic processes in crystalline ma-
terials [28]. With just this free energy and no activity, the
dynamical equations for the density ρ would be mathemati-
cally equivalent to the conserved Swift-Hohenberg equation
[36,37]. The PFC model has been successfully implemented
to realistically describe a wide range of material phenomenon
such as elasticity, epitaxial growth, and defect, crack, and frac-
ture dynamics. This term of the free energy FVPFC is different
from the standard Landau-Ginzberg free energy, because it
penalizes deviations from periodicity and not deviations from
uniformity. The result is that there is a perfectly crystalline
ground state about which distortions of various types can
occur with an energy cost. It is this equilibrium PFC part

of the total free-energy functional F that encodes the elastic
response of the system to mechanical strain, as will be shown
in Sec. IV. Here q0 is the inverse lattice spacing and ε is
a control parameter which corresponds to a dimensionless
temperature. In 2D, this part of the free energy is minimized
by striped, hexagonal, or constant density profiles, depending
on the temperature ε and the average density ρ̄. The sec-
ond term of FVPFC penalizes negative values for ρ, H being
a large positive penalty. This allows for the description of
motion of individual particles with ρ acting as a physical
positive-definite density [12,38]. Active PFC models [39,40]
without vacancies have also been shown to admit localized
states that travel and collide, but there the density can take on
negative values to minimize the free energy. Consequently, the
number of PFC particles is not conserved. In contrast, with the
vacancy term in the free energy FVPFC, the number of particles
is not only conserved but also easily controlled with a single
parameter, the average density ρ̄.

The second contribution to F is FP̃[P̃], a functional of the
local polarization P̃ only. It is given by

FP̃ =
∫

dr [C̃1|P̃|2 + C̃2(|P̃|2)2]. (9)

This free-energy functional promotes or penalizes alignment
of self-propulsion directions depending on the sign of C̃1.
This incorporates into the active VPFC model elements of
continuum hydrodynamic descriptions of active matter like
the Toner-Tu model [41], allowing us to observe emergent
orientational order [13]. For C̃1 < 0, particle alignment is
favored for all values of the active drive. The richer behavior
is obtained for C̃1 > 0, which penalizes alignment of particles.
In this situation, any observed long-range order is purely
emergent, and driven by inelastic collisions among particles.

The chemical potential gradient associated with FVPFC

drives the time evolution of the local density, and that associ-
ated with FP̃ drives the time evolution of the local polarization
direction. Here we note that the free energy F[ρ, P̃] can be
generalized to include correlations between ρ and P̃. How-
ever, as we will show, this minimal form of the free energy is
nevertheless able to capture the collective dynamics of self-
propelled agents.

Inserting the form of F[ρ, P̃] into Eqs. (5) and (6) and
applying the following rescaling rules:

τ = 2πt, ṽ = v/
√

2π, D̃T = M0, D̃R = M0DR,

P̃ =
√

2P, C̃1 = C1/2M0, C̃2 = C2/4M0, (10)

we get the final form of our active VPFC model,

∂tρ = M0∇2
[[ − ε + [

q2
0 + ∇2

]2]
ρ + ρ3 + Hρ[|ρ| − ρ]

]
− v∇ · (ρP), (11)

∂t P = ∇2[C1P + C2P3] − DR[C1P + C2P3] − v∇ρ. (12)

Here M0 is the particle’s mobility. In general, the mobil-
ity of an agent can vary with local population density, and
this property has been shown to generate spatially patterned
collective phases in many biological systems, including but
not limited to mussel beds and ant colonies [42–44]. For the
sake of simplicity, here we assume that the mobility M0 is
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FIG. 2. Plot of N (ρ̄) versus ρ̄ shows a linear relationship. Blue
circles denote simulation data with error bars and black solid line
is the linear fit to this data. L = 100, M0 = 5, ε = 0.9, q0 = 1, H =
1500, v = 2,C1 = 0.2,C2 = 0, DR = 1.

independent of the density. However, in Sec. III B, we will
show that in the case of run-and-tumble particles that perform
self-chemotaxis, such density-dependent mobility emerges
from the mutual interactions of particles even with a constant
value for M0. Small values of M0 result in slightly elliptical
shapes for particles, but a relatively large value of M0 restores
their circular shape [12]. In Eq. (11), we modified the advec-
tion term for ρ to depend on the local density. This ensures the
freezing of activity in regions devoid of any particles (ρ = 0).
Moreover, since the gradient of density in the bulk of a single
particle is small, this modification ensures that the active drive
acts predominantly on the boundaries of a particle. Thus, this
more classical form for advection stabilizes individual parti-
cles and allows us to better observe the dynamics at extremely
low densities [12]. Lastly, we focus on the case of C1 > 0,
and set C2 = 0 for all our simulations without any loss in
generality.

