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Neuronal heterogeneity modulates phase synchronization between unidirectionally coupled
populations with excitation-inhibition balance

Katiele V. P. Brito and Fernanda S. Matias *

Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil

(Received 26 November 2020; accepted 2 March 2021; published 31 March 2021)

Several experiments and models have highlighted the importance of neuronal heterogeneity in brain dynamics
and function. However, how such a cell-to-cell diversity can affect cortical computation, synchronization,
and neuronal communication is still under debate. Previous studies have focused on the effect of neuronal
heterogeneity in one neuronal population. Here we are specifically interested in the effect of neuronal variability
on the phase relations between two populations, which can be related to different cortical communication
hypotheses. It has been recently shown that two spiking neuron populations unidirectionally connected in a
sender-receiver configuration can exhibit anticipated synchronization (AS), which is characterized by a negative
phase lag. This phenomenon has been reported in electrophysiological data of nonhuman primates and human
EEG during a visual discrimination cognitive task. In experiments, the unidirectional coupling could be accessed
by Granger causality and can be accompanied by either positive or negative phase difference between cortical
areas. Here we propose a model of two coupled populations in which the neuronal heterogeneity can determine
the dynamical relation between the sender and the receiver and can reproduce phase relations reported in
experiments. Depending on the distribution of parameters characterizing the neuronal firing patterns, the system
can exhibit both AS and the usual delayed synchronization regime (DS, with positive phase) as well as a zero-lag
synchronization regime and phase bistability between AS and DS. Furthermore, we show that our network can
present diversity in their phase relations maintaining the excitation-inhibition balance.
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I. INTRODUCTION

The coherent activity of different cortical areas has been
considered related to numerous cognitive functions, such
as object recognition, visual-motor integration, and working
memory [1,2]. Many hypotheses about neuronal communica-
tion take into account the role of brain oscillation and phase
synchronization, for example, the binding by synchrony [3],
the communication through coherence [4,5], the gating by
inhibition [6], and nested oscillations [7]. Although the mech-
anisms involved in large-scale integration are still unknown,
they have been extensively studied with biologically inspired
neuronal population models [8].

Spiking neurons are typically considered the building
blocks of the population dynamics, and neuronal diversity is
ubiquitous across the nervous system. However, the functional
significance of neuronal heterogeneity is still under investiga-
tion [9–13]. From the experimental point of view, empirical
observations show considerable variability in the response
properties of different neurons [12,14,15] and its relation with
efficient neural coding [9]. From the modeling side, a variety
of computational network models of one neuronal popula-
tion have been employed to study the effect of heterogeneity
in synchronization and coding capabilities [16–21], in self-
sustained activity [22], and in persistent activity, which could
underlie the cognitive function of working memory [23,24].

The previous studies mentioned above have investigated
the effect of neuronal heterogeneity in one neuronal popu-
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lation. Here we are interested in the role of heterogeneity
in the phase synchronization of a physiologically plausible
model of two neuronal populations unidirectionally coupled.
This could be potentially useful to understand the influence
of neuronal variability on the communication between distant
brain areas [3–7]. The neuronal population model studied here
has been employed before, in the light of anticipated synchro-
nization ideas [25,26], to explain electrophysiological results
in nonhuman primates showing that unidirectional Granger
causality can be accompanied by either positive or negative
phase difference between cortical areas [26–29]. However, the
effect of neuronal variability on those phase relations has not
been explored.

