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Population extinction is a serious issue both from the theoretical and practical points of view. We explore here
how environmental noise influences persistence and extinction of interacting species in presence of a pathogen
even when the populations remain stable in its deterministic counterpart. Multiplicative white noise is introduced
in a deterministic predator-prey-parasite system by randomly perturbing three biologically important parameters.
It is revealed that the extinction criterion of species may be satisfied in multiple ways, indicating various routes
to extinction, and disease eradication may be possible with the right environmental noise. Predator population
cannot survive, even when its focal prey strongly persists if its growth rate is lower than some critical value,
measured by half of the corresponding noise intensity. It is shown that the average extinction time of population
decreases with increasing noise intensity and the probability distribution of the extinction time follows the log-
normal density curve. A case study on red grouse (prey) and fox (predator) interaction in presence of the parasites
trichostrongylus tenuis of grouse is presented to demonstrate that the model well fits the field data.
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I. INTRODUCTION

Predator-prey (PP) interactions in presence of infection are
common in natural systems [1–6] and consequently a large
number of mathematical models of predator-prey interactions
have appeared in the recent past taking into account the ef-
fect of disease [7–16]. Study of such predator-prey models
in presence of infection, popularly known as predator-prey-
parasites (PPP) or eco-epidemiological models, is extremely
important because it encapsulates both the ecological and
epidemiological issues simultaneously. Mathematical models
of PPP interactions extend, in most of the cases, the basic
predator-prey model of either Rosenzweig-MacArthur (RM)
type or Leslie-Gower (LG) type (also known as Holling-
Tanner type). In the first case, only the prey has logistic
(i.e., density-dependent) growth limited by a predetermined
constant value, K , called the environmental carrying capacity,
but not the predator. On the other hand, the logistic growth of
both the populations is considered in the second type of PP
models. In fact, the carrying capacity of the predator is not a
constant here but rather depends on the prey density, known as
the emerging carrying capacity [17]. Another distinguishing
feature of these PP models lies in the fact that the predator
in an LG model is a generalist one while in an RM model
it is a specialist one. In an LG type PP model, the predator
has a focal prey, which predators prefer to consume when in
abundance, though it has other secondary food [18] on which
the predator can survive in absence of its focal prey. The RM
model, however, assumes a single prey for its predator [19].
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All the PPP models mentioned earlier consider that the
models are deterministic and therefore all model parame-
ters (viz., birth rate, death rate, etc.) are constant. In a real
ecosystem, however, these parameters are not constant due to
various environmental noises and therefore fluctuate around
some mean value [20,21]. Experimental evidence also sup-
ports the claim of such impact of environmental noise [22].
To make the models closer to reality, stochastic population
models, therefore, have received significant attention from
the researchers. There are few stochastic PPP models which
either assume that the predator consumes infected prey only or
the predator’s functional response (prey attack rate) is type I
[23–26]. These assumptions are simplifications of actual phe-
nomena and usually done to make the analysis tractable. For
example, Wei et al. [23] recently considered a predator-prey-
parasite model with prey infection, where a predator feeds
only on infected prey following the Beddington-DeAngelis
response function and LG type growth of the predator. They
have shown that the corresponding stochastic model has a
unique positive global solution and established conditions for
disease eradication and its persistence. Li and Wang [24]
also studied a similar stochastic predator-prey model with
disease in the predator, where the predator-prey relationship
was modeled with RM type interaction. A stochastic predator-
prey model with prey infection and type I response function
was analyzed in [25]. It is shown that the deterministic sta-
bility results are preserved in the stochastic system. Ji and
Jiang [26] considered an RM type PPP model, where the
predator consumes only infected prey with type II response
function. It is shown that both the deterministic system and
its stochastic counterpart (with parameter perturbation in the
disease transmission coefficient) have similar behavior if the
noise intensity is low but the stability may be lost if the noise
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intensity is high. A four-dimensional deterministic predator-
prey model with infection in both the prey and predator and
type I response function was analyzed by Jang and Baglama
[27]. They also simulated the corresponding continuous-time
Markov chain model to study the population interaction under
random effects but did not study it analytically. Stochastic
PP models with different biological attributes, however, have
been studied extensively [18,28–34]. Though these studies
have made significant contributions in the theory and appli-
cation of noise-induced population dynamics, none of these
stochastic PP or PPP models has tried to fit the model with
experimental data and therefore these models and the corre-
sponding outcomes remained unverified.

Various studies [35–38] show that the stochastic model
improves the predictive features of the models analyzed and
fits the data well by mimicking the random fluctuations. In
this paper, we first theoretically analyze an LG-type stochastic
PPP model, where the predator consumes both the susceptible
and infected preys with type II response function, and then
validate our model with empirical data of long time population
interaction. We determine some restrictions on the system
parameters and find limits on the noise intensities so that
population persistence is possible almost surely. Sufficient
conditions for eradication of infection are determined. A re-
lation between the intrinsic growth rate of the predator with
the corresponding noise intensity is established to show that
predator persistence is possible even in the absence of its focal
prey provided its intrinsic growth rate exceeds some threshold
value, but extinct otherwise. We have estimated numerically
the average extinction time distribution for susceptible prey,
infected prey, and predator populations for different noise in-
tensities and the corresponding probability distribution curve.
Finally, a case study on red grouse (prey) and fox (predator)
interaction in presence of the parasites trichostrongylus tenuis
of grouse is presented to demonstrate that the model well
fits the field data collected during 1995 to 2019 and further
predicts the population densities beyond the study period. It is
demonstrated that both the species can coexist for a long time
if some parameters are not perturbed significantly; otherwise,
there is a chance of fox extinction.

II. THE MODEL

A. Deterministic model

We consider an LG type predator-prey model with x and z
as the prey and predator densities at time t , where the prey
follows density-dependent growth and the predator follows
the type II response function:

dx

dt
= ax − bx2 − cxz

m1 + x
,

dz

dt
= z

[
r − f z

m2 + x

]
,

(1)

where a is the intrinsic growth rate of the prey, b is the
intraspecies competition coefficient, c is the predator’s at-
tack rate, r is the intrinsic growth rate of the predator, f is
the intraspecies competition of the predator, and m2 is the
half-saturation constant of the predator. A parasitic infection
divides the prey population into a susceptible group and an

infected group. The disease spreads horizontally, having dis-
ease transmissibility λ, and there is no vertical transmission.
Infection may cause various modifications to its host, e.g.,
conspicuousness, castration, lower competitive ability, higher
mortality, altered behavior, increased vulnerability, etc. [1–6].
Based on this empirical evidence, it is assumed that infected
preys are unable to give birth and do not recover. The infected
prey dies due to infection at a rate of γ and has intraspecies
competition but no interspecies competition. Predators are not
affected by the parasites and they consume that prey which is
readily available. Both the susceptible and infected preys give
the same reproductive gain to the predator population. These
assumptions provide the following PPP model:

dx

dt
= ax − bx2 − λxy − cxz

m1 + x + y
,

dy

dt
= λxy − my2 − eyz

m1 + x + y
− γ y,

dz

dt
= z

[
r − f z

m2 + x + y

]
,

(2)

where y is the density of the infected prey at time t . The
parameter m is the intraspecies competition coefficient of
infected prey and e is the predation rate of infected prey.
This model has similarity to the models [13,39]. In fact,
Haque and Venturino [13] did not consider the inter- and
intraspecies competition between and among the hosts, while
it was considered in [39]. Inclusion of inter- and-intra-species
competitions produces product terms like xy and x2, y2, re-
spectively, which may be combined to deduce the model (2)
from [39]. They mainly studied the stability and instability
(through Hopf bifurcation) of different equilibrium points.
Global stability of the interior equilibrium has been shown un-
der nontrivial parametric restrictions. The basic reproduction
number, secondary cases produced by an infected individual,
for the deterministic system is shown to be RD

0 = aλ
bγ , and

infection eradication is possible if RD
0 < 1 [39]. It was pointed

out that the competition coefficient, b, contributes positively
in the disease eradication process and makes a difference with
the earlier study [13] which does not contain the intraspecific
competition. Similar PPP systems, however, may show more
complicated dynamics (including chaos) in presence of dis-
ease transmission delay [40]. A recent study [41], however,
shows that chaos in a delay-induced PPP system may be
suppressed through proper harvesting of prey species. It is
mentionable that all these studies are described in a determin-
istic setting and have not been explored under environmental
stochasticity.

B. Incorporating stochasticity

Note that the deterministic model (2) is based on the
mean-field theory, where each quantity is averaged. This
averaging of the quantity is valid if system population is
large, but becomes invalid if the population is small [42], as
small population behaves differently compared to its larger
counterpart due to the loss of heterogeneity. There are three
different types of stochasticity considered in ecological sys-
tems: demographic stochasticity, measurement stochasticity,
and environmental stochasticity. The first type of stochasticity
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is due to the endogenous causes and may appear through
random variation in fecundity or survival due to genetic fac-
tor, disproportionate sex ratio, sexual selection, etc., and has
a strong effect on small population [43]. The measurement
stochasticity is caused by factors that randomly cause mea-
surements of the variables up and down. The most important is
the environmental stochasticity caused by exogenous factors.
Stochasticity in the physical and biological environment may
cause significant fluctuations even in a large population [44].
We are interested here in this environmental stochasticity. In-
troduction of such stochasticity in a population model may be
done in various ways, e.g., following Markov process [45–47]
and parameter perturbation technique [48–50].

