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Time-dependent knotting of agitated chains
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Agitated strings serve as macroscale models of spontaneous knotting, providing valuable insight into knotting
dynamics at the microscale while allowing explicit analysis of the resulting knot topologies. We present an
experimental setup for confined macroscale knot formation via tumbling along with a software interface to
process complex knot data. Our setup allows characterization of knotting probability, knot complexity, and knot
formation dynamics for knots with as many as 50 crossings. We find that the probability of knotting saturates
below 80% within 100 s of the initiation of tumbling and that this saturation probability does not increase for
chains above a critical length, an indication of nonequilibrium knot-formation conditions in our experiment.
Despite the saturation in knot formation, we show that longer chains, while being more confined, will always
tend to form knots of higher complexity since the free end can access a greater number of loops during tumbling.
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Knots form at all length scales due to random motion
of the free ends of a string or chain. Macroscale knotting
usually manifests as tangled wires or snarled hair; in rare
cases, knotting of the umbilical cord during fetal gestation
can cause complications in pregnancy and childbirth [1]. On
the microscale, polymer knots can have significant biological
and technical implications. DNA is a long-chain polymer that
can occur in linear or circular conformations. Complex knots
have been observed on the DNA confined within the viral
capsid of the P4 icosahedral bacteriophage [2]. Experimental
studies show that these knots limit the rate at which viruses
are able to eject their DNA into a target cell [3]. In E. coli,
specialized topoisomerases are required to resolve knots in
their genome which can inhibit cellular replication [4]. From
a technological perspective, knots pose challenges for single
molecule DNA analysis devices, e.g., based on nanopores
and nanochannels. Knots inhibit translocation of long dsDNA
molecules and block access to DNA contour stored in the knot
region [5]. In addition knots are observed in proteins, and
work to understand their formation and biological role has
increased rapidly in recent years. However, protein knotting
is vastly more complex than DNA knotting due to the variety
of constituent amino acids and their interactions [6–8].

Chain compression via applied fields or confinement plays
a crucial role in knot formation. Knot formation in viral sys-
tems is attributed to the very high dsDNA confinement in
the capsid [2]. Simulations of simple knotted proteins con-
fined in chaperonin cages show that confinement increases
both knotting probability as well as the rate of protein fold-
ing [9,10]. Spontaneous knotting of single dsDNA molecules
has been explored with assays designed to induce controlled
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compression in single molecules. In one approach, DNA
compression is induced in high electric fields [11–14]. In a
second approach, the nanofluidic knot factory, compression
is induced by using hydrodynamic flow to compress single
molecules against a barrier in a nanochannel [15,16]. Yet,
while these methods produce complex knots in DNA, the
diffraction limit precludes a more in depth study of knot
topology with fluorescence microscopy.

While chain compression plays a key role in enhanc-
ing knot formation, these studies highlight the essential role
played by microscopic fluctuations in driving knot-formation
kinetics. In particular, knots do not appear to form instan-
taneously after compression. Amin et al. [15] identified a
minimum waiting time for which the molecule must be held
in a compressed state for knotting probability to become ap-
preciable. In order for knots to form, there must also exist a
feasible kinetic pathway for the chain free end to pass through
an existing loop. In particular, in the electric field driven com-
pression process, flows induced by an electrohydrodynamic
instability may lead to a nonequilibrium tumbling motion
that might promote favorable kinetics [12]. While a tumbling
motion is unlikely in the knot factory due to the ultralow
Reynolds number hydrodynamics, Brownian fluctuations may
provide the necessary local agitation to drive knot formation
[15]. A fascinating open question is to what degree knot for-
mation may differ between equilibrium and nonequilibrium
knot-generating processes.

