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Two-dimensional localized states in an active phase-field-crystal model
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The active phase-field-crystal (active PFC) model provides a simple microscopic mean field description of
crystallization in active systems. It combines the PFC model (or conserved Swift-Hohenberg equation) of
colloidal crystallization and aspects of the Toner-Tu theory for self-propelled particles. We employ the active
PFC model to study the occurrence of localized and periodic active crystals in two spatial dimensions. Due
to the activity, crystalline states can undergo a drift instability and start to travel while keeping their spatial
structure. Based on linear stability analyses, time simulations, and numerical continuation of the fully nonlinear
states, we present a detailed analysis of the bifurcation structure of resting and traveling states. We explore,
for instance, how the slanted homoclinic snaking of steady localized states found for the passive PFC model is
modified by activity. Morphological phase diagrams showing the regions of existence of various solution types
are presented merging the results from all the analysis tools employed. We also study how activity influences the
crystal structure with transitions from hexagons to rhombic and stripe patterns. This in-depth analysis of a simple
PFC model for active crystals and swarm formation provides a clear general understanding of the observed
multistability and associated hysteresis effects, and identifies thresholds for qualitative changes in behavior.
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I. INTRODUCTION

Pattern formation is a fascinating phenomenon observed in
both nature and laboratory experiments and studied theoreti-
cally in a wide variety of fields [1–3].

In the case of macroscopic physical systems, one can usu-
ally distinguish between passive systems that are typically
closed and develop towards thermodynamic equilibrium, and
active or nonequilibrium systems that are open and develop
under permanent energy flow. In the former, the resulting
states may exhibit spatial patterns, e.g., crystalline structures,
that can be related to self-assembly as typical structure lengths
result directly from the properties of individual constituents.
In contrast, in active systems the structures that occur are
self-organized and dissipative. In this case typical structure
lengths result from transport coefficients [4].

One prominent example of an active system is a system
consisting of active particles or agents like bacteria, animals,
or artificial microswimmers [5–8]. These agents are able to
transform different forms of energy into self-propelled di-
rected motion [9,10] and use various energy sources to drive
an internal motor mechanism; hence they represent a nonequi-
librium system driven by a continuous energy flow. Artificial
microswimmers, for instance, turn chemical energy [11] or
radiation like light [12,13] or ultrasound [14] into actively
driven, self-propelled motion. Also, vibrated granular media
in confined geometries are employed as good model systems
for certain aspects of active matter [15–18].

*u.thiele@uni-muenster.de; http://www.uwethiele.de.

In nonequilibrium systems with a large number of active
particles, intriguing collective phenomena arise. In particular,
short- and long-range interactions between individual parti-
cles can result in alignment mechanisms leading to directional
ordering (so-called polar ordering) and synchronized motion
of the self-propelled particles [19,20]. The resulting collective
modes of motion are often referred to as swarming [9]. Ani-
mals often form swarms for better protection from predators.
Further proposed functions include social interaction [21],
enhanced foraging [22,23], and increased efficiency of motion
as often observed for birds [24].

One of the most famous approaches to collective motion is
the Vicsek model [25], where each individual particle adapts
to the average direction of motion in some neighborhood, in
the presence of noise. In general, depending on the specific
interactions between particles, their density and the driving
strength (called in the following the activity) one observes
different regimes of clustering, ordering, and motion that one
may, in analogy to equilibrium behavior, call gas, liquid,
liquid-crystalline, and crystalline states [10,26]. Much re-
cent attention has focused on an actively driven condensation
phenomenon, a motility-induced phase separation between
a gaseous and a liquid state that arises purely due to self-
propulsion [27–29].

However, for certain particle interactions and/or at quite
high densities, active particles can also form crystalline or-
dered states, in particular, resting [30,31] or traveling [12,32–
34] patches with nearly crystalline order [35]. Different
bacteria can form crystalline structures. In particular, rotating
cells of Thiovulum majus, a very fast and smoothly swimming,
large and nearly spherical bacterium equipped with flagella
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[36], are attracted to each other owing to flow fields created
by their rotation, and bacterial crystals form. The connected
cells can pull nutrient-rich water towards the swarm by col-
lective motion of the flagella [23]. When buoyancy forces are
included another mechanism for structure formation becomes
available, resulting in the phenomenon of bioconvection [37].

These “active crystals” [38,39] (also called “flying crys-
tals” [35] or “living crystals” [10,12,40]) have properties that
differ from known passive crystalline clusters [41,42]. The
activity due to self-propulsion can change the critical temper-
ature and density at which crystallization sets in and may even
be necessary for crystalline clusters to emerge. Besides, activ-
ity can induce organized translational and rotational motion
[27,32,34,43]. Patches of rotating cells of Thiovulum majus
can rotate as a whole.

Many particle-based models are studied that show rest-
ing, traveling, and rotating, active, crystalline, and amorphous
clusters [40,44–46] as well as cluster crystals [47,48]. For
instance, a systematic study of the interplay of a short-range
attraction and self-propulsion in Brownian dynamics sim-
ulations shows that clusters form at low activity (due to
attraction) as well as at high activity (motility-induced) with a
homogeneous active fluid phase in between [43].

Besides discrete models like Vicsek’s, there exist a number
of continuum models for active matter [9,35,49,50]. An im-
portant example is the Toner-Tu model of swarming [51,52]. It
represents a generalization of the compressible Navier-Stokes
equations of hydrodynamics to systems without Galilei in-
variance, i.e., with preferred velocities. Recently, a simple
active phase-field-crystal (aPFC) model has been proposed
that describes transitions between the liquid state on the one
hand, and resting and traveling crystalline states on the other
[38,39], combining elements of the Toner-Tu theory and the
(passive) phase-field-crystal (PFC) model.

The PFC model is an intensively studied microscopic mean
field model for the dynamics of crystallization processes on
diffusive timescales [53]. It was introduced by Elder and co-
workers [54] and applies to passive colloidal particles as well
as to atomic systems [55,56]. Mathematically it corresponds
to the conserved Swift-Hohenberg (cSH) equation [57] in the
form of a continuity equation. In contrast to the PFC model,
the classical Swift-Hohenberg (SH) equation represents non-
conserved dynamics [58]. The SH equation is a standard
equation for studying pattern formation close to the onset of
a monotonic short-wave instability in systems without a con-
servation law, e.g., a Turing instability in reaction-diffusion
systems or the onset of convection in a Bénard system [4].
The cSH equation was first derived as the equation governing
the evolution of binary fluid convection between thermally
insulating boundaries [59]. In the PFC context, derivations
from classical dynamical density functional theory (DDFT)
of colloidal crystallization can be found in Refs. [53,60–62]
and, most recently, in Refs. [63,64]. In the course of the
derivation, the one-particle density of DDFT is shifted and
scaled to obtain the order parameter field of PFC. For brevity,
in the following we refer to the resulting order parameter as a
“density.”

The SH and PFC models both admit spatially extended
states (“crystals”) and spatially localized crystal patches
(“crystallites”). Reference [57] provides detailed bifurcation

diagrams for the PFC model in one spatial dimension (1D)
while two (2D) and three-dimensional (3D) phases are in-
vestigated via direct numerical simulations. An example of
a bifurcation diagram in 2D is given in [58]. However, since
both models represent gradient dynamics [58] these states are
necessarily steady. In contrast, in the aPFC model used here
[38] the coupling between density and polarization (quantified
by an activity parameter coupling the two fields) breaks the
gradient dynamics structure. Thus sustained motion becomes
possible. Indeed, nonvariational modifications of the noncon-
served SH equation are known to result in both standing
oscillations and in traveling states [65–67].

Spontaneous motion typically arises via a drift-pitchfork
bifurcation [68,69] and is found in many systems, includ-
ing self-aggregating membrane channels [70], drifting liquid
column arrays [71], chemically driven running droplets [72]
and traveling localized states in reaction-diffusion systems
[73–75]. The onset of motion of localized structures is stud-
ied, for instance, in Refs. [76–79] while Refs. [39,80,81]
focus on domain-filling patterns. Such localized states are
frequently observed in experiments and models in various
areas of biology, chemistry, and physics [82–88]. Examples
range from localized patches of vegetation patterns [89], lo-
cal arrangements of free-surface spikes of magnetic fluids
just below the onset of the Rosensweig instability [90], to
localized spot patterns in nonlinear optical systems [91] and
oscillating localized states (oscillons) in vertically vibrated
layers of colloidal suspensions [92]. In the context of so-
lidification as described by PFC models, localized states are
observed in and near the thermodynamic coexistence region of
liquid and crystalline states. Crystallites of various sizes and
symmetry can coexist with a liquid background depending on
control parameters such as the mean density and temperature
[57,58,93,94]. For instance, as the mean density increases,
the possible crystallites increase in size as new density peaks
(or “bumps” or “spots”) are added at their boundary. Ulti-
mately, the whole available domain is filled and the branches
of localized states terminate on a branch of space-filling
periodic states. Within their existence region, the localized
states are organized within a “snakes-and-ladders” structure
in the bifurcation diagram [95,96]. In conserved systems like
the PFC model on a finite periodic domain this structure is
slanted [57,94,97–100] but in nonconserved systems like the
SH model it is aligned in the vertical [95,101–103]. On non-
periodic domains the boundary conditions may substantially
modify this behavior [104–106].