The nature of the noise may be additive or multiplicative.
The key difference between additive and multiplicative noises
is that the noise is directly added to the system in the former
case, and in the latter case, it is multiplied with the state
variables [51]. The main disadvantage of additive noise is
that, with an initial very low density of population, a negative
fluctuation of noise could make the solution of the stochastic
system negative, which is nonphysical because population
density cannot be negative. In contrast, the multiplicative
noise always ensures the non-negativity of the solution, even
if there are initial negative fluctuations, because the noise
appears in the exponential function. More specifically, for a
linear multiplicative stochastic differential equation, the so-
lution is purely exponential and the fluctuating term (i.e., the
Wiener process) appears in the exponent, while for a nonlinear
system a functional appears in the exponent [52]. Moreover, as
the stochastic solution for multiplicative noise is exponential,
the zero population density becomes a barrier for the solution,
and for specific system parameters and noise strength level,
strong negative fluctuation can bring the solution to zero den-
sity. Understanding the effectiveness of multiplicative noise
in population dynamics, we use this noise to construct the
stochastic system from its deterministic version (2).

The system to be analyzed may contain several parame-
ters, but in which parameters perturbation will be introduced
depending on biological and physical reasons. For example,
rainfall, humidity, and temperature affect the food produc-
tion as well as species growth [53,54]. Growth of many
pathogens and their virulence is dependent on temperature
[55,56]. Parameter perturbation technique considers such en-
vironmental stochasticity through direct perturbation of such
parameters. We, therefore, considered random perturbations
in the growth parameter of susceptible prey, virulence param-
eter, and growth parameter of the predator as

a → a + σ1dW1(t ), −γ → −γ + σ2dW2(t ),

r → r + σ3dW3(t ),

where Wi(t ), i = 1, 2, 3 are mutually independent Wiener pro-
cesses defined on a complete probability space (�, F , P) with
a filtration {Ft }t∈�+ and σ 2

i are the intensities of noises. The
Wiener process dWi(t ) satisfies the properties 〈dWi(t )〉 = 0
(gives the average value) and 〈dWi(t ), dWi(t ′)〉 = δ(t − t ′)
(defines the correlation function), where δ is the Dirac delta
function. Under these assumptions, the model (2) becomes

dx =
[

ax − bx2 − λxy − cxz

m1 + x + y

]
dt + σ1xdW1(t ),

dy =
[
λxy − my2 − eyz

m1 + x + y
− γ y

]
dt + σ2ydW2(t ),

dz =
[

rz − f z2

m2 + x + y

]
dt + σ3zdW3(t ). (3)

All parameters are non-negative. We analyze the stochastic
model (3) with positive initial conditions x(0) > 0, y(0) >

0, z(0) > 0. There are, however, other techniques of consid-
ering stochasticity in a mathematical model. For example, one
can consider stochastic perturbations as proportional to the
distance of the state variable from the deterministic steady
state [57,58]. This process is particularly useful to verify the
robustness of various stability results of the corresponding
deterministic system [57].

III. MATHEMATICAL RESULTS

We are interested in the equilibrium point E∗(x∗, y∗, z∗),
where all populations coexist. In the absence of noise, the
existence of a unique equilibrium point of the system (3)
and its stability can be deduced from [39]. A unique positive
interior equilibrium point exists (see Appendix A) if e >

c, λ > λ∗, m < m∗ and x∗ <
ae+γ c
be+λc . The first condition says

that the infected prey is predated at a higher rate compared
to its healthy counterpart. This is a reasonable restriction
because, by assumption, predators do not discriminate be-
tween infected and healthy preys, rather they consume that
prey which is readily available. Since the infected prey has
reduced mobility, the attack rate is expected to be higher on
infected prey compared to healthy prey. Understandably, the
infection cannot persist if the force of infection is too weak.
Consequently, for the existence of an infected class, disease
transmission rate should exceed some lower threshold value,
λ∗. It is mentionable that the intraspecies competition arises
when the same species compete for limited resources. Due
to the lower fitness, the intraspecies competition among the
infected prey is much smaller than that of the susceptible prey,
i.e., m < b. The third restriction m < m∗ describes the thresh-
old level of intraspecies coefficient of the infected preys. The
last condition prescribes an upper bound in the equilibrium
density of healthy prey for the existence of infected prey.
Infected prey cannot exist if the last inequality is reversed (see
Appendix A). In addition to these conditions, the parameters
need to satisfy some nontrivial conditions for the local stabil-
ity of this equilibrium (see Appendix A).

We are mainly concerned about the solutions of the
stochastic system (3). For any population model, the first
thing one needs to investigate is the non-negativity of the
stochastic solution and its global existence. Introduction of
multiplicative noise can induce population explosion [59,60].
It is, therefore, essential to show the boundedness of solu-
tions, which means that the interacting species will not grow
abruptly or exponentially for a long time. We have shown, for
any positive initial value (x(0), y(0), z(0)) ∈ R3

+, that there
exists a unique solution (x(t ), y(t ), z(t )) ∈ R3

+ of the system
(3) (see Appendix B) which remains positive and bounded for
all t � 0 with probability 1 (see Appendix C). An important
aspect of population biology is the extinction and persistence
of interacting species. It is important to know whether the
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species of the system will die out in finite time or survive.
From a mathematical point of view, the persistence of species
may be weak or strong [61]. Suppose the function g(t ) repre-
sents a population at any time t and g(t ) > 0 for all t � 0, then
1
t

∫ t
0 g(θ ) dθ is the average value of population in the time

span [0, t]. The population is said to be strongly persistent
if the infimum of these limiting averages is always positive.
Therefore, the eventual average population size will always
remain away from zero, ensuring the existence of populations
for all time. In the case of weak persistence, the supremum
of these eventual averages is always positive; it, however,
does not give any guarantee that the average population will
always remain away from zero and therefore population may
be arbitrarily closed to zero. Nonpersistent implies that the
supremum of these eventual averages is zero. However, ex-
tinction is guaranteed if the supremum of these eventual
averages becomes negative. The following results regarding
persistence and nonpersistence of the species can be proved
(see Appendices D and E).

Theorem III.1 (i) If a <
σ 2

1
2 then x(t ) will go to extinction

almost surely (a.s.).

(ii) If a = σ 2
1
2 then x(t ) is nonpersistent in the mean a.s.

(iii) If a >
σ 2

1
2 + λȳ + cz̄

m1
then x(t ) is strongly persistent in

the mean a.s.
Theorem III.2 (a) For a <

σ 2
1
2 , y(t ) will go to extinction a.s.

(b) For a >
σ 2

1
2 ,

(i) if λ(a − σ 2
1
2 ) < b(γ + σ 2

2
2 ) then y(t ) will go to extinc-

tion a.s.
(ii) if λ(a − σ 2

1
2 ) = b(γ + σ 2

2
2 ) then y(t ) is nonpersistent in

the mean a.s.
(iii) if λ(a − σ 2

1
2 ) > b(γ + σ 2

2
2 ) + λ2ȳ + (λc + be) z̄

m1
then

y(t ) is strongly persistent in the mean a.s.

Theorem III.3 (i) If r <
σ 2

3
2 then z(t ) will go to extinction

a.s.
(ii) If r = σ 2

3
2 then z(t ) is nonpersistent in the mean a.s.

(iii) If r >
σ 2

3
2 then z(t ) is strongly persistent in the mean

a.s.
These results provide a quantitative measure on the system

parameters and/or prescribe some limits on the environmental
noises for which both the prey and predator populations can
persist together or in isolation. They show that species
extinction may occur through many routes. For example, if
the intrinsic growth rate of a healthy prey is less than half of
the corresponding noise intensity, then a healthy prey cannot
survive but can survive provided its growth rate exceeds this
critical value. It is obvious that an infected prey also cannot
survive in absence of a susceptible prey (see Theorem
III.2 a). Theorem III.2 b says that infected prey y(t )
will go extinct while sound prey x(t ) may persist
if the basic reproduction number RS

0 < 1, where

RS
0 = λ(a− σ2

1
2 )

b(γ+ σ2
2
2 )

. This is an extremely important measure

from the infection management point of view. It
describes that disease control may be possible by
tuning some system parameters as well as the noise
parameters. The parameters b and γ , measuring the
intraspecies competition and removal rate of the infected

prey, have a negative correlation with the basic reproduction
number, and RS

0 can be reduced to below unity by increasing
these rate parameters. In contrast, the infection rate parameter
λ is positively correlated with RS

0. Interestingly, both the noise
parameters are negatively correlated with RS

0. Thus, proper
adjustment of environmental noise can potentially change
the disease state of a system. The last theorem prescribes a
relationship between the predator’s intrinsic growth rate and
noise intensity that allows its survival.

It is to be mentioned that most of the stochastic sys-
tems have no exact equilibrium; instead, they may have a
time-independent probability distribution [62]. The following
theorem (see Appendix F for proof) shows the existence of
such stationary distribution for the populations of system (3).