A version of this active VPFC model has been shown
to successfully describe the dynamics of individual SPPs as
well as emergent collective phenomena in systems of SPPs
such as flocking, vorticity, and boundary-dependent oscilla-
tory motion [12]. Here we simulate the active VPFC model
[Eqs. (11) and (12)] considering a square domain of size
L × L and periodic boundary conditions. An initial transient
phase is observed where some particles disappear with time
as the system tries to minimize its energy by depleting unsta-
ble localized peaks. After this, however, the particle number
stabilizes and is conserved. The mean number of particles as a
function of average density ρ̄ is shown in Fig. 2. It is clear that
the number of particles N (ρ̄ ) is proportional to the average
density. Figure 2 shows a finite number of particles for ρ̄ = 0.
This number can easily be set to zero by tuning the value of
H , but this was not focused on in the current paper.

Figure 3 shows simulation results for particle dynamics at
two different average densities ρ̄. The top panel, Figs. 3(a)–
3(c), shows snapshots of the density profile at three different
times for a low density system, while the bottom panel,
Figs. 3(d)–3(f), shows the same for a high density system. In
each of these snapshots, individual particles are represented
by red solid circles and correspond to peaks of the local
density field. The velocity of each particle is represented by
an arrow whose length and direction is a measure of the speed
and the average polarization of the particle, respectively. In
both the low as well as the high density cases, we see that
initially there is no order and the particles move randomly
in all directions [Figs. 3(a) and 3(d)]. After a while, particles
start colliding with each other and form domains traveling in
a particular direction [Figs. 3(b) and 3(e)]. Domain formation
is mediated by the inelastic collisions between soft-core parti-
cles. When two particles collide, the transverse components of
their velocities are depleted because they cannot get closer to

FIG. 3. Snapshots of the density profile at three different times, for average densities ρ̄ = 0.03 [(a)–(c)] and ρ̄ = 0.06 [(d)–(f)]. Initially,
particles move in random directions, but as more collisions take place over time, domains of particles traveling in the same direction appear,
and eventually through collisions among domains all the particles travel in a single spontaneously chosen direction. L = 50, M0 = 5, ε =
0.9, q0 = 1, H = 1500, v = 2,C1 = 0.2,C2 = 0, DR = 1.

032603-4



FIELD-THEORETIC MODEL FOR CHEMOTAXIS IN RUN … PHYSICAL REVIEW E 103, 032603 (2021)

each other than their diameter (given by the lattice spacing).
This assists in aligning the two particles, which then collide
with other particles to form domains. When two such trav-
eling domains collide, their constituent particles change their
orientation until all of them are traveling in the same direction.
Eventually, coarsening of domains results in all particles in the
arena being orientationally ordered and traveling collectively
in the same spontaneously chosen direction [Figs. 3(c) and
3(f)]. The higher the density, the greater the frequency of
collisions and the shorter the time taken to achieve complete
orientational order. It is also interesting that given sufficient
time, the particles arrange themselves in a traveling band, a
feature very commonly observed in active systems that flock
[45,46]. It is thus clear that the active VPFC model is able
to capture the emergence of long-range orientational order
through interactions among active agents.

III. ACTIVE VFPC CHEMOTAXIS

Having demonstrated the efficiency of the active VPFC
model in describing dynamical behavior in systems of SPPs
and the various advantages it offers, we propose to modify it to
study run-and-tumble chemotaxis in bacteria. In this, bacteria
search for (are repelled by) a chemical attractant (repellant)
diffusing in the same medium by switching between running
in approximately straight paths for a duration τrun, and tum-
bling to change direction in between runs at a rate α = τ−1

run .
The prototypical example is the bacterium E. coli, which is
a tiny flagellated organism about 2 μm in length and 1 μm
in diameter. During runs, its flagella rotate counterclockwise
in a synchronous manner to propel it forward at a speed
of ≈20 μm/s, for an average duration of about 1 s [47]. In
contrast, after every run, the bacterium tumbles for an aver-
age duration of about 0.1 s, during which its flagella rotates
asynchrously in a clockwise sense, keeping the bacterium held
in place while it finds a new direction to move forward in.
Alternating between runs and tumbles results in a random
walk, where tumbles are analogous to collisions in molecular
diffusion. However, it is a biased random walk because when
it is moving up (down) the gradient of attractant (repellent)
concentration, a bacterium reduces the rate of tumbling α to
allow for longer runs in that direction. Moreover, the new
direction decided upon after tumbling is more likely to be
in the forward hemisphere, a feature called directional persis-
tence. In addition, the path taken during runs is not completely
straight, but subject to rotational diffusion.

