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Several recent experiments, including our own experiments in the fission yeast, Schizosaccharomyces
pombe, have characterized the motions of gene loci within living nuclei by measuring the locus position
over time, then proceeding to obtain the statistical properties of this motion. To address the question of
whether a population of such single-particle tracks, obtained from many different cells, corresponds to a
single mode of diffusion, we derive theoretical equations describing the probability distribution of the dis-
placement covariance, assuming the displacement itself is a zero-mean multivariate Gaussian random variable.
We also determine the corresponding theoretical means, variances, and third central moments. Bolstering
the theory is good agreement between its predictions and the results obtained for various simulated and
measured data sets, including simulated particle trajectories undergoing simple and anomalous diffusion, and
the measured trajectories of an optically trapped bead in water, and in a viscoelastic polymer solution. We
also show that, for sufficiently long tracks, each covariance distribution in all of these examples is well-
described by a skew-normal distribution with mean, variance, and skewness given by the theory. However,
for the experimentally measured motion of a gene locus in S. pombe, we find that the first two covari-
ance distributions are wider than predicted, although the third and subsequent covariance distributions are
well-described by theory. This observation suggests that the origin of the theory-experiment discrepancy in
this case is associated with localization noise, which influences only the first two covariances. Thus, we
hypothesized that the discrepancy is caused by locus-to-locus heterogeneity in the localization noise, of inde-
pendent measurements of the same tagged site. Indeed, simulations implementing heterogeneous localization
noise revealed that the excess covariance widths can be largely recreated on the basis of heterogeneous
noise. Thus, we conclude that the motion of gene loci in fission yeast is consistent with a single mode of
diffusion.
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I. INTRODUCTION

Single-particle tracking has long been applied to elu-
cidate the dynamics of various soft-matter and biological
systems [1–5]. Recent advances in fluorescent tagging and
imaging now also enable tracking-based studies of sin-
gle molecules or moieties within living cells. The motion
of fluorescently labeled particles is most often analyzed
by determining the mean-squared displacement (MSD) as
a function of time delay between observations. This ap-
proach has been applied to a wide variety of macro- and
supramolecular complexes inside cells from diverse organ-
isms [6–17]. Examples in mammalian cells include reports
of simple diffusion for a transmembrane protein [7] as well
as multiple diffusive states within subpopulations (immobi-
lized, subdiffusive, and diffusive) for a viral protein [8] or
several sub-populations (immobilized, slow, and fast diffu-
sion) for a DNA-binding protein [10]. For the DNA itself,
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subdiffusion has been reported for DNA loci in bacteria
[18] and subdiffusion [9] or confined diffusion [6,19] in
eukaryotes.

The question of how to optimally determine the diffusivity
from the time-averaged MSD (taMSD) has been investigated
thoroughly for the case of simple diffusion [15,16,20–23].
Typically, the slope of the taMSD for a limited number of time
delays is used to yield an estimate of the diffusivity for each
track and distribution of diffusivities across multiple tracks.
However, within a track, the displacements measured for
different time delays are not statistically independent. This,
together with the particle position measurements being imper-
fect, as they include static localization noise (the uncertainty
in particle position due to a limited number of detected pho-
tons) [24–26] and motion blur (the spatial spread of the signal
due to camera integrating a particle’s positions over exposure
time) [25], confounds MSD analysis. Recently, Vestergaard
et al. [27] have shown that the optimal way to gauge diffusiv-
ity, while accounting for localization noise and motion blur,
is to use an estimator based on the covariances of the particle
displacements.
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Another fundamental question is whether a single or mul-
tiple diffusion coefficients are appropriate to describe data
collected from heterogeneous biological systems. Several ap-
proaches have been developed to sort particle trajectories
into different diffusive states [11,15,17,28,29]. However, the
simplest way to investigate whether data realize a single
diffusivity or not is to compare the width of the measured
diffusivity distribution to the width one would expect for a
single diffusivity.

Vestergaard et al. [27] derived the expected distribution
and variance of diffusivities measured from tracks of finite
length in the case of simple diffusion, assuming that the static
localization error is Gaussian-distributed. However, this anal-
ysis is not applicable to the more general case of anomalous
diffusion. In the case of simple diffusion analyzed in Ref. [27],
there are only two nonzero covariances, linearly related to the
diffusivity. By contrast, there are as many nonzero covariances
as there are steps in a track in the case of anomalous diffusion.
A biologically important case of anomalous diffusion is the
motion of a chromosomal locus. While the mean covariances
for anomalous diffusion have been analyzed [30,31], to-date
we are unaware of any comparison between the measured and
predicted covariance distributions in the context of gene loci
motion, nor any consideration of whether the motion of gene
loci is homogeneous in time or whether a gene locus may
undergo transitions among different modes of diffusion. The
goal of this paper is to answer the question: Does the in vivo
motion of a gene locus in fission yeast follow a single mode
of diffusion, or not?

Specifically, this paper focuses on the expected scat-
ter in SPT track descriptors for a single diffusive state
to be able to identify additional scatter that may arise
as a result of variations in the underlying dynamics. To
this end, we calculate the probability distribution func-
tion of these elements, expressed as a Fourier transform,
which we perform numerically for comparison to data
and simulations. However, we find that the exact prob-
ability density can be well approximated by the skew
normal distribution. It follows that fitting measured co-
variance distributions to the skew normal provides the
important descriptors of the distribution, namely, the mean,
variance, and third central moment, which can then be
compared to the exact theoretical values of these quan-
tities. Agreement between the two strongly suggests that
the particle tracks in question exhibit one mode of
diffusion.

The paper is organized as follows. In Secs. II A and II B,
we present the probability distribution, the mean, the variance,
and the third central moment of the displacement covariance
matrix elements for arbitrary modes of diffusion in one and
two dimensions (1D and 2D), respectively. In Sec. II C, we
specialize to give the diffusivity distribution, its variance, and
third central moment in the case of simple 2D diffusion,
reproducing some of the results of Ref. [27] via a different
route. In Sec. III, we compare theoretical covariance distri-
butions for a zero-mean Gaussian random process, expressed
in terms of the mean covariance matrix elements, to a num-
ber of simulated and experimentally measured covariances.
For simulated simple diffusion (Sec. III A) we find excellent

agreement with theory. We also apply our methods to optical
tweezers data (Sec. III B), and again find good agreement
with theory. The agreement with theory in this case under-
scores that the usual procedures for fitting optical tweezers
measurements should be generally modified to account for
the motion blur, as pointed out previously [32]. Finally, we
analyze motion of gene loci in living Schizosaccharomyces
pombe yeast cells (Sec. III C), and find an important dis-
crepancy with theory. Our analysis points to the discrepancy
stemming from experimental locus-to-locus heterogeneity in
localization noise, while the theory assumes the localization
error to be drawn from a single normal distribution. After
accounting for this heterogeneity with simulations, through
implementing heterogeneous localization noise, we conclude
that the gene loci in living S. pombe indeed undergo a single
mode of diffusion. Finally, in Sec. IV, we summarize and
conclude.