Theorem III.4 Let (x(t ), y(t ), z(t )) ∈ R3 be a solution of
the stochastic system (3) with initial value (x(0), y(0), z(0)) ∈
R3. If the conditions (i) f z∗

rm2
2

> max { Ac
m1+x̄+ȳ ,

Ae
m1+x̄+ȳ },

(ii) Ab> cz∗
m1

+ f z∗

2rm2
2
+ (c+e)z∗

2m1
, (iii) m + Ae

m1+x̄+ȳ > ez∗
m1

+ f z∗

2rm2
2
+

(c+e)z∗
2m1

, and (iv) f
r(m2+x̄+ȳ) + A(e+c)

2(m1+x̄+ȳ >
f z∗

rm2
2

are satisfied, then

lim sup
t→∞

1

t

∫ t

0
[(x(s) − x∗)2 + (y(s) − y∗)2 + (z(s) − z∗)2]ds

� G� a.s.,

where A = m1 + x∗ + y∗, � = Aσ 2
1 x∗

2 + Aσ 2
2 y∗

2 + σ 2
3 z∗

2r , G =
1

min {K,Q,T } , K = Ab − cz∗
m1

− f z∗

2rm2
2
− (c+e)z∗

2m1
, Q = m − ez∗

m1
−

f z∗

2rm2
2
− (c+e)z∗

2m1
+ Ae

2(m1+x̄+ȳ) , and T = f
r(m2+x̄+ȳ) + A(e+c)

2(m1+x̄+ȳ −
f z∗

rm2
2
; x̄, ȳ, z̄ are the stochastic bounds of x(t ), y(t ), z(t ), re-

spectively; and (x∗, y∗, z∗) is the interior equilibrium point of
the deterministic system (2).

This shows that � → 0 if the noise intensities σ1, σ2, σ3

tend to zero, and we then have

lim sup
t→∞

1

t

∫ t

0
[(x(s) − x∗)2 + (y(s) − y∗)2 + (z(s) − z∗)2]ds

→ 0,

yielding limt→∞(x(t ), y(t ), z(t )) = (x∗, y∗, z∗). Therefore,
the stochastic solution will remain close and eventually
approach the time-independent equilibrium solution of the
deterministic system when noise intensities are negligible.

IV. SIMULATION RESULTS

A simulation study has been performed in two steps. First,
we illustrate the theoretical results presented in the previous
section, and in the second step, we consider an experimental
data set to demonstrate how our stochastic model fits these
data.

A. Effect of environmental noise on the persistence and
extinction of species

It is to be recalled that a deterministic model always gives
a unique solution corresponding to a unique initial point when
system parameters remain fixed. However, a stochastic so-
lution of the same system gives different solutions for each
simulation due to its inherent stochasticity even when the
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FIG. 1. Upper panel: Time series solutions of 15 simulations of the stochastic system (3) with noise intensity σ1 = 0.03, σ2 = 0.03,
σ3 = 0.03. Middle panel: Average value of 1000 time series solutions with the same noise intensity. It shows that the stochastic solution (solid
blue curve) and the deterministic solution (red broken line) are qualitatively and quantitatively similar. Lower panel: Frequency distribution of
the populations at t = 100 for 10 000 simulations of system (3). It shows small fluctuations in the population densities around the deterministic
steady state value E∗(x∗, y∗, z∗) = (13.16, 10.73, 28.98). Parameters are a = 1.1, b = 0.05, λ = 0.04, c = 0.1, e = 0.12, f = 1.2, m1 =
200, m = 0.001, γ = 0.5, r = 0.2, m2 = 150 and the initial value is (0.6,0.5,0.4).

initial value and system parameters remain the same (see
Fig. 1, first row). It will be, therefore, prudent to plot
the mean value of such solutions corresponding to a fixed
value of the noises to represent the overall behavior of
the system’s solutions. We first demonstrate how different
noise intensities can alter persistency of interacting species
while the other system parameters remain unchanged. Choos-
ing weak noise intensities like σ1 = 0.03, σ2 = 0.03, σ3 =
0.03 so that the conditions of stochastic persistence [see
Theorems III.1(iii), III.2 b(iii), and III.3(iii)] and stationary
distribution (Theorem III.4) are satisfied, one can observe
that the stochastic and deterministic solutions (Fig. 1, mid-
dle row) show similar behavior and the population densities
of system (3) remain very close to the equilibrium solu-
tion E∗(13.16, 10.73, 28.98) of the deterministic system (2).
In the lower panel of Fig. 1, we presented the frequency
distribution, where the widths of rectangles represent vari-
ous classes, and their heights indicate the frequency of the
class. It is to be mentioned that the coefficient of variation
of the time series solution of the stochastic system (3) is
very low after t = 100 and, therefore, the system was run
for 100 to show the asymptotic behavior. The behavior will
remain the same for higher runs. Distribution of the rectangles
indicates how much the stochastic solutions will oscillate
around the deterministic steady state for the considered

noise intensity. It can be observed that x, y, and z popula-
tions are distributed in the range (11.6,15.2), (8.6,12.8), and
(24,34.1), respectively, and the highest frequency is observed
at 13.2, 10.4, 28.5, which is very close to the deterministic
steady state value E∗(x∗, y∗, z∗) = (13.16, 10.73, 28.98). If
we increase the strength of noises then the fluctuation in-
creases. For higher values of σ1 = 0.1, σ2 = 0.1, σ3 = 0.1, the
population densities (Fig. 2) fluctuate more around the deter-
ministic steady state E∗(x∗, y∗, z∗). In this case, the frequency
distribution of x(t ), y(t ), and z(t ) populations is over a larger
range (8.6,18), (5.1,16.8), (13.4,45.8) around the deterministic
steady state values x∗ = 13.16, y∗ = 10.73, and z∗ = 28.98.
The “probabilistic smoke cloud” of the system (3) for the
above two sets of forcing intensities is shown in Fig. 3. For
the lower value of noises, populations are distributed in a
smaller region around the deterministic equilibrium value in
comparison to the higher value of noises.

Further increase of noise intensity may cause stochastic
extinction of system populations, for example, an increase in
the noise intensity of the infected prey, say σ2 = 0.95, so that
the conditions of Theorems III.1(iii), III.2 b(i), and III.3(iii)
are satisfied and then the infected population is extinct (Fig. 4,
upper row). Noticeably, when infected species die out then
the susceptible population density lies above its deterministic
steady state value. Thus, environmental noise can make a
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FIG. 2. Upper panel: Time series solutions of 15 simulations of the stochastic system (3) with noise intensity σ1 = 0.1, σ2 = 0.1, σ3 = 0.1.
Middle panel: Average value of 1000 solutions of system (3) with the same noise intensity (solid blue line) and the solution of the deterministic
system (2) (red broken line). Lower panel: Frequency distribution of the respective populations obtained at t = 100 for 10 000 simulations of
system (3). Parameters are as in Fig. 1.

system infection free provided the noise intensity has a higher
impact on the infected prey; however, the infection persists in
an unvarying environment. If we increase the noise intensity
in the growth rate of the susceptible population to σ1 = 1.49,
keeping all other noise intensities and parameters as in Fig. 1,
to satisfy the condition of Theorem III.1(i) [see also Theorem
III.2(a)] then both the susceptible and infected populations go
to extinction but the predator survives with a lower density

(Fig. 4, second row) by consuming its alternative food. It is
to be recalled that the considered prey is the primary food
of the predator and the predator can survive in absence of
its focal prey at a lower density by consuming its secondary
prey. If the noise intensities are such that σ1 = 0.01 = σ2

and σ3 = 0.74 so that the conditions of Theorems III.1(iii),
III.2 b(iii), and III.3(i) are fulfilled then both the prey popula-
tions coexist but the extinction of predator population occurs

20
15

y(t)

10
5

(a)

16

x(t)

12
8
10

25

45

20

15

40

35

30

z(
t)

20

y(t)

15
10

5

(b)

16
x(t)

12
8

20

25

30

35

40

45

15

10

z(
t)

FIG. 3. Stationary distribution of populations of the stochastic system (3) at t = 100 is plotted (in pink dots) around the deterministic
steady state (in blue dot). It shows how population densities are distributed around the deterministic equilibrium value for lower and higher
values of noise. Left panel: σ1 = 0.03, σ2 = 0.03, σ3 = 0.03. Right panel: σ1 = 0.1, σ2 = 0.1, σ3 = 0.1. Parameters are as in Fig. 1.
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FIG. 4. Solution of the stochastic system (3) with different noises. First row: y population goes to extinction within a short period when
σ1 = 0.01, σ2 = 0.95, σ3 = 0.01. Second row: x and y populations are extinct but z(t ) survive at a lower density when σ1 = 1.49, σ2 = 0.01,
σ3 = 0.01. Third row: z population goes to extinction while x and y populations survive when σ1 = 0.01, σ2 = 0.01, σ3 = 0.74. Last row: All
species go to extinction due to higher environmental noise σ1 = 1.49, σ2 = 0.01, σ3 = 0.74. Deterministic solution (dash line) of the system,
however, reaches to the coexistence equilibrium value in each case. Parameters are as in Fig. 1.

(Fig. 4, third row) due to higher environmental noise on
predator population. If the noise intensity on the predator,
σ3, is kept high (σ3 = 0.74) with σ1 = 1.49 and σ2 = 0.01,
then the extinction criteria of predator population [Theorem
III.3(i)] as well as the extinction criteria of prey population
[Theorem III.1(i)] are satisfied. In such a case, all populations
die out due to environmental noise; however, populations of
the deterministic system coexist in a stable state (Fig. 4, last
row). It is mentionable that population persists and solutions
(dashed line) of the deterministic system in each case reach
the coexistence equilibrium value, implying that stochasticity
can destroy deterministic persistency and stability results. All
these results support the fact that environmental noise has a
profound influence on the persistence and extinction scenario
of interacting species.