To derive the active VPFC chemotaxis model for run and
tumble particles, once again we start from density-functional
theory for the time evolution of the single particle density
f (û, r, τ ) of agents moving along the direction of the unit
vector û, in 2D,

∂τ f (û) = D̃T ∇2

(
δF

δ f (û)

)
+ D̃R∇2

û

(
δF

δ f (û)

)
− ṽ∇ · ( f (û)û)

− α(û) f (û) +
∫

dû′ α(û′)γ (û, û′) f (û′), (13)

where D̃T and D̃R are the translational and rotational diffusion
coefficients, respectively, ṽ is the self-propulsion velocity,
and F = FVPFC[ρ] + FP̃[P̃] is the active VPFC free-energy

functional given by Eqs. (7)–(9). Specific to run-and-tumble
particles, α(û) is the rate at which an agent running along û
tumbles to find a new direction, and has the form

α(û) = α̃0 + α̃1 · û = α̃0 − χ (c, ṽ)(∇c) · û. (14)

Here c is the concentration of the chemical and χ (c, ṽ) is the
chemotactic sensitivity, which is positive for an attractant and
negative for a repellant. Thus, the particle reduces (increases)
its tumbling rate when it is moving up the gradient of the
attractant (repellant). For our model, we use the simplest form
for χ (c, ṽ), which assumes that the chemotactic sensitivity
is independent of local chemical concentrations and directly
proportional to the self-propulsion speed:

χ (c, ṽ) = gṽ. (15)

Angular correlations are accounted for by γ (û, û′), which
is the probability that a particle initially running along û′
tumbles and chooses û as the new direction. We assume here
that angular correlations in these microscopic run-and-tumble
particles depend only on the angle between the outgoing and
incoming directions |û − û′|, which is true for E. coli [47]. As
a result of this symmetry, proper normalization requires the
angular correlation function to satisfy∫

dû γ (û, û′) =
∫

dû′ γ (û, û′) = 1, (16)

ensuring that the integral over all possible outgoing and in-
coming directions is unity. It is important to note, however,
that the assumption of symmetry is not essential to obtain
our dynamical equations. Since it is more likely for outgoing
trajectories to be in the same hemisphere as the incoming
trajectory, the angular correlations are also characterized by
the angle �: ∫

dû γ (û, û′)û = �û′. (17)

Equation (17) states that the outgoing direction is at an angle
� to the incoming direction on average:

〈û〉 · û′ = �û′ · û′ = �. (18)

Thus � is a measure of the directional persistence of agents
and is taken to be the mean cosine of the angle between
successive directions of motion. The distribution of angular
differences after a tumbling event is peaked at about 62◦ for
E. coli [47]. Accordingly, we take � = 0.5, corresponding to
a mean difference between successive angles of ≈60◦.

Once again, the order parameters are the density field
ρ(r, t ) and the polarization field P̃(r, t ), the first and second
moments of the single particle density f (û, r, t ), respectively
[Eqs. (2) and (3)]. Proceeding as we did in the last section,
we expand the single particle density as f (û) = ρ + P̃ · û. In-
serting this expansion into Eq. (13) and applying the following
rescaling rules:

τ = 2πt, ṽ = v/
√

2π, D̃T = M0,

D̃R = M0DR, P̃ =
√

2P, C̃1 = C1/2M0, (19)

C̃2 = C2/4M0, α̃0 = α0/2π, α̃1 = α1/
√

2π,
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FIG. 4. Snapshots of density and velocity profiles at four different times (50 s, 100 s, 150 s, 200 s), for average densities ρ̄ = 0.01 [(a)–(d)],
ρ̄ = 0.02 [(e)–(h)], and ρ̄ = 0.03 (i)–(l). The chemical concentration field c(x, y) is represented by the color map. Initially, particles move in
random directions but eventually aggregate in the center of the arena where the attractant concentration is maximum. The higher the density, the
faster the onset of aggregation of particles. L = 100, M0 = 5, ε = 0.9, q0 = 1, H = 1500, v = 2,C1 = 0.2,C2 = 0, DR = 1, � = 0.5, α0 =
0.5, g = 1, c0 = 3.2, σ = 25, r0 = (50, 50).

we finally obtain the dynamical equations for an active VPFC
chemotaxis model for run-and-tumble particles (see Sec, II of
Supplemental Material [35]):

∂tρ = M0∇2
[[ − ε + [

q2
0 + ∇2

]2]
ρ + ρ3 + Hρ[|ρ| − ρ]

