
PHYSICAL REVIEW E 103, 032407 (2021)

Roles of phenotypic heterogeneity and microenvironment feedback in
early tumor development

Matthew Smart ,1 Sidhartha Goyal,1,2,* and Anton Zilman 1,2,†

1Department of Physics, University of Toronto, 60 St George St, Toronto, Ontario M5S 1A7, Canada
2Institute for Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario M5S 3G9, Canada

(Received 3 August 2020; revised 23 December 2020; accepted 18 February 2021; published 18 March 2021)

The local microenvironment of a tumor plays an important and commonly observed role in cancer develop-
ment and progression. Dynamic changes in the tissue microenvironment are thought to epigenetically disrupt
healthy cellular phenotypes and drive cancer incidence. Despite the experimental work in this area there are no
conceptual models to understand the interplay between the epigenetic dysregulation in the microenvironment of
early tumors and the appearance of cancer driver mutations. Here, we develop a minimal model of the tissue
microenvironment which considers three interacting subpopulations: healthy, phenotypically dysregulated, and
mutated cancer cells. Healthy cells can epigenetically (reversibly) transition to the dysregulated phenotype, and
from there to the cancer state. The epigenetic transition rates of noncancer cells can be influenced by the number
of cancer cells in the microenvironment (termed microenvironment feedback). Our model delineates the regime
in which microenvironment feedback accelerates the rate of cancer initiation. In addition, the model shows
when and how microenvironment feedback may inhibit cancer progression. We discuss how our framework may
provide resolution to some of the puzzling experimental observations of slow cancer progression.
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I. INTRODUCTION

Cancer initiation and progression is widely thought to oc-
cur through a process referred to as clonal evolution [1,2],
whereby clonal subpopulations emerge spontaneously and
drive tumor growth. Under this setting, cancer progression
is defined by the accumulation of mutations in important
genes termed cancer “drivers”, with typical tumors exhibiting
multiple driver gene aberrations [3]. Some driver genes are
now well known (e.g., p53, KRAS), and they are broadly
characterized as either tumor suppressors or oncogenes [3].
The primary focus of cancer research has been to characterize
the function and regulatory networks of identified driver genes
in order to classify cancer subtypes and identify druggable
targets [3].

Early models of the stepwise accumulation of mutations
in cancer have been successful in describing cancer epidemi-
ology (see the classical work of Armitage and Doll [4], and
more recently Refs. [5,6]). However, these works are some-
what restricted to the later stages of progression, relying on
clinically observable cancer incidence and cancer-associated
death. Contemporary models have focused on the earlier steps
of cancer initiation and early progression, considering con-
straints on the population size including the clonal dynamics
of subpopulations carrying different mutations [7–10]. These
approaches assume each mutation has a specific effect (i.e.,
beneficial, deleterious, or neutral) on clonal fitness. Clonal
subpopulation dynamics can then be described through a va-
riety of modeling techniques. These and similar approaches
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have helped to explain driver mutation acquisition and hetero-
geneity in clonal subpopulations of evolving tumors.

Recently, the gene-centric view of cancer progression has
broadened to accommodate the role of epigenetic changes
(i.e., which do not require mutations). Such epigenetic
changes may arise concurrently with cancer development or
precede it, and can be caused for example by aberrant cell-
cell signaling or nonmutagenic carcinogens [11–13]. Along
with epigenetic changes in cancer cells, the role of the local
microenvironment of developing tumors, which consists of
the cellular and noncellular components within and near the
tumor, has become a subject of intense scrutiny. Interactions
between tumor and nontumor (e.g., stromal, immune) cell
types of the microenvironment play an important role at all
stages of cancer progression [11,14–17].

Experimental studies support the view that cell types and
their relative numbers, especially in the tumor microenviron-
ment, should not be regarded as static (reviewed in Ref. [18]).
Rather, the number of tumor, immune, and stromal cells, as
well as their function, are dynamically changing throughout
all cancer stages, from initiation to metastasis. In more ad-
vanced tumors, for example, T cells in the microenvironment
can adopt “exhausted” phenotypes [15], and macrophages and
fibroblasts can adopt tumor supportive phenotypes [14,16,19].
The frequent and clinically significant reports of cancer-
associated fibroblasts (CAFs) has led to recent work using in
vitro populations of nonsmall cell lung cancer cells which in-
vestigates how the microenvironment composition (including
the presence or absence of CAFs) controls the type of eco-
evolutionary game being played [20]. Several related works
have investigated the role that tumor microenvironment inter-
actions have on cancer progression in other contexts [21–23].
The biological interactions between microenvironmental sub-
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populations are mediated in part by cell-cell signaling. In
addition to classical paracrine signaling pathways, exosomes,
cell secreted nanovesicles capable of shuttling internal el-
ements such as RNA between cells, have been recently
identified as key mediators of cell type disturbances in the tu-
mor microenvironment ([24–26], reviewed in Refs. [27,28]).

The phenotypic transitions seen in noncancer cells of the
microenvironment can occur in the absence of genetic muta-
tions [17,29,30]. At the same time, accumulation of cancer
driver mutations in tumor cells is a fundamental hallmark of
cancer progression. The question of how the phenotypic dy-
namics interacts with and modulates mutation accumulation
during cancer initiation remains open. This question is closely
related to the remarkable prevalence of age-related “indolent”
pre-cancerous lesions found in healthy adults [31] (or upon
autopsy following noncancer cause of death) [32,33], leading
one to question why clinical manifestations of cancer are not
more common than observed. These observations have led to
a hypothesis that, in addition to the tumor promoting roles
outlined above, the microenvironment can also play a role in
restraining cancer progression [34].

To address these puzzling observations and clarify the
early steps of cancer initiation, we consider a simplified
model of the tissue microenvironment involving three in-
teracting subpopulations: healthy, dysregulated, and cancer
cells. Healthy cells can epigenetically (reversibly) transition
to the dysregulated phenotype, and from there to the cancer
state. The epigenetic transition rates of noncancer cells can
be influenced by cancer cells in the microenvironment (e.g.,
through aberrant paracrine signaling). We refer to this as
“microenvironment feedback”. We focus on a scenario where
the intermediate, dysregulated state is a mutator phenotype
[35], and the cancer cells are defined as having a driver
mutation. The framework is also applicable to more general
stepwise scenarios, such as the common metaplasia-dysplasia
sequence of cancer progression [36]. Our model extends pre-
vious work on the stepwise accumulation of mutations in
cell lineages such as Ref. [9], by considering reversibility
and microenvironment feedback on the epigenetic transition
rates. Deterministically, we find four distinct regimes of the
cellular composition in the microenvironment. These regimes
include one which represents healthy, cancer-free tissue, an-
other in which the entire population has acquired cancer driver
mutations, and two intermediate regimes. With the structure
of these regimes characterized, we investigate their implica-
tions for cancer initiation by studying the mean time for a
clonal subpopulation with two driver mutations to arise, a
minimal proxy for cancer initiation [3]. We find that positive
microenvironment feedback can be a primary driver of the
rate of cancer progression on the one hand and, surprisingly,
potentially slow it down depending on the relative division
rates of the healthy, dysregulated, and mutated cells. Our
results explain how microenvironment feedback can support
or inhibit cancer progression in different situations. Finally,
we will discuss how the model sheds light on the dynamics of
cancer initiation.

II. MODEL

A. Outline of the model

Two fundamental characteristics of cancer initiation are
the phenotypic transitions in noncancer cells of the local mi-

croenvironment (which can occur in the absence of genetic
mutations), and accumulation of driver mutations in cancer
cells. To bridge these two concepts, we treat cell type dys-
regulation as an intermediate step in cancer establishment and
progression, whereby perturbed cells transition to the cancer-
ous states with increased mutation rates. Mutagenicity can be
indirectly mediated, for example, by stable downregulation
of p53, or directly mediated through elevated expression of
mutagenic elements, such as the APOBEC family of proteins
[37,38]; microenvironmental mutagenicity has been estab-
lished in the context of hypoxia and chronic inflammatory
settings [39,40]. Furthermore, as the number of cells with
driver mutations accumulates, cell signaling is increasingly
dysregulated, creating a positive feedback on the system (“mi-
croenvironment feedback”, see Fig. 1).