In Fig. 4, we have deciphered the various extinction sce-
narios of the population taking the average of 1000 runs of
the stochastic system with the same parameter set and initial
value. It is obvious that the extinction time of the individual
run of these 1000 simulations is different. It will be, therefore,
interesting to see the probability distribution of extinction
time. In the upper two panels of Fig. 5, we have presented the
average extinction time distribution for susceptible, infected,

and predator populations for different fixed noise intensities
(as in the Fig. 4) and the corresponding probability distribu-
tion curve. Figure 5(e) indicates that there is no extinction of
the infected prey population before ten units of time. In pop-
ulation ecology, it is a common phenomenon that extinction
time of a large number of individuals of a population is more
or less similar, but some others may survive a long time. It
is also not unusual to observe that some infected individuals
survive for a long time whereas most of the individuals in-
fected with the same parasites die within some average time.
In such a case, the data have a low mean and large vari-
ance. Data of such skewed distributions often fit log-normal
distribution [63]. We also observed here that the log-normal
curve fits well the extinction time probability distributions.
In the last row of Fig. 5, the average extinction times of
1000 simulations are estimated with varying noise intensity,
showing that the extinction time of population decreases
with increasing noise intensity. This is in accordance with
our analytical result (see Appendix E, Remark E.1). Similar
monotonic decreasing behavior of extinction time was also
observed in other studies [18,64]. However, nonmonotonic
behavior of the extinction time as a function of noise intensity
was also observed in two competing species with stochastic
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FIG. 5. Probability density and the density curve of extinction time when the stochastic system was run 1000 times with the same set of
parameter values of Fig. 4. Upper row: (a) Noise intensity as in the first row of Fig. 4. (b) Noise intensity as in the second row of Fig. 4.
(c) Noise intensity as in the third row of Fig. 4. The red curve in all figures denotes the corresponding probability density curve, which satisfies
the log-normal distribution function with p value less than 0.0001. Middle row: Probability density of extinction times of (a) susceptible prey,
(b) infected prey, and (c) predator when noise intensities are as in the last row of Fig. 4 (where all populations are extinct due to the noise).
The red curve is the fitted log-normal probability distribution function. Here mean (μ) and standard deviation (σ ) of the fitted log-normal
probability distribution functions are (a) μ = 1.951 79, σ = 0.797 037, (b) μ = 2.174 52, σ = 0.882 333, (c) μ = 3.292 99, σ = 0.709 178,
(d) μ = 1.877 99, σ = 0.805 53, (e) μ = 2.494 11, σ = 0.173 672, (f) μ = 3.265 33, σ = 0.708 356. Lower row: Extinction time plotted
against the varying noise intensity for all three populations. When one noise intensity is varied, then the other two noise intensities remain
fixed at 0.01.

resonance [60] and in the Verhulst model with Levy white
noise [65].

B. Red grouse: A case study

The red grouse Lagopus lagopus scoticus, predominantly
observed in heather dominated moorlands of upland Britain,
has contributed largely to the long term study of population
ecology [66]. Many private estates cultivate red grouse to use
them as a game bird [67] and employ gamekeepers to max-
imize their number. The red grouse population is very much
unstable and shows frequent fluctuations over time [68,69].
Long time field data of red grouse clearly show such cyclic
and quasicycle behavior [69,70]. Fox is the main predator of
the grouse population. Though red grouse is the focal prey

of fox in the moorlands of Scotland, it also feeds on other
species, like vole [71,72]. These ground-nesting birds are fre-
quently infected by the parasites trichostrongylus tenuis [5].
Even though red grouse develops various adaptation for its
defense, detection and predation become easier for the fox as
the grouse emits a particular scent while the parasite burden
is higher in their bodies [73]. Thus our model assumptions
perfectly match with the empirical examples of red grouse-fox
interaction in presence of infection. We here examined how
our stochastic model can effectively predict the long term
dynamics of this PPP system.

The method for estimation of parameters of the determin-
istic system (2) and noise intensities for stochastic system (3)
using the grouse and fox data set of the United Kingdom taken
from the British Trust for Ornithology [74] for the period 1995
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FIG. 6. Comparison of time series solutions of the stochastic system (3) with the field data of red grouse and fox population. Left panel:
Actual red grouse data for the period 1995 to 2019 are presented by solid circles in magenta color. Simulated stochastic time series data of
total grouse population are presented by a solid line in blue color. Right panel: Actual fox population data are presented by solid circles and
simulated stochastic time series data of fox density are presented by the blue line. Parameters are a = 0.56, b = 0.001 44, λ = 0.036, e =
5.12, γ = 0.0875, c = 0.21, f = 0.0886, m1 = 101, m = 0.0428, r = 0.032, m2 = 41 and initial value is (50,27,30). Noise strengths are
σ1 = 0.1, σ2 = 0.05, σ3 = 0.09. In both figures, the red color curve is the predicted population densities for the next five years. The shaded
region represents the 95% confidence interval. The r-squared values for red grouse and fox data are, respectively, 0.7426 and 0.7231.

to 2019 is given in Appendix G. The initial values of grouse
and fox populations were considered as 77 and 30 per square
kilometer, which were their respective values in the year 1995.
An adult female grouse lays 6 to 12 eggs per year [75] and
two-thirds of the grouse chicks survive [76,77]. Thus, the new
recruitment of red grouse is between 4 and 9 per year per adult
female grouse. In our estimation, we found the birth rate of
grouse a as 0.56 per month, i.e., 6.7 newborn grouse per year.
The estimated value of intraspecies competition coefficient b
is 0.001 44. The death rate of grouse (γ ) is estimated to be
0.0864, which is very close to the field estimated value, 0.0875
[78]. Fox predation of red grouse (e) has been observed to
vary from one to two grouse per week [5], giving the average
predation 4 to 8 in a month. We estimated the predation
rate parameter e as 5.12 per month, which lies within the
experimental range. Parasitic infection rate (λ) in red grouse
has been reported as 0.16 to 0.6 per year [79] (i.e, 0.0133 to
0.5 per month) and our estimated value is 0.036. The other
parameters estimated through curve fitting are c = 0.21, f =
0.0886, m1 = 101, m = 0.0428, r = 0.032, m2 = 41. Us-
ing these parameter values, we plotted (blue curve) the total
red grouse population (susceptible and infected) [Fig. 6(a)]
and fox population [Fig. 6(b)] obtained from the average
of 1000 simulations of the stochastic system (3) with noise
intensities σ1 = 0.1, σ2 = 0.05, σ3 = 0.09. It shows that the
stochastic model solutions well match the 25 years (1995 to
2019) of field data. Furthermore, we extended our simulation
results for another five years to predict the red grouse and
fox population (red curve) beyond the study period. It shows
that both the red grouse and fox populations coexist and will
continue to do so if vital parameters and environmental noise
are not perturbed significantly. Culling of foxes is an old
practice in Great Britain. It was estimated that 190 000 foxes
were collectively killed annually by hounds, gamekeepers,
and farmers [80]. Such culling can significantly reduce fox

population on a regional scale [81] and can eventually lower
the intrinsic growth rate of the fox population below some
critical level, which can be determined from Theorem III.3.
The effect of such a reduced growth rate may send the fox
population to extinction on a local scale.

V. DISCUSSION

The ubiquitous ecological phenomena predator-prey inter-
action is frequently influenced by parasites. Environmental
stochasticity, on the other hand, may play a critical role in
the persistence or extinction of any biological species. Study
of such predator-prey models in presence of infection is ex-
tremely important because it encapsulates both the ecological
and epidemiological issues simultaneously. Population extinc-
tion is a serious issue both from the theoretical and practical
points of view. Interacting populations in a natural system may
go to extinction in a variety of ways. Such extinction routes
have been shown in single-species discrete systems [82] and
two species continuous predator-prey systems by defining
a master equation [83]. It is therefore interesting to know
the routes to extinction in the higher-dimensional systems.
In this paper, we considered a predator–prey-parasite model,
where the interaction between prey and predator follows the
modified Leslie-Gower (or Holling-Tanner) type model with
a type II functional response. A parasite infects the prey
population and the predator feeds on both the susceptible and
infected preys. Environmental stochasticity was incorporated
into the system by considering random perturbation, where
an error term is added with the average value of a parameter
in which perturbation has to be introduced. The error term,
in general, follows a normal distribution and, therefore, can
be approximated by a white noise [84]. Reproduction and
death are frequently affected by the environmental noise [85]
and, consequently, the random perturbation was considered in
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the intrinsic growth rate of susceptible prey, the death rate of
infected prey, and growth rate of predator population.

The main objective of this paper is to explore the popula-
tion extinction routes in a PPP system due to environmental
stochasticity even when the populations remain stable in its
deterministic counterpart. We, therefore, restricted our de-
terministic analysis to the local stability of the coexisting
or interior equilibrium point only. For the stochastic model,
we first showed the non-negativity and global existence of a
solution and proved its boundedness to mean that interacting
populations will not grow abruptly for a long time and each
population density will have some upper limit. It is also shown
that there exists a stationary distribution of the populations
under some parametric restrictions. We have proved that the
asymptotic behavior of the stochastic solution can be made
very close to the coexistence equilibrium solution of the de-
terministic solution by choosing noise intensity small. Some
sufficient conditions have been prescribed on some important
parameters as well as on the noise intensities so that both the
prey and predator populations persist together or in isolation
for a long time. For example, Theorems III.1(i) and III.2(a)
say that both the susceptible and infected preys cannot persist
if the susceptible prey growth rate is lower than some critical
value, measured by half of the corresponding noise intensity.
This restriction may be satisfied in two ways: (i) by increasing
the noise intensity of the system, keeping the other system
parameters unaffected, or (ii) by decreasing the intrinsic birth
rate, leaving the noise intensity unchanged. The susceptible
prey can surely persist if its growth rate is significantly higher
than the critical value [Theorem III.1(iii)].