II. THEORETICAL DISTRIBUTION OF COVARIANCE
MATRIX ELEMENTS

A. One-dimensional analysis

We consider data that consist of a collection of single-
particle tracks, each characterized by the same well-defined
diffusive properties. There are at least three important rea-
sons to then consider tracks of finite length. The first is
that over time, fluorescently labeled proteins in vivo may
experience changes in their diffusive properties—changes in
their diffusive state—such as those caused by binding and
unbinding events, for example, to DNA or other complexes
in the cell. The second is that, even for proteins that always
remain in a single diffusive state, individual fluorescent la-
bels can blink and eventually bleach. Third, in microscopy
experiments, proteins can readily diffuse out of the focal vol-
ume. All of these processes give rise to tracks that realize
a single diffusive state for a finite duration. Therefore, we
start off by considering a population of tracks each com-
prising N + 1 particle coordinates along the x axis, {x j},
with j = 1 through N , corresponding to N particle displace-
ments along the x axis, {�x j = x j+1 − x j}, and we focus
on the covariance of these one-dimensional displacements.
Each measured track provides an estimate of the covari-
ance matrix elements, which, assuming that the diffusive
properties do not vary within a track, should depend only
on time separation n for a stationary process. Each mea-
sured track provides an estimate of the covariance matrix
elements via:

Sn = 1

N − n

N−n∑
j=1

�x j�x j+n, (1)

where �x j is the displacement of step j and N is the to-
tal number of steps in the track. Because of their inherent
stochasticity, different tracks yield different values for Sn.
However, averaging over many tracks yields the underlying
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mean covariance matrix:

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈S0〉 〈S1〉 〈S2〉 〈S3〉 ....

〈S1〉 〈S0〉 〈S1〉 〈S2〉 ....

〈S2〉 〈S1〉 〈S0〉 〈S1〉 ....

〈S3〉 〈S2〉 〈S1〉 〈S0〉 ....

. . . . ....

. . . . ....

. . . . ....

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0 �1 �2 �3 ....

�1 �0 �1 �2 ....

�2 �1 �0 �1 ....

�3 �2 �1 �0 ....

. . . . ....

. . . . ....

. . . . ....

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where the angular brackets indicate an ensemble average over
tracks, and we have defined �n = 〈Sn〉. In general, the covari-
ance matrix is a symmetric Toeplitz matrix. We note here that
through this paper, “mean” is used in two different senses.
In the context of SPT, “mean” refers to averaging over the
ensemble of the tracks, while in the context of the theoretical
probability distribution function, “mean” refers to the calcu-
lated expected values.

Equation (1) permits us to calculate Sn for each individual
track, and thus, to determine the experimental distribution Sn

from a population of experimental or simulated tracks. We can

then test our understanding of the underlying diffusive process
by comparing these empirical distributions to corresponding
theoretical predictions.

To determine theoretical expressions for the distributions
of Sn, our starting point is the hypothesis that the probability of
observing a particular N-step track is given by a multivariate
Gaussian distribution, characterized by the N × N covariance
matrix � [Eq. (2)]:

P(�x|�) = 1

(2π )N/2|�|1/2
exp

[
−1

2
�xT �−1�x

]
, (3)

where �x = (�x1,�x2, ...�xN )T is the vector of N succes-
sive particle displacements along the x-direction within the
track, and |�| is the determinant of the covariance matrix.
To proceed, we introduce the (Toeplitz) matrices, [C0] jk = 2

N I
and [Cn] jk = 1

(N−n)δ j k±n, which permits us to rewrite Eq. (1)
as

S0 = 1

N

N∑
j=1

�x j�x j = 1

2
�xT C0�x (4)

and

Sn = 1

N − n

N−n∑
j=1

�x j�x j+n = 1

2
�xT Cn�x, (5)

for n > 0.
Using Eqs. (3), (4), and (5), and the Fourier transform

representation of the Dirac δ function, we may express the
probability distribution of the random variables, Sn, for a given
covariance matrix, in terms of a certain matrix determinant:

P(Sn|�) =
∫

d (�x1)d (�x2)...d (�xN )P(�x|�)δ

(
Sn − 1

2
�xT Cn�x

)

=
∫ ∞

−∞

dω

2π

∫
d (�x1)d (�x2)...d (�xN )

1√
(2π )N |�|eiωSn− 1

2 �xT (�−1+iωCn )�x

=
∫ ∞

−∞

dω

2π

1√
|�||�−1 + iωCn|

eiωSn =
∫ ∞

−∞

dω

2π

1√|I + iω�Cn|
eiωSn , (6)

where |�−1 + iωCn| and |I + iω�Cn| are the determinants
of �−1 + iωCn and I + iω�Cn, respectively. Equation (6)
is the probability density of Sn, given the covariance ma-
trix �. After calculating the determinant as a function of ω,
the integral over ω may be performed numerically to obtain
p(Sn|�).

In Appendix A, we show from Eq. (6) that the first three
moments of Sn are

〈Sn〉 = 1

2
Tr(�Cn), (7)

〈
S2

n

〉 = (Tr�Cn)2

4
+ Tr(�Cn)2

2
, (8)

and〈
S3

n

〉 = 1
8 (Tr�Cn)3 + 3

4 Tr(�Cn)Tr(�Cn)2 + Tr(�Cn)3. (9)

Combining Eqs. (7) and (8), we find that the variance of Sn is

σ 2
Sn

= 〈
S2

n

〉 − 〈Sn〉2 = Tr(�Cn)2

2
. (10)

Combining Eqs. (7), (8), and (9), we find that the third central
moment of Sn is

μ3 = 〈(Sn − 〈Sn〉)3〉 = Tr(�Cn)3. (11)

B. Two-dimensional analysis

Single-particle tracking often results in two-dimensional
data, so that two vectors are available for each track, namely,
�x and �y. In this case, given that the motion along each
dimension is independent of the other, the likelihood of

032405-3



MARY LOU P. BAILEY et al. PHYSICAL REVIEW E 103, 032405 (2021)

observing a particular trajectory is

P(�x,�y|�x,�y)

= 1

(2π )N |�| exp

[
−1

2
�xT �−1

x �x − 1

2
�yT �−1

y �y
]
,

(12)

where �x and �y are the covariance matrices for x and y
displacements, respectively. If we redefine Sn to correspond
to two dimensions via