We capture these features in a minimal model of three
microenvironment subpopulations: x, cells in healthy states;
y, cells in the mutator state; and z, cells which have acquired
an irreversible cancer driver mutation. To focus the analysis
on epigenetic switching and microenvironment feedback, we
assume the rate at which the healthy cells x acquire cancer
mutations is much smaller than the rate at which the mutator
cells y acquire cancer mutations. We denote the division rate
of each class of cell by a, b, c, respectively, as shown in
Fig. 1. In this paper, we are focusing on the early stage cancer
development (pre-cancerous metaplasia and dysplasia) [36],
where the relative numbers of each cell type are abnormal
but there is no net expansion of the total population. To
enforce homeostatic tissue size constraints, we assume that
the total population is constant and dynamically conserved,
N ≡ x + y + z. The qualitative features of our analysis are not
changed by relaxing this assumption, see Appendix B.

To summarize, our population dynamics model accounts
for state transitions, growth, and population-regulating cell
death. The mean-field dynamics of the system are given by

ẋ = ax − f̄ (x)x − α+x + α−y,

ẏ = by − f̄ (x)y + α+x − α−y − μy,

ż = cz − f̄ (x)z + μy, (1)

where the death rate f̄ (x) = ax+by+cz
N enforces fixed popula-

tion size N . This can be written concisely in vector form,

ẋ = (A + D)x − f̄ (x)x, (2)

where

A =
⎡
⎣−α+ α− 0

α+ −α− − μ 0
0 μ 0

⎤
⎦, D =

⎡
⎣a 0 0

0 b 0
0 0 c

⎤
⎦.

The matrix A describes the transition rates between sub-
populations, and D the division rates. μ is the rate of acquiring
driver gene mutations by y cells, and α+ (α−) denotes the
transition rate from x to y (y to x). Note that since the over-
all population number is conserved, the system is effectively
two-dimensional, and trajectories evolve on the positive sim-
plex � ≡ {x � 0, y � 0, z � 0 | N = x + y + z} [i.e., the
physical region of the N = x + y + z plane, see Fig. 2(d)].
Further, without loss of generality we set a = 1.0 throughout;
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FIG. 1. Model schematic. (a) Birth/death and transition dynamics between cells in healthy states x, mutator states y, and cells with cancer
driver mutations z. (b) Incorporating positive feedback from the microenvironment on cell type destabilization. At z = 0 the basal rates are α0

+,
α0

−. When z → N dysregulation in cell-cell signaling destabilizes normal phenotypes (relative to the mutator ones), as reflected in the model
via saturation of α+(z) to its maximum as z → N , and vice versa for α−(z). (c) The relative height of two potential wells equalizing reflects
the effect of feedback on the transition rates.

timescales are therefore measured in terms of the division rate
of healthy x cells.

B. Microenvironment feedback on phenotypic transition rates

As mentioned previously, a major mechanism for cell type
destabilization (x → y transitions) is through dysregulated
signaling. Here we assume cells with driver mutations to be
the primary source of dysregulated signaling. In a nutshell, we
assume that as more cells in a tissue acquire driver mutations,
the local signaling in the microenvironment is increasingly
dysregulated, further enhancing the cell type destabilization
[Figs. 1(b) and 1(c)].

This effective positive feedback is incorporated in the
model through z-population-dependent transition rates be-
tween the normal x and pathological y cell states [α+ and
α−, Fig. 1(b)], where increases in number of cancer cells z
increases the net rate of epigenetic transitions from x to y
[Fig. 1(c)]. We implement this via the following sigmoidal
forms:

α+(z) = α0
+(1 + (γ − 1)g(z)),

α−(z) = α0
−

(
1 +

(
1

γ
− 1

)
g(z)

)
, (3)

where g(z) = 1
1 + exp(2β(r−z/N )) is akin to the Hill function.

The results we present are robust to the specific choice of
feedback function, see Appendix A 4. Here γ � 1 controls the
feedback strength, and r, β, are the positive shape parameters
(we choose β = 5, r = 0.5 throughout). Note as z → 0, we

have α+ → α0
+ and α− → α0

−. Conversely, as z → N we have
α+ → γα0

+ and α− → α0
−/γ , stabilizing the mutator state y

when feedback is present (γ > 1).

C. Stochastic description of cancer initiation

In solid tissue, cancer typically begins in small, repeat-
ing tissue subunits in which cell growth is tightly regulated
[41]. Examples include mammary and pancreatic ducts, liver
lobules, and most notably, colon crypts. Such elementary
structures have very small population sizes relative to their
parent organ. In general, mean-field population dynamics
Eq. (1) accurately describe the mean behavior of a large
ensemble of such systems; for small system sizes, individ-
ual systems may vary significantly from the mean behavior.
Understanding this variation is essential to understand the
kinetics of cancer progression.

To realize the stochastic description, we consider the mas-
ter equation ṗ = Mp associated with our dynamics Eq. (1).
Here p is a vector of occupancy probabilities (i.e. of all
possible (x, y, z) states), and M stores their transition rates
[42]. As solving the master equation directly is intractable in
this setting, we perform Gillespie simulation [43] to compute
stochastic trajectories. In our stochastic analysis we intro-
duce a new absorbing state to our system, ẑ, which denotes
the number of cells with two cancer driver mutations. Two
driver mutations are regarded as the minimum required to
escape homeostatic control (i.e., tumor growth and malignant
progression), and localized tumors are often staged by the
presence of multiple driver mutations [3]. Alternative defi-
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FIG. 2. Deterministic behavior of the model with and without feedback. (a) Without feedback (γ = 1) the stability diagram has two distinct
regions (I, II) defined by the stabilities of the FPs in these regions. For parameters in region I, the system contains a stable “low-z” FP x(1), and
the unstable all-z FP x(0), as shown in (d). In region II the all-z FP x(0) is stable and is the only FP in the positive simplex, � ≡ {x � 0, y �
0, z � 0|N = x + y + z} (the unstable FP lies just outside). The two regions are separated by a line of transcritical bifurcations, along which
x(1) approaches x(0) to exchange stability. (b) Positive feedback (here shown for γ = 4) leads to the emergence of two additional regimes, III
and IV. Region III is similar to region I but the stable FP now has intermediate levels of z cells, and is denoted x(2). The dashed line separating
regions II and III is a transcritical bifurcation as the intermediate FP x(2) crosses x(0) to move outside �. The dotted line separating regions I
and III is a “ghost” of a saddle node bifurcation when μ → 0 (Appendix A). Region IV is a bistable region where the low-z FP x(1) and the all-z
FP x(0) are both stable, and the unstable intermediate FP x(2) splits their basins of attraction. Parameters in (a) and (b): α+ = 0.2, α− = 1.0,
μ = 10−4. (c) (μ, γ ) cross section of the stability diagram for α+ = 0.2, α− = 1.0, b = 0.8, c = 0.9. For (a)–(c), color denotes the z fraction
of the unique stable FP in both regions. (d) Characteristic flow lines and FP locations (for γ = 4) for each region, I–IV, are illustrated on �.
Open dots denote unstable saddle points and solid dots denote stable FPs.

nitions of cancer initiation are possible (e.g., the first in situ
cancer cell arising during a metaplastic-dysplastic progression
– see Discussion). Therefore, to estimate cancer initiation rate
as a function of parameters, we study how the distribution of
first-passage times (FPTs) to ẑ = 1 depends on the parameter
regime and the initial condition of the system.

III. RESULTS

A. Population dynamics without microenvironment feedback

We first consider the steady state behavior when there is
no microenvironment feedback (γ = 1). Fixed points (FPs)
x∗ for the dynamics Eq. (2). are solutions of the steady state
condition ẋ = 0, i.e.,

(A + D)x∗ = f̄ (x∗)x∗. (4)

The FPs for a given set of parameters are therefore
(normalized) eigenvectors of the A + D matrix with corre-
sponding eigenvalues f̄ (x∗), implying at most three FPs.

Note that x(0) = (0, 0, N ) is a FP that is independent of
model parameters, and it corresponds to every cell having
acquired a driver mutation. We refer to this as the “all-z” FP
and interpret it as a precancerous state.

As the total population is conserved, we eliminate z =
N−x − y to write equations describing equivalent two-

dimensional dynamics on the plane:

ẋ = c − a

N
x2 + c − b

N
xy + (a − c − α+)x + α−y,

ẏ = c − b

N
y2 + c − a

N
xy + (b − c − α− − μ)y + α+x. (5)

The two other FPs can be found by solving Eq. (5) for
x∗ �= 0 and y∗ �= 0. Only one, x(1), is possibly physical (i.e.,
able to lie in �). We find that x(1) is unstable when it is outside
�, and stable when it is lies in �. As x(1) passes through x(0) to
enter �, they exchange stability via a transcritical bifurcation,
so that only one of them is stable for a given set of parameters
[see Fig. 2(a), regions I and II]. For low μ (the biological
scenario which we focus on), x(1) will typically lie close to
the xy edge of � when it is stable; we therefore refer to it as
the “low-z” FP.