The typical synchronized regime between two unidirec-
tionally coupled systems exhibits a positive phase lag in which
the sender is also the leader. This regime is usually called de-
layed synchronization (DS) or simply lagged synchronization.
However, it has been shown that the sender-receiver configu-
ration can also synchronize with a negative phase lag if the
system can be described by the following equations in which
the receiver is subjected to a delayed self-feedback [25]:

Ṡ = f (S(t )),

Ṙ = f (R(t )) + K[S(t ) − R(t − td )]. (1)

The stable solution R(t ) = S(t − td ) characterizes the coun-
terintuitive situation in which the receiver leads the sender,
and it is called anticipated synchronization (AS). This means
that the activity of the receiver predicts the activity of the
sender by an amount of time td . In the last 20 years, this
solution has been extensively studied in physical systems both
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theoretically [25,30–35] and experimentally [36–38]. In par-
ticular, AS in unidirectional circuits has been employed for
control and prediction of undesirable events [37].

It has been shown that AS can also occur if the delayed
self-feedback is replaced by different parameter mismatches
at the receiver [39–41], a faster internal dynamics of the
receiver [42–45], as well as an inhibitory loop mediated by
chemical synapses [46–49]. Moreover, when the feedback is
not hard-wired in the equation but emerges from system dy-
namics, two neuronal population can present phase diversity
and a transition from AS to DS through zero-lag synchro-
nization, induced by synaptic properties [26,45]. Different
patterns of phase synchronization can also emerge due to the
time delays in heterogeneous networks [50]. More recently,
it has been shown that a sender-receiver network can also
present phase bistability between DS and AS regimes [51]. It
is worth mentioning that in symmetric bidirectional coupled
systems it is not possible to separately classify AS or DS,
but only a lagged synchronization. In case of asymmetric
bidirectional influence we can define the stronger direction of
influence as the sender-receiver direction. For example, the
effect of a bidirectional connection in the AS regime has been
studied in neuronal motifs coupled by chemical synapses [47].
Since chemical synapses are unidirectional by their own na-
ture, in such circuits each direction of influence is independent
of one another.

Here we show that the neuronal heterogeneity can promote
diversity of phase relations between two neuronal networks
with an excitation-inhibition balance. As far as we know, this
is the first verification that the neuronal spiking properties
of the population can promote AS and phase bistability. In
Sec. II we describe the neuronal population model as well as
the parameters that we use to change neuronal heterogeneity.
In Sec. III we report our results, showing that the motif can
exhibit phase-locking regimes: with positive, negative, and
zero phases and a bistable regime which alternates from AS
to DS. We also show that the excitatory and inhibitory con-
ductances remain with a fixed relationship during oscillations.
Concluding remarks and a brief discussion of the significance
of our findings for neuroscience are presented in Sec. IV.

II. NETWORK MODEL WITH NEURONAL
HETEROGENEITY

A. Each node is a neuron model with a specific firing pattern

Our neuronal motif is composed of two unidirectionally
coupled cortical-like neuronal populations: a sender (S) and
a receiver (R); see Fig. 1. Each one is composed of 400 exci-
tatory and 100 inhibitory neurons [26], which is the typical
employed proportion of 80% excitatory neurons and 20%
inhibitory neurons, based on anatomical estimates for the
neocortex [52]. Each neuron is described by the Izhikevich
model [53]:

dv

dt
= 0.04v2 + 5v + 140 − u +

∑
x

Ix, (2)

du

dt
= a(bv − u). (3)

Sender Receiver

g

g

E

I

FIG. 1. Schematic representation of two cortical areas, com-
posed of hundreds of spiking neurons and chemical synapses,
coupled in a sender-receiver configuration. Both populations have
neuronal heterogeneity, but for the receiver (R) population we
vary the distribution of parameters determining the neuronal firing
patterns. The inhibitory feedback is controlled by the synaptic con-
ductance gI at R, whereas the sender-receiver coupling is determined
by excitatory synaptic conductances with gE .

In Eqs. (2) and (3) v is the membrane potential and u the
recovery variable which accounts for activation of K+ and
inactivation of Na+ ionic currents. Ix are the synaptic currents
provided by the interaction with other neurons and external
inputs. If v � 30 mV, v is reset to c and u to u + d .