Eradication of infection from a system is an important
issue in epidemiology and always a challenging task to the
system manager. It is very helpful if the system manager
obtains some insights, possibly by analyzing the disease dy-
namics of the system, regarding various avenues of disease
eradication mechanisms. Our results show that the extinction
of the susceptible prey (as stated above) always leads to the
extinction of the infected prey, causing resolution of infection
from the system. This may be one of the possible ways of
removing the infection from the system, which is straightfor-
ward but maybe, in many cases, unrealistic. Our analysis also
prescribes some alternative way of disease eradication even
when the susceptible prey growth is sufficiently high. In this
case, the infection can be removed from the prey species and
a healthy predator-prey system can be established, following
the result of Theorem III.2 b(i), if the noise intensity on the
infected prey is significantly high and/or the death or removal
rate of the infected prey (γ ) is high and/or the intraspecies
competition of the infected prey (b) is high. Infection can
also be removed through parasites burden reduction [86] so
that force of infection (λ) becomes low and the corresponding
extinction criterion is satisfied [see Theorem III.2 b(i)]. One
can relate these eradication criteria with the basic reproduc-
tion number of epidemic theory, which determines whether
an infection will spread in a population or not. This threshold
quantity may be used as a measure of intervention strategy
and therefore has very important practical utility. It has been
shown that the stochastic system (3) will be disease free if

RS
0 < 1, where RS

0 = λ(a− σ2
1
2 )

b(γ+ σ2
2
2 )

and the corresponding threshold

for the deterministic system (2) is RD
0 < 1, where RD

0 = aλ
bγ

[39]. Thus, RD
0 > RS

0 for any nonzero value of the noises, im-
plying that environmental noise plays a positive role in disease
extinction. The parasitic infection can be eradicated even at
higher infection rate with the right environmental noises (see
Fig. 7).

The disease will always persist if the susceptible prey has
a high growth rate, or the disease has high infectivity [see
Theorem III.2 b(iii)]. On the other hand, predator popula-
tion can not survive if its growth rate is lower than some
critical value, where the critical predator’s growth rate is
defined by half of the corresponding noise intensity, even
when its focal prey strongly persists [see Theorem III.3(i)].
The predator, however, almost surely persists if its growth
rate exceeds the critical value. The predator can survive in
absence of its focal prey at a lower density by consuming the
nonpreferred secondary prey. It is interesting to observe that
all these extinction scenarios occur in the stochastic system
when the corresponding deterministic system shows stable
persistence of all three populations. The average extinction
time decreases with the increasing noise intensity and the
probability distribution of the extinction time follows the log-
normal density curve. Thus, environmental noise may play
a critical role in population persistency as well as infection
removal process by changing the physical property of the
system.

The considered eco-epidemiological situation on which the
model is based has similarity with the red grouse-fox inter-
action in presence of the parasites trichostrongylus tenuis.
We, therefore, verified the field data of red grouse and fox
populations with the time series solutions of our stochastic
model. The solution of our model well fit the experimental
data. Furthermore, the population densities of red grouse and
fox populations have been predicted for the extended periods.
Though both species have been coexisting for a long period
and expected to do so in future if the environmental noises
do not vary significantly, extinction of species cannot be ruled
out. For instance, foxes are regularly killed to maintain grouse
population [86]. This may be a potential threat to the fox
population and may even send it to extinction if the fox killing
rate increases and the intrinsic growth rate falls below the
corresponding critical noise intensity.

This study, however, has not taken into account two im-
portant natural processes but may be considered in a future
study, e.g., Allee effect, which generally enhances the ex-
tinction possibility [87], and immigration, which enhances
the persistence of species, which is at the verge of extinc-
tion [88]. Despite these shortcomings, this paper shows that
environmental variability has significant influences on the
persistence and extinction of interacting species in the natural
environment. It also points out different routes to extinction,
which may be beneficial to the system manager to take various
control measures to prevent species extinction.
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APPENDIX A

Existence of a unique interior equilibrium point E∗(x∗, y∗, z∗) of the system (3) and its stability can be deduced from [39].
The equilibrium population densities are y∗ = (ae+γ c)−(be+λc)x∗

λe−mc , z∗ = r
f (m2 + x∗ + y∗), and x∗ is the unique positive root of the

quadratic equation B1x∗2 − B2x∗ − B3 = 0 where B1 = be+λc
λe−mc [b + λ − λ(be+λc)

λe−mc ] − b = (λ2+mb)c
(λe−mc)2 [λ(e − c) − (eb + mc)], B2 =

be+λc
λe−mc (a − λm1 − rc

f ) + (b + λ) ae+γ c
λe−mc − (a − λm1 − rc

f ) − 2λ
(ae+γ c)(be+λc)

(λe−mc)2 , B3 = −(am1 − rcm2
f ) − ae+γ c

λe−mc (a − λm1 − rc
f ) +

λ( ae+γ c
λe−mc )

2 = c(ma+γ λ)
λe−cm [m1 + ae+γ c

λe−cm ] + rc
f [m2 + ae+γ c

λe−cm ]. The last equation will have a unique positive root if B1 > 0 and B3 > 0.

One can observe that B1 > 0 holds if m < 1
c {λ(e − c) − be} = m∗(say) and e > c. y∗ will be positive if x∗ <

ae+γ c
be+λc and

λ > mc
e = λ∗ (say). Therefore, a set of sufficient conditions for the existence of a unique equilibrium point of system (3) is

(i) e > c, (ii) λ > λ∗, (iii) m < m∗, and (iv) x∗ <
ae + γ c

be + λc
.

The equilibrium E∗, whenever it exists, is locally asymptotically stable if (i) z∗(cx∗+ey∗ )
(m1+x∗+y∗ )2 <

bx∗ + my∗ + ey∗−cx∗
m1+x∗+y∗ , (ii) 2cx∗z∗

(m1+x∗+y∗ )2 + r2

f < (b + λ)x∗, (iii) 2ey∗z∗
(m1+x∗+y∗ )2 + (λ − m)y∗ < r + r2

f , and (iv)

{(λ − b)e − (λ + m)c}[−m + e(m2−m1 )z∗
(m1+x∗+y∗ )2(m2+x∗+y∗ ) ] + (λe − mc)(λ + m) > 0.

APPENDIX B

Theorem B.1 For any initial value (x(0), y(0), z(0)) ∈ R3
+, there exists a unique solution (x(t ), y(t ), z(t )) ∈ R3

+ of the system
(3) for all t � 0 and the solution remains in R3

+ with probability 1, i.e., (x(t ), y(t ), z(t )) ∈ R3
+ for all t � 0 a.s.

Proof. As the coefficients of system (3) are locally Lipschitz continuous, for any given initial value (x(0), y(0), z(0)) ∈ R3
+,

there exists a unique local solution (x(t ), y(t ), z(t )) ∈ R3
+ for all t ∈ [0, τe) [89]. To prove the global existence of the solution,

we need to show that τe = ∞ a.s.
Let κ0 > 0 be sufficiently large so that every initial coordinate (x(0), y(0), z(0)) lies within the interval [ 1

κ0
, κ0]. For every

integer κ > κ0, we define the stopping time:

τκ = inf

{
t ∈ [0, τe) : x(t ) /∈

(
1

κ
, κ

)
or y(t ) /∈

(
1

κ
, κ

)
or z(t ) /∈

(
1

κ
, κ

)}
.

Here τκ is increasing as κ → ∞. Set limκ→∞ τκ = τ∞, when τ∞ � τe a.s. Therefore, if we can show that τ∞ = ∞, we will
obtain τe = ∞ and (x(t ), y(t ), z(t )) ∈ R3

+ a.s. for all t � 0. For this, let us assume that the result is not true and there exist two
constants T > 0 and ε ∈ (0, 1) such that

P(τ∞ � T ) > ε, (B1)

and then there exists an integer κ1 � κ0 such that

P(τκ � T ) � ε, ∀ κ � κ1. (B2)

Define the positive definite function V for all (x, y, z) ∈ R3 as

V = x + 1 − ln x + y + 1 − ln y + z + 1 − ln z.
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FIG. 7. Comparison between stochastic and deterministic basic reproduction numbers for the varying force of infection. The left figure
shows that infection will be eradicated from the deterministic system if λ < λ1 = 0.022 and for the stochastic system the range is 0 < λ <

λ2 = 0.026. Disease persists in both the systems if λ > λ2. This fact is demonstrated with the time series result for three different values of λ

such that λ < λ1, λ1 < λ < λ2, and λ > λ2. It demonstrates that environmental noise can remove infection at higher force of infection. Here
σ1 = 0.3, σ2 = 0.3, σ3 = 0.01 and other parameters are as in Fig. 1.
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One can then apply Ito’s formula to have

dV =
(

1 − 1

x

)
dx + 1

2x2
(dx)2 +

(
1 − 1

y

)
dy + 1

2y2
(dy)2 +

(
1 − 1

z

)
dz + 1

2z2
(dz)2

=
[

(x − 1)

(
a − bx − λy − cz

m1 + x + y

)
+ (y − 1)

(
λx − my − γ − ez

m1 + x + y

)

+ (z − 1)

(
r − f z

m2 + x + y

)
+ σ 2

1 + σ 2
2 + σ 2

3

2

]
dt + σ1(x − 1)dW1(t ) + σ2(y − 1)dW2(t )

+ σ3(z − 1)dW3(t )

�
[
γ + (a + b)x + (b + λ + m)y +

(
r + c + e

m1
+ f

m2

)
z + σ 2

1 + σ 2
2 + σ 2

3

2

]
dt

+ σ1(x − 1)dW1(t ) + σ2(y − 1)dW2(t ) + σ3(z − 1)dW3(t ).