Our main aim in this paper is to establish an overview
of the rather involved overall bifurcation structure of the
aPFC model suggested in [38] that may serve as a road
map for future studies of more realistic systems. The model
involves a simple coupling of concentration and polariza-
tion and excludes spontaneous polarization. These limitations
are responsible for the presence of a generalized reflection
symmetry in the model that is in turn responsible for the
presence of the above-mentioned drift bifurcations that govern
much of the behavior reported here. The aPFC model studied
here has been employed thus far to investigate the linear
stability of the liquid state with respect to the development of
resting and traveling crystalline patterns and in direct numer-
ical simulations of the resulting states in different geometries
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[38,39,81,107]. A detailed bifurcation study of the system in
1D was provided in [108]. The present work extends the latter
study to 2D, focusing on the onset of motion of 2D localized
states and on their destruction with increasing activity. We
also explore whether traveling localized states exhibit generic
slanted snaking—a characteristic property of resting localized
states in pattern-forming systems with a conserved quantity.

The paper is organized as follows. In Sec. II we present
the model equations, describe some of their elementary prop-
erties, and outline the numerical approaches used to solve
them. In Sec. III we study properties of spatially localized
structures described by the model in both passive and active
cases, focusing on the transition to drift in the latter case. We
also construct regime diagrams summarizing the parameter
regions where different states are present. Section IV focuses
on related results for spatially extended states and the paper
concludes with a brief discussion in Sec. V outlining future
work.

II. THE aPFC MODEL

A. Governing equations

The local state variables of the aPFC model as introduced
in Ref. [38] are the scalar order parameter field ψ (r, t ) (re-
ferred to in the following as a “density”) and the vector order
parameter field P(r, t ) (referred to in the following as a “polar-
ization”) that describes the local ordering and direction of the
active drive. Here r ∈ � ⊂ Rn, where � denotes the domain.
The field ψ (r, t ) is conserved, i.e.,

∫
�

dr ψ = 0 is constant
in time, and specifies the modulation about a mean density ψ̄

that itself encodes the deviation from the critical point [53].
The field P(r, t ) is in general nonconserved.

The uncoupled dynamics of ψ (r, t ) and P(r, t ) corre-
spond to a purely conserved and a mixed nonconserved and
conserved gradient dynamics on an underlying free energy
functional F[ψ, P], respectively. The functional contains no
terms mixing the two fields and the coupling is purely nonva-
riational, i.e., no part of it can be written as gradient dynamics.
The coupling maintains the conserved character of the ψ dy-
namics, i.e., the evolution of ψ follows a continuity equation
∂tψ = −∇ · j, where j is a flux. The nondimensional evolu-
tion equations are [38]

∂tψ = ∇2 δF
δψ

− v0∇ · P, (1)

∂t P = ∇2 δF
δP

− Dr
δF
δP

− v0∇ψ, (2)

where v0 is the coupling strength, also called an activity
parameter or strength of self-propulsion. Physically speak-
ing, P is subject to translational and rotational diffusion with
Dr being the rotational diffusion coefficient. The functional
F[ψ, P] is the sum of the standard phase-field-crystal func-
tional FPFC[ψ] [53,54,109] and an orientational part FP[P],

F = FPFC + FP, (3)

with

FPFC[ψ] =
∫

dr
{

1

2
ψ[ε + (1 + ∇2)2]ψ + 1

4
(ψ + ψ̄ )4

}
(4)

and

FP[P] =
∫

dr
(

1

2
C1P2 + 1

4
C2P4

)
. (5)

The functional (4) encodes the phase transition between the
liquid and crystal states [53,94]. It contains a negative in-
terfacial energy density (∼|∇ψ |2) that favors the creation of
interfaces, a bulk energy density, and a stabilizing stiffness
term [∼(�ψ )2]—this can be seen by partial integration. The
parameter ε encodes temperature such that negative values of
ε correspond to an undercooling of the liquid phase and result
in crystalline (periodic) states for suitable mean densities ψ̄ ,
whereas positive values of ε result in a liquid (homogeneous)
phase. The functional (5) with C1 < 0 and C2 > 0 allows for
spontaneous polarization (pitchfork bifurcation at C1 = 0).
However, in our work we avoid spontaneous polarization and
use C1 > 0 with C2 = 0 as also done in most of the analyses
of Refs. [38,39,107]. With C1 > 0 diffusion tends to reduce
polarization.

Computing the variational derivatives of the energies (4)
and (5) and introducing the result in the governing equations
(1) and (2) leads to the dynamical equations

∂tψ = ∇2{[ε + (1 + ∇2)2]ψ + (ψ̄ + ψ )3} − v0∇·P, (6)

∂t P = C1∇2P − DrC1P − v0∇ψ. (7)

By construction, Eq. (6) preserves
∫
�

dr ψ ≡ 0 while the as-
sumption C2 = 0 implies that Eq. (7) preserves

∫
�

dr P ≡ 0.
Moreover, the equations are nonvariational whenever v0 �= 0
and are invariant under the reflection

κ : (r, ψ, P) → (−r, ψ,−P). (8)

This symmetry permits the presence of steady, nondrifting
solutions that are not left-right symmetric, provided they are
κ symmetric. To see this, suppose we seek a solution that is
stationary in a frame moving with speed c in the x direction,
i.e., c = cx̂. In the moving frame we have

0 = ∇2{[ε + (1 + ∇2)2]ψ + (ψ̄ + ψ )3} − v0∇ · P + c · ∇ψ,

(9)

0 =C1∇2P − DrC1P − v0∇ψ + (c · ∇ )P. (10)

Suppose now that the solution (ψ, P) is κ symmetric with
respect to x → −x. Applying κ to (9) and (10) we obtain

0 = ∇2{[ε + (1 + ∇2)2]ψ + (ψ̄ + ψ )3} − v0∇ · P − c · ∇ψ,

(11)

0 =C1∇2P − DrC1P − v0∇ψ − (c · ∇ )P. (12)

Together these equations imply that c ≡ 0 and hence that
a κ-symmetric solution is necessarily at rest. In the following
we refer to such solutions as resting solutions. Note that κ

symmetry is a robust condition for a resting state. However,
Eqs. (6) and (7) also admit robust resting states that are not κ

symmetric (see below). Such states are present here because of
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the special structure of the equations and would not be present
in generic models except at isolated parameter values. Each of
these states may in turn undergo transitions to a drifting state
as parameters are varied, and in the remainder of this paper
we focus on the properties of both resting and traveling states
in 1D and 2D with a special emphasis on the onset of motion
that arises from spontaneous breaking of the κ symmetry.

Resting and traveling solutions of the aPFC model (6) and
(7) in 1D were studied in detail in Refs. [108,110]. However,
in nature, collective motion often occurs effectively in 2D.
Tissue cells, bacteria, and amoebae crawl on substrates while
ungulates like gnu or sheep display herding and organize in
2D swarms. In the context of artificial active matter, e.g.,
colloidal particles swimming on the surface of a liquid, the
system may form 2D crystals [12]. For this reason, we investi-
gate here how 2D active crystals described by the aPFC model
evolve from a localized state (LS) consisting of a single peak
into spatially extended states (crystals) under the influence of
activity. As in [108], we focus on the mean density ψ̄ and
the activity parameter v0 as the main control parameters. The
activity parameter v0 must, of course, be nonzero for the pres-
ence of traveling structures but its specific value will turn out
to have a major influence not only on the transition from rest-
ing to traveling states but also on the structure of 2D crystals
and associated pattern selection. We mention that a parallel
study based on direct numerical simulations of collective be-
havior in a 2D vacancy-aPFC model is reported in [111,112].
In this model the additional vacancy term [113,114] breaks the
symmetry between “peaks” and “holes” and so plays a similar
role to ψ̄ in our approach.

B. Numerical continuation in 2D

We employ numerical parameter continuation
[58,115,116] to determine steady (c = 0) and stationary
(|c| > 0) periodic and localized solutions of Eqs. (9) and
(10). We use the MATLAB package PDE2PATH [117] which
allows us to follow branches of solutions in parameter space,
detect bifurcations, switch branches, and in turn follow
the bifurcating branches. A phase condition that breaks
translational invariance and a constraint that enforces the
mean density ψ̄ are included as integral conditions. This
implies that in each continuation run one has two auxiliary
parameters that have to be adapted as the control parameters,
here the mean density ψ̄ or the activity v0, are varied. The
auxiliary parameters, the speed c and the Lagrange multiplier
for the density constraint, are obtained by solving a nonlinear
eigenvalue problem in the rest frame of the traveling state.
Owing to the linearity of the polarization equation all
solutions satisfy in addition the condition

∫
�

dr P ≡ 0.
Since 2D computations are much more expensive and time

consuming as compared to 1D problems, we make use of the
symmetries of the fields ψ and P = (Px, Py)T to reduce the
computational effort. Unless otherwise stated in the caption
of the figures that follow, all computations are carried out
on the half-domain as explained in Fig. 1. Here the colored
area � = [0, Lx] × [0, Ly/2] indicates the part of the domain
on which the actual computation is performed. The entire
solution profile is then obtained by exploiting the following
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FIG. 1. Sketch of the numerical setup: Two-dimensional struc-
tures that are reflection symmetric with respect to the x axis are
computed on a reduced domain [0, Lx] × [0, Ly/2] as indicated by
the colored area. The density field ψ and the x-component Px of the
polarization satisfy Neumann boundary conditions at y = 0 while
Dirichlet boundary conditions apply to the y-component Py of the
polarization: Py = 0 at y = 0. All fields are periodic in the x direc-
tion, i.e., only motion in the x direction is allowed. For visualization,
the entire domain �exp = [0, Lx] × [−Ly/2, Ly/2], indicated by the
colored and grayscale regions, is used.

symmetries:

ψ (x, y) = ψ (x,−y),

Px(x, y) = Px(x,−y), Py(x, y) = −Py(x,−y), (13)

where y = 0 corresponds to the horizontal line separating the
colored and gray areas. The expanded area used for visu-
alization and classification of the solutions is thus �exp =
[0, Lx] × [−Ly/2, Ly/2] with area V = Lx Ly. From the linear
stability analysis of the uniform state, we know that at onset
only the unstable mode kc = 1 ⇔ Lc = 2π grows.