]
− v∇ · (ρP), (20)

∂t P = ∇2[C1P + C2P3] − DR[C1P + C2P3]

− v∇ρ − α0(1 − �)P − ρ(1 − �)α1. (21)

Here once again we have used a classical advection term
in Eq. (20) which depends on the density, as in Sec. II. In
the following subsections, we describe two different scenarios
of positive chemotaxis that can be captured by this model.
The first case corresponds to run-and-tumble particles in an
attractant concentration field that remains constant in time
and space, and is not degraded by diffusion or consumption.
This scenario pertains to particles that prefer to reside in
regions with high (or low) values of a particular environ-
mental stimulus, such as light or heat. Such phototaxis or
thermotaxis is in fact observed in a wide variety of biological

systems, including but not limited to slime molds [48,49],
bacteria [4,50], mammalian spermatozoa [51], nematodes
[52], and larval fish [53,54]. The second case looks at self-
chemotaxis, where particles are attracted to a chemical that
they themselves secrete, and which both diffuses and degrades
depending upon its local concentration. Self-chemotaxis is
observed in many biological systems, where individual par-
ticles act as moving sources of the attractant, and interact with
one another to give rise to collective phases such as stable
stationary aggregates, traveling bands, and complex spatial
patterns [2,3,5–10]. In fact, the classical Keller-Segel model
was first formulated to explain the aggregative properties
of slime mold amoeba, mediated by self-chemotaxis toward
aracsin [1].

We allow the active VPFC particles to stabilize for T =
50 s before switching on the attractant field in the first case,
and starting the production of the attractant in the second case.
All simulations have been performed considering a square
domain of size L × L and periodic boundary conditions. The
simulation arena is initialized with random density and polar-
ization profiles which have averages ρ̄ and zero, respectively.
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FIG. 5. Aggregation fraction with time. (a), (b) Snapshots of particles for ρ̄ = 0.01 at two different times. Aggregation fraction is defined
as the fraction of particles inside a circular region of radius R(ρ̄) at the center, where the attractant concentration is maximum. At T = 54 s,
there is very little aggregation, whereas at T = 204 s almost all particles have aggregated inside the circle. (c) Time series of aggregation
fraction for three different densities. Solid circles represent simulation data and solid lines represents the approximation given in Eq. (23). The
saturated fraction is higher and is obtained faster for higher densities. There is a time lag in aggregation dynamics of T = 8.59 ± 0.60s for a
density decrease of ρ = 0.01, as shown in the inset. L = 100, M0 = 5, ε = 0.9, q0 = 1, H = 1500, v = 2,C1 = 0.2,C2 = 0, DR = 1, � =
0.5, α0 = 0.5, g = 1, c0 = 3.2, σ = 25, r0 = (50, 50).

A. Constant attractant field

We simulated Eqs. (20) and (21) with an attractant con-
centration field given by the Gaussian distribution c(r, t ) =
c0 exp−(r−r0 )/2σ 2

that remains constant in time. The strength
of chemotactic interactions is specified by c0, and the standard
deviation by σ . We choose r0 to be the center of the simula-
tion field. Figure 4 shows snapshots of density and velocity
profiles at four different time points and for three different
densities, for a high value of chemotactic strength (c0 = 3.2).
The color map in the background of each snapshot depicts
the attractant concentration field. In each snapshot, particles
are depicted by the solid red circles, centered around the
density peaks of Eq. (20) at that point in time. Each particle’s
velocity is depicted by a yellow arrow starting from its center
and pointing in the direction of the average polarization. The
length of this arrow is a measure of the particle’s speed. The
particles with no arrows correspond to those that are halted
and tumbling to find a new direction. For each of the three den-
sities, we observe that initially the particles move randomly
in all directions [Figs. 4(a), 4(e) and 4(i)] but, with time,
start climbing up the gradient of the attractant [Fig. 4(b), 4(f)
and 4(j)]. This results in the particles starting to accumulate
in the center of the arena, which is the region of maximum
attractant concentration [Figs. 4(c), 4(g) and 4(k)]. Once there,
these particles mostly tumble or move at low speeds, never
moving very far away from the center. Eventually almost
all particles aggregate around the center [Figs. 4(d), 4(h)
and 4(l)].