Noting u � 2(u + 1 − ln u) for all u > 0, one can write

dV �
[(

γ + σ 2
1 + σ 2

2 + σ 2
3

2

)
+ 2(a + b)(x + 1 − ln x) + 2(b + λ + m)(y + 1 − ln y)

+ 2

(
r + c + e

m1
+ f

m2

)
(z + 1 − ln z)

]
dt + σ1(x − 1)dW1(t ) + σ2(y − 1)dW2(t ) + σ3(z − 1)dW3(t )

� (�1 + �2V )dt + σ1(x − 1)dW1(t ) + σ2(y − 1)dW2(t ) + σ3(z − 1)dW3(t ),

where

�1 = γ + σ 2
1 + σ 2

2 + σ 2
3

2
, �2 = max

{
2(a + b), 2(b + λ + m), 2

(
r + c + e

m1
+ f

m2

)}
.

Again, defining �3 = max{�1,�2}, we have

dV � �3(1 + V )dt + σ1(x − 1)dW1(t ) + σ2(y − 1)dW2(t ) + σ3(z − 1)dW3(t ). (B3)

Integrating both sides of (B3) from zero to t1 ∧ τκ for any t1 � T and taking the expectation, we obtain

EV (x(t1 ∧ τκ ), y(t1 ∧ τκ ), z(t1 ∧ τκ ))

� V (x(0), y(0), z(0)) + �3 E
∫ t1∧τκ

0
(1 + V )dt

� V (x(0), y(0), z(0)) + �3t1 + �3 E
∫ t1∧τκ

0
V dt

� V (x(0), y(0), z(0)) + �3T + �3 E
∫ t1

0
V (x(τκ ∧ t ), y(τκ ∧ t ), z(τκ ∧ t ))dt

= V (x(0), y(0), z(0)) + �3T + �3

∫ t1

0
EV (x(τκ ∧ t ), y(τκ ∧ t ), z(τκ ∧ t ))dt .

Applying Gronwall’s inequality, we get

EV (x(t1 ∧ τκ ), y(t1 ∧ τκ ), z(t1 ∧ τκ )) � (V (x(0), y(0), z(0)) + �3T )e�3(t1∧τκ ) = �4 (say). (B4)

Set �κ = {τκ � T } for all κ � κ1. Thus, following (B2), we get P(�κ ) � ε for all ω ∈ �κ . Clearly, at least
one of x(τκ, ω), y(τκ, ω), z(τκ, ω) is equal to either κ or 1

κ
. Hence V (x(τκ ), y(τκ ), z(τκ )) is no less than

min {κ + 1 − ln κ, 1
κ

+ 1 + ln κ}. Form (B1) and (B4), we then obtain

�4 � E [1�κ
V (x(τκ, ω), y(τκ , ω), z(τκ, ω))] � ε

[
(κ + 1 − ln κ ) ∧

(
1

κ
+ 1 + ln κ

)]
,

where 1�κ
is the indicator function of �κ . Therefore, letting κ → ∞, we get ∞ > �4 = ∞, a contradiction and hence τ∞ = ∞

a.s. This implies the global existence of the solution of system (3). �

APPENDIX C

Theorem C.1 For any initial value (x(0), y(0), z(0)) ∈ R3
+, there exists some bound (x̄, ȳ, z̄) of the solution (x(t ), y(t ), z(t )) ∈

R3
+ of the system (3) for all t � 0.
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Proof. To prove this result, we will use the following well known lemma.
Lemma C.1 [90] Let �(t ) be a solution of the following system:{

d�(t ) = �(t )(a − bφ(t ))dt + σ1dW1(t ),
�(0) = x(0). (C1)

Then lim supt→∞ E [�(t )] � a
b .

We now prove that the solutions of system (3) are stochastically ultimately bounded for any positive initial value. First we
show that any solution (x(t ), y(t ), z(t )) of system (3) with any positive initial value (x(0), y(0), z(0)) ∈ R3

+ is uniformly bounded
in the mean. Observe that

dx(t ) � x(t )(a − bx(t ))dt + σ1x(t )dW1(t ).

Let

�(t ) = e(a− σ2
1
2 )t+σ1W1(t )

1
x(0) + b

∫ t
0 e(a− σ2

1
2 )θ+σ1W1(θ )dθ

.

Then �(t ) is the unique solution of (C1).
By the comparison theorem of the stochastic equation, we get x(t ) � �(t ) a.s. for all t ∈ [0, τe). Following Lemma C.1, we

have

lim sup
t→∞

E [x(t )] � a

b
a.s. (C2)

Let G(t ) = x(t ) + y(t ). The time derivative of G(t ) along the system (3) is given by

dG(t ) =
[

x(t )(a − bx(t )) − my2(t ) − γ y(t ) − cx(t )z(t )

m1 + x(t ) + y(t )
− ey(t )z(t )

m1 + x(t ) + y(t )

]
dt

+ x(t )σ1dW1(t ) + y(t )σ2dW2(t )

� [x(t )(a − bx(t )) − γ y(t )]dt + x(t )σ1dW1(t ) + y(t )σ2dW2(t )

� [2ax(t ) − bx2(t ) − ξ (x(t ) + y(t ))]dt + x(t )σ1dW1(t ) + y(t )σ2dW2(t ), where ξ = min{a, γ }
= [2ax(t ) − bx2(t ) − ξG(t )]dt + x(t )σ1dW1(t ) + y(t )σ2dW2(t ).

Integration of both sides from zero to t gives

G(t ) � G(0) +
∫ t

0
[2ax(t ))(θ ) − bx2(θ ) − ξG(θ )]dθ + σ1

∫ t

0
x(θ )dW1(θ ) + σ2

∫ t

0
y(θ )dW2(θ ).

Taking the expectation, one gets

E [G(t )] � G(0) +
∫ t

0
E [2ax(θ ) − bx2(θ ) − ξG(θ )]dθ.

On differentiation, we have

dE [G(t )]

dt
� 2aE [x(t )] − bE [x2(t )] − ξE [G(t )]

� 2aE [x(t )] − b(E [x(t )])2 − ξE [G(t )].

As max{2aE [x(t )] − b(E [x(t )])2} = a2

b ,

dE [G(t )]

dt
� a2

b
− ξE [G(t )] ⇒ 0 � lim sup

t⇒∞
E [G(t )] � a2

bξ
⇒ lim sup

t→∞
E [x(t ) + y(t )] � a2

bξ
a.s.

Hence, y(t ) is also uniformly bounded in the mean a.s. Now, following Markov’s inequality, for any positive constant α there
exists β > 0 such that P(x > α) � E (x)

β
. Following (C2), we then have

lim sup
t→∞

P(x > α) � δ1 a.s., where δ1 = a

bβ
.

Therefore, for any positive constant α > 0, there is a δ1 > 0 such that

lim sup
t→∞

P(x > α) � δ1 a.s.
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Hence, x(t ) of system (3) is stochastically ultimately bounded and there exists a positive constant, say x̄ (>0), such that for all
t ∈ [0, τe)

lim sup
t→∞

x(t ) � x̄ a.s.

In a similar manner, we can show that y(t ) is also stochastically ultimately bounded and there exists a positive constant, say ȳ
(>0), such that for all t ∈ [0, τe)

lim sup
t→∞

y(t ) � ȳ a.s.

To show z(t ) is also uniformly bounded in the mean, we observe that

dz(t ) = z

(
r − f z

m2 + x + y

)
+ σ3zdW3(t ) � z

(
r − f z

m2 + x̄ + ȳ

)
+ σ3zdW3(t ).

Proceeding as before, we then obtain

lim sup
t→∞

E [z(t )] � r(m2 + x̄ + ȳ)

f
a.s.

Hence z(t ) of system (3) is stochastically ultimately bounded and there exists a positive constant z̄ > 0 such that for all t ∈ [0, τe)

lim sup
t→∞

z(t ) � z̄ a.s.

Hence the theorem is proven.

APPENDIX D: PROOF OF THEOREM III.1

The following definition is well known [61].
Definition D.1 Let a function g(t ) be such that it represents a population at any time t and g(t ) > 0 for all t � 0. Then we

have the following.
(a) g(t ) is said to go to extinction in the mean if lim supt→∞

1
t

∫ t
0 g(θ )dθ < 0.

(b) f (t ) is said to be nonpersistent in the mean if lim supt→∞
1
t

∫ t
0 g(θ )dθ = 0.

(c) f (t ) is said to be weakly persistent in the mean if lim supt→∞
1
t

∫ t
0 g(θ )dθ > 0.

(d) f (t ) is said to be strongly persistent in the mean if lim inf t→∞ 1
t

∫ t
0 g(θ )dθ > 0.

We now prove Theorem III.1. (i) From the first equation of system (3), it follows that

dx(t ) � x(t )(a − bx(t ))dt + σ1x(t )dW1(t ).

If we consider the system

dY (t ) = Y (t )(a − bY (t ))dt + σ1Y (t )dW1(t ),Y (0) = Y0

then

Y (t ) = e(a− σ2
1
2 )t+σ1W1(t )

1
Y0

+ b
∫ t

0 e(a− σ2
1
2 )s+σ1W1(s)ds

.

Obviously x(t ) � Y (t ) ∀t and if a − σ 2
1
2 < 0, then limt→∞ Y (t ) = 0 and since x(t ) is non-negative, we have limt→∞ x(t ) = 0.