Next, we define the boundary conditions (BCs) imposed
on � = [0, Lx] × [0, Ly/2]. In order to pin the solutions such
that the applied symmetries are preserved, we use Neumann
BCs in the y direction for ψ and Px. Accordingly, Py is kept
zero at y = 0 and y = Ly/2, i.e., Dirichlet BCs are applied.
The combined BCs in the y direction read

∂yψ (x, y = 0, Ly/2) = 0,

∂yPx(x, y = 0, Ly/2) = 0, Py(x, y = 0, Ly/2) = 0. (14)

In the x direction, periodic BCs are imposed on all three fields.
Owing to the chosen BCs, the y-component cy of the drift

velocity c always remains zero. This implies that crystalline
structures have to be oriented such that the desired drift, e.g.,
as observed in time simulations or experiments, is in the x
direction, i.e., cx �= 0.

Besides the rectangular geometry, we also make use of a
hexagonal domain when discussing the passive PFC model
and the phenomenon of slanted snaking of branches of steady
LS. There, the numerical continuation is done on a triangular
domain, namely, a right-angled triangle with a hypotenuse of
the side length of the hexagon and Neumann BCs for ψ . In the
passive case, Px and Py remain zero. The triangle defined by
the vertices at (x, y) = 2π (0, 0), 2π (0, 3), and 2π (1, 3/

√
3)

is 1/12th of the entire domain as pictured in Fig. 3. Note that
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FIG. 2. (Left) Bifurcation diagram showing branches of homoge-
neous, periodic, and localized steady states of the passive PFC model
(v0 = 0) on a rectangular domain. Shown is the L2-norm ||ψ ||2 as
a function of the mean density ψ̄ . Stable and unstable states are
shown as solid and dotted lines, respectively. The liquid phase (gray
horizontal line) is destabilized at ψ̄ ≈ −0.55 and an unstable branch
of periodic hexagonal patterns (black line, cf. location IV) emerges
subcritically. In a secondary bifurcation, a branch of LS (blue line)
is created. After various folds responsible for repeated gain and loss
of stability, the LS branch terminates on the same branch of periodic
hexagons from which it bifurcated. (Right) Selected solution profiles
ψ (r) at locations labeled I to IV in the left panel. The domain size
is 2La × 4Lc with where La = 2Lc/

√
3 is the side length of a triangle

and Lc = 2π is its height and the critical wavelength. The remaining
parameter is ε = −0.98.

the equilateral triangles found in the hexagon have a height
Lc = 2π and a side length La = 2√

3
Lc = 4π√

3
.

All the bifurcation diagrams that follow show the L2 norm
of the density profile that we use as the main solution measure.

FIG. 3. (Left) Bifurcation diagram showing branches of homo-
geneous (gray line), periodic (black line), targetlike (red line), and
localized (blue line) steady states of the passive PFC model (v0 = 0)
on a hexagonal domain. Shown is the norm ||ψ ||2 as a function of the
mean density ψ̄ . (Right) Selected solution profiles ψ (r) at locations
labeled I to IV in the left panel. The hexagonal domain has side
length 3La. Remaining line styles and parameters are as in Fig. 2.

In 2D this norm is defined by

||ψ ||2 =
√

1

V

∫
�exp

dr ψ (r)2 (15)

with area V and r = (x, y)T ∈ � ⊂ R2. In addition to numer-
ical continuation, we also perform numerical time simulations
employing a pseudospectral method with semi-implicit Euler
time stepping.

III. LOCALIZED STATES

As known from the passive PFC model [57] and from
results in 1D [108], we can identify a transition region where
patches of the liquid and crystalline states coexist. In the
vicinity of the linear instability threshold of the liquid state,
a broad variety of spatially localized states (LS or crystallites)
is therefore expected.

We use numerical continuation of Eqs. (9) and (10) to
explore the bifurcation structure of the resulting active crys-
tallites in 2D. How do (active) crystallites grow in the plane as
a function of the mean density ψ̄? What is the influence of the
activity parameter v0? Are fully 2D traveling states possible?
Do traveling LS exhibit the same slanted snaking as the resting
LS?

A. Passive PFC model: Slanted snaking

We start by constructing bifurcation diagrams as a function
of the mean density ψ̄ for the passive PFC model, i.e., by
setting v0 = 0, resulting in uncoupled Eqs. (9) and (10), with
P ≡ 0 for all time.

Figures 2 and 3 depict typical slanted snaking of the LS
branches along their path to a spatially extended crystal. In
both bifurcation diagrams, the continuation in ψ̄ starts from
the uniform state ψ = 0 referred to as the liquid state (gray
branch). At a critical density close to ψ̄ = −0.55, this state
loses stability and a branch of periodic solutions of hexagonal
order bifurcates (black branch) in a transcritical bifurcation.
We did not follow the supercritical part of the emerging
branch that corresponds to so-called cold or down hexagons.

As expected, a secondary bifurcation is detected on the
branch of periodic states close to the primary bifurcation. On
the rectangular domain used in Fig. 2, the bifurcating branch
(blue line) corresponds to spatially localized hexagonal crys-
tallites. The branch undergoes a series of folds corresponding
to the addition of a pair of layers of density peaks, symmet-
rically with respect to y = 0 (Fig. 2); this is not the case in
larger domains, however [94]. At each fold, the stability of
the branch changes. Solid lines correspond to stable solutions
and dotted lines indicate unstable solutions. Eventually, the
LS branch terminates on the branch of the spatially extended
hexagons and the entire domain is filled with the crystalline
state. Thereafter, the crystalline state is stable. Owing to the
conservation of ψ , the loci of the left and right saddle-node
bifurcations align along lines slanted towards higher ψ̄ . Since
the model is passive with v0 = 0 and P ≡ 0, no traveling
states can exist and all solutions are steady.

Figure 3 presents a similar bifurcation diagram obtained
from continuation on a hexagonal domain. In contrast to the
rectangle used in Fig. 2, a rotationally symmetric solution
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FIG. 4. (Left) Bifurcation diagram showing suppressed snaking
at lower values of ε, here ε = −1.5, in the passive PFC model
(v0 = 0). In contrast to ε = −0.98 (Figs. 2 and 3) the crystalline
patches do not grow by adding layers of density peaks. Instead a
single peak grows into an elongated structure and subsequently forms
a dumbbell-shaped two-peak state. Asymmetric states are omitted.
The domain size is 2La × 2Lc. Remaining line styles and parameters
are as in Fig. 2.

(red line, location I) emerges at the first secondary bifurcation
from the hexagonal state. This type of LS has been termed
a ring solution. Its branch has been tracked until the state
starts to interact with the Neumann boundaries of the tri-
angular computation domain and its symmetry is destroyed.
Apparently the hexagonal geometry favors the emergence of
ringlike solutions as it is closer to rotational symmetry than
the previously used rectangle.

The snaking branch of LS (blue line) bifurcates in a tertiary
bifurcation from the branch of ring solutions. This bifurcation
is actually imperfect due to numerical grid effects. However,
in Fig. 3 this cannot be seen by eye. The crystalline patch of
hexagonal order gradually grows until the hexagonal domain
is completely filled and the branch terminates on the branch
of the periodic crystals (black line). As the hexagonal domain
is of a larger area than the rectangular one used in Fig. 2, more
density peaks fit in and the LS snaking branch consists of more
back-and-forth oscillations. Note, in particular, that in both
cases the LS, be they hexagonal patches or rings, are present
below the fold of the spatially extended hexagonal state, i.e.,
outside of the region of bistability between the trivial state
and the hexagonal crystal. This observation confirms that the
coexistence region is wider than the region of bistability—a
typical feature of systems with a conserved quantity.

Figures 2 and 3 use ε = −0.98 as employed in earlier
studies [38,39,81]. However, at yet smaller values of the tem-
peraturelike parameter ε, e.g., ε = −1.5, the localized density
peak does not grow into a patch of hexagonal order but rather
elongates, forming first an oval structure and ultimately a
dumbbell state (Fig. 4). On rectangular domains this elon-
gation is a natural consequence of the domain shape and
represents a continuous transition. However, this elongated
state is not a consequence of boundaries: the continuation
was carried out on various domains with the same result.

In particular, and in contrast to all other solution profiles
shown here, ψ (r) in Fig. 4 is not computed on half of the
depicted domain and mirrored, and so states (I)–(III) depict
the actual computed solution profiles. Here the density peak is
placed in the middle of the computational domain in order to
avoid a possible influence of the boundaries. Based on these
computations we conclude that the observed states describe
gradual spot fission as ψ̄ varies, i.e., fission of a spot into a
pair of adjacent spots (see, e.g., [118]). We have found no
evidence for the coexistence of this state with any spatially
extended state at these parameter values. Note that dumbbell
localized states were previously observed in the nonconserved
SH equation in both 2D and 3D [119].

Next, we move on to the active PFC model and investigate
the influence of the activity parameter v0. By continuation
in ψ̄ at v0 = 0, we produce various LS whose response to
activity is then studied. As explained in Sec. II A, we use a
rectangular domain and symmetries of ψ and P in order to
perform continuation on a reduced-size domain. In Sec. III D
we return to slanted snaking and study to what extent snaking
is modified by activity. In particular, we study the bifurcation
structure of traveling states as a function of ψ̄ .