The higher the density, the faster this aggregation, due to
the aligning effect of inelastic collisions discussed in Sec. II.
This aligning effect causes nearby particles to move in the
same direction, allowing them to locate the upward gradient
of the attractant faster than if each of them were searching
independently [Figs. 4(b), 4(f), and 4(j)]. To quantify this
behavior, we analyzed the time series of the aggregation
fraction V (ρ, T ) for different average densities ρ̄, given in
Fig. 5. The aggregation fraction is defined as the fraction of
all particles which lie inside a circular region of radius R(ρ̄)
at the center of the arena, where the concentration of the

attractant is maximum. This radius is calculated by assuming
that perfect aggregation corresponds to a hexagonal closed-
packed structure of N (ρ̄ ) particles of diameter a = 2π/q0,
the lattice spacing. R(ρ̄) depends on ρ̄ through the number
of particles N (ρ̄ ) as

R(ρ̄) = a

2

√
6N (ρ̄ )√

3π
. (22)

The number of particles at a given density N (ρ̄ ) is obtained
from Fig. 2. Figures 5(a) and 5(b) show snapshots of the
particles for ρ̄ = 0.01, and at times T = 54 s and T = 204 s,
respectively. The radius of the perfect aggregate for this den-
sity is depicted in both cases. We observe that close to T =
50 s, when the attractant field is switched on, the aggrega-
tion fraction at the center is small but, by T = 204 s, almost
all particles aggregate inside this circle. The aggregation is
not perfect, however, because the particles are not perfectly
closed-packed and R(ρ̄) is an underestimation of the effective
radius. Figure 5(c) shows the time series of the aggregation
fraction V (ρ̄, T ) for three different densities. The solid circles
represent simulation data for the different densities and the
solid lines represent the analytical function that most closely
approximates this data, given by

V (ρ̄, T ) = a(ρ̄)

1 + exp [−b(T − c(ρ̄ ))]
. (23)

The general trend is as follows: After the attractant field is
switched on, the aggregation fraction increases with time until
it saturates. The higher the density, the higher the saturated
fraction and the faster is it attained. The rate of increase of the
aggregation fraction with time is approximated by parameter
b in Eq. (23), which is independent of the density and is found
to have a value b = 0.05. The saturated fraction is given by
a(ρ̄ ) and the time taken to reach half-maximum aggregation
is given by c(ρ̄ ). The best fit values for a(ρ̄ ) and c(ρ̄) for the
three different average densities is given in Table I. The inset
in Fig. 5 shows that the time lag in achieving half-maximum
aggregation fraction for a density decrease of ρ = 0.01 is
given by T = 8.59 ± 0.60 s. This confirms our expectation
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TABLE I. Best fit a(ρ̄ ) and c(ρ̄ ) for different values of ρ̄.

ρ̄ a(ρ̄ ) c(ρ̄ )

0.01 0.814 ± 0.002 92.777 ± 0.246
0.02 0.842 ± 0.005 84.098 ± 0.492
0.03 0.865 ± 0.005 75.594 ± 0.544

that aggregation of particles in the region of maximum attrac-
tant concentration is faster for higher densities. Note, however,
that the saturated aggregation fraction is found to be less than
unity because of the imperfect packing of particles.

The strength of chemotactic interactions can be lowered
by decreasing c0, the maximum value of the attractant con-
centration. Figure 6 shows the result of lowering c0 on the
same three densities represented in Fig. 4. It is clear from a
comparison of Fig. 4 (c0 = 3.2) and Fig. 6 (c0 = 0.8) that
for lower chemotactic strengths, the tendency of particles to
aggregate is much weaker. For c0 = 0.8, there is very little
aggregation at the center where the attractant field has the
highest concentration, even after 200 s of simulation time

[Figs. 6(d), 6(h), and 6(l)]. It is important to note that in
this situation, simply running the simulation longer doesn’t
improve aggregation. In Fig. 6, we see that at T = 200 s, many
particles near the center point radially outward. Thus there is
a tendency to break up any large central aggregate that forms.
In contrast, in Fig. 4, particles that have aggregated at the
center at T = 200 s are either stationary and tumbling or point
radially inward or tangential to the effective boundary of the
aggregate. In Fig. 6, we also see an increased tendency to form
domains of particles that are traveling together in the same
direction, in comparison to Fig. 4. Thus, while decreasing
the density at constant chemotactic strength results in smaller
and slower clustering, decreasing the chemotactic strength at
constant density increases the tendency for collective motion
that is independent of the attractant field, tending to polar
flocks for very low chemotactic strength. This is qualita-
tively consistent with our schematic phase diagram (Fig. 1),
which predicts a decrease in aggregation with decreasing
chemotactic strength. We therefore conclude that the active
VPFC chemotaxis model is able to capture the dynamics of
run-and-tumble particles aggregating in a constant attractant
field. Assuming that the timescale of this aggregation is much

FIG. 6. Snapshots of density and velocity profiles at four different times (50 s, 100 s, 150 s, 200 s), for average densities ρ̄ = 0.01 [(a)–(d)],
ρ̄ = 0.02 [(e)–(h)], and ρ̄ = 0.03 [(i)–(l)] . The chemical concentration field c(x, y) is represented by the color map. The chemotactic strength
is low compared to that in Fig. 4. This results in the observed lowering in the tendency of particles to aggregate. L = 100, M0 = 5, ε =
0.9, q0 = 1, H = 1500, v = 2,C1 = 0.2,C2 = 0, DR = 1, � = 0.5, α0 = 0.5, g = 1, c0 = 0.8, σ = 25, r0 = (50, 50).