(ii) We have from the first equation of system (3)

d (ln(x)) =
[

a − bx − λy − cz

m1 + x + y
− σ 2

1

2

]
dt + σ1dW1(t ),

ln(x(t ))

t
=

(
a − σ 2

1

2

)
− b

t

∫ t

0
x(s)ds − λ

t

∫ t

0
y(s)ds − c

t

∫ t

0

z(s)

m1 + x(s) + y(s)
ds +

∫ t
0 σ1dW1(t )

t
+ lnx(0)

t

∴ lnx(t ) − lnx(0) �
(

a − σ 2
1

2

)
t − b

∫ t

0
x(s)ds + M1, (D1)

where M1 = ∫ t
0 σ1dW1(t ). By the strong law a large number for martingales yields

lim
t→∞

M1(t )

t
= 0 a.s.
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From the property of limits, for arbitrary ε1 > 0, ∃ T1 > 0 such that ∀ t � T1, M1(t )
t � ε1. From (D1), under the assumption

a − σ 2
1
2 = 0, we have

1

t
ln

x(t )

x(0)
� ε1 − b

x(0)

t

∫ t

0

x(s)

x(0)
ds

∴ lim sup
t→∞

1

t

∫ t

0
x(s)ds � ε1.

Since ε1 is arbitrary and x(t ) is non-negative, we therefore have

lim sup
t→∞

1

t

∫ t

0
x(s)ds = 0

and x(t ) is nonpersistent in the mean.
Before going to the next proof, we define the following well known lemma.
Lemma D.1 [91] Suppose w(t ) ∈ C(� × [0,∞),R0

+), where R0
+ = {p | p > 0, p ∈ R}.

(1) If there exist two positive constants T and r0 such that

ln(w(t )) � rt − r0

∫ t

0
w(θ )dθ + σ n

i=1αiWi(t ), ∀t � T,

where αi (1 < i < n) are constants, then{
lim supt→∞

1
t

∫ t
0 w(θ )dθ � r

r0
a.s., if r � 0;

limt→∞ w(t ) = 0 a.s., if r < 0.

(2) If there exist three positive constants T, r, r0 such that

ln(w(t )) � rt − r0

∫ t

0
w(θ )dθ + σ n

i=1αiWi(t ), ∀t � T,

then

lim inf
t→∞

1

t

∫ t

0
w(θ )dθ � r

r0
a.s.

(iii) Again, from the first equation

d ln x �
(

a − bx − λy − cz

m1
− σ 2

1

2

)
dt + σ1dW1(t )

⇒ ln
x(t )

x(0)
�

(
a − λȳ − cz̄

m1
− σ 2

1

2

)
t − b

∫ t

0
x(θ )dθ + σ1W1(t ).

Therefore, if a − λȳ − cz̄
m1

− σ 2
1
2 > 0 then by applying Lemma D.1, we obtain

lim inf
t→∞

1

t

∫ t

0
x(t ) � 1

b

(
a − λȳ − cz̄

m1
− σ 2

1

2

)
> 0.

Evidently, x(t ) is strongly persistent in the mean if a >
σ 2

1
2 + λȳ + cz̄

m1
.

APPENDIX E: PROOF OF THEOREM III.2

(a) Suppose a − σ 2
1
2 < 0. From Theorem III.1, one can easily see that

lim sup
t→∞

1

t

∫ t

0
x(θ )dθ < 0.

Integration of the second equation of system (3) yields

ln(y(t ))

t
= λ

t

∫ t

0
x(s)ds − m

t

∫ t

0
y(s)ds − γ − σ 2

2

2
− e

t

∫ t

0

z(s)

m1 + x(s) + y(s)
ds +

∫ t
0 σ2dW2(t )

t
+ lny(0)

t
. (E1)
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Then the equation (E1) coupled with the extinction condition of x(t ) yields

ln y(t ) − ln y(0)

t
�

(
−γ − σ 2

2

2

)
+ λ

t

∫ t

0
x(θ )dθ + σ2

∫ t
0 dW2(t )

t

⇒ lim sup
t→∞

1

t

∫ t

0
y(θ )dθ �

(
−γ − σ 2

2

2

)
< 0

⇒ lim
t→∞ y(t ) = 0.

Therefore, extinction of x(t ) implies the extinction of y(t ).

(b) (i) If we consider a − σ 2
1
2 > 0 then from the first equation of (3)

ln x(t ) − ln x(0)

t
� a − σ 2

1

2
− b

t

∫ t

0
x(θ )dθ + σ1

∫ t
0 dW1(t )

t
. (E2)

Lemma D.1 then leads to

lim sup
t→∞

1

t

∫ t

0
x(θ )dθ � a − σ 2

1
2

b
. (E3)

Again from (3), we have

ln y(t ) − ln y(0)

t
�

(
−γ − σ 2

2

2

)
+ λ

t

∫ t

0
x(θ )dθ − m

t

∫ t

0
y(θ )dθ + σ2

W2(t )

t

∴ lim sup
t→∞

1

t

∫ t

0
y(θ )dθ � λ

(
a − σ 2

1
2

) − b
(
γ + σ 2

2
2

)
mb

.

(E4)

Thus, if λ(a − σ 2
1
2 ) < b(γ + σ 2

2
2 ) then limt→∞ y(t ) = 0.

(ii) Assume lim supt→∞
1
t

∫ t
0 y(θ )dθ � 0. For sufficiently small η > 0, there exists T > 0 such that for all t > T

λ

t

∫ t

0
x(θ )dθ < lim sup

t→∞
λ

t

∫ t

0
x(θ )dθ + η.

The second equation of (3) then yields

ln y(t ) − ln y(0)

t
�

(
−γ − σ 2

2

2

)
+ λ

t

∫ t

0
x(θ )dθ − m

t

∫ t

0
y(θ )dθ + σ2

W2(t )

t

�
(

−γ − σ 2
2

2

)
+ lim sup

t→∞
λ

t

∫ t

0
x(θ )dθ + η − m

t

∫ t

0
y(θ )dθ + σ2

W2(t )

t
.

By Lemma D.1, one have

lim sup
t→∞

1

t

∫ t

0
y(θ )dθ �

( − γ − σ 2
2
2

) + lim supt→∞
λ
t

∫ t
0 x(θ )dθ + η

m
.

If λ(a − σ 2
1
2 ) = b(γ + σ 2

2
2 ) then we must have a >

σ 2
1
2 . As η is arbitrary, we get from (E3)

lim sup
t→∞

1

t

∫ t

0
y(θ )dθ � −b

(
γ + σ 2

2
2

) + λ
(
a − σ 2

1
2

)
bm

= 0, provided λ

(
a − σ 2

1

2

)
= b

(
γ + σ 2

2

2

)
.

Thus, y(t ) is nonpersistent in the mean a.s. if λ(a − σ 2
1
2 ) = b(γ + σ 2

2
2 ).

(iii) From the second equations of (3), we have

1

t
ln

y(t )

y(0)
= −

(
γ + σ 2

2

2

)
+ λ

t

∫ t

0
x(θ )dθ − m

t

∫ t

0
y(θ )dθ − 1

t

∫ t

0

ez(θ )

m1 + x(θ ) + y(θ )
dθ + σ2

W2(t )

t

� −
(

γ + σ 2
2

2

)
+ lim inf

t→∞
λ

t

∫ t

0
x(θ )dθ − m

t

∫ t

0
y(θ )dθ − 1

t

∫ t

0

ez(θ )

m1 + x(θ ) + y(θ )
dθ + σ2

W2(t )

t

� −
(

γ + σ 2
2

2

)
+ λ

b

(
a − λȳ − ez̄

m1
− σ 2

1

2

)
− ez̄

m1
− m

t

∫ t

0
y(θ )dθ + σ2

W2(t )

t
.
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Assuming λ(a − σ 2
1
2 ) > b(γ + σ 2

2
2 ) + λ2ȳ + (λc + be) z̄

m1
, from Lemma D.1, it follows that

lim inf
t→∞

1

t

∫ t

0
y(θ )dθ �

λ
(
a − σ 2

1
2

) − b
(
γ + σ 2

2
2

) − (
λ2ȳ + (λc + be) z̄

m1

)
mb

.

Clearly, y(t ) is strongly persistent in the mean if λ(a − σ 2
1
2 ) > b(γ + σ 2

2
2 ) + λ2ȳ + (λc + be) z̄

m1
.

The proof of III.3 is similar to that of Theorem III.1 and hence omitted.

Remark E.1 From (E2), we have lim supt→∞
ln x(t )

t � a − σ 2
1
2 . Then there exists a sufficiently large T3 > 0 such that ln x(t )

t <

a − σ 2
1
2 ∀ t > T3. Therefore, x(t ) < e(a− σ2

1
2 ) t ∀ t > T3. It shows that x is a monotonic decreasing function of time under the

restriction a <
σ 2

1
2 and the extinction of the susceptible prey will be faster as the noise, σ1, becomes larger. Similarly, one

can show from (E4) that the infected prey y goes extinct monotonically under the restriction λ(a − σ 2
1
2 ) < b(γ + σ 2

2
2 ) and the

extinction will be quicker if the corresponding noise σ2 grows faster. From (3), it is straightforward to show that increasing noise
in predator population also ushers quicker extinction.

APPENDIX F: PROOF OF THEOREM III.4

System (3) can be written as

d

⎛
⎝x(t )

y(t )
z(t )

⎞
⎠ =

⎛
⎜⎝

x(a − bx) − λxy − cxz
m1+x+y

λxy − my2 − γ y − eyz
m1+x+y

r − f z
m2+x+y

⎞
⎟⎠dt +

⎛
⎝σ1x(t )

0
0

⎞
⎠dW1(t ) +

⎛
⎝ 0

σ2y(t )
0

⎞
⎠dW2(t )

+
⎛
⎝ 0

0
σ3z(t )

⎞
⎠dW3(t )

and the diffusion matrix is

A′ =
⎛
⎝σ 2

1 x2 0 0
0 σ 2

2 y2 0
0 0 σ 2

3 z2

⎞
⎠.