Sn = 1

N − n

N−n∑
j=1

�x j�x j+n + 1

N − n

N−n∑
j=1

�y j�y j+n, (13)

then, correspondingly, we can introduce a two-dimensional
covariance matrix, �, via

� = �x + �y. (14)

Commonly, the diffusive behavior is isotropic, in which case
we furthermore have that

�x = �y = 1
2�. (15)

In this isotropic case, it follows that the probability density
for the two-dimensional covariance is [calculated similarly to
Eq. (6)]

P(Sn|�) =
∫

d (�x1)...d (�y1)...P(�x,�y|�)

× δ

(
Sn − 1

2
�xT Cn�x − 1

2
�yT Cn�y

)

=
∫ ∞

−∞

dω

2π

1∣∣I + i
2ω�Cn

∣∣eiωSn . (16)

From Appendix A, we calculate 〈Sn〉, 〈S2
n〉, and 〈S3

n〉 in
this two-dimensional case. Using these results, it is straight-
forward to show that the mean, variance, and third central
moment of the Sn in 2D are

〈Sn〉 = 1
2 Tr(�Cn), (17)

σ 2
Sn

= 1
4 Tr(�Cn)2, (18)

and

〈(Sn − 〈Sn〉)3〉 = 1
4 Tr(�Cn)3. (19)

C. Simple 2D diffusion

Many experimental systems can be expected to realize
simple 2D diffusion with experimental errors, corresponding
to a tridiagonal covariance matrix, where the only nonzero
covariance matrix elements are �0 and �1, which are related
to the diffusion coefficient, D, the static localization noise,
σ 2, the time between camera exposures, �t , and the exposure
time, �tE , via [27]

�0 = 4D�t − 4
3 D�tE + 2σ 2 (20)

and

�1 = −σ 2 + 2
3 D�tE . (21)

The static localization noise, σ 2, is the error in particle local-
ization that results from counting a limited number of photons.
The terms involving the exposure time, �tE , correspond to
motion blur, because the particle position is integrated while
the shutter is open.

In this case, 1
4 Tr(�Cn)2 and 1

4 Tr(�Cn)3 can be evaluated
in closed form with the results that

σ 2
S0

= �2
0 + (

2 − 2
N

)
�2

1

N
, (22)

σ 2
S1

= �2
0 + (

3 − 2
N−1

)
�2

1

2(N − 1)
, (23)

σ 2
Sn

= �2
0 + (

2 − 2
N−n

)
�2

1

(N − n)
, (24)

for n > 1,

〈(S0 − 〈S0〉)3〉 = 2N�3
0 + (12N − 12)�0�

2
1

N3
, (25)

〈(S1 − 〈S1〉)3〉 = (10N − 22)�3
1 + (9N − 15)�2

0�1

2(N − 1)3
, (26)

〈(S2 − 〈S2〉)3〉 = (N − 30)�2
1�0

2(N − 2)
, (27)

〈(S3 − 〈S3〉)3〉 = (3N − 15)�3
1

2(N − 3)2
, (28)

〈(Sn − 〈Sn〉)3〉 = 0, (29)

for n � 4. Equations (22), (23), and (24) reproduce Eq. (9)
of Ref. [27], which employs a different method to find the
variance of Sn.

Equations (20) and (21) can be used to estimate D from
each individual track. For a given N-displacement track we
have

D = 1

4

(
S0

�t
+ 2S1

�t

)
= �xT C0�x

4�t
+ �yT C0�y

4�t

+ �xT C1�x
2�t

+ �yT C1�y
2�t

. (30)

Because of the physical importance of the diffusion coef-
ficient, we also consider its distribution, mean, variance, and
third moment for a distribution of D values estimated from
tracks using Eq. (30).

It follows that the the probability density, the vari-
ance, and the third central moment of the diffusion

032405-4



COVARIANCE DISTRIBUTIONS IN SINGLE PARTICLE … PHYSICAL REVIEW E 103, 032405 (2021)

TABLE I. SPT parameters and calculated length-scale values for the datasets analyzed in this paper. For 2D simple diffusion the length
scale of the step size is r2 = 4D�t . For optical tweezers data, which is one-dimensional, r2 = 2D�t for the bead in water. For the bead in
PEO solution, which exhibits fractional Brownian motion (fBm) r2 = 2D�tα , where α is the anomalous exponent. For the gene locus and
simulated fBm tracks, r2 = 4D�tα .

Dataset D σ2 (μm2) �t (s) r2 (μm2) σ2/r2 RMS step size (nm)

Simulated simple 2D diffusion 0.0055 (μm2/s) 7.94 ×10−5 0.058 0.00128 0.062 35.7
Simulated simple 2D diffusion 0.1389 (μm2/s) 0.0015 0.01 0.0056 0.270 74.6
Simulated simple 2D diffusion 0.0062 (μm2/s) 0.0013 0.01 2.48 ×10−4 5.24 15.7
Optically trapped bead in water 0.14 (μm2/s) 2.80 ×10−7 4.8 ×10−5 1.34 ×10−5 0.021 3.7
Optically trapped bead in PEO 3.3 ×10−5 (μm2/s0.20) 2.80 ×10−7 5.0 ×10−5 9.1 ×10−5 0.031 3.0
Gene locus mmf1 0.0061 (μm2/s0.39) 0.0027 0.058 0.0080 0.338 89.4
Simulated fBm 0.0055 (μm2/s0.44) 0.0032 0.058 0.0063 0.51 79.4

coefficient are

P(D|�) =
∫ ∞

−∞

dω

2π

1∣∣I + i
8�t ω�(C0 + 2C1)

∣∣eiωD, (31)

σ 2
D = 1

4
Tr

[
�

(
C0 + 2C1

4�t

)]2

=
1
4

[
3N−1

N (N−1)�
2
0 + 8

N �0�1 + 8N3−16N2+6N−2
N2(N−1)2 �2

1

]
4(�t )2

=
D2

18 (2N − 1)[1 + N (22N − 25)] + D
6

σ 2

�t (4N3 − 3N + 1) + 1
8

(
σ 2

�t

)2
(2N3 − 3N − 1)

(N − 1)2N2
, (32)

and

〈(D − 〈D〉)3〉 = 1

4
Tr

[
�

(
C0 + 2C1

4�t

)]3

=
[

1
N2 + 6

N (N−1)

]
�3

0 + [
18
N2 + 18N−30

(N−1)3

]
�2

0�1 + [
6N−6

N3 + 54N−90
N (N−1)2

]
�0�

2
1 + [

18N−30
N2(N−1) + 20N−44

(N−1)3

]
�3

1

32�t3
, (33)

respectively.

We show in Appendix B that Eq. (31) reproduces Eq. (A11)
for k = 2 of Ref. [27]. Equation (33) is exact; it reproduces
approximated solution Eq. (17) of Ref. [27] to second order
in 1

N .