032603-8



FIELD-THEORETIC MODEL FOR CHEMOTAXIS IN RUN … PHYSICAL REVIEW E 103, 032603 (2021)

FIG. 7. Snapshots of the density profile at four different times (50 s, 150 s, 300 s, 450 s), for average densities ρ̄ = 0.01 [(a)–(d)], ρ̄ = 0.02
[(e)–(h)], and ρ̄ = 0.03 (i)–(l)]. The chemical concentration field c(x, y) is represented by the color map. Initially, particles move in random
directions, but by 150 s start forming clusters and comoving domains that allow them to collectively search for high attractant regions. By 300 s,
most of the particles aggregate, with a only a few still searching. By 450 s, all particles come to rest in scattered aggregates. The higher the
density, the faster the onset of aggregation of particles. L = 100, M0 = 5, ε = 0.9, q0 = 1, H = 1500, v = 2,C1 = 0.2,C2 = 0, DR = Dc =
1, � = 0.5, α0 = 0.5, g = 1, b = 0.35, d0 = 0.5.

smaller than that of variations in the external stimulus, this is
then an ideal framework to study thermotactic and phototactic
particles.

B. Self-chemotaxis

We now consider the case of self-chemotaxis, where the at-
tractant in question is secreted by the run-and-tumble particle
itself. As a result, the attractant concentration field varies with
time, with higher values in regions of high particle density. We
also allow the attractant to diffuse and degrade proportional to
its own local concentration. The attractant field then evolves
in time according to the formulation in the simplified Keller-
Segel model [1],

∂t c = Dc∇2c + bρ − d (c)c, (24)

where Dc is the diffusion coefficient of the attractant, b is the
constant rate at it which it is produced by the particles, and
d (c) is the degradation rate of the attractant, which depends
on its local concentration as d (c) = d0/(1 + c) following
Ref. [1]. Higher production rates and lower degradation rates
facilitate chemotaxis by generating larger gradients of the

attractant field for the particle to climb up. Faster diffusion
facilitates chemotaxis by increasing the range of one parti-
cle’s effect on another. Equations (20) and (21), along with
Eq. (24) form the active VPFC self-chemotaxis model, which
we simulate. Figure 7 shows snapshots of density profiles and
particle velocities for three different average densities, and at
four time points. Once again, the particles are depicted by
red solid circles and the velocity of each particle by a yellow
arrow. Particles with no arrows are at rest and tumbling. The
attractant field is provided by the color map in the back-
ground. We observe that at T = 50 s, when the production of
the attractant starts, the particles are moving randomly in all
directions for all three densities [Figs. 7(a), 7(e) and 7(i)]. By
T = 150 s, some of the particles have begun to cluster and are
halted, while the others form domains of particles traveling in
a common direction on average [Figs. 7(b), 7(f), and 7(j)]. At
T = 300 s, most of the traveling domains have collided, either
with each other or with the stationary clusters, and come to
a halt. The result is the appearance of aggregates of station-
ary particles, with only a small fraction of the particles still
performing runs to find an upward gradient of the attractant
[Figs. 7(c), 7(g), and 7(k)]. Finally, by 450 s, all the particles
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FIG. 8. Snapshots of the density profile for three different rates of attractant production b = (0.25, 0.30, 0.35), for average densities ρ̄ =
0.03 [(a)–(c)], and ρ̄ = 0.06 [(d)–(f)]. For b = 0.25, particles do not settle into stationary aggregates even after 900 s of simulation time.
Instead, they form domains of comoving particles, with a few small clusters at rest. For b = 0.30, most of the particles arrange themselves
in stationary aggregates by 700 s, with only a few traveling domains. For b = 0.35, all particles aggregate within 500 s of simulation time.
L = 100, M0 = 5, ε = 0.9, q0 = 1, H = 1500, v = 2,C1 = 0.2,C2 = 0, DR = Dc = 1, � = 0.5, α0 = 0.5, g = 1, d0 = 0.5.