Macroscopic systems featuring agitated strings can provide
detailed insight into knot topology and knot-formation mech-
anisms. Early macroscopic knotting systems used vibrating
plates [17,18] or driven hanging chains [19]. More recently,
Raymer et al. [20] used a rotating box to characterize knotting
probability and knot complexity as a function of chain length.
They found that knotting probability rises rapidly with string
length but saturates at less than 60% for strings above a critical
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length (equal to around 2 m for their study). They observed a
similar trend in knot complexity. The saturation phenomenon
was attributed to wedging of the string inside the box, with
the suggestion that a more flexible string tumbled for a longer
time would eventually approach 100% knotting probability, as
is theoretically expected. This work was extended to circular
chains in a rotating sphere by Soh et al. in 2019 [21]. Both
studies primarily measured the effects of increasing string
contour length at fixed agitation time. The majority of knots
were formed after only agitating for 10 s (10 revolutions for
Raymer et al. and 36 revolutions for Soh et al.) and had a
relatively simple topology (crossing number less than 12).
Both studies observed the saturation in knotting probability
and complexity as string length was increased.

Here we use a macroscopic rotating box setup to explore
the time dependence of knot formation on single tumbled
strings. In contrast to previous work that focused on the
dependence of knotting probability on string length [20,21],
here we focus on how knotting probability and topological
complexity vary with agitation time. Knotting probability is
observed to grow and then reach a saturating knotting prob-
ability, as observed in nanochannel compression experiments
[15]. Surprisingly, we observe that, even for very long agita-
tion times, the knotting probability of long strings does not
approach 100%. We propose that this effect is a property of
nonequilibrium knot formation and outline the key differences
between equilibrium and nonequilibrium cases and how they
can be applied to understand knot formation in biological
systems. In addition, using a custom software package, we
characterize knots with crossing numbers as high as 50—a
knot complexity similar to that found in viral capsids [2].
This capability enables us to track the time evolution of the
full knot complexity distribution. We find that the distribution
of knot complexity evolves from a peak at trefoil knots at
lower times to a distribution where knots of a wide range of
complexity are equally probable.

I. EXPERIMENTAL METHOD

A. Physical setup

The physical setup consists of an acrylic cubic box measur-
ing 0.15 m on each axis. The box is rotated by a stepper motor
(Nema 17, model 17HS19-2004S1) with an external power
supply controlled by an Arduino UNO and an Adafruit motor
shield. Angular velocity and agitation time are controlled via
serial communication between a PC and the Arduino UNO.

B. String preparation

For our model chain, we used a string with a polyester
strand core and a braided nylon cover designed to resist
stretching (McMaster-Carr 3696T16). The string had a di-
ameter of 3.2 mm and a linear density of 0.05 g/cm. The
cut ends were melted to avoid fraying during the experiment.
Each sample was tumbled for 20 min before data collection
to eliminate residual coil structure from packing and ship-
ping. Flexural rigidity was estimated with the Euler small
displacement formula by extending the free end of the string
off the edge of a surface and measuring its deflection under its

own weight. We found an average flexural rigidity of 1.06 ×
103 dyn cm2.

C. Experimental protocol

We begin the experiment by positioning the box so that its
opening is oriented directly upwards. We then manually feed
the string into the box center, creating a quasirandom initial
configuration [Fig. 1(a)]. The box is subsequently sealed and
tumbled with an angular velocity of 1 revolution per sec-
ond for a specified time duration ranging from 5 to 420 s
[Fig. 1(b)]. This particular angular velocity is selected so that
the string is able to tumble over itself during rotation (too high
a rotation speed causes the string to remain pressed against
the box surface with very little mobility). Raymer et al. also
observed this decrease in tumbling motion at higher rotational
speeds [20]. After agitation [Fig. 1(c)], each end of the string
is grasped from above and pulled directly upward. As we
ensure that the chain ends are not pulled though any loops
when the chain is lifted, there will be no disturbance to the
two-dimensional (2D) projection. Since a knot is mathemati-
cally defined as a closed loop, we treat the two ends as joined
and manually manipulate the knot to ensure all crossings are
clearly visible before photographing [Fig. 1(d)]. The knot is
then removed and the entire process repeated a minimum of 50
times for any given combination of chain length and agitation
time.

To verify that our extraction procedure and initial condi-
tions were not leading to further knotting, we performed a set
of trials with no agitation; the string was only introduced into
the box and then removed. This never resulted in nontrivial
knots, verifying that the observed knotting occurred exclu-
sively due to the tumbling.