B. Active PFC model: Onset of motion

We now systematically explore how LS in 2D respond to
increasing activity by employing the activity parameter v0

as the main control parameter. From results obtained for LS
in 1D [108], we expect transitions from resting to traveling
LS (RLS and TLS, respectively) associated with symmetry
breaking between the two fields ψ and P, as centers of the
density peaks shift with respect to +1 defects in P at a critical
activity vc. For resting crystals, P points down the gradient of
ψ , leading to a defect at the center of the density peak, similar
to the vector field of a monopole. These defects are termed +1
defects [cf. Fig. 6(a)].

Figure 5 shows a typical bifurcation diagram as a function
of v0. A stable one-peak LS at rest (represented by a solid blue
line) undergoes a drift instability at vc ≈ 0.15. The traveling
one-peak LS (orange branch) are stable up to v0 ≈ 0.24 where
the branch folds back to smaller v0. Unstable branches are
shown as dotted lines. The drift velocity c of the TLS increases
as

√
v0 − vc as previously observed. Due to larger grid effects

in 2D (we use an adaptive grid), the onset of motion is not
perfectly sharp in c (cf. Fig. 5). Since the criterion for the onset
of motion derived in [108] applies in two spatial dimensions,
we track the quantity ||ψ ||22 − ||P||22 to reveal a zero crossing
at vc, and use this procedure to identify drift bifurcations.

The onset of motion is associated with the appearance of
symmetry breaking between ψ and the vector field P for
sufficiently large v0. Centers of the density peaks shift with
respect to the +1 defects in P as depicted in Fig. 6. For resting
states, averaging P over the area of a single density peak yields
zero. Above vc, a net orientation of P emerges and traveling
crystals or crystallites come into existence. In Fig. 6(b), the
net polarization points to the left leading to a negative drift
velocity c. The direction of the shift and hence the resulting
sign of the velocity are arbitrary: both directions correspond
to the same branch of traveling solutions. This agrees well
with similar observations for the onset of motion for extended
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FIG. 5. (Left) Bifurcation diagram of resting and traveling one-
peak LS at mean density ψ̄ = −0.9 showing the L2 norm of ψ

as a function of the activity v0. Resting and traveling states are
indicated by blue and orange lines, respectively. Branches of stable
and unstable states are shown as solid and dotted lines. At vc ≈ 0.15,
a stable resting LS undergoes a drift pitchfork bifurcation and a
branch of traveling localized states (TLS) emerges. The region of
existence of the TLS is limited by a fold at v0 ≈ 0.24. The panels
on the right show (top) selected solution profile ψ (r) at v0 = 0.1
(only part of the domain is shown); (center) the drift velocity c vs
v0. Above vc ≈ 0.15, the velocity increases as

√
v0 − vc. Deviations

from a sharp onset of motion are due to lattice effects. (Bottom) The
difference ||ψ ||22 − ||P||22 crosses zero at the drift pitchfork bifurca-
tion. Note that, in the left panel, ||ψ ||2 times the area V is plotted for
clarity as for 2D domains the norm of LS tends to be very small. The
domain size is V = 60 × 30. Remaining parameters are ε = −1.5,
C1 = 0.1, C2 = 0, and Dr = 0.5.

patterns [38,81]. Similar results hold for an aPFC model with
an additional vacancy term [111].

If ψ̄ is chosen too low, i.e., too close to the solid-liquid
transition, activity can melt crystallites before motion sets in.
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FIG. 6. Density ψ (r) and polarization P(r) profile shown as a
color map overlaid with white arrows for (a) a resting (v0 = 0.13)
and (b) a traveling (v0 = 0.22 > vc ) one-peak LS. Note that in (a) the
+1 defect of the polarization field coincides with the density maxi-
mum (and the net polarization is zero), while in (b) they are shifted
with respect to one another as the front-back symmetry is broken.
The shift corresponds to a net polarization, i.e., net propulsion to the
left, with c ≈ −0.19. Only a part of the computational domain is
shown. The remaining parameters are as in Fig. 5.

FIG. 7. (Left) Bifurcation diagram of a resting two-peak LS (cf.
Fig. 4) at mean density ψ̄ = −0.9 showing the L2 norm of ψ as a
function of the activity v0. (Right) Selected density profiles ψ (r)
at v0 = 0.03 (top) on the upper part of the branch of left-right
symmetric states (blue line), v0 = 0.09 (middle) on the branch of
left-right asymmetric states (black line), and v0 = 0.04 (bottom) on
the lower part of the branch of the left-right symmetric states. In
contrast to the one-peak LS, only resting two-peak LS exist at this
mean density as the saddle-node bifurcation of the symmetric states
is located at v0 < vc ≈ 0.15. The remaining line styles, parameters,
and the domain size are as in Fig. 5.

This is what happens to two-peak LS at rest at ψ̄ = −0.9
as v0 increases and the two-peak LS passes through a fold
before encountering a parity-breaking bifurcation (Fig. 7).
Here the branch of two-peak LS does not reach far enough
in v0 to fulfill the criterion for the onset of motion and
activity melts the structure before the onset of drift: the posi-
tion of the fold is at v0 ≈ 0.14 < vc. Close to the fold there
is a subcritical pitchfork bifurcation generating steady but
asymmetric solutions [dotted black branch, cf. Fig. 7 (right
central panel)] that bifurcate off the blue branch correspond-
ing to solutions with left-right symmetry in ψ (r) (right upper
and lower panels). Note that the dotted black line represents
two different asymmetric solutions related by reflection with
respect to a suitable origin: [ψ (x, y), Px(x, y), Py(x, y)] ↔
[ψ (−x, y), −Px(−x, y), Py(−x, y)]. At ψ̄ = −0.9 these two-
peak LS coexist with the one-peak LS from Fig. 5 but all
two-peak states are unstable.

For ψ̄ = −0.8, however, the fold of the two-peak LS shifts
beyond the threshold for the onset of motion and the two-peak
LS also undergo a drift bifurcation. Owing to the additional
spatial degree of freedom in 2D a reflection-symmetric struc-
ture at rest may undergo motion in two orthogonal directions,
longitudinal and transverse, resulting in a drastic change in the
overall bifurcation picture. Figure 8 summarizes the intricate
bifurcation structure of two-peak crystallites at this value of
ψ̄ . This complicated behavior is disassembled into Figs. 9 to
11 shedding additional light on the different branches of TLS
that emerge.

Figure 9 depicts branches of TLS moving longitudinally,
i.e., parallel to the long axis of the elongated LS while Fig. 11
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FIG. 8. Summary bifurcation diagram showing ||ψ ||2 vs v0 for
resting and traveling dumbbell-shaped two-peak LS at mean den-
sity ψ̄ = −0.8. Blue and black lines indicate branches of resting
symmetric and asymmetric LS, respectively. At v0 ≈ 0.15, states
traveling in different directions (orange branches) emerge in various
drift bifurcations. See Figs. 9 and 11 for details and selected solution
profiles. Thin gray lines correspond to branches of resting and travel-
ing one-peak LS. Remaining line styles, parameters, and the domain
size are as in Fig. 5.

shows the branches of TLS moving transversely, i.e., parallel
to the short axis of the LS. Interestingly, the latter branch
extends to higher values of v0.

Figure 10 magnifies the upper part of the bifurcation dia-
gram presented in Fig. 8 completing the branch of asymmetric
LS. Interestingly, the branch exhibits tilted snaking like that
found in other pattern-forming systems with a conservation
law [101]. However, the behavior does not correspond to
the usual snakes-and-ladders structure of snaking branches
of symmetric LS connected by branches of asymmetric LS.
Instead, the asymmetric LS snake in a slightly slanted, spi-
ralling fashion. With each loop, the asymmetric LS grows
in the longitudinal direction by creating one new peak (see,
e.g., the density profiles in panels I–VI of Fig. 10). All the
asymmetric states are unstable.

The resting elongated two-peak LS are connected to the ro-
tationally symmetric one-peak solution as indicated in Fig. 11,
state III. This point is also a fold near which the stable resting
one-peak LS (solid gray line) start to deform into a two-peak
LS. Because of the influence of the boundaries this is a contin-
uous transition. In fact, all (reflection-symmetric) resting LS
in Fig. 8 correspond to a single branch, similar to the result
for the snaking branches as a function of ψ̄ . The branches of
one-peak LS (moving and resting) are shown in light gray with
solid (dotted) lines for (un)stable states. Unfortunately, at this
value all two-peak LS are still unstable, just as for ψ̄ = −0.9
(Fig. 7).

At vc ≈ 0.15, various TLS emerge at drift bifurcations
marked in Figs. 9 and 11 by black circles. TLS moving par-
allel to their long axis (Fig. 9) do not reach activity values
as high as the TLS moving transversely (Fig. 11). Figure 9
shows that two distinct branches of TLS originate in a drift-

FIG. 9. (Top left) Shown is a subset of the bifurcation curves
from Fig. 8, namely, the traveling dumbbell-shaped two-peak LS that
move parallel to their long axis, the one-peak states, and the resting
two-peak states. The right panels show selected density profiles ψ (r)
at points labeled I to IV in the main panel. The resting two-peak
LS are destabilized with respect to parallel motion in drift-pitchfork
bifurcations at vc ≈ 0.16, marked by black circles. On the orange
branches of traveling LS, state III (state II) travels with the larger
(smaller) density peak at the front. The asymmetric steady solution
is destabilized in a drift-transcritical bifurcation marked by the circle
on the black branch. Here two branches of TLS with opposite drift
velocities emerge. The lower left panels show the drift velocity c as a
function of v0 and the measure ||ψ ||22 − ||P||22 that crosses zero at the
respective onsets of motion. The remaining line styles, parameters,
and the domain size are as in Fig. 8.

transcritical bifurcation on the branch of resting asymmetric
states (black). Owing to the lack of left-right symmetry of the
density profile, each direction of the drift results in a separate
branch. In particular, the TLS on the upper branch move to
the left with the larger density peak at their tip (cf. Fig. 9, state
III) while the lower branch that emerges (bending towards
lower norm) corresponds to TLS with the smaller density peak
at the tip (state II). Both branches of TLS terminate on the
branch of resting left-right symmetric LS (blue) in respective
drift-pitchfork bifurcations (marked by circles).