Define V̄ (x, y, z) = V1(x, y, z) + V2(x, y, z) + V3(x, y, z), where

V1 = A
[
x − x∗ − x∗ ln

x

x∗
]
,V2 = A

[
y − y∗ − y∗ ln

y

y∗

]
,V3 = 1

r

[
z − z∗ − z∗ ln

z

z∗
]
.

At E∗, we have

a = bx∗ + λy∗ + cz∗

m1 + x∗ + y∗ , γ = λx∗ − my∗ − ez∗

m1 + x∗ + y∗ ,
f

r

(
z∗

m2 + x∗ + y∗

)
= 1. (F1)

Using (F1), one can calculate

dV̄ = A

[
1 − x∗

x

]{[
ax − bx2 − λxy − cxz

m1 + x + y

]
dt + σ1xdW1(t )

}

+A

[
1 − y∗

y

]{[
λxy − my2 − eyz

m1 + x + y
− γ y

]
dt + σ2ydW2(t )

}

+1

r

[
1 − z∗

z

]{[
rz − f z2

m2 + x + y

]
dt + σ3zdW3(t )

}

= LV̄ dt + A(x − x∗)dW1(t ) + A(y − y∗)dW2(t ) + 1

r
(z − z∗)dW3(t ),

032412-17



MAJUMDER, ADAK, AND BAIRAGI PHYSICAL REVIEW E 103, 032412 (2021)

where

LV̄ = −
(

Ab − cz∗

m1 + x + y

)
(x − x∗)2 −

(
m − ez∗

m1 + x + y

)
(y − y∗)2 − f (z − z∗)2

r(m2 + x + y)

+
[

f z∗

r(m2 + x∗ + y∗)(m2 + x + y)
− Ac

m1 + x + y

]
(z − z∗)(x − x∗)

+
[

f z∗

r(m2 + x∗ + y∗)(m2 + x + y)
− Ae

m1 + x + y

]
(z − z∗)(y − y∗)

+ (c + e)z∗(x − x∗)(y − y∗)

m1 + x + y
+ �

� −
(

Ab − cz∗

m1 + x + y

)
(x − x∗)2 −

(
m − ez∗

m1 + x + y

)
(y − y∗)2 − f (z − z∗)2

r(m2 + x + y)

+
[

f z∗

rm2
2

− Ac

m1 + x + y

]
(z − z∗)(x − x∗) +

[
f z∗

rm2
2

− Ae

m1 + x + y

]
(z − z∗)(y − y∗)

+ (c + e)z∗(x − x∗)(y − y∗)

m1 + x + y
+ �

� −
(

Ab − cz∗

m1 + x + y

)
(x − x∗)2 −

(
m − ez∗

m1 + x + y

)
(y − y∗)2 − f (z − z∗)2

r(m2 + x + y)

+
[

f z∗

rm2
2

− Ac

m1 + x̄ + ȳ

]
(z − z∗)(x − x∗) +

[
f z∗

rm2
2

− Ae

m1 + x̄ + ȳ

]
(z − z∗)(y − y∗)

+ (c + e)z∗(x − x∗)(y − y∗)

m1 + x + y
+ �.

Let us assume f z∗

rm2
2

> max { Ac
m1+x̄+ȳ ,

Ae
m1+x̄+ȳ }. Hence

LV̄ � −
(

Ab − cz∗

m1

)
(x − x∗)2 −

(
m − ez∗

m1

)
(y − y∗)2 − f (z − z∗)2

r(m2 + x + y)
+

[
f z∗

rm2
2

− Ac

m1 + x̄ + ȳ

]
|z − z∗||x − x∗|

+
[

f z∗

rm2
2

− Ae

m1 + x̄ + ȳ

]
|z − z∗||y − y∗| + (c + e)z∗|x − x∗||y − y∗|

m1
+ �

� −
[

Ab − cz∗

m1
− f z∗

2rm2
2

− (c + e)z∗

2m1

]
(x − x∗)2 −

[
m − ez∗

m1
− f z∗

2rm2
2

− (c + e)z∗

2m1
+ Ae

2(m1 + x̄ + ȳ)

]
(y − y∗)2

−
[

f

r(m2 + x̄ + ȳ)
+ A(e + c)

2(m1 + x̄ + ȳ)
− f z∗

rm2
2

]
(z − z∗)2 + �.

Therefore, if Ab > cz∗
m1

+ f z∗

2rm2
2
+ (c+e)z∗

2m1
, m + Ae

2(m1+x̄+ȳ) > ez∗
m1

+ f z∗

2rm2
2
+ (c+e)z∗

2m1
, and f

r(m2+x̄+ȳ) + A(e+c)
2(m1+x̄+ȳ >

f z∗

rm2
2

hold, we then
have

dV̄ � −[K (x − x∗)2 + Q(y − y∗)2 + T (z − z∗)2 − �]dt + A(x − x∗)dW1(t ) + A(y − y∗)dW2(t ) + 1

r
(z − z∗)dW3(t )

� −[min {K, Q, T }((x − x∗)2 + (y − y∗)2 + (z − z∗)2) − �]dt + A(x − x∗)dW1(t )

+A(y − y∗)dW2(t ) + 1

r
(z − z∗)dW3(t ).

Integrating it from zero to t , we obtain

V̄ (t ) − V̄ (0) � −min {K, Q, T }
∫ t

0
[(x(s) − x∗)2 + (y(s) − y∗)2 + (z(s) − z∗)2]ds + �t

+
∫ t

0

[
A(x(s) − x∗)dW1(s) + A(y(s) − y∗)dW2(s) + 1

r
(z(s) − z∗)dW3(s)

]
.
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Therefore, ∫ t

0
[(x(s) − x∗)2 + (y(s) − y∗)2 + (z(s) − z∗)2]ds

� V̄ (0)

min {K, Q, T } + �t

min {K, Q, T }

+ 1

min {K, Q, T }
∫ t

0

[
A(x(s) − x∗)dW1(s) + A(y(s) − y∗)dW2(s) + 1

r
(z(s) − z∗)dW3(s)

]
. (F2)

Assume M(t ) = ∫ t
0 [A(x(s) − x∗)dW1(s) + A(y(s) − y∗)dW2(s) + 1

r (z(s) − z∗)dW3(s)]. M is a continuous martingale and
M(0) = 0. Moreover,

〈M, M〉t =
(∫ t

0

[
A(x(s) − x∗)dW1(s) + A(y(s) − y∗)dW2(s) + 1

r
(z(s) − z∗)dW3(s)

])2

=
(∫ t

0

[
A2(x(s) − x∗)2ds + A2(y(s) − y∗)2ds + 1

r2
(z(s) − z∗)2ds

])

�
(

A2(x̄2 + ȳ2) + 1

r2
z̄2

)
t

and

lim sup
t→∞

〈M, M〉t

t
� A2(x̄2 + ȳ2) + 1

r2
z̄2 < ∞ a.s.

We now use the following lemma.
Lemma F.1 Let N = {Nt }t�0 be a real-valued continuous local martingale with N (0) = 0. Then

lim sup
t→∞

〈N, N〉t

t
< ∞ a.s. ⇒ lim

t→∞
Nt

t
= 0 a.s.

Using this lemma, one gets

lim sup
t→∞

M(t )

t
= 0 a.s.

Therefore, from (F2), we obtain

lim sup
t→∞

1

t

∫ t

0
[(x(s) − x∗)2 + (y(s) − y∗)2 + (z(s) − z∗)2]ds � G� a.s.

where G = 1
min {K,Q,T } .

APPENDIX G: PARAMETER ESTIMATION

For the estimation of the parameter set, we first find the best fit parameters for the deterministic system through least
square method such that the sum of the squared difference of deterministic model output and experimental data would be
minimized. Consider the multidimensional parameter set θ = (θ1, θ2, ..., θn) and (t1, y1), (t2, y2), ..., (tn, yn) to be the given set
of experimental data points. If we assume h(t j, θ ) to be the model output at t j time step, then our objective is to minimize the
squared sum of errors (SSE):

SSE(θ ) =
n∑

i=1

(h(ti, θ ) − yi )
2.

Starting from an initial guess of θ , we will find the best parameter set iteratively using the FMINSEARCH algorithm toolbox of
MATLAB. FMINSEARCH is a derivative-free method [92] which finds the minimum of an unconstrained multivariable function using
the Nelder-Mead simplex algorithm as described in Langarias et al. [93]. After the estimation of parameters for the deterministic
system, we search for a proper noise intensity of the stochastic system (3) to obtain a good agreement between stochastic system
output and experimental data. In the quest of suitable noise strength, we compute the SSE, the total sum of squares (SST), and
the corresponding r-squared value for stochastic simulation data and experimental data. The statistical measure of fit r squared
was computed from the relation [94]

r squared = 1 − SSE

SST
.

We considered 10 000 different random values of noise intensities σ1, σ2, σ3 between 0 and 1 through Latin hypercube sampling.
Then for each of these 10 000 tuples (σ1, σ2, σ3), the stochastic system was simulated 1000 times. Taking the mean of the
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1000 simulations, r squared was computed between the average stochastic simulation output and the experimental data. During
the parameter estimation, we intended to keep the values of a, λ, b, e, γ in the observed range of field data, and the rest
parameters (c, f , m1, m, r, m2) were selected such that the existence and stability conditions of the interior equilibrium E∗ hold
simultaneously.
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