have come to a halt in scattered aggregates [Figs. 7(d), 7(h),
and 7(l)]. The number of such aggregates decrease with in-
creasing density, with two to three stationary aggregates for
the highest density represented [Fig. 7(l)] and about six to
eight aggregates for the lower densities represented [Figs. 7(d)
and 7(h)]. This dependence of the equilibrium number of
aggregates on density is once again a result of the coopera-
tive aligning effect of inelastic collisions between particles,
which forms domains of comoving particles and allows them
to collectively search for high attractant concentrations. For
the very same reason, the appearance of discernible stationary
clusters occurs faster with increasing densities, as a compari-
son of the top, middle, and bottom panels of Fig. 7 reveals.
Regions of high particle density are also pockets of high
average attractant concentration, with weaker gradients in its
bulk as compared to its edges. As a result, as new particles
approach an aggregate, their running speeds are progressively
lowered until they come to a halt, reinforcing the aggregation
process. Thus, even though we impose a constant mobility M0

on the particles, a density-dependent mobility emerges from
the chemotactic interactions among individuals. Our conclu-
sion is that even though particles aggregate to some extent at

all densities, the probability of formation of large connected
aggregates improves with increasing average densities.

We next investigated the effect of the attractant secretion
rate b on the formation of these aggregates. Figure 8 shows
snapshots of density and velocity profiles for the same three
densities depicted in Fig. 7, but for three different values of b.
For b = 0.25, particles do not settle into stationary aggregates
even after 900 s from the start of the simulation [Figs. 8(a),
8(d), and 8(g)]. Instead we mostly observe domains of co-
moving particles, which suggests a tendency to flock, and a
very few small, stationary clusters. For b = 0.3, stationary
aggregates appear within 700 s, with a few remaining traveling
domains [Figs. 8(b), 8(e), and 8(h)] that haven’t settled into
any aggregates. For b = 0.35, which is the value that was used
for Fig. 7, all particles settle into aggregates by 500 s. Increas-
ing rates of attractant secretion thus increase the strength of
chemotactic activity and assist in particle aggregation. This
is again qualitatively consistent with our expected phase dia-
gram (Fig. 1).

In some of the snapshots at T = 450 s in Fig. 7 when
all the particles have come to a halt, we see some particles
that are stationary but do not form a part of any aggregate.
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These particles are isolated and lack the assistance of particles
nearby in locating the upward gradient of attractant concen-
tration. Thus they are forced to tumble continuously, while
maintaining a constant level of the attractant at their location
by balancing its secretion and depletion. This self-trapping
effect is, however, reduced by reducing the strength of chemo-
tactic activity. Figures 8(a), 8(d), and 8(g)] with b = 0.25
also show these stationary particles that do not form part of
any cluster. However, at this low chemotactic strength, most
particles do not come to a halt even after long simulation
times, and the chance of an isolated stationary particle to be
knocked into motion by a moving particle that passes close to
it is increased. As a result, particles show little to no tendency
to self-trap at low chemotactic strengths. Here we note that
in contrast to self-chemotaxis, the constant attractant scenario
has very few stationary tumbling particles, even for high
chemotactic strengths when most particles have aggregated at
the center [Figs. 4(d), 4(h), and 4(l)]. The reason for this is
that even with perfect aggregation, the particles can always
move tangentially along annular regions of constant attractant
concentration without incurring an energy cost.

We conclude that the active VPFC chemotaxis model
captures the essential features of aggregation through self-
chemotaxis. Chemotactic aggregation has an important bio-
logical significance. A large number of cellular responses,
such as virulence and biofilm formation, require the coordi-
nated action of many individual cells and are triggered by
the achievement of a threshold cell density, or quorum. Self-
chemotaxis has experimentally been proven to be an important
mechanism employed by cells to generate the high cell den-
sities required for quorum sensing [6,7]. The active VPFC
self-chemotaxis model is thus the ideal framework to study
these cellular responses on a diffusive timescale, but at the
level of individual particle interactions.

IV. DISCUSSION

In this paper, we derived the active VPFC model from
density-functional theory as a field-theoretical description of
active particles. We showed that it is able to capture the
long-range orientational ordering of active particles and the
formation of traveling bands. The collective migration of
particles is facilitated by inelastic collisions that deplete the
transverse components of particle velocities, aligning them,
and ensuring that no two particles can get closer to each
other than their diameter. We then derived an active VPFC
chemotaxis model for run-and-tumble particles, once again
starting from density-functional theory. We showed that this
model is able to capture the migration of particles to regions
of high attractant concentration through collective gradient
sensing, once again facilitated by the aligning effect of inelas-
tic collisions. We studied this model of chemotaxis for two
different cases of attractant concentration dynamics. First, we
showed that this model is able to capture the collective behav-
ior of phototactic or thermotactic agents, which aggregate in
regions of high levels of light or heat. Second, we showed
that this model is also able to capture aggregation through
self-chemotaxis in particles that themselves secrete the at-
tractant. Such aggregation has been proposed as an important
mechanism facilitating quorum sensing in bacteria.