We mention that on the scale of Fig. 9 the bifurcation
occurring on the branch of asymmetric RLS does not exhibit
the typical shape of a transcritical bifurcation as both branches
of TLS seem to bifurcate towards larger v0. Our identification
of this bifurcation as a drift-transcritical bifurcation is based
on similar behavior observed in 1D [108] where more precise
computations are possible, and for this reason we believe
that one of two branches undergoes a fold very close to the
transcritical bifurcation. Grid effects make it very hard to
remain on branches of RLS and lead to rather blurred onsets
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FIG. 10. Shown is a magnification of Fig. 9 completing the
branch of steady asymmetric LS (black dashed line). Panels I to VI
present selected density profiles ψ (r) at points labeled I to VI in the
main panel. The remaining line styles, parameters, and the domain
size are as in Fig. 9.

of the drift velocity c vs v0. However, with the help of the
onset criterion derived in Ref. [108], we are able to determine
the exact location of all drift bifurcations (lower panels of
Fig. 9).

Figure 11 explores the branches of traveling two-peak LS
that travel transversely. Here the picture is simpler. As for the
traveling one-peak LS, a branch of TLS stretches between a
pair of drift bifurcations highlighted by black circles. Panels
on the right show selected density profiles.

Overall, the bifurcation structure of traveling two-peak LS
is much more intricate than that of the single-peak LS. More-
over, increasing ψ̄ from −0.9 to −0.8 drastically changes
the bifurcation structure. Figure 12 illustrates how the drift
bifurcations and TLS come into existence by showing a series
of four bifurcation diagrams for increasing values of mean
density ψ̄ . Between ψ̄ = −0.67 and −0.65 a pair of drift
bifurcations is created. Their origin coincides with the fold
of the branch of resting states (blue lines) as shown by a
two-parameter continuation. For increasing ψ̄ , the region of
existence of TLS grows as the fold of the TLS branch moves
to higher values of v0 while the threshold activity for the onset
of migration vc stays practically constant. These results are
consistent with the results of extensive fold continuation in
1D. Note that for Fig. 12 we have used ε = −0.98 in contrast
to previous figures with ε = −1.5.

With the various TLS obtained by continuation in v0 in
hand, we are now able to construct a morphological phase
diagram (next section). This is followed by an examination
of the bifurcation diagrams for fixed v0 as the mean density ψ̄

varies and a study of the phenomenon of slanted homoclinic
snaking for active crystallites at v0 > 0 in Sec. III D.

FIG. 11. (Top left) Shown is a subset of bifurcation curves from
Fig. 8, namely, the traveling dumbbell-shaped two-peak LS that
move perpendicular to their long axis, the one-peak states, and the
resting two-peak states. The remaining panels, line styles, symbols,
parameters, and the domain size are as in Fig. 9.

C. Morphological phase diagram

Before discussing in detail the bifurcation structure as a
function of ψ̄ and changing the temperaturelike parameter ε to
allow for snaking, we conclude the discussion of active crys-
tallites at ε = −1.5 by presenting a large-scale morphological
phase diagram in the parameter plane spanned by v0 and ψ̄ .
The phase diagram is determined numerically by counting
peaks of ψ (r, t ) after a sufficiently long transient. To favor the
creation of LS, six density bumps are superposed at random
positions on the homogeneous phase marginally perturbed by
white noise. For the polarization P, we choose a randomly
perturbed trivial state P0 = 0 as initial condition.

The domain with periodic boundaries has a size of 8Lc ×
7La with La = 4π/

√
3 being the side length of a hexagon and

Lc = 2π the critical wavelength at the onset of crystallization.
As already mentioned, Lc is the height of triangles found in
the hexagonal pattern. This domain size results in a maximum
number of 56 density peaks in a periodic array [cf. Fig. 14(I)].

In Fig. 13 periodic states with around 56 density peaks are
displayed in green, whereas LS exist within the blueish area.
The white area without any density peaks corresponds to the
liquid state ψ (r) = 0. The white lines indicate the stability
limits obtained from linear stability of the liquid phase, with
the vertical white line indicating the onset of motion at vc

(vc ≈ 0.15, independently of ψ̄). The limits of the existence
of LS are determined by a two-parameter continuation of their
fold. The black lines show the position of folds of resting one-
peak LS (solid black) and of traveling one-peak LS (dotted
black). The position of the saddle-node bifurcations of 2D
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FIG. 12. A sequence of bifurcation diagrams ||ψ ||2 vs v0 show-
ing how traveling one-peak LS (orange line) come into existence with
increasing mean density ψ̄ (from top left to bottom right) at ε =
−0.98 (corresponding to the value used in [38]). Two drift-pitchfork
bifurcations appear simultaneously at the saddle-node bifurcation of
the branch of resting LS (blue line). Increasing ψ̄ further expands
the range of existence of traveling LS toward larger v0 and the
drift-pitchfork bifurcations separate. The onset of motion is always
at vc ≈ 0.15. Remaining line styles, parameters, and the domain size
are as in Fig. 5.

FIG. 13. Morphological phase diagram for the aPFC model in
2D in the plane spanned by the activity v0 and the mean density ψ̄ as
obtained through systematic time simulations. The region of stable
liquid state is white, while crystalline structures of various size exist
in the colored areas. The color bar indicates the number of density
peaks formed in the domain of size 8Lc × 7La with La = 2Lc/

√
3 and

Lc = 2π . Regions where resting and traveling LS exist are marked
by shades of blue while domain-filling periodic patterns are shown
as green (56 peaks). The various lines in the diagram, the initial
conditions for the simulations, and the peak counting procedure
are described in the text. The remaining parameters are ε = −1.5,
C1 = 0.1, C2 = 0, and Dr = 0.5 as used throughout Sec. III B. The
parameter increments between simulations are �v0 = 0.035 and
�ψ̄ = 0.0125. See Fig. 14 for a magnification of the region close
to the onset of motion and selected density profiles.

FIG. 14. The large panel shows a magnification of the region
close to the onset of motion in the morphological phase diagram in
Fig. 13. The parameter increments between simulations are �v0 =
0.02 and �ψ̄ = 0.025. The small panels show selected density pro-
files ψ (r) at points labeled I to V in the phase diagram after the time
simulations have converged. Arrows indicate direction of motion.
Shown are (I) resting hexagonal pattern close to the transition to
stripes, (II) traveling hexagonal pattern, (III) traveling cluster of
hexagonal order, (IV) resting LS, and (V) traveling LS.

TLS starts to shift backwards, towards smaller values of v0

at v0 ≈ 0.7. This is a major difference from the one-peak TLS
in one spatial dimension which exist to arbitrarily high v0.

The time simulations indicate large areas of existence of
various active LS (blueish area). The extent of the LS region
ranges from single density peaks (light blue) to patches of LS
almost filling the entire domain (dark blue). Selected solution
profiles ψ (r) can be found in Fig. 14. The phase diagram also
illustrates how hexagonal periodic states change their shape
towards a stripe pattern resulting in a lower number of density
peaks [Fig. 14(I)]. For such patterns each elongated ridge is
only counted as a single density peak. Close to the limit of
linear stability of the liquid state, large patches of localized
crystalline order coexist with the uniform state [Fig. 14(III)].
Resting LS (v0 < 0.15, left of the vertical dotted line denoting
the onset of motion) exist down to low values of ψ̄ ≈ −1.05.
Increasing activity melts most of these LS (ψ̄ < −0.95) and
the v0 range of their existence contracts as ψ̄ decreases.
Higher ψ̄ favors traveling LS (−0.95 � ψ̄ � −0.7, 0.15 �
v0 � 0.7) and traveling crystals that fill the entire domain are
present for ψ̄ � −0.65, the linear stability threshold of the
liquid state, and v0 � 0.15, where the blue region terminates
giving way to green areas. We also see that traveling periodic
states exist to arbitrarily high activities and do not melt, unlike
most LS, in agreement with similar observation in 1D [108].

The morphological phase diagram in Figs. 13 and 14 may
be compared with similar phase diagrams obtained experi-
mentally or via particle-based simulations of systems that also
show active and passive interactions, the latter resulting in
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crystals at zero and low activity. The collective behavior of
Quincke rollers investigated in Ref. [120] provides an exam-
ple. Figure 1 of this paper shows a phase diagram that reveals
similar transitions to those found here: At low activity the
authors find resting crystallites that with increasing activity
either “evaporate” into a “gas” (at lower densities) similar to
the transition from resting localized states to a uniform state
for ψ̄ � −0.95 in Fig. 14 or start to travel (at higher densities)
similar to the transition from resting localized or crystalline
states to traveling states for ψ̄ � −0.95. Moreover, below a
certain density their traveling crystals evaporate upon a further
increase in activity similar to our case for −0.7 � ψ̄ � −0.95
(cf. Fig. 13) while at higher density they turn into traveling
bands, a transition we do not see, possibly because of our
smaller system size.