To study the effects of neuronal variability at the receiver
population, we use different values of c and d for the excita-
tory neurons in R:

c = −55 − X + [(5 + X )σ 2] − [(10 − X )σ 2], (4)

d = 4 + Y − [(2 + Y )σ 2] + [(4 − Y )σ 2]. (5)

We use Y = 2X/5 to guarantee that the neuronal-type distribu-
tion is changing from regular spikes (RS, c = −65 and d = 8)
to chattering (CH, c = −50 and d = 2) via intrinsically burst-
ing (IB, c = −55 and d = 4) neurons. As we vary X from −5
to 10 the number of neurons of each type in the R population
changes as shown in Fig. 2. We vary X throughout the paper
to show how heterogeneity can affect phase relations between
the two populations. Illustrative examples of neuronal firings
embedding in the neuronal population but with different pa-
rameters are shown in Fig. 3. Equations were integrated with
the Euler method and a time step of 0.05 ms.

B. Each link is an excitatory or inhibitory chemical synapse

The connections between neurons in each population are
assumed to be fast unidirectional excitatory and inhibitory
chemical synapses mediated by AMPA and GABAA. The
synaptic currents are given by

Ix = gxrx(v − Vx ), (6)

where x = E , I (excitatory and inhibitory mediated by AMPA
and GABAA, respectively), VE = 0 mV, VI = −65 mV, gx

is the synaptic conductance maximal strengths, and rx is
the fraction of bound synaptic receptors whose dynamics is
given by

τx
drx

dt
= −rx + D

∑
k

δ(t − tk ), (7)
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FIG. 2. Probability distribution of finding an excitatory neuron
at the R population with model parameter d , which determines its
spiking firing pattern [see Eqs. (4) and (5)]. (a) For X = −5 it is very
probable to find d = 2 (and consequently c = −50), which ensures
that there are more chattering (CH) neurons in the population than
other neuron types. (b) For X = 2 the distribution of d has a peak
around d = 5, and there are more intrinsically bursting (IB) neurons
(d = 4 and c = −55) than other kinds. (c) For X = 10 the majority
of neurons are regular spiking (RS, d = 8 and c = −65).

where the summation over k stands for presynaptic spikes at
times tk . D is taken, without loss of generality, equal to 0.05.
The time decays are τE = 5.26 ms τI = 5.6 ms. Each neuron
is subject to an independent noisy spike train described by a
Poisson distribution with rate R. The input mimics excitatory
synapses (with conductances gP) from n presynaptic neurons
external to the population, each one spiking with a Poisson
rate R/n, which, together with a constant external current Ic,
determines the main frequency of mean membrane potential
of each population. Unless otherwise stated, we have em-
ployed R = 2400 Hz and Ic = 0.

Connectivity within each population randomly targets 10%
of the neurons, with excitatory conductances set at gS

E =
gR

E = 0.5 nS. Inhibitory conductances are fixed at the sender
population gS

I = 4.0 nS, and gI at the receiver population is
varied throughout the study (see Fig. 1). Each neuron at the R
population receives 20 fast synapses (with conductance gE )
from random excitatory neurons of the S population. It is
worth emphasizing that to analyze the excitation-inhibition
balance at each neuron, we use Gx = gxrx as the effective
synaptic conductance at each time step, which is a fraction
of the maximal possible value of gx.
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FIG. 3. Three exemplar neuronal time series to illustrate neu-
ronal heterogeneity embedded in the network. Firing pattern during
the oscillatory activity of (a) a chattering neuron (CH, c = −50.4),
(b) an intrinsically bursting neuron (IB, c = −56.9), and (c) a regular
spiking neuron (RS, c = −64.9). The purple line shows the mean
activity of all neurons in the same population (for fixed X = 2 and
gI = 2.0 nS).