In summary, without feedback there is exactly one biologi-
cal and stable FP of the dynamics for all biological parameter
values. As parameters such as the mutation rate μ or the y,
z growth rates are varied, this stable fixed point undergoes
a continuous transcritical bifurcation between two regimes:
“all-z” (z∗ = N ) and “low-z” (0 � z∗ < N ), Figs. 2(a) and
2(c). These regimes can be interpreted as pre-cancer and
cancer-free states, respectively.

Note that in the limit α− → 0, the model reduces to
the irreversible chain model used in previous works in the
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context of mutation accumulation in populations (see, e.g.,
Refs. [9,44]). In this limit the x → y transition is effectively
irreversible, and so α+ mathematically can be regarded as a
mutation rate to acquire the first “mutation” (the y state), with
z now the number of double mutants. Our framework therefore
encapsulates previous analysis of the model in the irreversible
(α− → 0) limit and extends it to the more general reversible
case. For the case α− = 0, a (b, c) phase diagram has been
previously reported [9], with four distinct regions separated by
linear bifurcation curves. We find that reversibility simplifies
the phase diagram overall, with two instead of four distinct FP
topologies separated by a single transcritical bifurcation curve
[Fig. 2(a)].

B. Population dynamics with microenvironment feedback

Positive microenvironment feedback leads to a richer phase
diagram with four distinct population regions [Figs. 2(b) and
2(c)] denoted as regions I-IV. For low c and a wide range of b
(region I), the unique stable FP is dominated by healthy cells
(x). As b increases, some of the healthy fraction transitions
to the mutator state (y), but the fraction of cells with cancer
driver mutations (z) remains very low (moving upwards in
region I of Fig. 2(b) causes the corresponding FP [Fig. 2(d)]
to move from the bottom-left corner of � towards the bottom
right).

For high b and increasing c (moving from region I to III),
there is a qualitative change where the low-z FP x(1) moves up
to an intermediate-z value, and a third unstable FP moves to lie
just below � [Fig. 2(d)]. For small but nonzero μ this change
is abrupt but does not involve any bifurcations; it is a “ghost”
of a saddle node bifurcation which occurs in the limit μ → 0
(see Appendix A). We therefore denote this intermediate-z FP
separately by x(2). For fixed (b, c), the z coordinate of x(2) in
region III decreases with γ ; conversely, the stable FP in region
I is qualitatively unchanged by feedback, since z is near zero
there.

For low b and increasing c [moving right in Fig. 2(b)], the
population switches from a monostable region (I) to a bistable
region (IV). In region IV, a low-z FP and x(0) are both stable,
and the intermediate FP x(2) splits their respective basins of
attraction [Fig. 2(d)], region IV). The boundary between IV
and II is a line of saddle node bifurcations between the low-z
and intermediate FP; if c is increased beyond the boundary,
bistability is lost. The boundary between regions I and IV
[Fig. 2(b)] is another line of saddle node bifurcations, which
meets the right saddle node branch at a cusp. For all bio-
logically relevant values of μ considered in this paper, this
boundary effectively overlaps the transcritical line describing
stability switching of x(0) [which separates regions I/IV and
II/III in Fig. 2(b)). The region between the two lines expands
for large μ and is described in Appendix A. By taking a test
point in region IV [e.g., b = 0.8, c = 0.9, in Fig. 2(b)] and
varying μ and γ , we find that the transition from regime I to
IV is robust to a wide range of possible values of μ [Fig. 2(c)].

Microenvironment feedback that increases the transition
rate into mutator states has several implications for carcino-
genesis. As feedback becomes stronger (γ is increased), two
conjugate population phases, regions III and IV [Fig. 2(b)],
appear. Closer examination of Figs. 2(a) and 2(b) shows

that region III develops within region II whereas region IV
develops within region I. This can be understood in the fol-
lowing way: microenvironment feedback can promote cancer
progression in situations where the cancer cells and mutator
cells divide slowly (region IV); conversely, microenvironment
feedback can inhibit cancer progression when mutator cells
divide fastest (region III). In addition, we find that feedback
allows the all-z, cancer-promoting FP to be stable even when
the driver mutation rate μ is orders of magnitude lower than
what is needed in the absence of feedback [region IV in
Fig. 2(c)] is accessible with feedback at low μ).

C. First-passage time to cancer initiation

As mentioned above, understanding the role of microen-
vironment feedback on cancer initiation requires a stochastic
perspective. We use the FPT to acquire additional cancer
driver mutations as a measure of cancer progression, i.e.,
the FPT to the generation of the first cell with two-driver
mutations (we call such cells “double mutants” and denote
them by ẑ) which is typically required for cancer initiation
[3]. Other definitions of cancer initiation are possible (e.g., the
generation of the first in situ cancer cell during a metaplastic-
dysplastic progression – see Discussion). We sample the FPT
distribution p(τ ) through Gillespie simulation of the master
equation of the system Eq. (1) (Sec. II C), starting from the
healthy state x = N, y = z = 0. For simplicity we consider
the mutation rate μ from z to ẑ to be the same as from y to z.

To focus on the role of the microenvironment, we compare
the stochastic dynamics of cancer initiation under (strong)
feedback to the no feedback case in regions III and IV (Fig. 2).
Note that in the absence of feedback (γ = 1), region IV be-
comes region I, and region III becomes region II [Fig. 2(a)
and 2(b)]. We find that feedback significantly alters the rate
of cancer progression for small populations, due in part to
the amplification of fluctuations [42]. As noted elsewhere
(e.g., Refs. [9,44]), there are two distinct modes by which
a population accumulates mutations: sequential fixation and
stochastic tunneling. Both modes are observed in each of the
regions we consider. However, we find that sequential fixation
is the dominant route in the bistable region IV, as feedback
accelerates cancer progression by easing the barrier crossing
from the low-z FP to the all-z FP. Stochastic trajectories which
reach z = N become trapped until the transition to ẑ = 1.
Conversely, in region III, feedback slows progression by in-
creasing the population fraction of quickly dividing mutator
cells (b > c, a here), and accordingly lowering the fraction of
z. This inhibits stochastic fluctuation to the all-z state, causing
the first-passage events to occur at relatively low levels of z
(stochastic tunneling). We analyze these cases in more detail
in the following subsections.

In our model the mutation rate μ that controls the transition
from y to z is much smaller that all the other rates. Due to
this separation of time scales the dynamical trajectories of
the system rapidly converge onto a “slow” one-dimensional
(1D) manifold [shown in a dashed red line in Figs. 3(a) and
3(b)] on the positive simplex, �. This slow manifold (SM)
connects the slow eigendirections of the stable and unstable
FPs [Fig. 2(d)]; mathematically it is a heteroclinic trajectory.
Thus, the point in (x, y, z) space from which the first ẑ cell ap-
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FIG. 3. Analysis of cancer progression rate in regions I and IV. Cancer progression is measured by the FPT, τ , to the first double mutant
(ẑ = 1) for populations starting from the healthy state x = N, y = z = 0. (a) Results for N = 100 and γ = 1 (region I, which region IV
with no feedback becomes). Left: Flow lines and FP locations (black dots) for given parameters and locations of the 800 first-passage events
(red dots). The data is concentrated along the slow manifold (SM), which connects the slow eigenvectors of the FPs (shown as red dashed
line). Right: The same first-passage events are shown as a joint distribution of τ and the z(τ )/N at which the event occurred; solid vertical
line denotes the mean 〈τ 〉, the horizontal lines denote stable (solid) and unstable (dashed) FP coordinates. (b) Corresponding results for
N = 100 and γ = 100 (region IV; strong feedback). The bulk of the events occur from z = N . (c) Mean FPT as a function of N for no
feedback, γ = 1 (green) and strong feedback, γ = 100 (yellow). Circles denote means of simulated data (240 samples per point). Solid line
denotes 〈τ 〉1D, the approximate MFPT to ẑ = 1 based on the reduced master equation along the SM (Appendix C). The dashed curve shows
〈τ 〉P = (μz0)−1, the rate of ẑ cell production from the low-z FP. The dotted curve shows 〈τ 〉z=N , the time to cross the barrier and reach the
fixation point z = N . Note 〈τ 〉z=N diverging as N increases is a byproduct of stochastic fluctuations decreasing sharply with N . In all panels:
b = 0.8, c = 0.9, α+ = 0.2, α− = 1.0, μ = 10−4.

pears typically lies along this manifold as shown in Figs. 3(a)
and 3(b). Accordingly, we can approximate the stochastic
dynamics of the system using a 1D master equation ṗ = Wp
for transitions in z along the manifold (see Appendix C). The
vector of mean FPTs (MFPT) to ẑ from all possible starting
conditions, τ, is described by −1 = W̃Tτ, where the tilde
denotes the removal of the absorbing state’s column and row
[45]. The quantity of interest, which is the MFPT from z = 0
to ẑ = 1, is given by the first component of τ and is denoted
by 〈τ 〉1D. This 1D description agrees very well with the full
stochastic simulations as shown in Figs. 3(c) and 4(d).