D. Topological analysis

Knot topological complexity is characterized by a quantity
known as the minimum strand crossing number (nc). Cross-
ings are found by taking the 2D projection of a knot and
finding any point at which two strands cross each other. While
it is easy to count the number of crossings in a given knot,
many of these crossings are not fundamental to determining
the knot topology. Reidemeister proved in 1927 that two
identical knots can be related by any combination of three
topological moves: twist, poke, and slide [23]. Since these
moves cannot fundamentally modify the knot, they can be
used to simplify the raw experimental knot configurations
with the goal of reaching the minimum crossing number
describing the given knot’s topological complexity. This pro-
cess can be performed by hand for simple knots but our
results contain knots with very high crossing numbers that
are too complex to simplify by hand (e.g., knots with 75
crossings that can be simplified to 50 fundamental cross-
ings). We perform this simplification process computationally
with the Pyknotid module developed as part of the Scientific
Properties of Complex Knots (SPOCK) project [24]. Given
a set of three-dimensional (3D) coordinates describing the
knot structure, this module can convert them to a 2D knot
diagram and perform iterative Reidemeister moves to find the
minimum crossing number. We developed our own custom
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FIG. 1. Knot tumbling device and sample of knots formed. (a) Initial pseudorandom chain conformation after threading the chain into the
box. (b) The box is sealed for agitation. (c) Resulting chain conformation after agitation. (d) Example knots formed during tumbling (labeled
with their minimum number of strand crossings) and (e) their identified topology rendered in three dimensions with the Persistence of Vision
Raytracer. Images of more complex knots can be found in the Supplemental Material [22].

software package to facilitate translation of raw knot images
into the necessary 3D coordinates for input into Pyknotid
[25]. Each experimentally obtained knot configuration, using
photographs as a reference, was drawn in the software as a
2D projection with strand intersections clearly demarcated as
overcrossings or undercrossings. The software then expressed
these annotated 2D data as a set of 3D coordinates that were
passed to the Pyknotid knot analysis back end. In general, we
were able to process knots with crossing numbers as high as
50, of similar complexity to those found in viral capsids [2].

II. RESULTS AND DISCUSSION

A. Time evolution of knotting probability

The probability of knot formation as a function of agitation
time is presented in Fig. 2 for various chain lengths. Each
point is the average of approximately 50 knotting trials. At
short agitation times, the probability of knot formation rises
rapidly which was also observed by Raymer et al. [20]. How-
ever, our maximum agitation time is 1400% longer than that
of Raymer et al. and we find the knotting probability saturates
at a limiting probability (α) less than unity. We fit our results
to an exponential function: Pf = α(− exp (−t/τ ) + 1) where
α is the saturation probability and τ is the time constant.
Figure 3 gives the value of α as a function of chain length.
The saturating knotting probability does not increase beyond
the critical value observed for the 2-m string even after long
periods of agitation (420 s).

Critically, these results disagree with predictions for equi-
librium knotting. Knots form in equilibrium conditions when
the free end of a chain undergoes a random walk. For an
infinitely flexible coil, as the number of steps taken in the

random walk tends to infinity, the probability of forming
a nontrivial knot tends exponentially to unity [26]. Given
a chain that is not infinitely flexible, computational studies
suggest that the probability of forming a nontrivial knot, P,
is related to the contour and characteristic lengths (N and N0,
respectively) via P = 1 − exp (−N/N0) [27,28]. The charac-
teristic length, N0, is set by our box confinement and string
properties, which were not varied. The contour length, N ,
was varied by increasing the length of string introduced into
the box. Note that, as there was no corresponding increase
in knotting probability with increased contour length beyond
2 m, our results disagree with this relationship. One possi-
ble explanation for the observed saturation is limited chain
mobility arising from volume exclusion in tight confinement
[29]. This was observed experimentally by Raymer et al. [20],
who noted that increasing confinement induces wedging of
the string in the box, reducing the tumbling motion which
normally favors knot formation. However, we are confident
that we are not yet in the wedging regime, as all chain lengths
used in our setup were able to tumble freely throughout the
entire duration of agitation.