D. Snaking of active crystallites

In this section we explore in detail the bifurcation structure
of both resting and traveling active crystallites as a function of
the mean density ψ̄ . Having analyzed the slanted snaking of
passive LS (Sec. III A), we now wish to examine the influence
of the activity parameter v0 on the snaking of 2D LS and the
response of 2D TLS to varying ψ̄ .

The value ε = −1.5 of the effective temperature turns out
to be too low to support continuous snaking of both passive
and active LS (cf. Fig. 4). At these values of ε the snaking
branches most likely break up into disconnected pieces. For
this reason we increase the temperature to ε = −0.98 as done
for passive crystallites in Sec. III A. In addition, this value is
also employed in [38] where the aPFC model was introduced.
There, diffusion is set to C1 = 0.2 leading to vc ≈ 0.3. The
high diffusion causes many crystallites to melt before motion
can set it. We therefore stick to C1 = 0.1 as used in the previ-
ous sections, for which the threshold for the onset of migration
is vc ≈ 0.15.

Figure 15 depicts the bifurcation diagram at v0 = 0.151,
slightly above vc and allowing for TLS. The overall picture
is similar to the slanted homoclinic snaking found for passive
LS. The branches of LS bifurcate from periodic solutions that
emerge in subcritical primary bifurcations from the desta-
bilized liquid state and extend well below the folds of the
periodic state. Besides the resting crystal (Fig. 15, dotted
black branch), there is a branch of traveling spatially extended
patterns (red). Both crystals are of hexagonal order and their
norms differ only slightly. The inset in Fig. 15 enlarges the
region close to the folds of the periodic states, illustrating their
small separation.

The resting and traveling LS branch off from the resting
and traveling periodic solutions in secondary bifurcations at
small amplitude. Since the value of the activity parameter v0

is above the threshold for migration, all RLS (blue branch)
are unstable as indicated by dotted lines. The TLS exhibit the
typical alternation of stable and unstable states familiar from
slanted snaking of passive LS. Like the branches of periodic
solutions the resting and traveling LS have very similar L2

norm.
The lower panel of Fig. 15 shows the drift velocity c of the

respective solutions as a function of ψ̄ . Evidently, RLS (blue)
and the resting crystal (black) have c = 0. The velocity of the

FIG. 15. Bifurcation diagram showing slanted snaking of rest-
ing and traveling LS at ε = −0.98. Shown is the norm ||ψ ||2 as
a function of the mean density ψ̄ with activity fixed at the still
relatively low value v0 = 0.151 > vc that allows for the coexistence
of resting and traveling states. Labels I to IV mark the location of
the stable traveling LS shown on the right. The liquid phase (gray
line) with norm zero is destabilized at ψ̄ ≈ −0.53 and a branch
of traveling periodic patterns (dark red) emerges. Close to the first
primary bifurcation, a branch of resting crystals (black) emerges
in another primary bifurcation. Resting and traveling LS (blue and
orange), respectively, bifurcate in secondary bifurcations from these
branches. Since v0 > vc, all resting solutions are unstable. The inset
illustrates the small separation of the branches in terms of their norm.
The lower panel shows the drift velocity c as a function of ψ̄ . Since
c < 0, all TLS move to the left. The domain size is 2La × 4Lc while
the remaining line styles and parameters are as in Fig. 5.

traveling crystal (red) rises slightly as the crystal grows. In
contrast to the main panel, here it is easy to see how the TLS
branch off from the traveling periodic solution. All in all, the
drift velocity c does not depend strongly on ψ̄ .

The same holds at v0 = 0.18 as shown in Fig. 16. The
bottom right panel reveals that c is almost independent of the
mean density ψ̄ . Because v0 = 0.18 is beyond the positions
of the folds of RLS, resting solutions are no longer present.
As also observed at smaller v0, the TLS (orange) emerge in
a secondary bifurcation from the branch of traveling crystals
(red). With increasing ψ̄ , the TLS grow by adding density
peaks until the whole domain is filled by the crystalline state
and the TLS branch terminates on the branch of traveling
periodic states [cf. Fig 16(IV)]. In contrast to passive snaking,
the growth of the TLS does not occur by adding density peaks
layer by layer. The broken symmetry at v0 > vc seems to favor
growth via the addition of pairs of density peaks, maintaining
reflection symmetry with respect to y = 0 at all times, as
shown in panels (I) and (II). The different growth pattern is
reflected in the larger number of undulations of the snaking
branch as compared to the passive case in Fig. 2.

Overall, we find that the mean density ψ̄ does not have a
strong influence on the drift velocity c of the traveling states.
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FIG. 16. Bifurcation diagram ||ψ ||2 vs ψ̄ for traveling hexagonal
patterns and traveling LS at the relatively high activity v0 = 0.18
where no resting states exist. Labels I to IV denote the locations of
the stable traveling LS shown on the right. The bottom right panel
shows the drift velocity c as a function of ψ̄ . All states travel to the
left. Domain size, line styles, and the remaining parameters are as in
Fig. 15.

In addition, there are no connections between the branches
of RLS (of hexagonal order) and TLS (also of approximately
hexagonal order) as ψ̄ varies. Hence, changes in the mean
density cannot directly induce drift instability (although a
suitable ψ̄ is necessary for drift instabilities to occur when
varying v0). And rather unexpectedly (when taking the 1D
results [108] as a guide), the branch of TLS at ε = −0.98
exhibits slanted homoclinic snaking much as observed for
RLS in the passive system and in active ones at small v0.
We do not expect the spatial dimension to play a role here;
more likely, the presence of slanted snaking is solely a con-
sequence of choosing an effective temperature ε that is not
too negative. We mention that slanted snaking associated with
traveling structures is present even in nonconserved systems
[121], likely a consequence of the fact that the drift speed is
itself a nonlocal property.

IV. PERIODIC STATES

In two spatial dimensions, different periodic patterns can
be distinguished. Besides stripes that can be regarded as a 2D
extension of the periodic states determined in 1D [108], the
aPFC model exhibits both hexagonal and rhombic structures.
In this section we analyze the periodic states that emerge in
the 2D aPFC model and, in particular, study their bifurcation
structure.

FIG. 17. Selected snapshots of periodic density patterns ψ (r) at
the fixed mean density ψ̄ = −0.4 as obtained for increasing activity
by time simulation. (a) A resting hexagonal pattern at v0 = 0.25,
(b) a traveling hexagonal pattern at v0 = 0.3, (c) a traveling rhombic
pattern at v0 = 0.8, and (d) a traveling stripe pattern at v0 = 1.5.
The respective directions of motion are indicated by white arrows.
The domain size is 6Lc × 5La while the remaining parameters are
ε = −0.98, C1 = 0.2, C2 = 0 as in Ref. [38].

A. Crystal structure and activity

The original passive PFC model exhibits crystalline hexag-
onal patterns in certain ranges of the temperature ε and mean
density ψ̄ . Changing the mean density can lead to transitions
to stripes [57]. These transitions can also be induced by the
activity v0. In the original paper [38] introducing the aPFC
model, numerical time simulations show a transition from a
resting hexagonal pattern to traveling hexagons with increas-
ing v0. A further increase leads to a transition to traveling
rhombic patterns and, ultimately, to traveling stripes. Snap-
shots from time simulations at certain values of v0 and the
same set of control parameters as in [38] are shown in Fig. 17
and these reproduce previously made observations.

The domain is of size 6Lc × 5La with critical wavelength
Lc = 2π and side length La = 4π/

√
3 accounting for 30 den-

sity peaks in hexagonal order. At v0 = 0, resting hexagons
are oriented parallel to the y axis and perfectly match the
aspect ratio of Lx and Ly. As v0 is increased the wave vector
and geometry of the pattern change. The whole crystalline
structure reacts by a rotation within the periodic domain [cf.
Figs. 17(a) and 17(b)] thereby adjusting its position such that
the dominant wave vectors fit into the domain.

Rhombic [Fig. 17(c)] and stripe patterns [Fig. 17(d)] orient
themselves parallel to the y axis as Lx is a multiple of Lc = 2π .
Following the drift instability at vc ≈ 0.3, these patterns travel
with a constant speed c while keeping their spatial period-
icity. White arrows indicate the direction of motion. Stripes
always travel perpendicular to their orientation. Hexagons and
rhombi also exhibit specific directions of motion. Therefore,
the patterns have to be correctly oriented when employing
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FIG. 18. The main panel shows the bifurcation diagram ||ψ ||2
vs v0 for hexagonal patterns oriented such that the onset of motion is
parallel to an edge. Resting hexagons (blue line) are stable (solid line)
until a drift-pitchfork bifurcation occurs at vc ≈ 0.3 where a branch
of stable traveling hexagonal patterns (orange line) emerges. The
corresponding drift velocity c is shown in the lower left panel while
the lower right panel shows the measure ||ψ ||22 − ||P||22 that crosses
zero at the drift bifurcation. On the right selected solution profiles
ψ (r) at the locations labeled I to IV in the bifurcation diagram are
shown. Profiles II—IV travel in the x direction to the right. The
domain size is V = 3La × 4Lc and the remaining parameters are as
in Fig. 17.

numerical continuation with the particular boundary condi-
tions discussed in Sec. II A. These only permit motion in the
x direction.