C. Characterizing phase relations between sender
and receiver populations

Since the mean membrane potential Vx (x = S, R) of each
population (which we assume as a crude approximation of the
measured LFP) is noisy, we average within a sliding window
of width 5–8 ms to obtain a smoothed signal, from which we
can extract the peak times {t x

i } (where i indexes the peak).
The period of a given population in each cycle is thus T x

i ≡
t x
i+1 − t x

i . For a sufficiently long time series, we compute the
mean period Tx and its variance.

In a similar way we calculate the time delay in each cycle
τi = tR

i − t S
i . Then, if τi obeys a unimodal distribution, we

calculate τ as the mean value of τi and στ as its variance.
If TS ≈ TR and gE is independent of the initial conditions,
the populations exhibit oscillatory synchronization with a
phase-locking regime. We indistinguishably use the term
phase difference or time delay since it is always possible
to associate both: φi = 2πτi/TS . In all these calculations we
discard the transient time.

It is also possible to estimate the time delay by using the
peak of the delayed cross-correlation function C(VS,VR,�t )
between the the mean membrane potential of the S and R
populations. This function can be calculated as

C(VS,VR,�t ) = (
∑

V i
S − VS )(

∑
V i+�t

R − VR)√∑
(V i

S − VS )2
√∑

(V i
R − VR)2

. (8)
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FIG. 4. Effect of neuronal heterogeneity in the oscillatory period
of one population. The S and R populations are uncoupled (gE =
0 nS), and by changing X , we change only the neuronal parameters
c and d of neurons in the R population [see Eqs. (4) and (5)]. The
oscillatory period of R depends on both inhibition and the neuronal
variability parameter X .

The values of C(VS,VR,�t ) also indicate the level of synchro-
nization between the two populations.

III. RESULTS

A. The effect of neuronal heterogeneity in one population

To study the effect of neuronal heterogeneity in the os-
cillatory properties of only one population, we analyze the
uncoupled case (gE = 0). For comparison, the Sender popula-
tion, which has a fixed distribution of neuronal spiking types,
oscillates with a mean period of TS = 130 ms. As we change
the neuronal types distribution of the Receiver population by
varying X in Eq. (4), the oscillatory period of R varies from
more than 150 ms to less than 120 ms (see Fig. 4 for two
different values of inhibition: gI = 2.0 nS and gI = 4.0 nS). A
decrease in the number of chattering neurons and an increase
in the number of intrinsically bursting neurons facilitate faster
oscillations.

This means that we can control the internal dynamics of
the population by changing the local properties of the neu-
rons. In particular, we can turn the receiver faster maintaining
the excitation-inhibition balance by changing X . It is worth
mentioning that the E/I balance has been extensively related
to network dynamics, information processing in the nervous
system, and social dysfunction [54–56]. Moreover, it was not
always possible to keep the E/I balance in previous studies in
which the internal dynamics of the receiver were determined
by the relationship between inhibitory and excitatory synaptic
currents at the receiver [45,51].

B. Local properties at the receiver population modulates global
phase relations between two populations

The free-running properties of each population can influ-
ence the synchronization patterns between them when we
turn the sender-receiver coupling on (gE > 0) [43–45]. In
fact, for gE = 0.5 nS and gI = 2.0 nS the motif can exhibit

three different regimes depending on X . Illustrative examples
of these dynamics are shown in Fig. 5 for X = −5, X = 2,
and X = 10. The distribution of neuronal spiking parameters
shown in Fig. 2 ensures that the receiver population exhibits
more chattering neurons for X = −5, more intrinsically burst-
ing neurons for X = 2, and more regular spiking neuron for
X = 10. For X = −5 the system presents the usual phase-
locking regime with positive mean time delay τ = 13 ms.
This means that a peak of the mean membrane potential
of the sender population is followed by a peak of the receiver.
Therefore, the time delay in each cycle τi is positive and fluc-
tuates around a well-defined mean value (see the left column
in Fig. 5). For this example, the delayed cross-correlation
function C(VS,VR,�t ) calculated by Eq. (8) has a local peak
of 0.92 for �t = 15 ms.