III. COMPARISONS OF THEORY TO SIMULATIONS
AND EXPERIMENTS

A. Simulations of simple 2D diffusion

First, we compare the theory of Sec. II to simulated parti-
cle trajectories undergoing simple 2D diffusion, generated as
described in Ref. [29]. We simulated 106 steps, and set D =
0.0055 μm2 s−1, σ 2 = 7.94 × 10−5 μm2, and �t = �tE =
0.058s. Calculating the r2 value sets the scale for statistical
quantities, where r2 = 4D�t = 0.0013 μm2. The scale of the
localization noise is then σ 2

r2 = 0.062. Last, the root-mean-
square (RMS) step size for this simulation is 35.7 nm. These
values describing the datasets analyzed in this paper are shown
together in Table I. We partitioned these displacements into
tracks of varied length, N , ranging from 19 to 419 steps, and
then calculated the covariance matrix elements and diffusion
coefficient [Eq. (30)] for each such track.

Normalized histograms of thus calculated S0, S1, S2, and
S3 are plotted in Figs. 1(a), 1(b), 1(c), and 1(d), respec-
tively, for different track lengths N = 19, 39, and 79. The
S0-distributions are entirely positive, as required. The mean
of the S1-distributions are positive, as expected when motion
blur dominates static localization error. For n > 1, the means
of the Sn-distributions appear to be zero, also as expected. The
distributions become progressively narrower with increasing
track length, because a longer track length represents a more
accurate measurement. Also shown in Fig. 1 as the solid red
lines are the corresponding theoretical distributions [Eq. (16)],
calculated using only the experimental mean covariance ma-
trix elements. Clearly, these theoretical predictions closely
match the simulated distributions. Logarithmic-linear plots of
the same data and model are presented in Fig. 2, demonstrat-
ing that the simulated and theoretical distributions continue to
agree well, even in the far tails.

The central limit theorem informs us that the distribu-
tions must each approach a Gaussian in the limit of large
N . However, the simulated and theoretical distributions for
N = 19, and even for N = 39, are noticeably skewed. To
provide a simple way to empirically gauge the mean, variance,
and third central moment of measured covariance distribu-
tions by fitting, we approximate them with a skew normal
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FIG. 1. Covariance distributions for simulated simple 2D dif-
fusion for D = 0.0055 μm2 s−1, σ 2 = 7.94 × 10−5 μm2, and �t =
�tE = 0.058s. Distribution of covariances S0 (a), S1 (b), S2 (c), and
S3 (d) for particle tracks of 19 (light gray), 39 (medium gray), and 79
(dark gray) steps are represented as histograms. Red lines correspond
to the theoretical distributions. Black dashed lines correspond to
the best fit of a skew normal distribution to the simulated distribu-
tions. With increasing number of time steps, the distribution narrows.
Higher S terms tend to center on 0.
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FIG. 2. Covariance distributions plotted on a logarithmic y-axis
for simulated simple 2D diffusion, for the same data shown in Fig. 1.
Distribution of covariances S0 (a), S1 (b), S2 (c), and S3 (d) for
particle tracks of 19 (light gray), 39 (medium gray), and 79 (dark
gray) steps are represented as histograms. Red lines correspond to
the theoretical distributions. Black dashed lines correspond to the
best fit of a skew normal distribution to the simulated distributions.
Only slight discrepancies between theory and skew normal curves
are observed at the tails of the distributions.
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distribution [33]:

p(Sn) = 1√
2πρ

e
− (Sn−ζ )2

2ρ2

[
1 + erf

(
α(Sn − ζ )√

2ρ

)]
, (34)

with mean

〈Sn〉 = ζ +
√

2

π

αρ√
1 + α

, (35)

variance

σ 2
Sn

= ρ2

[
1 − 2α2

π
(1 + α)

]
, (36)

and third central moment

〈(Sn − 〈Sn〉)3〉 = 4 − π

2

(δ
√

2/π )3

(1 − 2δ2/π )
3
2

×
{
ρ2

[
1 − 2α2

π
(1 + α)

]} 3
2

. (37)

The black lines in Figs. 1 and 2 are the best fits of a
skew normal distribution to distributions sampled from the
simulations, varying α, ζ , and ρ as fitting parameters. Near the
peak, it is evident that the skew normal fit is able to accurately
capture the shape of each distribution. While the best-fit skew
normal distribution shows small deviations from both theory
and simulated data (Fig. 2) in the far tails, we judge that it
provides a good approximation to both. The distributions of
estimated diffusion coefficients are shown in Figs. 3 and 4,
together with skew-normal fits. Again, close examination re-
inforces that the theoretical curves very closely match the
simulated distributions, and that the skew-normal fits provide
an excellent description with only small deviations in the
tails.

Figure 5 shows how estimates of the covariance distribu-
tions from skew-normal fits depend on the inverse length of
the tracks. Estimated mean [Fig. 5(a)], variance [Fig. 5(b)],
and third moment [Fig. 5(d)] for S0, S1, S2, and S3 are com-
pared to the ground-truth mean and to theoretical predictions
for the variance and third moment [Eqs. (17)–(19)]. Because
the covariance distributions are skewed, we include the third
central moment to compare the fitted third moment [related to
the skewness, see Eq. (A12)] to the theoretically predicted. In
Fig. 5(c), we show specifically the variance of S0 + 2S1. This
combination removes static localization noise, leaving a result
proportional to the diffusion coefficient. In every case, the
best fit parameters match closely the corresponding theoret-
ical values, supporting the utility of the skew normal function
as a simple route to describe covariance and diffusivity
distributions.

We further evaluate whether a skew normal distribution
provides a good approximation to the data by applying the
Kolmogorov-Smirnov (KS) test, which uses the difference
between the CDFs of two distributions to estimate whether
they originate from the same underlying distribution [34]. We
performed analysis with track lengths N = 4–419. A plot of
the KS statistic versus inverse track length for fits of S0 and S1

covariance distributions on simple 2D diffusion simulations,
with D = 0.1389 μm2 s−1, σ 2 = 0.0015 μm2, and �t =
�tE = 0.01s (r2 = 0.0056 μm2, σ 2

r2 = 0.27, RMS step
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FIG. 3. Distribution of diffusion coefficients, D, for simu-
lated simple 2D diffusion with D = 0.0055 μm2 s−1, σ 2 = 7.94 ×
10−5 μm2, and �t = �tE = 0.058s (same data as shown in Figs. 1
and 2), for track lengths of (a) 29 steps, (b) 79 steps, and (c) 319
steps, shown using a linear y axis. The red curve represents the
theoretical prediction given by Eq. (31). The black dashed curve
corresponds to the best skew normal fit to the simulated distribution.

size = 74.6 nm), and D = 0.0062 μm2 s−1, σ 2 =
0.0013 μm2, and �t = �tE = 0.01s (r2 = 0.00025 μm2,
σ 2

r2 = 5.24, RMS step size = 15.7 nm), as well as the
diffusivity parameters used in Figs. 3–5, is shown in Fig. 6(a).
For smaller track lengths (i.e. N = 19–49), the KS statistic is
small, indicating a better fit, relative to other track lengths.
Interestingly, very short track lengths (less than about 19)
produce a poor fit using the skew normal distribution.
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FIG. 4. Distribution of diffusion coefficients, D, plotted on a log-
arithmic y axis (same data as Fig. 3), for track lengths of (a) 29 steps,
(b) 79 steps, and (c) 319 steps, shown using a logarithmic y axis.
The red curve represents the theoretical prediction given by Eq. (31).
The black dashed curve corresponds to the best skew normal fit to
the simulated distribution.