B. Pattern selection and bifurcation structure

From time simulations in previous studies [38,39], it is
known that the activity parameter v0 does not only lead to a
transition from resting to traveling patterns, but also strongly
influences the crystal structure. Here we use numerical con-
tinuation to investigate if the different traveling patterns are
connected via bifurcations and how the patterns are selected.

Starting with a steady state hexagonal pattern at v0 = 0 in
a suitable domain, we follow the branch of hexagonal crystals
in v0. Figure 18(I) illustrates the chosen domain. Its aspect
ratio corresponds to the ratio between the height Lc and the
side length La of equilateral triangles within the hexagon.
The hexagons are oriented with one edge parallel to the
direction of motion observed in time simulations close to the
onset of motion (cf. Fig. 17).

The resulting bifurcation diagram is depicted in the main
panel of Fig. 18. The branch of resting hexagons is shown in
blue, whereas the traveling hexagonal pattern corresponds to
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FIG. 19. Density ψ (r) and polarization P(r) profiles in terms of
a color map with overlaid white arrows, respectively, for (a) a resting
(v0 = 0.25) and (b) a traveling (v0 = 0.4 > vc ) hexagonal pattern. In
(a) the +1 defects of the polarization field coincide with the density
maxima (and the net polarization is zero), while in (b) they are shifted
with respect to one another, breaking the left-right symmetry. This
shift generates a net polarization and results in net propulsion to the
right with c ≈ 0.3. Parameters and domain size are as in Fig. 18.

the orange branch. At the critical activity vc ≈ 0.3, the resting
pattern is destabilized in a drift-pitchfork bifurcation. The
left bottom panel shows the characteristic growth of the drift
velocity c; close to the drift instability c ∝ √

v0 − vc. The sec-
ond small panel demonstrates that the quantity ||ψ ||22 − ||P||22
crosses zero at the onset of motion. Note that the onset of
motion at vc ≈ 0.3 corrects earlier studies [38] and confirms
the critical activity value found in [81].

The four selected solution profiles ψ (r) (I)–(IV) corre-
spond to the locations indicated in the main panel. The density
profiles illustrate how the hexagonal order of the crystal is
preserved with increasing v0. However, the individual density
peaks change their shape from circular bumps towards oval
and even rectangular peaks, cf. Figs. 18(III) and 18(IV). The
branch of traveling hexagons is stable up to very high values
of activity, in other words, we did not detect a destabilizing
bifurcation on this branch.

Figure 19 gives details on the symmetry breaking associ-
ated with the onset of motion of the hexagonal pattern. The
density field ψ (r) is given as a color map and the polarization
field P(r) is indicated by white arrows. Figure 19(a) depicts
the two fields in a resting crystal. As discussed for LS in
Sec. III B for resting states, the centers of the density peaks
coincide with +1 defects of P. One of the corresponding
symmetries is broken beyond the onset of motion and the
topological defects of P shift with respect to the peaks of
ψ . Hence, when averaging the polarization over a density
peak, a net polarization and drift emerge. Figure 19(b) shows
a moving hexagonal crystal with a positive net polarization.
In the red area of the maximum of ψ , more arrows point to
the right than to the left and the crystal therefore moves to the
right without change of shape.

For the bifurcation diagram in Fig. 20, the orientation of
the hexagon has been rotated by 90◦, i.e., the drift is forced
to occur perpendicular to an edge of the hexagon. The do-
main size is adapted to match the hexagons by switching the
lengths of Lx and Ly from Fig. 18. As in Fig. 18, the resting
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FIG. 20. The main panel shows the bifurcation diagram ||ψ ||2
vs v0 for hexagonal patterns for the onset of motion perpendicular
to an edge. On the right selected solution profiles ψ (r) at locations
labeled I to IV in the bifurcation diagram are shown. Profiles II–IV
travel in x direction to the right. Resting hexagons (blue line) are
stable (solid line) until a drift-pitchfork bifurcation at vc ≈ 0.3 where
a branch of stable traveling hexagonal patterns (orange line) emerges.
With increasing v0, the traveling hexagonal pattern (e.g., profile II)
deforms into modulated stripes (e.g., profile III). The branch termi-
nates on the horizontal branch of traveling stripes (dark green line,
e.g., profile IV) that itself emerges in a drift-pitchfork bifurcation
from an unstable branch of resting stripes (red line). The domain size
is V = 4Lc × 3La and the remaining parameters are as in Fig. 17.

hexagonal pattern (blue branch) is destabilized in a drift-
pitchfork bifurcation at vc,⊥ = 0.3015 as compared to vc,‖ =
0.3008 in Fig. 18. The slightly larger threshold is in agreement
with results from time simulations where drift parallel to an
edge (cf. Fig. 18) is found for motion at onset. Black circles
highlight the drift bifurcations in the main panel of Fig. 20.
Besides stable resting hexagons, an unstable resting stripe
pattern exists in this setup (red branch). The resting stripes
undergo a drift bifurcation at vc ≈ 0.3 as well.

In contrast to hexagons traveling parallel to an edge, the
hexagons traveling perpendicular to an edge do not persist
to arbitrarily high v0 and instead terminate on a branch of
traveling stripes (horizontal green line) in a supercritical pitch-
fork bifurcation. Along this branch, the crystal continuously
changes from traveling deformed hexagons (Fig. 20, profile
II) to traveling modulated stripes (III); moreover, the solutions
lose stability in a Hopf bifurcation at v0 ≈ 0.6 before reaching
the termination point. The horizontal branch of moving stripes
confirms the results for periodic states in 1D that also maintain
a constant norm by shifting the relative positions between
ψ (x) and P(x) with changing v0. The traveling stripes even-
tually gain stability in a Hopf bifurcation at about v0 = 1.5

FIG. 21. The main panel shows the bifurcation diagram ||ψ ||2 vs
v0 for square patterns oriented such that the motion is parallel to a
diagonal of the square. On the right selected solution profiles ψ (r)
at locations labeled I to III in the bifurcation diagram are shown.
Profiles II–III travel in the x direction to the right. Resting squares
(black line) are unstable. At drift-pitchfork bifurcations at vc ≈ 0.3
branches of unstable traveling square patterns (orange lines) emerge.
At v0 ≈ 0.7 traveling squares gain stability in a Hopf bifurcation.
The domain size is 2

√
2Lc × 2

√
2Lc and the remaining parameters

are as in Fig. 17.

after undergoing various bifurcations (not shown). At v0 =
1.5, random initial conditions evolve into drifting stripes in
numerical time stepping. Note that vertical stripes do not fit
into the domain of Fig. 18 as Lx is not a multiple of Lc = 2π .
In the parameter range where Fig. 20 exhibits only unstable
states, time simulations show either traveling rhombic patterns
[cf. Fig. 17(c)] or states with a more intricate time dependence
(not shown).

Even though time simulations show a different direction
at the onset of motion of the traveling hexagons, the detected
branch of modulated stripes (Fig. 20, profile III) corresponds
to a solution type that arises within large scale parameter scans
presented in Sec. IV C. In addition, continuation confirms that
resting stripes are unstable for all values of v0 as suggested by
time simulations. Since time simulations also point to rhombic
patterns, we have also performed continuation on a square
domain. Figure 21 shows that the branch of squares traveling
parallel to a diagonal (orange) becomes stable at about v0 ≈
0.7, in perfect agreement with the traveling squares observed
in time simulations [cf. Fig. 17(c)], and suggests that these
stable traveling squares extend to arbitrarily large values of
the activity parameter v0. Squares traveling parallel to a side
are expected as well, but were not computed.

Finally, Fig. 22 combines the results from continuation
runs on different domains. Around practically identical values
of v0, vc ≈ 0.3, all resting crystals undergo drift instabilities.
As for the resting states at small v0, only hexagons (blue
branch) are stable (solid line). Traveling squares and traveling
stripes gain stability at higher values of v0 that are in perfect
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FIG. 22. Combined bifurcation diagrams for the resting and trav-
eling periodic states in Figs. 18, 20, and 21. Note that the domain
sizes differ between the different branches. All resting patterns un-
dergo drift-pitchfork instabilities at nearly identical values of v0,
vc ≈ 0.3. Different traveling states coexist at large activity v0.

agreement with numerical time simulations. Numerical con-
tinuation suggests that different traveling crystals coexist. In
the simulations the domain and in particular its aspect ratio
appear to select the moving pattern.

C. Morphological phase diagram

In order to complete the picture of crystalline states and
the influence of v0 and ψ̄ , we again perform numerous time
simulations and construct a morphological phase diagram in
the (v0, ψ̄ ) plane for the parameter set employed in this sec-
tion. The time simulations are carried out in the same way as
previously described in Sec. III C and again LS and various
periodic states are distinguished in terms of the number of
peaks of ψ (r). Figure 23 shows the resulting phase diagram,
confirming the power of numerical fold continuation (black
lines) to predict the region of existence of LS obtained from
time simulations.

The parameter set used is from Ref. [38] and includes a
high value of the diffusion constant C1 = 0.2—twice the value
used in Sec. III B. The high diffusion leads to, first, a higher
vc ≈ 0.3 (cf. vertical dotted line) and, second, it suppresses
the existence of LS for increasing activity (no blue areas for
v0 > 0.5). The green crystalline area exhibits density fields
with more than 56 peaks for high activities. Here solution
profiles show traveling rhombic patterns (Fig. 23, profile II)
with a smaller wavelength than the hexagonal states. Thus,
more peaks fit into the considered domain. At higher mean
densities towards ψ̄ = −0.4 the rhombic patterns transform
into a stripe pattern. However, the stripes are still sufficiently
modulated in space to account for a high number of peaks as
depicted in Fig. 23, profile III. Accordingly, the number of
counted density peaks does not decrease.