B. Time evolution of knot complexity

Figure 4 presents the mean minimum crossing number
(〈nc〉) of observed knots as a function of agitation time.
Increased agitation time elevates 〈nc〉 but after sufficiently
long agitation, a limiting 〈nc〉 value is reached. Note that the
saturating 〈nc〉 value, in contrast to the behavior observed
for knotting probability, does not saturate with increasing
string length, but increases monotonically (Fig. 4 compared
to Figs. 2 and 3). While the maximum measured knotting
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FIG. 2. Measured probability of forming a knot versus agitation time. Error bars correspond to standard error determined with a Wilson
binomial proportion confidence interval. The line is a nonlinear least-squares fit to an exponential function Pf = α(− exp (−t/τ ) + 1) where
α is saturation probability. Text annotation shows the saturation probability (α). (a) 0.75-m string, (b) 1-m string, (c) 2-m string, (d) 3-m string,
and (e) 6-m string.

probabilities for 2- and 3-m strings were in agreement, the
longer chain still produced more complex knots. Raymer et al.
propose a simplified knotting model that suggests the con-
fined string will always form loops with which a free end
can interact. They posit that 〈nc〉 should saturate above some
limiting number of confined loops [20]. In their experimental
and simulation results, that limit was expressed around three
to four loops. Our string, which is not infinitely flexible, also
tended to form loops as it tumbled. The coil conformation
was intermediate between two states: a circle with diameter
equal to the box width and a square whose dimensions closely
followed those of the box. Given the geometry of the confine-
ment, (0.15 m)3, we can assume each loop occupies between

FIG. 3. Saturating knotting probability as a function of string
length. Error bars correspond to uncertainty in fits presented in Fig. 2.
The line is a nonlinear least-squares fit to an exponential function.

0.47 and 0.6 m of the total string length. Thus the 2- and
3-m strings have four and six loops, respectively. Given prior
results, we expect 〈nc〉 to saturate at the 2-m string length but
we do not observe this saturation so it is clear that other factors
play a role.

To explore this point further, we can investigate the time
evolution of the knot complexity distribution. Figure 5 gives
the probability of forming a knot of a specific crossing number
for four agitation time intervals. The data were grouped so
that data sets with similar 〈nc〉 values are grouped into larger
time intervals, providing us with snapshots of the distribution
in knot topology for different time ranges. Each individual
subplot represents data from 100–200 knots. The division
into groups is shown in Fig. 4(d). At short agitation times
[Fig. 5(a)], there is a strong peak centered at nc = 3 and the
highest complexity we observe is a knot with nc = 16. As the
agitation time is increased, the crossing number distribution
flattens. At long agitation times [Fig. 5(d)], there is no no-
ticeable peak and the formation of knots between crossing
numbers 4 to 20 are approximately equiprobable. This result
suggests that simple knots are formed first and then through
further agitation they evolve into more complex knots. In
contrast to our results, measurements of knot complexity in
viral capsids reveal a peak centered around the 25–30 crossing
range with only a small percentage of knots with low com-
plexity [2].

C. Distribution of knot complexity

The probability of forming a knot of a certain crossing
number is plotted in log-linear space for the three increasing
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FIG. 4. 〈nc〉 as a function of agitation time for different lengths
of string (omitting trivial knots). Error bars correspond to standard
error. The line is a nonlinear least-squares fit to an exponential
function 〈nc〉 = α(− exp(−t/τ ) + 1) where α is the saturation limit
and τ is the time constant. (a) 0.75-m string with α = 3.3 ± 0.1,
(b) 1-m string with α = 4.4 ± 0.1, (c) 2-m string with α = 9.2 ± 0.3,
and (d) 3-m string with α = 15.7 ± 0.8. Different shapes are used to
represent grouping used in Fig. 5: circles (5–15 s), triangles (30–
50 s), diamonds (90–220 s), and squares (270–420 s).

lengths of string in Fig. 6. Random walk models predict that
the probability of forming any given knot decreases exponen-
tially with increasing crossing number [30]. In contrast to the
predicted behavior [30], only knots with odd crossing number
(solid circles in Fig. 6) exhibit exponential decay whereas
a subset of the even-crossing-number knots (open circles)
increase in formation probability with increasing crossing
number. These separate trends break down after ten cross-
ings. No existing models explain this behavior. Raymer et al.
presented their results in a similar figure where a distinction
between odd- and even-crossing knots can be observed but to
a lesser extent. In particular, while they do not observe that
a subset of their even-crossing knots increases in formation
probability, like we observe, a subset of their even-crossing
knots appears to decrease in formation probability at a slower
rate [20].