This phenomenon can be explained by a limitation of
the skew normal distribution, which is constrained to a
maximum/minimum skewness of ±1. For the same three data
sets, Fig. 6(b) shows the theoretically calculated skewness
values for S0 and S1 versus inverse track length. For very small
track lengths, the skewness can go beyond the range between
±1. In the case of D = 0.0062 μm2 s−1, for example, the
skewness of S1 is more negative than −1 at N = 12, rendering
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FIG. 5. Dependence of the covariance matrix estimates on the
track length for simple 2D diffusion data (same data as Figs. 1–4).
(a) The means of the covariances S0 (red circle), S1 (blue square),
S2 (green triangle), and S3 (orange upside-down triangle) are in-
dependent of track length. The maximum y value corresponds to
0.94 in units of the mean-square step size (0.00128 μm2). (b) Vari-
ance of the covariance vs inverse track length for S0 (red circle),
S1 (blue square), S2 (green triangle), and S3 (orange upside-down
triangle). Theory [Eq. (18)] is shown as the solid lines. Maximum
y-value corresponds to 0.031 in units of the mean-square step size
(0.00128 μm4). (c) Variance of the covariance of S0 + 2S1 vs inverse
track length. Theory ( Tr[�(C0+2C1 )]2

4 ) is shown as the solid line. Max-
imum y value corresponds to 0.15 in units of the mean-square step
size (0.00128 μm4). (d) Third central moment of the covariance vs
inverse track length. In this case too, theory [Eq. (19)] agrees well
with the results of simulations. Maximum y value corresponds to
0.0038 in units of the mean-square step size (0.00128 μm6)
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FIG. 6. (a) KS statistic on fits of S0 (red) and S1

(blue) versus inverse track length, for D = 0.0055 μm2 s−1,
σ 2 = 7.94 × 10−5 μm2, and �t = �tE = 0.058s (triangles);
D = 0.1389 μm2 s−1, σ 2 = 0.0015 μm2, and �t = �tE = 0.01s
(circles); and D = 0.0062 μm2 s−1, σ 2 = 0.0013 μm2, and
�t = �tE = 0.01s (squares). For very small track length, the KS
statistic is large. (b) Corresponding theoretical skewness of S0 and S1

versus inverse track length. Gray solid lines signify skewness values
of ±1, the max/min skewness values that describe the skew normal
distribution. For smaller track lengths, the skewness approaches ±1.

the skew normal distribution a poor descriptor of the data for
this and smaller track lengths. To avoid this limitation, we
use the exact theory to calculate the covariance distribution
for very small track lengths, instead of fitting with the skew
normal distribution.

B. Confined diffusion of optically trapped beads

1. Optically trapped bead in water

Next, we compare the theory of Sec. II to measurements
of confined diffusion of the x coordinate of a 1 μm-
diameter optically trapped polystyrene bead suspended in
water, from Ref. [35]. Specifically, ten independent time se-
ries of the bead position were recorded at 20 kHz, each
containing 100 000 points, using a National Instruments
DAQ PCIe-6343. In an optical trap, a particle experi-
ences thermal Brownian motion, subject to a quadratic
confining potential [36]. Theoretical results for the mean-

square displacement (MSD) and covariance matrix ele-
ments of such a particle are presented in Appendix C,
demonstrating that the covariance matrix elements are
nonzero for n > 1, in contrast to the case of simple diffusion.

Normalized histograms of the experimental covariance dis-
tributions for S0, S1, S2, and S3 are shown in Fig. 7, along
with the corresponding theoretical curves [red lines, Eq. (18)]
and best fits to the skew normal distribution (black lines).
This figure demonstrates good agreement between theory and
experiment, and that the skew normal fit describes both well.
The same plots are presented on logarithmic-linear axes in
Fig. 8, again revealing that the skew normal fits show only
small discrepancies in the tails of the distributions. Results
from the skew normal fits are compared to theory in Fig. 9,
again showing good agreement.

The mean covariance (red) and mean MSD (blue) of the
bead determined from 12650 79-step tracks for the first twenty
time delays (i.e., n = 1...20) is shown in Fig. 10. The MSD is
equivalent, via Fourier transformation, to the power spectral
density (PSD), which is usually fit to determine the stiffness
of the optical trap. However, the fitting is typically carried
out without considering the integration time of the optical
detector. To assess accuracy of such an approach, we fit the
measured MSD and covariance simultaneously by varying
κ , τ , and σ 2, along with �tE (i.e., considering integration
time) or by fixing �tE = 0 (i.e., neglecting integration time).
The results are shown as dashed (�tE = 0) and solid (varied
�tE ) lines in Fig. 10. Including an integration time provides
a significantly improved description of the data as judged
by χ2 values (4600 versus 23 for �tE = 0 and varied �tE ,
respectively) and by visual inspection (Fig. 10). Importantly,
the best value of �tE is 0.048 ms, just slightly smaller than
the time between successive measurements (0.050 ms). This
analysis suggests that it is important to take into consideration
a nonzero exposure time and the concomitant motion blur,
when calibrating and analyzing optical tweezer data, as previ-
ously pointed out in Ref. [32]. Although Eq. (C10) reveals that
the exponential time dependence of the MSD is unchanged
by motion blur, this circumstance is peculiar to this particular
(exponential) form of the MSD [37]. In general, the shapes of
the MSD and PSD are modified by motion blur (Appendix D).