1. First-passage time to ẑ = 1 in region IV

In region IV c > b, so that the mutant z divides faster than
y, and both are slower than x. Both the all-z and low-z FPs
are stable, and a third saddle FP with an intermediate z value
lies on the boundary of their basins of attractions, as shown
in Figs. 2(d) and 3(b). Removing feedback (γ → 1) changes
the topology to that of region I, with one stable FP, low-z,
and one unstable FP, all-z. We analyze the FPT to ẑ = 1 for

a wide range of system sizes, both with and without feedback
(Fig. 3).

For large system size N � 1/μ, the stochastic population
trajectories typically quickly move towards the (stable) low-z
FP and stay in its close vicinity until producing the first ẑ cell.
As the population does not first fixate at all-z, the situation is
similar to stochastic tunneling [44]. Denoting the z coordinate
of the low-z FP by z0, a population residing there will produce
ẑ cells with mean rate μz0, so that the MFPT to ẑ = 1 is simply
〈τ 〉P ≡ (μz0)−1. This estimate is shown in Fig. 3(c) by dashed
lines. This simple picture breaks down for very large N �
1/μ, and in this regime one needs to consider the possibility of
tunneling along the path from z = 0 to the low-z FP (discussed
in Appendix C).

Stochastic tunneling to ẑ = 1 from the low-z FP is no
longer the dominant mode of cancer progression when μN 	
1 because the waiting time to generate a second mutation at
the low-z FP becomes very long. In this regime, the system
is more likely to first diffuse to and irreversibly fixate in the
z = N state. The FPT to this state is dominated by the time
to cross the “barrier” between the stable low-z FP and the
unstable FP. The unstable FP is located at z = N without
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FIG. 4. Analysis of cancer progression rate in regions II and III. Cancer progression is measured by the FPT, τ , to the first double mutant
(ẑ = 1) for populations starting from the healthy state x = N, y = z = 0. (a) Results for N = 100 and γ = 1 (region II, which region III with
no feedback becomes). Left: Flow lines and FP locations (black dots) for given parameters and locations of the 800 first-passage events (red
dots). The data is concentrated along the slow manifold (SM), which connects the slow eigenvectors of the FPs (shown as red dashed line).
Right: The same first-passage events are shown as a joint distribution of τ and the z(τ )/N at which the event occurred; solid vertical line denotes
the mean 〈τ 〉, the horizontal lines denote stable (solid) and unstable (dashed) FP coordinates. The majority of the events occur at z = N . (b)
Corresponding results for N = 100 and γ = 100 (region III; strong feedback). (c) Corresponding results for N = 104, γ = 100. (d) Mean FPT
as a function of N for no feedback, γ = 1 (green) and strong feedback, γ = 100 (yellow). Circles denote means of simulated data (240 samples
per point). Solid line denotes 〈τ 〉1D, the approximate MFPT to ẑ = 1 based on the reduced master equation along the SM (Appendix C). The
dotted triangles shows 〈τ 〉z=N , the mean time to reach the fixation point z = N . In all panels: b = 1.2, c = 1.1, α+ = 0.2, α− = 1.0, μ = 10−4.

feedback [Fig. 3(a)], and is lowered to an intermediate z
value by feedback [see Fig. 3(b)]. In contrast to the stochastic
tunneling to ẑ = 1 state at large N , this scenario is akin to
“sequential fixation” where the population first stochastically
reaches z = N before producing double mutants with rate μN .
In this regime the MFPT from z = 0 to z = N , denoted as
〈τ 〉z=N and shown in Fig. 3(c) as dotted triangles, provides
the dominant contribution to the overall cancer initiation time
(see Appendix C for details).

As seen in Fig. 3, cancer initiation is faster with feedback
(region IV) than without feedback (corresponding portion
of region I) for all system sizes. In the stochastic tunnel-
ing regime (large N), it has a modest affect, which arises
from feedback slightly elevating z0. In the sequential fixation
regime (low N), feedback reduces the MFPT to ẑ = 1 by
making it easier to reach the unstable fixed point because the
unstable FP moves from z = N without feedback to an inter-
mediate z value with feedback. This occurs because feedback
shifts the x−y balance towards the slowly dividing y cells,
which z cells can outcompete in order to climb towards all-z.
We show next that feedback has the opposite effect in region
III, where the y cells divide quickly.

2. First-passage time to ẑ = 1 in region III

In region III there is an interior stable FP with an in-
termediate z value, and the all-z FP is unstable [Figs. 2(d)
and 4(b)]. In the absence of feedback (γ = 1), for the same
values of other parameters, the system shifts from region
III to region II: the interior FP leaves � and the all-z FP
becomes stable [Fig. 4(a)]. As in region IV above, due to
the separation of time scales between the small mutation rate
and other birth, death, and transition rates, the dynamics are
mostly constrained to a 1D manifold connecting the slow
eigendirections of the FPs (shown by the red dashed line).
Hence, also in region III a 1D master equation along this
line describes well the MFPT to ẑ, denoted as 〈τ 〉1D, from
the healthy state x = N, y = z = 0 [solid lines overlaid on
simulation points in Fig. 4(d)].

Without feedback [Fig. 4(a), green curves in Fig. 4(d)], the
intermediate stable FP is absent, and for N � 1/μ = 104 the
MFPT to ẑ from the healthy state is dominated by the MFPT
to the all-z FP. This time, denoted 〈τ 〉z=N and shown by green
triangles in Fig. 4(d), closely agrees with the simulations and
〈τ 〉1D. Thus, fixation at z = N typically occurs before the first
ẑ appears [as demonstrated in Fig. 4(a)], so that the first ẑ
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emerges predominantly via sequential fixation. For very large
N � 104 the mode switches to stochastic tunneling en route to
the FP (see Appendix C).

With feedback [Figs. 4(b) and 4(c), and yellow curves in
Fig. 4(d)], these scenarios of cancer initiation become more
complex. For very large N � 104 the predominant mode is
still stochastic tunneling events concentrated along the SM
as shown in Fig. 4(c). For intermediate system size 102 �
N � 104, first-passage events occur throughout � [as shown
in Fig. 4(b)], but the population rarely fixates at z = N and
can also be categorized as a stochastic tunneling scenario.
A heuristic for this regime is discussed in Appendix C. For
N � 102, 〈τ 〉 follows 〈τ 〉z=N , the MFPT to fixate at z = N ,
suggesting sequential fixation as the main process.

Taken together, in region III 〈τ 〉 shows a surprising trend
where, unlike region IV, positive feedback slows down the
transition rate to ẑ = 1 as shown by the increase in MFPT in
Fig. 4(d) at low N . With feedback, the stable all-z FP comes
into the simplex, and by virtue of being a stable FP, creates
a sink for fluctuating trajectories. This sink traps and slows
the stochastic fixation to all-z state, ultimately increasing the
MFPT to the double mutant state.

Analysis of the first-passage time to acquire a second driver
mutation indicates how microenvironment feedback can dra-
matically accelerate or inhibit the rate of cancer initiation.
Specifically, we find that in the bistable region (IV), feed-
back acts to reduce the mean first-passage time for small
populations (N � 103). Conversely, for region III, we find
that feedback increases the mean first-passage time, also in
the small population region. For microenvironment popula-
tions situated in regions I and II far from the boundary lines
(i.e., significant differences between the division rates b, c),
feedback does not have a strong effect on the rate of cancer
progression. In the next section, we provide estimates of the
cancer initiation times and discuss the implication for human
cancers.

IV. DISCUSSION

Analysis of the minimal population dynamics model re-
veals how positive feedback from dysregulated signaling in
the microenvironment influences cancer progression. Intu-
itively, signaling which biases normal cells into an abnormal
mutator phenotype should enhance cancer development and
progression. Our model and analysis clarify the circumstances
and the route by which this feedback enhances cancer pro-
gression, and situations where it does the reverse. Although
we have focused on a reversible mutator phenotype as the
intermediate state in our model, our results are also applicable
to more generic stepwise progressions, such as the metaplasia-
dysplasia sequence of cancer initiation [36].