FIG. 5. Probability of forming a knot of a given crossing number
for a 3-m string, at agitation time intervals (a) 5–15 s, (b) 30–50 s,
(c) 90–220 s, and (d) 270–420 s. Each time interval groups data from
multiple agitation times, such that data with similar crossing numbers
are represented in one subplot.

The probability of forming a low complexity knot of
a given crossing number may be highly dependent on the
string’s initial configuration. Figure 7 shows a simplified
schematic of two possible starting string configurations. De-
pending upon the initial configuration of the coil (containing
only two loops in this case), the free end can make a single
move and form one of two simple knots with even or odd
crossings. If the free end of the chain is more likely to pass
beneath both strands in Fig. 7(b), that would explain the higher
probability of forming more complex even-crossing knots.
In addition, this would suggest that any knot with crossing
number satisfying the following condition (where nloop is the
number of loops) will not follow this trend: nc > 2(nloop + 1).
Such knots require more than a simple move over or under
a given number of loops to form. This behavior can be seen
quite clearly in Fig. 6. It is not clear from the experiment why
the terminal end would be more likely to pass inside multiple
loops when the coils are twisted. In addition, it is unclear why
the eight-crossing knot is more probable for the 1-m string
[Fig. 6(b)] when it should only have one or two loops. This
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FIG. 6. Log-linear plot of probability of forming a knot of a
certain crossing number: (a) 1 m, (b) 2 m, and (c) 3 m. Open
circles indicate even-crossing-number knots, solid circles indicate
odd-crossing-number knots, and triangles are used for knots above
ten crossing number irrespective of their parity. Trends for odd- and
even-crossing-number knots (with under ten crossings) are fitted to
separate linear regressions.

FIG. 7. Schematic of two potential coil configurations before
knotting. (a) A typical string configuration. If a free end of the chain
passes under the outer loop, a knot with three crossings will form. If
it passes under both loops a knot with five crossings will form. (b) A
twisted coil configuration. If a free end of the chain passes under the
outer loop a knot with four crossings will form. If it passes under
both loops a knot with six crossings will form.

TABLE I. Approximate percentage of composite knots formed
for strings of various lengths.

Length (m) Composite knots Total knots %

0.75 0 280 0.00
1.0 2 671 0.30
2.0 18 541 3.33
3.0 19 480 3.96
6.0 50 417 11.99

behavior should break down after the six-crossing knot based
upon our hypothesis. Further experimental work is necessary
to clarify this behavior.

D. Composite knot formation

Although we focus on the formation of prime or inde-
composable knots given their statistical dominance, we were
able to observe supplementary trends in the formation of
composite knots which are composed of multiple prime knots
formed on a single strand. Table I shows the emergence
of composite knots in the overall data at increasing string
lengths, represented as both the number of composite knots
observed and their percentage with respect to the total num-
ber of knots formed. Clearly composite knots become more
probable with increasing string length. This is in agreement
with simulation work that has shown increased contour length
for a fixed confinement volume, and thus increased effective
confinement, leads to a higher proportion of composite knots
[29]. Interestingly, there was no observed correlation between
agitation time and composite knot formation. It was also clear
that the majority of these composite knots were formed at both
ends of the string. In other words, each of the two free ends
performed the necessary braid moves to form a knot, each of
which was completely distinct from that formed at the other
end.

E. Nonequilibrium knotting

Theoretical work on knot formation uses equilibrium con-
ditions where knotting is primarily driven by strand crossings
by nonexcluding volume chains. This should be equivalent
to the Brownian motion of the free end of the chain but is
more computationally efficient. For the confined and uncon-
fined cases, knotting probability approaches unity as contour
length increases [2,26,29,31]. However, for strings longer
than 2 m, we find the probability saturates below 80%. This
saturation has been observed in macroscale knotting exper-
iments since Hickford et al. measured knotting probability
below 40% in a chain on a vibrating plate [18]. Subse-
quent papers on macroscale knot formation also observed
the knotting probability to saturate below 100% [20,21]. At
the microscale, results differ from theoretical work as well:
mature viruses only exhibit 47% knotting [2]. We propose
that this is the result of fundamental differences in equilibrium
versus nonequilibrium knotting.