One direction for the future is to systematically derive the
minimal Keller-Segel model [1] as the diffusion limit of the
active VPFC chemotaxis model, through self-consistent field
theory (SCFT) [55–58]. This would allow us to relate the
model parameters to the conditions for self-similar blowups
in the simplified Keller-Segel model in finite time, analogous
to similar blowups in self-attracting or self-gravitating sys-
tems [59–63]. It is this blowup that results in chemotactic
aggregation above a critical mass, emerging as an instability
over a homogeneous steady state [1]. This would then allow
us to quantify the onset of chemotactic aggregation in the
active VPFC chemotaxis model. It is also straightforward
to generalize this framework for the description of not just
run-and-tumble particles but of mobile aggregates and spa-
tially patterned collective phases that emerge from an explicit
density dependence of the particle mobility. Such phases have
been observed, for example, in mussel beds, ant colonies, and
animal herds [42–44] and predicted by theoretical models of
self-propelled rods [64]. However, as touched upon in the In-
troduction, the most promising future application of the active
VPFC framework lies in the investigation of the material prop-
erties of active systems. The equilibrium PFC model, which is
the starting point for the active VPFC model, has already been
shown to capture both linear and nonlinear elasticity under
bulk stress [29,30]. This was done by looking for periodic
solutions of the density field and studying the increase in the
free energy under isotropic strain due to deformation of the
underlying lattice. Here it is important to note that the ground
state in the equilibrium PFC case is perfectly crystalline (no
vacancies and zero self-propulsion velocity) with an inverse
lattice constant q0, in contrast to the active VPFC ground state
(vacancies and finite self-propulsion velocity). The authors of
Refs. [29,30] employ a one-mode expansion to describe the

FIG. 9. Elastic energy density as a function of the lattice constant
a in the 1D PFC model for ρ̄ = 0.3 and ε = 0.9. The blue curve
captures the geometric nonlinearity for small deformations which
arise because of nonlinear terms in the Eulerian Alamansi strain ten-
sor. The constitutive law relating the stress to the strain is, however,
linear in this regime, since the elastic free energy is quadratic in the
strain. The red curve captures the physical nonlinearity that becomes
prominent for large deformations, when higher order terms in the
strain cannot be neglected. For a derivation of the elastic free energy
and its formulation in terms of the Eulerian strain in both regimes,
refer to the Supplemental Material [35].
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equilibrium PFC density field ρ in 1D,

ρ(x) = A(q) cos(qx) + ρ̄, (25)

where q is the inverse lattice constant of the resulting pe-
riodic state and A(q) is a strain dependent amplitude with
A(q0) = A0. This ansatz considers the density field to be a
superposition of plane waves, which for small values of the
average density ρ̄ and reduced temperature ε gives an excel-
lent description of the true density [28] in the equilibrium
PFC model. Deviations of q from q0 increases the free en-
ergy and allows us to calculate the elastic free-energy density
as felastic(q) = f (q) − f (q0), where f (q) is the free-energy
density averaged over a unit cell a = 2π/q. It was shown
that both geometric as well as physical nonlinearity in elastic
response can be captured by the PFC model in not only one,
but also in two and three dimensions. Figure 9 plots the elastic
free-energy density as a function of the lattice constant a of
the deformed lattice in 1D for an average density ρ̄ = 0.3
and reduced temperature ε = 0.9. We see that the nonlinear

elastic response is more stiff under compression (a < a0),
then under tension (a > a0), as one would expect physically.
For a complete derivation of the elastic free energy (Fig. 9)
from the equilibrium PFC free energy, the interested reader
is directed to Sec. III of the Supplemental Material [35]. In
future work, we would like to apply the same technique to the
study of elastic response in active systems. In any collective
phase of SPPs that manifests as aggregation or cohesivity
among particles, one can look for solutions of the density
field that are locally periodic. The challenge lies in the fact
that the ground state is not perfectly crystalline in the case
of active particles. The vacancy term in the active VPFC free
energy, while it allows us to interpret ρ as a physical, con-
served density, also calls into question whether a one-mode
expansion such as Eq. (25) is still a good representation of the
true density. However, we believe that the vacancy constraint
can be imposed on the equilibrium PFC elastic theory through
perturbative expansion, since we are most interested in the
long wavelength limit.
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