Our analysis shows that the positive feedback from the
microenvironment provides two key supporting aspects for
cancer development. First, by promoting the conversion of
healthy cells into mutator phenotypes, feedback allows cells
with cancer driver mutations to dominate the total popula-
tion even if they divide much slower than healthy cells. This
contrasts with an assumption in cancer population dynamics
that for cancer cells to (deterministically) dominate the total
population they must be more fit (divide faster or die less) than

noncancerous cells. In addition, stochastically the positive
feedback allows slowly dividing cells with driver mutations
to fixate at a rate that is an order of magnitude faster than in
the absence of positive feedback [Fig. 3(c)]. Together, these
results indicate that decreasing feedback by blocking the pos-
itive feedback from the local microenvironment may inhibit
cancer development in situations where both the mutator and
mutated cells divide slower than normal cells.

Interestingly, microenvironment feedback can inhibit can-
cer initiation when the mutator cells divide more quickly
than mutant cells. This occurs because feedback enhances
the transition from healthy to mutator cells, which (due to
their faster division rate) then outcompete mutant cells. In
this regime, microenvironment feedback can slow the rate
of cancer progression by an order of magnitude for small
populations by pushing the stochastic dynamics into the tun-
neling regime (Fig. 4). This may offer a potential explanation
for observations of slow cancer progression in some tissues
[34], as well as observations of cells with mutations (across
many genes, including cancer drivers) present in otherwise
healthy tissues without progressing into full blown tumors
[46,47]. With respect to impeding cancer initiation, our model
suggests that increasing the division rate of mutator cells by
chemical agents or therapeutics can be a viable strategy when
the mutated cells cannot be targeted directly.

The analysis of our model points to specific strategies
for stalling cancer initiation in different regimes. However,
these depend on the knowledge of the relative growth rates
of healthy, mutator and mutant cell types, which may not
be generally accessible. In cases where the tumor has been
characterized and treated via traditional therapies, it may be
kept in check via the above-mentioned strategies.

By considering physiological values of the model param-
eters, we may obtain numerical estimates for the calculated
MFPTs. We have assumed μ = 10−4 as the rate of driver
mutations per cell division in the mutator state (similar to the
value used in Ref. [48]). Depending on the tissue and cell
type a mammalian cell division rate can be up to a = 1/day
[5,49]. This sets the units of time in our model (in Sec. II we
rescale all rates by the division rate or healthy cells, a). Thus,
the low-N MFPT with feedback in region IV [Fig. 3(c)] of
〈τ 〉 ∼ 104 corresponds to ∼50 years—a biologically realistic
timescale for cancer initiation. Interestingly, when feedback is
removed the MFPT 〈τ 〉 becomes much longer than a typical
human lifespan. On the other hand, we observe the opposite
effect in region III [Fig. 4(d)]: without feedback 〈τ 〉 � 100
years, but with strong feedback it takes much longer for cancer
to initiate in small populations of cells.

In general, our theory can be compared to data on the
frequency of driver mutations in precancerous tissue. Interest-
ingly, the appearance of cells with multiple driver mutations
is not on its own sufficient for cancer, as evidenced by the
recent observations of cancer driver mutations throughout the
somatic tissue of healthy adults [50]. Our model predicts that
double mutant lineages will readily appear during a human
lifespan in tissues where the microenvironment conditions
are favorable. It would be interesting to compare our models
predictions with the experimental data on the frequency of
somatic driver mutation, including fixation of single driver
mutants and the appearance of double mutants as a function
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of age, from varying microenvironmental conditions. How-
ever, for meaningful comparison to genomic data from human
tissue, the model would need to be extended to account for
details specific to tissue subtypes, which exhibit different
division rates, niche sizes, and typical numbers of driver mu-
tations in the context of cancer initiation. These details will be
considered in future work, along with deterministic analysis
of the general case of k > 2 driver mutations.

A conceptual question in cancer development is how cells
accumulate multiple mutations when the first few mutations
in a sequence are neutral or deleterious before a final mutation
which provides a benefit (as measured by higher proliferation
rate) [44], often referred to as crossing a “fitness valley”. This
scenario is associated with a feed-forward chain, where cells
accumulate mutations but rarely revert or lose them [9,44]. In
such models, when a cell in the final state divides slower than
it would in the initial state, fixation at the final state is de-
terministically inaccessible, and hence for a small population
stochastic sequential fixation is rare. Our model extends this
picture, if we interpret the y state as the first mutation and the z
state as the second. Due to the two central components of our
model: reversibility (the y state can go back to x) and feedback
(x to y transition is promoted as more z arise), the all-z state
can be deterministically stable despite c < a. This stability
contributes to the increased rate of cancer progression.

There are several important aspects of our model that
may be considered in future work. First, our model treats
the microenvironment as spatially homogeneous, whereas de-
veloping tumors often display significant heterogeneity [51].
Relaxing this assumption will further clarify the role of
the microenvironment in cancer initiation and progression,
as suggested in other work [52]. Additionally, we do not
explicitly consider the important and complex role of the
immune system in the cancer microenvironment [51]. Within
the coarse-grained model of the cancer microenvironment we
present here, immune regulation may act through modification
of the relative fitness of each class of cells. Reduction of c
or b relative to the healthy cells may correspond biologically
to the immune system suppression of the growth of mutated
or epigenetically dysregulated cells. This type of immune
regulatory effect could be further investigated in future work
by introducing a class of microenvironmental immune cells
that affects the relative division rates of each class of cells.

While we have presented the model with a mutation-
focused view of cancer in mind, our analysis is also applicable
more generally to the development of in situ cancer following
an accumulation of abnormal cells (metaplasia-dysplasia pro-
gression) in the tissue microenvironment [36]. In the context
of cancer staging, tissue samples are not simply categorized
as “healthy” or “cancer”. Rather, there are several early stages
identifiable through changes in the tissue architecture (which
need not involve mutations). The first step is often cell type
switching to a phenotype associated with a different tis-
sue (metaplasia), which is generally considered reversible.
Metaplasia may or may not progress to dysplasia, which is
considered precancerous and clinically is either closely mon-
itored or treated. In this picture, the y cells are metaplastic
and the z cells are dysplastic, with feedback acting to promote
metaplastic conversion of the x cells. The rate of dysplastic
transition from y to z is potentially much higher than in the

case where the transition requires a mutation. As a result, there
is a richer deterministic behavior consisting of two distinct
bistable regimes (Appendix A 3). Future work investigating
the stochastic behavior for high-μ would therefore involve
alternative routes to the fully dysplastic state (or the initial
appearance of in situ cancer cells), and may help to explain
why some metaplasias can progress quickly (e.g., in HPV-
associated cancers) [53], while others progress more rarely or
slowly (e.g., intestinal metaplasia of the esophagus) [36].

V. MATERIALS AND METHODS

All calculations and simulations were performed in Python
2.7 using NumPy 1.16.2 and SciPy 1.2.2, and Mathematica
10.0. Implementation details of the stochastic simulation are
provided in Appendix C.
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APPENDIX A: DETERMINISTIC ANALYSIS DETAILS

1. Deterministic analysis without feedback

Special case α− → 0. Eq. (5) gives the nullcline equations
to be solved for nontrivial fixed points x∗, y∗ �= 0

0 = c − a

N
x2 + c − b

N
xy + (a − c − α+)x,

0 = c − b

N
y2 + c − a

N
xy + (b − c − μ)y + α+x. (A1)

Note if y∗ = 0, then x∗ = 0. If x∗ = 0, one gets y∗/N = 1 +
μ/(c−b). Let r1 ≡ c−a + α+, r2 ≡ c−b + α− + μ, as in the
main text. When both x∗, y∗ �= 0, solving Eq. (A1) gives the
unique nontrivial fixed point:

x(+)

N
= r1(r1 − r2)

r1(r1 − r2 + α+) − α+μ
,

y(+)

N
= α+r1

r1(r1 − r2 + α+) − α+μ
. (A2)

General case. To identify fixed points besides x(0) =
(0, 0, N ), suppose x∗ = (x∗, y∗, z∗) �= x(0). Then from Eq. (5),
both x∗ �= 0 and y∗ �= 0 (unless α+ = 0 or α− = 0). Then,
at x∗

0 = c − a

N
x∗ + c − b

N
y∗ + α−q − r1,

0 = c − b

N
y∗ + c − a

N
x∗ + α+

q
− r2. (A3)

This simplifies to a quadratic in q: 0 = α−q2 − Rq − α+,
where R = r1 − r2. Its two roots determine the nontrivial fixed
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points (for α+ > 0, α− > 0). The roots are

q± = 1

2α−
[R ±

√
R2 + 4α−α+]. (A4)

Denote the associated fixed points by x(+), x(−). No-
tice q+, q− are always real, q+ is always positive, and
q− is always negative. Thus, x(−) cannot lie in �, but
x(+) possibly can. To express their coordinates, note x(±) =
(x±, x±q±, N − x±(1 + q±)), and substitute q± into Eq. (A3)
to find

x±
N

= −r1 + α−q±
−r1 + α+ + (α− + μ − r2)q±

. (A5)

Note x(+) will lie in � when 0 < x+(1 + q+) < N . We refer
to this this fixed point as the “low-z” state (when it is stable
we will generally have z 	 N). When x(+) crosses x(0) to
enter or exit �, they exchange stability [Fig. 2(a)]. Further
analysis shows that the situation corresponds to a transcritical
bifurcation at det J(x(0) ) = 0.