Measured knotting probabilities result from a contest be-
tween knotting and unknotting rates which are limited by the
motion of the chain free end. In an equilibrium system, the
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FIG. 8. Log-log plot of 〈nc〉 as a function of 1/(1 − Pf ). Ver-
tical error bars correspond to standard error in 〈nc〉. Horizontal
error bars correspond to standard error determined with a Wilson
binomial proportion confidence interval. The line is from the em-
pirical formula for universal knotting proposed by Dai et al. [32]:
〈nc〉 = 4/

√
1 − Pf − 1. Different shapes are used to represent differ-

ent string lengths: circles (0.75 m), triangles (1 m), diamonds (2 m),
and squares (3 m).

end can freely interact with the full chain contour resulting in
knots that are not localized to a particular region. For example,
in the nanofluidic knot factory, knots were observed inside
the chain and then diffused to the ends [15]. Recently Sharma
et al. studied equilibrium knots directly using large diameter
nanopores (20 nm). They found knotting probabilities and
distribution of knot types that agreed well with simulations
of equilibrium knotting. In particular, they confirmed that
equilibrium knots form with uniform probability along the
length of the chain [5]. In contrast, we propose that our
and other macroscopic knot-formation systems operate in a
nonequilibrium regime fundamentally limited by the motion
of the chain ends relative to adjacent loops. In this regime,
knots are typically formed near the chain ends as the end
has limited mobility relative to its mobility in equilibrium
conditions. For example, during tumbling the chain tends to
form a coil and only the segment ranging from the end to
the sharp corner of the coil is capable of crossing over and
under adjacent strands to form knots. The unknotting rate is
high because, when knots are localized near the end of the
chain, they are easily undone by subsequent agitation [18].
The balance between knotting and relatively high unknotting
rates results in knot formation probabilities below unity in
nonequilibrium systems.

Dai et al. proposed a universal relationship between 〈nc〉
and Pf for equilibrium knotting [32]: 〈nc〉 = 4/

√
1 − Pf − 1.

This relationship is completely independent of chain length,
stiffness, and confinement. Prior simulation work [29] and
experimental results from viral mutant DNA [2] fit the re-
lationship well. As can be seen in Fig. 8, our results are
significantly offset from the theoretical trend for equilibrium
knotting. In addition, chains of varying length, sharing the
same knotting probability, exhibit different 〈nc〉. These dis-
crepancies reinforce the fact that our experimental system is
nonequilibrium.

Differences in behavior between equilibrium and nonequi-
librium knotting has implications for biological systems. For
example, mature viruses only exhibit 47% knotting relative to
mutants which exhibit 95% knotting [2], suggesting that there
is some internal packing mechanism to reduce the rate of knot
formation as a purely equilibrium system should trend toward
100% knotting as observed in the mutant. Indeed, studies of
the packaging motors employed by viruses show that they
exert significant forces (>60 pN) to spool DNA tightly within
the capsid, giving rise to a nonequilibrium packing [33].

III. CONCLUSION

In this work, we studied the spontaneous formation of
knots along agitated linear chains. We found that knotting
probability saturates below 100% even for longer strings but
the complexity of knots formed still increases with increas-
ing chain length. By studying the time evolution of the knot
complexity distribution, we show that simple knots will form
first before evolving into more complex knots. With our long-
time agitation study, we are finally able to probe macroscale
knots of a similar complexity to those found in viral capsids
[2]. Raymer et al. investigated the effects of varying string
flexibility, agitation rate, and confinement geometry but work
is necessary to explore these parameters further and to probe
their effects on the saturation level of knotting probability. In
particular, Raymer et al. observed that knotting probability
increased for higher string flexibility [20]. In addition, it is not
yet clear how the method of agitation influences knot forma-
tion (e.g., uniform tumbling in one direction versus tumbling
where the axis of rotation is not fixed and can change during
rotation). Future experiments could use a simplified version
of nonuniform tumbling by simply changing the direction of
rotation along one axis during agitation.
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