For X = 10, a peak of the Sender is, for the majority of
the cycles, preceded by a peak of the receiver (τi < 0), and,
consequently, the mean time delay is negative (see the right
column in Fig. 5). This characterizes the anticipated synchro-
nization regime (AS, with mean time delay τ = −39 ms for
this example). This counterintuitive regime explains the ob-
served unidirectional influence with negative phase difference
verified in local field potential (LFP) monkey data [26,28,29]
as well as in human EEG [57]. Moreover, AS could be pos-
sibly related to commonly reported short latency in visual
systems [58–63], olfactory circuits [64], songbird brain [43],
and human perception [65,66]. For this example, the delayed
cross-correlation function C(VS,VR,�t ) has a local peak of
0.84 for �t = −39 ms.

For intermediate values of X the system exhibits a phase
bistability between these two possible phase-locking regimes:
DS and AS [see Figs. 5(b), 5(e), and 5(h) with X = 2]. The ac-
tivity alternates from a few periods of DS eventually followed
by a few periods of AS. In other words, the time delay τi is
positive for a few cycles, with a well-defined mean value and
standard deviation (close to τ = 4.5 ms in this case), which
is similar to a DS regime for a certain amount of periods.
Then the system randomly switches to a different dynamics in
which τi is negative during a few other cycles (the mean time
delay is close to τ = −36 ms for this example). Therefore, in
this regime, the system cannot be simply characterized by the
mean time delay (τ ).

A phase bistability between AS and DS has been previ-
ously reported for very small values of inhibition [51]. It has
been proposed that this phase bistability could be a plausible
model for differences in phase synchronization of MEG data
during bistable perception [67]. Kosem et al. [67] have shown
that when participants are listening to bistable (or ambiguous)
speech sequences that could be perceived as two distinct word
sequences repeated over time, their MEG recordings present
phase differences related to which sequence they are perceiv-
ing. Therefore, we propose that this phase bistability can also
be promoted by neuronal variability in cortical regions.

The three different regimes can also be visualized in a
raster plot as in Fig. 6. In these plots, each dot represents
a spike of the ith neuron indexed by the vertical axis at the
time indicated by the horizontal axis. It is worth mentioning
a few points. Interneurons (indices 400 to 499) are spik-
ing with higher frequency than excitatory neurons (indices
0 to 399) in both populations. The spiking pattern of the
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FIG. 5. Characterizing the three different dynamical regimes exhibited by the two neuronal populations depending on the parameter
X controlling the neuronal spiking variability. There are two possible phase-locking regimes: delayed synchronization (DS, X = −5) and
anticipated synchronization (AS, X = 10), as well as a bistable regime in respect to the phase differences (BI, X = 2). (a–c) Time series for
sender and receiver populations. (d–f) Time delay τi per cycle. (g–i) Probability distribution of time delays. (g) The unimodal distribution with
a positive average characterizes DS, whereas (i) the negative average represents AS. (j) The bimodal distribution together with an alternation
between cycles of DS randomly followed by cycles of AS characterizes the phase bistability. Synaptic conductances are kept fixed: gE = 0.5 nS
and gI = 2.0 nS.

excitatory neurons at the receiver population in the DS regime
is more concentrated close to the peak of the mean activity.
This means that the neurons are more synchronized with each
other. On the other hand, the variability along the entire period
is larger in the AS regime. Bursting neurons and regular spik-
ing neurons can more easily fire in the middle of the period
than chattering neurons (see an example in Fig. 3). Since we
are changing the proportion of CH, IB, and RS neurons to
obtain the transition from one regime to another, we could
speculate that CH neurons facilitate the synchronization of the
entire population and the usual DS regime, whereas RS neu-
rons allow the observed larger diversity and the AS regime.