For low-μ, x(+) will typically lie near the N = x + y edge
of � when it is stable; we therefore refer to it as the “low-z”
FP and interpret it as a healthy state of the tissue. It is denoted
as x(1) in the main text.

The stability of a fixed point can be determined from a
local linearization of the dynamics: ẋ ≈ J(x∗)(x − x∗), where
J(x∗) is the Jacobian of the dynamics evaluated at the point
x∗, defined as the matrix of partial derivatives, Ji j = ∂ fi

∂x j
[54].

At x(0) this gives

J(x) =
[

2 c−a
N x + c−b

N y − r1
c−b
N x + α−

c−a
N y + α+ 2 c−b

N y + c−a
N x − r2

]
. (A6)

A fixed point x∗ is stable if and only if Re(λ) < 0 for all
eigenvalues λ of J(x∗). For 2 × 2 matrices, this is satisfied
when TrJ(x∗) < 0 and detJ(x∗) > 0. For J(x(0) ), this gives
the stability criteria

0 < r1 + r2,

0 < r1r2 − α+α−, (A7)

where r1 ≡ c−a + α+, r2 ≡ c−b + α− + μ. Together these
imply that x(0) stability requires r1, r2 > 0. If the class tran-
sition rates α+, α−, μ are insignificant compared to division
rate differences, then Eq. (A7) holds when the cancer cells
grow faster than both the healthy and dysregulated cells: c >

max(a, b). If instead the class transition rates are not negli-
gible, then 0 < r1r2 − α+α− represents a nonlinear balance
between mutation and selection that can stabilize the all-z
state even when cancer cells grow slower than both the healthy
and dysregulated cells.

2. Deterministic analysis with feedback

Recall the reduced dynamics given in Eq. (5) in the main
text. To help identify fixed points and bifurcations, consider
the coordinate transform u = x+y

N , v = x−y
N . Since N = x +

y + z, we can write z = N (1−u). Note u is physical (nonnega-
tive population) only when u ∈ [0, 1], and v is physical when
v ∈ [−1, 1]. At u = 0, we have z = N (and v = 0, since x =
y = 0), and at u = 1, we have z = 0. The feedback factor g(z)
controling α−, α+ in Eq. (3) can be written g(u) = 1

1+e2β(−1+r+u) .

The dynamics in the new coordinate system are

u̇ = 1

2
(c − a)(u − 1)(u + v) + 1

2
(u − v)((c − b)(u − 1) − μ),

v̇ = 1

2
((c − b)(u − v)(v + 1) + (c − a)(u + v)(v − 1) − 2α0

+(u + v) + (2α0
− + μ)(u − v))

+ γ − 1

γ
g(u)(α0

−(u − v) + α0
+γ (u + v)). (A8)

While this might appear less simple than Eq. (5), a single variable FP equation can be derived by first setting u̇ = 0, which
gives an equation for the u nullcline

v(u) = u((2c − b − 1)(1 − u) + μ)

(1 − b)(1 − u) + μ
. (A9)

Note that v(u) has an asymptote at u = 1 + μ

1−b ≈ 1 which is near the z = 0 edge of the simplex. Substituting v(u) into v̇ = 0
gives the governing equation for FPs (u∗, v(u∗))

0 ≡ F (u) ≡ 2u

γ

N (u)

D(u)
, (A10)

where we have D(u) = ((1−b)(1−u) + μ)2, and, writing G(u) = (g(u) − 1)(γ−1),

N (u) = G(u)((b − 1)(u − 1) + μ)((c − 1)(u − 1)α0
− + α0

+γ ((b − c)(u − 1) + μ))

+ γ ((c − 1)2(u − 1)((u − 1)(c − b + α0
−) − μ) − α0

+(c + b(u − 1) − cu + μ)2

− (c − 1)(u − 1)((c − b)(u − 1) − μ)(c − b − α0
+ + α0

− + μ)).

The system therefore always has a FP at u = 0, which corresponds to z = N . All other FPs are described by N (u)
D(u) .
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Bifurcations occur when F (u) has a higher-order root.
Accordingly, the transcritical (TC) bifurcation curves in
Figs. 2(a) and 2(b) can be explained by N (u) having a root
at u = 0. This occurs when A1G(u) + A2 = 0. For u = 0,
G(u) ≈ 1−γ . Setting A1(γ−1) = A2,

0 = α0
−(c − 1) + γ (c − 1 + γα0

+)(−b + c + μ). (A11)

This equation describes how feedback augments the stabil-
ity of the all-z fixed point, and we see that without feedback
(γ = 1) we reidentify the constraint det J(x(0) ) = 0, Eq. (A7).

The saddle node bifurcations are more complicated but can
be recovered analytically in the low-μ approximation.

Low-μ approximation. We assume μ 	 1 throughout the
main text. Here we show that we can analytically describe the
low-μ behavior, such as the phase diagram of Fig. 2(b), when
we take μ → 0. This simplifies the FP equation Eq. (A10) as

0 = F (u) = 2u

γ (b − 1)
(((c − b)(c − 1 + α0

+)

+ (c − 1)α0
−)γ + G(u)((c − 1)α0

− + (b − c)α0
+γ )).

(A12)

From Eq. (A12), three fixed points can be identified:
• u(0) ≡ (0, 0) is the trivial FP of Eq. (A10) which is

independent of μ. It corresponds to the all-z FP, x(0).
• u(1) ≡ (1, v(1) ) lies on the line x + y = N, z = 0. It

corresponds to the low-z FP, x(1), when μ is nonzero. v(1)

can be found by solving v̇ = 0 after substituting u = 1.
• u(2) ≡ (u(2), v(u(2) )), which corresponds to the

intermediate-z FP, x(2), and exists only in regions III,
IV [see Fig. 2(b)]. We find u(2) below.

The bracketed factor in Eq. (A12) can be solved analyti-
cally to give

u(2) = 1 − r + arctanh(R)

β
, (A13)

where

R = −(c − 1)α0
−(1 + γ ) + γ (b − c)(2c − 2 + α0

+ + α0
+γ )

(γ − 1)((c − 1)α0− + (b − c)α0+γ )
.

(A14)

Note that u(2) is only physical when inside [0, 1], which
requires |R| = tanh(2.5) � 1 (for β = 5, r = 0.5 as used
throughout). However, note that arctanh(R) is only defined
for −1 < R < 1. This means once u(2) becomes unphysical,
it quickly disappears. We find that setting R to either extreme,
which corresponds to divergence of u(2), describes the bifur-
cation lines for the low-μ phase diagrams. For example, in
terms of (b, c), setting R = 1 gives

b+(c) = c + α0
−

c − 1

c − 1 + α0+
, (A15)

which we note is independent of feedback. The conjugate
curve, found by setting R = −1, is

b−(c) = c + α0
−

c − 1

γ (c − 1 + γα0+)
. (A16)
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FIG. 5. Deterministic analysis for μ → 0. In the low-μ approx-
imation, the bifurcation lines in the main text can be described
analytically. (a) When γ = 1, a line of transcritical bifurcations, de-
scribed by b−(c) [which coincides with b+(c)], separates two regions
which are analogous to region I and II from the main text. (b) In the
presence of feedback, b−(c) separates from b+(c), and two regions in
which −1 < R < 1 open, allowing u(2) existence. The upper region,
which approximates region III, is where u(2) exists and is stable.
In the lower region, which approximates region IV, u(2) exists and
is unstable. (c) FP structure in each region on the N = x + y + z
simplex. Solid (open) dot denotes stable (unstable) FP. The upper
FP, u(0) = (0, 1), corresponds to x(0) = (0, 0, N ) (“all z”) in the main
text. The bottom FP, u(1) = (1, v(1) ), is restricted to the xy edge of the
simplex and approximates the low-z FP. The intermediate FP, u(2),
with coordinates determined by Eq. (A13), exists only in regions III,
IV. Parameters are as in Fig. 2 of the main text.