2. Optically trapped bead in a viscoelastic PEO solution

We also compared the theory of Sec. II to other data from
Ref. [35], comprising 106 measurements of the x coordi-
nate of a 1 μm-diameter optically trapped polystyrene bead
suspended in a 1.5 wt% viscoelastic solution of long-chain
(8 MDa) polyethylene oxide (PEO). Again, ten independent
time series were recorded at 20 kHz, each containing 100 000
points, using a National Instruments DAQ PCIe-6343. As
shown in Ref. [35], the PSD of a bead within this solution is
well-described by a power law versus frequency, suggesting
that a power law in time could be an appropriate basis for
modeling the corresponding MSD and covariance, i.e., sug-
gesting that the bead undergoes fractional Brownian motion
(fBM), characterized by a subdiffusive exponent α < 1. In
Appendix D, we derive theoretical expressions for the MSD
and covariance for a bead undergoing fBM with a subdiffusive
exponent (α < 1), in the presence of motion blur and static
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FIG. 7. Covariance distributions for a bead in water suspended
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39 (medium gray), and 79 (dark gray) steps are represented as his-
tograms. Red lines correspond to the theoretical distributions. Black
dashed lines correspond to the best fit of a skew normal distribution
to the simulated distributions.
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FIG. 8. Covariance distributions for a bead in water suspended in
an optical trap, measured by optical tweezers, plotted on a logarith-
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(d) for particle tracks of 19 (light gray), 39 (medium gray), and 79
(dark gray) steps are represented as histograms. Red lines correspond
to the theoretical distributions. Black dashed lines correspond to the
best fit of a skew normal distribution to the simulated distributions.
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FIG. 9. Dependence of the covariance matrix estimates on the
track length for a bead in water suspended in an optical trap, mea-
sured by optical tweezers. (a) The mean of the covariances S0 (red
circle), S1 (blue square), S2 (green triangle), and S3 (orange upside-
down triangle). Theory (straight lines) is calculated by Eq. (7).
Maximum y value corresponds to 1.49 in units of the mean-square
step size (1.34 × 10−5 μm2). (b) Variance of the covariance vs
inverse track size of S0 (red circle), S1 (blue square), S2 (green
triangle), and S3 (orange upside-down triangle). The theoretical vari-
ances (solid lines) agree well with the data. The theory is calculated
by Eq. (10). Maximum y-value corresponds to 0.18 in units of the
mean-square step size (1.34 × 10−5 μm4). (c) Third central moment
of the covariance vs inverse track length. The theoretical values (solid
lines) are calculated using Eq. (11). Maximum y value corresponds
to 0.062 in units of the mean-square step size (1.34 × 10−5 μm6).

localization noise. In this case too, the covariance is nonzero
for n > 1.

Figures 11 and 12 show the experimental covariance
distributions, represented as histograms, overlaid with the
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FIG. 10. Experimental MSD (circles) and covariance (squares)
versus time delay for an optically trapped bead in water, com-
pared to corresponding best-fit model MSDs (blue solid and dashed
lines) and covariances (red solid and dashed lines). The experi-
mental MSD and covariance were determined from 12 650 79-step
tracks. Errors (standard errors of the mean) are smaller than the
plotted points, and therefore no error bars are plotted. The MSD
and the covariance were fit using Eqs. (C10) through (C13) by
varying κ , τ , and σ 2 and by varying �tE (solid line) or by fixing
�tE = 0 (dashed line). Shown are the best fit curves with values
of κ = 0.160 ± 0.008 pN nm−1, τ = 0.078 ± 0.005 ms, σ 2 = 2.8 ±
1.6 × 10−7 μm2, and �tE = 0.048 ± 0.001 ms (χ 2 = 23) and κ =
0.19 pN nm−1, τ = 0.091 ms, and σ 2 = 1.0 × 10−10 μm2 (χ 2 =
4.6 × 103), for varied �tE and �tE = 0, respectively. The former
corresponds to r2 = 1.34 × 10−5 μm2, σ 2

r2 = 0.021, and RMS step
size = 3.7 nm

theoretical distributions from Eq. (6) (red lines) and best-
fit skew normal curves (black lines). Figure 13 displays
the skew normal fitting results versus track length, together
with the correspponding theoretical predictions. For all of
these figures, there is good agreement between theory and
experiment.

In Fig. 14, we compare the measured covariance and
MSD to the corresponding theoretically expected quantities
(Appendix D). Plotted in this figure as circles and squares are
the mean covariance and mean MSD, respectively, determined
from 12 650 79-step tracks, for the first twenty time delays. In
this case too, we carried out global fits of the theoretically
expected forms [Eqs. (D2) and (D12)–(D14)], first, allowing
for a nonzero �tE and varying α, �tE , D, and σ 2, yielding
best fits with χ2 = 110, shown as the solid lines in the figure,
and, second, setting �tE = 0, varying α, D, and σ 2 as fitting
parameters, yielding best fits with χ2 = 1.7 × 104, shown as
the dashed lines in the figure. Evidently, in this example too,
including motion blur provides a superior description of the
experimental measurements. Here, we also find that the best
fit value of �tE is close to 0.05 ms.

C. Measurements and simulations of a chromosomal
locus in fission yeast

1. Experimental measurements of a chromosomal locus

Next, we sought to apply the theory of Sec. II to the motion
of a fluorescently labeled genetic locus. We examined the
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FIG. 11. Covariance distributions for an optically trapped bead
in a 1.5 wt% viscoelastic PEO solution. Covariances S0 (a), S1 (b), S2

(c), and S3 (d) for particle tracks of 19 (light gray), 39 (medium gray),
and 79 (dark gray) steps are represented as histograms. Red lines
correspond to the theoretical distributions. Black dashed lines corre-
spond to the best fit of a skew normal distribution to the simulated
distributions. With increasing number of time steps, the distribution
narrows.
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FIG. 12. Covariance distributions for an optically trapped bead
in a 1.5 wt% viscoelastic PEO solution, plotted on a logarithmic y
axis. Distribution of covariances S0 (a), S1 (b), S2 (c), and S3 (d) for
particle tracks of 19 (light gray), 39 (medium gray), and 79 (dark
gray) steps are represented as histograms. Red lines correspond to
the theoretical distributions. Black dashed lines correspond to the
best fit of a skew normal distribution to the simulated distributions.
Only slight discrepancies between theory and skew normal curves
are observed at the tails of the distributions.
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FIG. 13. Dependence of the covariance matrix estimates on the
track length for a bead in viscous PEO solution measured by optical
tweezers. (a) The mean of the covariances S0 (red circle), S1 (blue
square), S2 (green triangle), and S3 (orange upside-down triangle).
Theory (straight lines) is calculated by Eq. (7). Maximum y value
corresponds to 0.27 in units of the mean-square step size (9.1 ×
10−6 μm2). (b) Variance of the covariance vs inverse track size of
S0 (red circle), S1 (blue square), S2 (green triangle), and S3 (orange
upside-down triangle). The theoretical variances (solid lines) agree
well with the data. The theory is calculated by Eq. (10). Maximum
y-value corresponds to 0.006 in units of the mean-square step size
(9.1 × 10−6 μm4). (c) Third central moment of the covariances S0