By incremental changes in the neuronal heterogeneity, the
system can undergo a transition from DS to AS through the
bistable regime or via zero lag synchronization depending on
the amount of inhibition at the receiver. Figure 7 shows the
mean time delay as a function of X , the parameter controlling
the neuron-type distribution, for different values of inhibitory
conductance gI . Each curve corresponds to a horizontal line
in Fig. 8, which displays a two-dimensional projection of the
parameter space of our model (X, gI ).

For gI > 4.5 nS the transition from DS to AS is continu-
ous, and we can find virtually any value of mean time delay
between the two populations, including a zero-lag synchro-
nization, in which the peak of activity of both regions occurs
very close on average (see gI = 5 nS and gI = 6 nS in Fig. 7).

In Fig. 8 we can see that the end of the bistable regime
between DS and AS gives way to a DS-AS transition via zero
lag and coincides with a change in the slope of the bound-
ary between DS and AS. This reentrant behavior allows the
system to have, for example, for fixed X = 1, a first DS-AS
transition via bistability followed by an AS-DS transition via
zero lag as a function of gI (this would correspond to a vertical
line X = 1 in Fig. 7).

The zero-lag regime has been extensively studied as a
nonintuitive regime that can overcome the synaptic delays
between distant areas [68,69]. The first experimental results
for the total synchronization of distant neurons originated
many theories about neuronal communication as binding by
synchrony [3] and communication through coherence [4].
With new experimental results about phase relation diver-
sity, the latter hypothesis has been adapted to include the
effect of nonzero phase relations [5,70,71]. Furthermore, it
has been shown that in unidirectionally coupled cortical pop-
ulations the DS-AS transition via zero lag can be mediated
by synaptic conductances [26,45] and that spiking-timing-
dependent plasticity can promote auto-organized zero-lag
synchronization [72].

It is worth emphasizing that previous experimental studies
with brain signals have shown that unidirectional influence
can be accompanied by positive, zero or negative phase dif-
ferences in different frequency bands [26,28,29,57]. In our
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FIG. 6. Illustrative examples of the raster plots for all neurons
in each dynamical regime. Black dots are neurons from the sender
population, and purple (light gray) dots are neurons at the receiver.
All parameters as in Fig. 5, and we change only the distribution of
CH, IB, and RS spiking neurons in the network: X = −5 generates
DS, X = 2 promotes the phase bistability, and for X = 10 the motif
exhibits AS.

model, the populations oscillate with a period of 130 ms,
which is equivalent to a frequency close to 7.7 Hz. This means
that the time delay of 13 ms in the DS regime shown in
Fig. 5(a) is equivalent to a phase delay of 0.2π rad, whereas
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FIG. 7. Mean time delay τ between neuronal population as a
function of the parameter controlling the neuronal heterogeneity X .
The DS-AS transition can occur via a bistable regime or through
zero-lag synchronization for sufficient large inhibition (gI = 5 nS
and gI = 6 nS).

FIG. 8. Scanning parameter space to visualize the phase relation
as a function of inhibitory conductance gI and the parameter control-
ling neuronal variability X . The three regimes, DS, AS, and BI, can
be verified for a reasonable set of parameters. Horizontal lines for
integer vales of gI are shown in Fig. 7.

the anticipation in Fig. 5(c) has a phase delay of −0.6π rad.
Therefore our model is able to reproduce unidirectional influ-
ence in the alpha band with both positive, zero, and negative
phase relations. It has been recently shown that human EEG
can present unidirectional influence between signals with both
positive and negative phase relation [57]. All the 11 ana-
lyzed volunteers presented pairs of electrodes synchronized
in the alpha band (from 7 to 13 Hz) with unidirectional
influence and a diversity of phase relations including posi-
tive, negative, and zero phase lags. Two other studies with
monkey LFP have shown that unidirectional influence can
be accompanied by the couterintuitive negative phase dif-
ference reported here. Brovelli et al. [28] have shown that
somatosensory motor cortex can influence motor cortex dur-
ing oscillatory activity with main frequency around 24 Hz and
a negative time difference of −8.7 ms. In a different experi-
ment [29], it has been shown the posterior parietal cortex can
unidirectional influence the prefrontal cortex in a frequency
of 17 Hz and present a time difference that can range from
2.45 ms to 6.53 ms.