Notably, these curves coincide in the absence of feedback
(γ = 1). In Fig. 5(a), we observe that b−(c) captures the
transcritical bifurcation curve in Figs. 2(a) and 2(b), and
agrees with Eq. (A11) (when μ = 0). With feedback, b−(c)
separates from b+(c), and two regions in which −1 < R < 1
open, allowing u(2) existence. To deduce the stability of u(2),
we note it must be opposite u(0) stability [determined by
Eq. (A7)]. From Fig. 5(b), it is apparent that b+(c), b−(c)
describe the bifurcation lines from Fig. 2(b), including the
saddle node curves and their “ghost”, which have a simple
interpretation in the μ = 0 limit. The curve separating regions
I/III and IV/II is given by b−(c) and denotes stability ex-
change (transcritical bifurcations) between u(2) and u(1). The
other line, b−(c), accounts for stability exchange between u(2)

and u(0).

3. (b, c) phase diagram for high-μ

A high-μ version of Fig. 2(b) in the main text is shown
in Fig. 6, with distinct FP regions denoted by color. Fig-
ure 6 reveals the transition that occurs on the left edge of the
bistable region in Fig. 2(b) (boundary between region I, IV)
to in fact be two separate bifurcations that are infinitesimally
close as μ → 0: when c is increased for low b, the system
first undergoes a saddle node bifurcation, then a transcritical
bifurcation.
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0.5
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TC
SN

FIG. 6. Deterministic analysis in the high-μ case. Phase diagram
corresponding to a high-μ (μ = 1.0) extension of Fig. 2(b) of the
main text. The triangles represent the positive simplex N = x + y + z
with solid (open) circles representing stable (unstable) fixed point
(FP) locations. Solid lines denote saddle node (SN) bifurcations
along which two FPs are created or destroyed. Dashed line de-
notes transcritical (TC) bifurcations, corresponding to the all-z FP
exchanging stability with another FP. The two SN branches meet at a
point representing a pitchfork bifurcation occurring along the dashed
arrow. Note the yellow region, exposed here, becomes infinitesimally
thin when μ → 0 as in Fig. 2(b) of the main text. Parameters γ =
4, α0

+ = 0.2, α0
− = 1.

4. Alternate functional forms for microenvironment feedback

In the main text we used the simple logistic function g(z) =
1

1 + exp(2β(r−z/N )) to introduce microenvironment feedback on
the epigenetic transition rates in Eq. (3). Here we show that
our deterministic results are robust to the particular choice of
sigmoidal function.

A widely used function in biological modeling is the Hill
function,

h(z) =
(

z
N

)n

rn + (
z
N

)n ,

where the Hill coefficient n and controls the strength of the
nonlinearity, and r positions the inflection point for large n
[Fig. 7(a)].

In Fig. 7, we show (b, c) phase diagrams similar to
Fig. 2(b) in the main text. Figure 7(b) uses a Hill coefficient
of 1, and Fig. 7(c) uses a Hill coefficient of 2. The plots
have minor quantitative differences (note the more gradual
transition from region I to III when n = 1). Both plots exhibit
the four distinct population regions discussed in the main text.

APPENDIX B: DYNAMICS WITH EXPONENTIAL
GROWTH

As a relaxation of our model, we consider removing the
population fixing death rate term f̄ (x) = ax+by+cz

N . The revised
dynamics are

ẋ = (A + D)x, (B1)

where

A =
⎡
⎣−α+ α− 0

α+ −α− − μ 0
0 μ 0

⎤
⎦, D =

⎡
⎣a 0 0

0 b 0
0 0 c

⎤
⎦.

Without feedback, this is a linear system and fixed points
correspond to Null(A + D). In general, A + D is nonsingular
and so the unique fixed point is x = 0, in contrast to the
population conservation case.

However, notice if we write N = x + y + z, then Ṅ =
ax + by + cz, and we can define the dynamics of population
fractions u ≡ x/N as

u̇ = (a − α+)u + α−v − (au + bv + cw)u,

v̇ = α+u + (b − α− − μ)v − (au + bv + cw)v,

ẇ = μv + cw − (au + bv + cw)w. (B2)

This is the same form as our original dynamics with con-
served population. Deterministically, this implies the system
reaches the same population fractions as it would with the
constant population constraint, but now with an unbounded
population. However, the stochastic behavior should be quite
different when the population is fixed to a low value (e.g.,
N = 100) in the constrained population case.

Hill coefficient: 1 Hill coefficient: 2

0.0

0.2

0.4

0.6

0.8

1.0

z/N

0.5 1.0 1.5 2.0
c

0.5 1.0 1.5 2.0
c

0.5

1.0

1.5

2.0

b

(a) (b)

I

II

III

IV

I

II

III

IV

(c)

FIG. 7. Robustness of deterministic results to the choice of feedback function. (a) The logistic function g(z) from the main text (with
β = 5, r = 0.5) is plotted alongside h(z) with r = 0.5 and n = 1, 2, and 4. Panels (b) and (c) show phase diagrams consistent with Fig. 2(b)
in the main text, which used g(z) to model the feedback (with γ = 4). In (b) the Hill function h(z) is used with Hill coefficient n = 1, and in
(c) n = 2. Color denotes the z fraction of the stable fixed point. The grey region is bistable as in Fig. 2(b).
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APPENDIX C: ANALYSIS OF MEAN FIRST-PASSAGE
TIME TO ACQUIRE A SECOND DRIVER MUTATION

1. Specification of the reduced master equation
along the slow manifold

The path connecting the slow eigendirections of each fixed
point in the vicinity of the simplex defines the slow manifold
(SM). Because the birth/death events and epigenetic transi-
tions between x and y are generally much faster than the
mutation rate μ, the population has time to quasiequilibrate
(in terms of x, y) between each mutation event from y to z.
This is reflected in the relative magnitudes of the eigenvalues
for the linearized dynamics about the FPs: the eigenvalues
whose eigenvectors point along the SM are generally much
smaller. This separation of timescales allows one to consider
a lower-dimension approximation of the system.

Because the first-passage events (see Figs. 3 and 4 of the
main text) concentrate along the SM, we consider a 1D master
equation along the SM which tracks transition in z only. To de-
fine the manifold, we numerically compute the deterministic
trajectory starting from the vicinity of the unstable FP (and
combine the segments if necessary).

The 1D master equation for transitions in z along the SM
is a (N + 1) × (N + 1) linear system ṗ = Wp, where the
nth component of p is pn(t ) = p(z = n, t ), and Wn,m is the
transition rate from z = m to z = n. The elements of W are
given by

W1,0 = μy(0),

Wz+1,z = cz + μy(z) ∀ z < N,

Wz−1,z = f̄ (z)z ∀ z < N, (C1)

where 0 � z � N . Note f̄ (z) = f̄ (x(z), y(z), z) is the (popu-
lation averaged) division rate at coordinate z on the SM. All
other off-diagonal elements are 0, and Wii = −∑N

j=0 Wji to
conserve probability.

The absorbing state of the system defined above is z = N .
To find the MFPT to z = N from any other state, we only
need to perform a matrix inversion (−1 = W̃T τ, where tilde
denotes the removal of the absorbing state’s column and row),
which is very fast when N is not too large (N � 104). To
further consider the MFPT to ẑ (first cell with a second driver
mutation), we can append ẑ to the system by adding an extra
row and column to W:

Wẑ,z = μz,

Wz,ẑ = 0, (C2)

for all 0 � n � N . Note that ẑ replaces z = N as the sole
absorbing state of the system. Solving −1 = W̃T τ for this
extended W now gives the MFPT vector to ẑ. In the main text
we consider the first element, denoted 〈τ 〉1D, corresponding to
the initial condition z = 0.

2. Stochastic tunneling along the deterministic path

For large system size N , stochastic trajectories closely fol-
low the deterministic path z(t ) from the healthy state x = N
to the associated stable FP. At any instant along the trajectory
a double mutant cell can arise, with the rate ∼μz(t ). Hence,
the probability density for the first such event to happen,

102 103 104 105 106

N

101

102

103

104

105
1D

W

P

z=N

FIG. 8. Heuristic MFPT to ẑ = 1. MFPT to the first double-
mutant, ẑ, for varying N for no feedback (green) and strong feedback
(yellow). Circles denote means of simulated data (240 samples per
point), with trajectories starting from the healthy state x = N, y =
z = 0. Solid lines denote 〈τ 〉1D, the approximate MFPT to ẑ based
on the reduced master equation along the SM; this closely matches
the data up to N = 104 (not computed beyond due to memory con-
straints). The triangle dotted curve shows 〈τ 〉z=N, the MFPT to fixate
at z = N . The yellow star curve shows 〈τ 〉W for the γ = 100 case.
Dashed lines are the SM path flux 〈τ 〉P, valid for large N . Parameters:
b = 1.2, c = 1.1, α+ = 0.2, α− = 1.0, μ = 10−4.

p1(t ), is described by a nonhomogenous Poisson process,
p1(t ) = μz(t )e− ∫t

0 μz(τ )dτ [55]. The MFPT for these tunneling
events which occur along the deterministic path to the FP is
given by 〈τ 〉P ≡ ∫ t p1(t )dt . This describes the behavior for
very large N � 1/μ (see Fig. 8).