(red circle), S1 (blue square), S2 (green triangle), and S3 (orange
upside-down triangle) vs inverse track length. The theoretical val-
ues (solid lines) are calculated using Eq. (11). Maximum y-value
corresponds to 3.32 × 10−4 in units of the mean-square step size
(9.1 × 10−6 μm6).

motion of a specific DNA locus visualized by the lacO/GFP-
lacI system in cells of the live fission yeast S. pombe
(MKSP2039) [38]. Specifically, a lacO array was integrated
near the mmf1 gene on chromosome II (at 3 442 981 bp po-
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FIG. 14. Experimental MSD (circles) and covariance (squares)
versus time delay for an optically trapped bead in 1.5 wt% PEO
solution, compared to corresponding best-fit model MSDs (blue solid
and dashed lines) and covariances (red solid and dashed lines). The
experimental MSD and covariance were determined from 12 650
79-step tracks. Errors (standard errors of the mean) are smaller than
the plotted points, and therefore no error bars are plotted. The MSD
and the covariance were fit together in two ways. For the fits shown
as the solid lines, four fitting parameters were used, namely, α, D,
σ 2, and �tE , yielding best-fit parameter values of α = 0.20 ± 0.13,
D = 3.3 ± 2.4 × 10−5 μm2/s0.2, σ 2 = 2.8 ± 2.9 × 10−7 μm2, and
�tE = 0.05 ± 0.03 ms, yielding χ 2 = 110, corresponding to r2 =
9.1 × 10−6 μm2, σ 2

r2 = 0.031, and RMS step size = 3.0nm. For the
fits shown as dashed lines, �tE was set equal to zero, leaving three
fitting parameters, α, D, and σ 2. The best-fit parameter values in
this case are α = 0.42, D = 8.7 × 10−5 μm2/s0.42, and σ 2 = 2.8 ×
10−7 μm2, yielding χ 2 = 1.7 × 104.

sition), which is approximately in the middle between the
centromeres and telomeres of the chromosome. Typically, one
fluorescent focus per cell is observed. Fluorescence and bright
field images were acquired at 30C on a DeltaVision widefield
microscope (Applied Precision/GE) equipped with a temper-
ature control chamber, a 1.4 NA, ×100 objective (Olympus),
solid-state-based illumination (Lumencor), and an Evolve 512
EMCCD camera (Photometrics). Fluorescence was excited
at 488 nm and collected with emission filters passing 500–
550 nm.

We analyzed 19 video microscopy movies, each containing
1000 images. Each image was acquired for an integration
time, �tE = 10 ms and was separated from the next image by
�t = 58 ms [39]. A total of 157 871 time steps were included
in the analysis. The position of each labeled locus was then
tracked, as described in Ref. [11], and the resultant trajectories
were partitioned into tracks of length N = 19, 29, 39, 49, 59,
69, 79, 89, 99, 109, 159, 319, and 419 steps, as above.

As also described in Ref. [39], the locus MSD is well-
described by a model corresponding to fBm, chartacterized
by an exponent α � 0.44. In Fig. 15, we compare the
measured covariance (blue circles) and MSD (red squares),
determined from 5398 29-step tracks to the corresponding
theoretically expected quantities (Appendix D), similar to the
analysis done on the optical tweezers data in Sec. III B 2.
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FIG. 15. Experimental MSD (circles) and covariance (squares)
versus time delay for the gene locus mmf1 in S. pombe, compared
to the corresponding best-fit model MSD (blue solid line) and co-
variance (red solid line). The experimental MSD and covariance
were determined from 5398 29-step tracks. Errors (standard errors
of the mean) are smaller than the plotted points, and therefore no
error bars are plotted. The MSD and the covariance were fit to-
gether, using three fitting parameters, namely, α, D, and σ 2. The
resulting best-fit parameter values were α = 0.39 ± 5 × 10−4, D =
0.0061 ± 9 × 10−4 μm2 s−1, and σ 2 = 0.0027 ± 0.08 μm2, yielding
χ 2 = 166.

We carried out global fits of the theoretically expected forms
[Eq. (D2)–(D14)], varying α, D, and σ 2, yielding best fits with
χ2 = 166, shown as the solid lines in the figure. The result-
ing best-fit parameter values were α = 0.39 ± 5 × 10−4, D =
0.0061 ± 9 × 10−4 μm2 s−1, and σ 2 = 0.0027 ± 0.08 μm2,
corresponding to r2 = 0.0080 μm2, σ 2

r2 = 0.34, and RMS step
size = 89.4 nm.

The measured covariance distributions, together with the
corresponding theoretical predictions, based on the mean
covariance, and the corresponding best-fits to a skew nor-
mal distribution are shown in Fig. 16. In contrast to the
previous examples, the theoretical curves (red) for the S0

distribution predict a significantly narrower distribution, than
found experimentally (histograms). A similar trend, albeit less
pronounced, can be discerned for the S1 distributions. By
contrast, the theoretical curves seem to accurately represent
the experimental S2 and S3 distributions. The means and vari-
ances, determined from skew normal fits to these distributions,
are plotted in Figs. 17(a) and 17(b), and provide further in-
sight. As expected, the mean covariance is independent of
track length, and the variance in track length increases with
decreasing track length. However, in this case, the measured
variance of S0 is much larger than predicted, especially for
long track lengths [Fig. 17(b) red circles and line]. The mea-
sured variance of S1 is also noticeably larger than predicted,
but to a lesser extent. In contrast, the measured variances of S2

and S3 seem well-described by theory. It appears that the vari-
ances of both S0 and S1 display more-or-less constant offsets
above their predicted values. To test this idea, we fit the exper-
imental covariances of S0 and S1 versus inverse track length to
the theoretical form plus a constant. The results of these fits
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FIG. 16. Covariance distributions for gene locus mmf1 in S.
pombe. Covariances S0 (a), S1 (b), S2 (c), and S3 (d) for particle tracks
of 19 (light gray), 39 (medium gray), and 79 (dark gray) steps are
represented as histograms. Red lines correspond to the theoretical
distributions. Black dashed lines correspond to the best fit of a skew
normal distribution to the simulated distributions. With increasing
number of time steps, the distribution narrows.
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FIG. 17. Dependence of the covariance matrix estimates on the
track length for the gene locus mmf1 in S. pombe. (a) The mean
of the covariances S0 (red circle), S1 (blue square), S2 (green trian-
gle), and S3 (orange upside-down triangle) vs inverse track length.
Theory (straight lines) is calculated by Eq. (17). Maximum y value
corresponds to 1.25 in units of the mean-square step size (8.0 ×
10−3 μm2). (b) Variance of the covariance vs inverse track size of
S0 (red circle), S1 (blue square), S2 (green triangle), and S3 (orange
upside-down triangle). The theory is calculated by Eq. (18). Dashed
lines correspond to a fit of the experimental data to the theoretical
form plus a constant. Maximum y value corresponds to 0.11 in units