C. Excitation-inhibition balance

In previous studies [26,45] with sender-receiver popula-
tions, the different regimes were achieved by changing the
excitation-inhibition relation via modifications in the inter-
nal inhibition, the sender-receiver coupling, or the amount of
external noise simulated as excitatory synapses. In particular,
the bistable regime reported in Ref. [51] required very small
values of inhibitory conductance. Here we can obtain different
phase relations ensuring that the excitation-inhibition balance
is maintained by changing only the neuronal heterogeneity.

We can see the excitatory-inhibitory balance in Fig. 9,
where the two effective synaptic conductances are plotted
against each other for four different neurons of the receiver
population: one chattering, one intrinsically bursting, one
regular spiking, and an inhibitory neuron. These plots yield
a linear relationship, which means that the excitatory and
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FIG. 9. Excitatory-inhibitory balance for four illustrative neu-
rons (three excitatory, CH, IB, RS, and one inhibitory) at the receiver
population during the bistable regime (X = 2 and gI = 2 nS). Ex-
citatory and inhibitory effective synaptic conductances preserve an
approximate proportional relation to each other in the course of the
oscillations.

inhibitory synaptic conductance increase and decrease in time
in such a way that the ratio of the two GE/GI remains al-
most fixed. This ratio slightly varies from neuron to neuron.
The E/I balance has been related to a variety of dynami-
cal features such as oscillatory activity [54,73], information
processing and social dysfunction [56], as well as cortical
complexity [74].

IV. CONCLUDING REMARKS

We have shown that neuronal heterogeneity can promote
different phase relations between spiking neuron networks.
We have verified that by changing the proportion of different
types of neuronal firing patterns the system can present phase-
locking regimes with positive (DS), negative (AS), and zero
phase differences as well as a bistable regime. The DS-AS
transition could possibly explain commonly reported short
latency in visual systems [58–63], olfactory circuits [64],
songbird brain [43], and human perception [65,66], whereas

the bistable regime can be associated with bistable perception
during ambiguous stimulation [51,67]. Previous studies on AS
[26,45] and phase bistability [51] in the neuronal population
have not explored the effects of neuronal properties on the
network dynamics. Moreover, the possibility of changing the
neuronal variability allows us to remain in the excitation in-
hibition balance, which has been considered a fundamental
property of the health brain [54,56,73,74].

Although examples of neuronal variability exist through-
out the brain, their importance for the information process
remains a source of debate. The functional roles of intrin-
sic neuronal heterogeneity on the network dynamics have
been more extensively studied in the last few years [9–13].
Theoretically, the effect of heterogeneity on synchronization
properties of only one neuronal network has been studied in
different models [16,18–21]. In particular, Rossi et al. [21]
argued that their results can be important in the light of com-
munication through coherence ideas [4,5]. Here we take a
step further in this direction by showing the specific effect
of heterogeneity in the phase synchronization patterns of two
coupled networks. In such a case, we could investigate the
effect of neuronal heterogeneity in phase relations and, conse-
quently, in communication between distant cortical areas.

Differently from the first papers about AS [25,32], here the
anticipation time is not hard-wired in the dynamical equa-
tions, neither associated with the excitation-inhibition rela-
tion, but rather emerges from the neuronal dynamics and het-
erogeneity. This opens new possibilities to study how neuronal
variability modulates the phase relation diversity between cor-
tical areas, which has been the object of more intense inves-
tigation in the last few years [70,71]. In particular, including
effects from homeostasis and the variability of inhibitory neu-
rons are natural next steps that we are currently pursuing.
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