3. Fokker-Planck expansion of the slow
manifold master equation

The Fokker-Planck approximation of a 1D birth-death pro-
cess such as in Appendix C1 is given by

∂ p(z, t )

∂t
= − d

dz
(A(z)p) + 1

2

d2

dz2
(B(z)p), (C3)

where A(z) = (c− f̄ (z))z + μy(z) is the birth rate minus the
death rate, and B(z) = (c + f̄ (z))z + μy(z) is their sum, see
e.g., Ref. [56].

In this representation, analytic approximations of relevant
quantities are known, such as the probability of hitting either
z = 0 or z = N from an intermediate point (treating z = 0 and
z = N as absorbing boundaries) [56]. The probability to hit

z = N first, starting from z = 1, is pN = ∫1
0 ψ (z)−1 dz

∫N
0 ψ (z)−1dz

, where

ψ (z0) = e2 ∫z0
0 A(z)/B(z)dz. We can use pN to understand the scal-

ing the exact 1D MFPT to reach z = N , 〈τ 〉z=N . Defining the y
coordinate at z = 0 on the SM by y0 ≡ y(0), the rate at which
attempts are made to reach z = N is μy0, and they succeed
with probability pN . Thus, the heuristic MFPT to reach z = N
is 〈τ 〉B ≡ 1

μy0
× 1

pN
.

In the low-N regime where barrier crossing occurs,
N 	 1/μ, so we can neglect μy(z) for z �= 0. The di-
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vision rate advantage of z in comparison the population
average, s(z) ≡ c/ f̄ (z) − 1, is sufficient to describe stochas-
tic trajectories. Since |s(z)| 	 2, we therefore have A(z)

B(z) ≈
s(z)

2 , so that ψ (z0)−1 = e− ∫z0
0 s(z)dz. The numerator of pN

is effectively a constant since s(z) varies little from z =
0 to z = 1, so ∫1

0 e− ∫z
0 s(z′ )dz′

dz ≈ e−s0 ∼ 1. Thus, pN ≈
e−s0 [∫N

0 e− ∫z
0 s(z′ )dz′

dz]−1. The heuristic MFPT to reach z = N
is then 〈τ 〉B ≈ 1

μ
es0

(y0/N ) I (N ), where I (N ) ≡ ∫1
0 e−N ∫z̄

0 s(z̄′ )dz̄′
dz̄,

with z̄ ≡ z/N.

To proceed one needs to consider how s(z) depends on
the regime. Without feedback (γ = 1) it is linear, s(z) =
s0(1−z/N ). Then ∫z̄

0 s(z̄′)dz̄′ = −s0( 1
2 z̄2 − z̄), and we can

evaluate I (N ) directly (depending on the sign of s0). In region

I, s0 is negative, and we get I (N ) =
√

π
2 e

|s0 |N
2 erf (

√
|s0 |N

2 )√|s0|N , which
rapidly diverges with N , in agreement with Fig. 3(c). In region

II, s0 is positive, and there we get I (N ) =
√

π
2 e− s0N

2 erfi(
√

s0N
2 )√

s0N
.

This behaves like 1/s0N at large N , in agreement with
Fig. 4(d).

With feedback s(z) becomes nonlinear, but we may ap-
proximate it using a piecewise linear function with a bend
at s(z1) = s1. For z � z1: sL(z̄) ≡ s0 + (s1 − s0) z̄

z̄1
, and so

∫z̄
0 sL(z̄′)dz̄′ = 1

2z̄1
(s1 − s0)z̄2 + s0z̄. The right branch has the

form sR(z̄) ≡ s1
(1−z̄)
(1−z̄1 ) , and so for z � z1,

∫ z̄

0
s(z̄′)dz̄′ =

∫ z̄1

0
sL(z̄′)dz̄′ +

∫ z̄

z̄1

sR(z̄′)dz̄′

= z̄1

( s1 + s0

2

)
+ s1

(z̄ − z̄1)

(1 − z̄1)

(
1 − z̄ + z̄1

2

)
.

Putting this together, we get I (N ) = I1 + I2,

where I1(N ) = ∫z̄1
0 e−N ( s1−s0

2z̄1
z̄2+s0 z̄)dz̄, and I2(N ) ≡

∫1
z̄1

e−N (s1
(z̄−z̄1 )
(1−z̄1 ) (1− z̄+z̄1

2 )+z̄1( s1+s0
2 ))dz̄. The asymptotic behavior

of these integrals depends on s0, s1. In region IV, s0 < 0,
s1 > 0, so that for large N we have I2(N ) ≈ 0 and

I (N ) ≈ I1(N ) =
√

πC
N es2

0C2N (erf (|s0|C
√

N ) + erf (s1C
√

N )),

where C(γ ) ≡
√

z̄1
2(s1−s0 ) . Feedback decreases z̄1 and

increases s1, the maximum selective advantage of z
cells. Note when z̄1 → 1 and s1 → 0 this expression
reduces to the no feedback case with Cγ=1 = 1√

2|s0| . For

large N , I (N ) ≈ 2
√

πC
N es2

0C2N , and since C(γ ) becomes
smaller with γ , this explains the MFPT speedup (with

feedback) observed in Fig. 3(c). In region III we instead
have s0 > 0, s1 < 0, so that asymptotically, I1(N ) ≈ 0 and

I (N ) = I2(N ) =
√

π (1−z̄1 )
2N |s1| eN |s1 |

1−z̄1
(z̄1− s2

1+1

2 )erfi(
√

N (1 − z̄1)|s1|).
Note also that |s1| increases with feedback. For large N ,
I (N ) ∼ 1√

2|s1|N e(1−z̄1 )|s1|N . Thus, I (N ) explains the divergence
of 〈τ 〉z=N for γ = 100 in Fig. 4(d).

4. Heuristic mean first-passage time in region III

Here we present heuristics which explain the overall behav-
ior of the MFPT to ẑ in region III [Fig. 4(d)] in the main text).
In Fig. 8, we provide a more detailed description of Fig. 4(d).

Like region IV, here there are two regimes whose boundary
μN ∼ 1 is determined by the rate at which mutants can arise
and population size. In the large population regime, μN � 1,
as the population flows to the stable FP, first-passage events
(to ẑ = 1) occur en route, and 〈τ 〉P describes the MFPT (see
Appendix C 2.; dashed line in Fig. 8); in the low population
regime where stochastic effects become more prominent, 〈τ 〉P

underestimates the MFPT. However, unlike region IV, feed-
back now slows down the transition rate to the double mutant
state.

For low population sizes, the population quickly quasiequi-
librates on the z = 0 edge of the simplex, along the stable axis
of the saddle FP that lies just below [Figs. 4(a) and 4(c)]. A
single mutant is then stochastically generated at rate μy0. The
fate of this z cell is determined by the birth-death dynamics
along the 1D manifold, described by s(z) ≡ c/ f̄ (z) − 1 (as
discussed above). In this case s(z) > 0 and early stochastic
dynamics is “selective” but as z increases towards the stable
FP in the interior s(z) → 0 and the dynamics becomes “neu-
tral”. Since each z-cell lineage starts with one cell its early
dynamics is stochastic and many of the lineages go “extinct”
(and the system goes back to the z = 0 state).

Neutral regime 〈τ 〉W . Here we want to compute the prob-
ability of getting a double mutant before a lineage fixates.
For a lineage which fails to fixate (i.e., eventually returns to
z = 0), the chance that a double mutant arises in the win-
dow of time before it goes extinct is a function of the area
under the curve A(T ) = ∫T

0 z(t )dt with boundary conditions
z(0) = 1 and z(T ) = 0, where T is the average length of a
lineage. Assuming neutral dynamics for a lineage, A(T ) ∼
T 2. Now the probability that a double mutant does not arise
during a lineage is given by p0 = e−μT 2

. Hence, in this
regime the MFPT is 〈τ 〉W ≈ 1

μy0
× 1

1−p0
. For s(z) 	 1, T ≈

∫N
1

1
(1+z) f̄ (1+z)

e∫z
0 s(z′ )dz′

dz [57]. This heuristic is included in
Fig. 8, an extension of Fig. 4(d).
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