V. SUMMARY AND CONCLUSIONS

We have studied in considerable depth the bifurcation
structure of an active phase-field-crystal model in two spa-
tial dimensions. This model, first introduced in Ref. [38],

FIG. 23. Morphological phase diagram for the aPFC model ac-
companied by selected density profiles at locations labeled I–V
obtained from systematic simulations. Large panel: Different states
are characterized by the total number of density peaks that form in a
rectangular domain of size 7La × 8Lc as indicated by color coding.
The various lines in the diagram, the initial conditions of the simula-
tions, and the peak counting procedure are described in the text. The
liquid state refers to a uniform density phase with zero peaks (white
area). LS exist in the regions marked in blue. Periodic hexagonal
patterns (green) fill the domain with 56 density peaks (I). Around
v0 > 1 the number of peaks slightly increases as resting hexagonal
patterns (I) begin transforming towards traveling rhombic patterns
(II) with a smaller wavelength allowing for more density peaks.
Arrows indicate the direction of motion. At even higher v0, traveling
stripe patterns (III) arise. These remain spatially modulated so that
individual peaks can still be located on each ridge and the number of
density peaks does not drop. (IV) and (V) give examples of resting
LS coexisting with the liquid phase. The remaining parameters are
ε = −0.98, C1 = 0.2, C2 = 0, and Dr = 0.5 as in [38].

describes a variety of resting and traveling spatially extended
and spatially localized structures.

First, using the mean concentration ψ̄ as the control
parameter, we have analyzed how the classical slanted snakes-
and-ladders structure (slanted homoclinic snaking) known
from the phase-field-crystal model [57] is modified by
activity. In particular, we have shown that with increasing ac-
tivity, one finds a critical value for the onset of motion of both
domain-filling crystals and the various localized states associ-
ated with them. In general, an increase in activity suppresses
resting localized and crystalline states. Resting LS ultimately
annihilate in saddle-node bifurcations at critical values of
the activity parameter that are similar for all the states stud-
ied, while resting periodic or crystalline states disappear in
a supercritical pitchfork bifurcation of the homogeneous or
liquid state. In other words, activity eventually melts all rest-
ing crystalline structures as the driving force overcomes the
attractive forces that stabilize the equilibrium crystals and the
crystallites that exist in the reference system without activity.

032601-15



OPHAUS, KNOBLOCH, GUREVICH, AND THIELE PHYSICAL REVIEW E 103, 032601 (2021)

However, at values of the activity below this melting point,
the branches of resting states exhibit drift bifurcations for
suitable diffusion and mean densities, generating branches of
traveling states. These may exist stably within certain ranges
of activity as shown here by numerical two-parameter contin-
uation of the relevant bifurcations. In other words, although
activity may melt traveling crystallites, there are extended
parameter regimes where this is not the case. In fact, we have
found that while high activity melts most traveling localized
states, i.e., traveling crystalline patches, this is not the case
for traveling periodic states, i.e., traveling domain-filling crys-
tals. These can be driven with arbitrarily high activity and
then exhibit correspondingly high drift velocities. We believe
that this is most likely the case because the periodicity of
the domain-filling crystals is fixed, while traveling localized
states naturally adapt their peak to peak spacing to the im-
posed parameter values. This additional degree of freedom
may make such states less stable. Note that the crystallites
we have found are not related to the motility-induced clusters
discussed, e.g., in [27–29]. The size of such “kinetic clusters”
tends to increase with activity [32] while here we have stud-
ied “adhesive clustering” where, in contrast, activity tends to
destroy clusters. This has also been observed in the Brownian
dynamics simulations of Ref. [43] for self-propelled particles
with short-range attraction (see also the review [26]). There,
with increasing activity, adhesive clusters are destroyed before
kinetic clustering sets in beyond a range of gaslike behavior.
A transition from resting to traveling adhesive clusters is also
described. In Ref. [122] short-range attractive and long-range
repulsive interactions are combined, resulting in an initial
increase in the size of adhesive clusters with activity, before
their destruction at yet higher activity.

We remark that to our knowledge motility-induced clus-
tering has not yet been described by an aPFC model since
such models generally show how equilibrium crystallization
is modified by activity. In the context of an aPFC model,
motility-induced clustering would imply that for some param-
eter values no clusters exist at zero activity but appear when
activity is increased beyond a certain threshold. Whether such
models are capable of describing kinetic clustering will no
doubt be clarified in future studies, cf. [111].

Next, we have investigated the region of existence of
traveling localized states and showed that such TLS are
generic solutions in extended regions of the plane spanned
by the mean concentration and activity. While broader TLS
with three and more peaks quickly vanish into the homoge-
neous background, narrow localized states (with one and two
density peaks) can be driven at quite high activities where they
reach high velocities. This does not seem to be the case in
the nonvariational systems studied in [66,67]. Thus a future
comparative study of the present system, the systems studied
in [66,67] and those reviewed and discussed in [65] would be
beneficial.

A substantial focus of the paper has been on the nature of
the onset of motion of the competing localized and extended
structures. We found that this occurs at critical values of the
activity that depend only weakly on the size of a particular
localized state or the number of density peaks within it. We
have shown that a previously derived criterion for the onset of
motion of active crystals in 1D also holds in two dimensions,

namely, that the zero crossing of the difference of the squared
norms of the two steady fields (||ψ0||22 − ||P0||22) marks the
onset of motion for all localized and extended crystalline
states. This criterion holds at the drift-pitchfork bifurcation of
κ-symmetric states and may be used to determine the critical
strength of the activity parameter that is needed for collective
traveling motion. It also determines the onset of drift of asym-
metric states via the drift-transcritical bifurcation. Whether
such simple criteria can be derived for more complicated
active matter models that capture faithfully the specific prop-
erties of laboratory systems and the active particles at hand
remains to be investigated.

The onset of motion in the aPFC model studied here dif-
fers from that in the nonvariational Swift-Hohenberg equation
studied in [66]. There, at any value of the driving parame-
ter in front of the nonvariational term, all asymmetric states
drift and all symmetric states are at rest. Here, however, the
special form of the coupling of the two fields allows for
resting asymmetric states even at a finite activity parameter,
a nongeneric feature of the model that will be investigated
further in future work. Within the aPFC model both symmetric
and asymmetric states undergo sharp transitions to drift as
the activity parameter v0 increases. However, only the former
are expected to be present in generic κ-symmetric models,
with the latter replaced by continuous or imperfect transitions.
Because of this the results of the present work are expected
to assist greatly in the computations of drifting states in such
models, particularly those lying on disconnected branches
associated with such imperfect bifurcations. This topic will
also be the subject of a future study.

The additional degrees of freedom present in 2D lead to
considerably more complex bifurcation diagrams than in 1D
[108] largely because more states are possible and the fact
that these states can drift in more than one direction. Besides
translation modes, rotational modes can also be destabilized
and the particular direction of the drift with respect to symme-
try axes of the LS has to be taken into account. A rotationally
symmetric one-peak LS has shown many similarities to the
1D case, while the less symmetric dumbbell-shaped two-peak
LS turned out to be unstable for any nonvanishing value of
activity. For the employed value of the effective temperature,
the active crystallites exhibit slanted homoclinic snaking and
resting LS as well as traveling LS exhibit similar behavior.
The LS, whether resting or traveling, gradually grow in size
as one follows the LS branch until they fill the entire domain
and respectively terminate on a periodic resting or traveling
solution. At lower values of the effective temperature the
snaking behavior apparently ceases and is replaced by new
behavior the details of which remain unclear.

In 2D, the activity parameter also strongly influences the
crystal structure of space-filling, fully periodic solutions. We
have identified a multistability region with stable traveling
hexagons, traveling rhombuses, and traveling stripes. Here
finite size effects such as the aspect ratio of the domain control
pattern selection but it is evident that in the thermodynamic
limit the phase diagram must be highly complex. We have
presented morphological phase diagrams that combine in-
formation from time simulations and numerical continuation
providing an indication of this complexity. Besides showing
the transition between resting and traveling localized states,
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these diagrams demonstrate the impressive capability of fold
continuation for localized states to predict the existence lim-
its determined from time simulations. These phase diagrams
share many features with similar diagrams obtained in exper-
iments on the collective behavior of Quincke rollers [120] as
discussed at the end of Sec. III C. In the future similar phase
diagrams should be generated for active particle systems that
allow for both adhesive and kinetic clustering.

Finally, we highlight a number of questions that merit
further investigation. As experimental studies often focus on
the collective behavior of many interacting particles and clus-
ters [27,32,34], we need to investigate further whether it is
possible to derive statistical models from single cluster bifur-
cation studies such as the present one. Such a methodology
has recently been presented for ensembles of sliding drops
[123]. Moreover, the rather simple coupling of concentration
and polarization in the aPFC model considered here excludes
spontaneous polarization. These limitations are responsible
for the presence of the κ symmetry of the model that is in
turn responsible for the presence of drift bifurcations that
govern so much of the behavior reported here. It is necessary,
therefore, that the results obtained here regarding the onset of
motion should be compared to systematic studies of the bifur-
cation structure of related models of active matter, including

the vacancy-aPFC model [111,112], the chiral aPFC model
[124], as well as more realistic active DDFT [64] or active
Dean-Kawasaki models [48]. This will allow one to develop
a clearer general understanding of the observed multistability
of states and associated hysteresis effects as well as of the
thresholds for qualitative changes in behavior. The present
study may serve as a road map for such analyses.

The data that support the findings of this study are openly
available [125].
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