are shown as the dashed lines in Figs. 17(b) and 17(c), and
indeed describe the data well. In general, localization noise
contributes 2σ 2 to �0 and −σ 2 to �1 but does not contribute
to �n for n > 1 [Eqs. (20) and (21)]. Although perhaps not
the sole source of the disparity, this observation suggests that
the discrepancy may originate from the localization noise in
this experimental system. This idea is further bolstered by the
observation that S2 and S3 are well described by theory. Given
that localization noise has no contribution to the mean of �0 +
2�1, we compared experimental and predicted variances of
�0 + 2�1 to test whether the discrepancy with theory stems
from the localization noise. Plotted in Fig. 17(c) versus inverse
track length are the experimental variance of �0 + 2�1, (di-
amonds) and the corresponding theoretical prediction (solid
line). Although a discrepancy between experiment and theory
remains, the actual value of the offset is about a factor of four
smaller than the offset observed for the variance of S0 alone,
bolstering the idea that static localization noise is the culprit.

At the same time, although fluorescent foci in different
cells correspond to the same genetic locus (i.e., they all cor-
respond to the same position along the chromosome), our
experimental measurements reveal that each focus may show
a different fluorescence intensity and width (data not shown),
which we ascribe to different focal planes, different opti-
cal environments, etc., from cell to cell. These cell-to-cell
variations in focus intensity and width surely lead to corre-
sponding cell-to-cell variations in localization noise. Thus,
our measurements themselves directly point to the possibility
of cell-to-cell heterogeneity in localization noise, and thus a
degree of variation in the covariance matrix � from cell to
cell. However, the theory presented in this paper is predicated
on Eq. (3), which assumes that all samples are drawn from
the same multivariate Gaussian distribution. To investigate the
possible role of localization noise heterogeneity, we carried
out additional simulations, described in Sec. III C 2.

2. Simulated fractional Brownian motion data
with heterogeneous localization noise

To incorporate localization noise heterogeneity, we carried
out simulations of fBm, for which the localization error varies
from track to track, determined via two Gaussian random
variables as follows. We consider that each track has its own
unique localization noise described by a Gaussian (referred to
as G1) with zero mean and a standard deviation determined
randomly from another Gaussian distribution with the mean

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
of the mean-square step size (8.0 × 10−3 μm4). (c) Variance of the
covariance vs inverse bin size of S0 + 2S1 (diamond). Calculating
S0 + 2S1 removes static localization noise. Hence, the data variances
are closer in value to the theory, compared the plot of S0. Theory
(solid line) is calculated using Tr[�(C0+2C1 )]2

4 . Dashed lines correspond
to a fit of the experimental data to the theoretical form plus a constant.
Maximum y-value corresponds to 0.078 in units of the mean-square
step size (8.0 × 10−3 μm4). (d) The third central moment of the
covariance �0 (circle), �1 (square), �2 (triangle), and �3 (upside-
down triangle) vs inverse track length. Theory (lines) is calculated
by Eq. (19). Maximum y-value corresponds to 0.020 in units of the
mean-square step size (8.0 × 10−3 μm6)
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equal to the experimentally determined static localization
noise 〈σ 2〉 = 0.0032 μm2, and a standard deviation equal to
σσ 2 , which is a variable parameter of the model. Thus, each
track has its own unique localization noise. The localization
noise heterogeneity may be quantified by the value of σ

σ2

〈σ 2〉 ,
which we term the “localization heterogeneity.”

For each of several different inhomogeneities, we sim-
ulated 1000 500-step tracks, for D = 0.0055 μm2 s−0.44,
α = 0.44, σ 2 = 0.0032 μm2, and �t = �tE = 0.058s (r2 =
0.0063 μm2, σ 2

r2 = 0.51, and RMS step size = 79.4 nm), com-
parable to the values determined from the experiment [39].
The resultant trajectories were partitioned as usual into tracks
of length 19, 29, 39, 49,..... 319, 419, and the resultant covari-
ance distributions fit by a skew normal function. Figure 18
shows histograms of simulated S0, S1, S2, and S3 distributions,
corresponding to σ

σ2

〈σ 2〉 = 0.20. Also shown in Fig. 18 are the
corresponding theoretical predictions (red lines) and the skew
normal best-fits (black dashed lines), which describe the sim-
ulated distributions well in this case too. By contrast, the
theoretical curves are significantly narrower, reminiscent of
the disparity seen in Fig. 16 for the experimental gene locus
data. Also similar to the gene locus data, the simulated and
theoretical distributions of S2 and S3 agree.

The means, variances, and third moment of the covariances
calculated from the best-fits for the simulated data are shown
in Figs. 19(a)–19(d) as a function inverse track length. The
theory [Eq. (18)] and the theory plus offset are shown as
solid and dashed lines, respectively. The means reproduce
what is expected from the given simulation parameters. Note,
that this is true regardless of the values of the localization
heterogeneity (data not shown). Strikingly reminiscent of the
experimental results shown in Fig. 17, while the variance of
S0 lies above the theoretically predicted values by a relatively
large offset, the variance of S1 also lies above that predicted
theoretically, but by a relatively small offset.

The fact that our simple simulations recapitulate impor-
tant features of the experimental results on gene loci support
the hypothesis that the observed theory-experiment discrep-
ancy is the result of inhomogeneous localization noise. To
further test our model, we also determined the simulated
and theoretical variance of �0 + 2�1 which are plotted
together in Fig. 19(c) as the diamonds and line, respec-
tively. In this case, however, simulation and theory match
well, in contrast to the experiment-theory comparison which
shows a residual discrepancy [Fig. 17(c)], indicating that
our simple model does not perfectly model the experimental
situation.

Next, we explore how localization heterogeneity levels
affect the discrepancy between theory and the simulations.
We vary the heterogeneity level, and, for each simulation, fit
S0 and S1 by the theory plus offset and plot corresponding
offsets vs σ

σ2

σ 2 (Fig. 20). Figure 20 plots the offsets in S0 (red)
and S1 (blue) versus σ

σ2

σ 2 . Unsurprisingly, small locus-to-locus
variation in the localization noise results in small offsets;
and ramping up the localization noise increases offsets. For
increasing inhomogeneity, i.e., a broader initial Gaussian, G1,
the offset increases. Also shown in Fig. 20 are the offsets
for the experimental mmf1 gene locus data, where the red
horizontal line is the S0 offset, and the blue horizontal line is
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FIG. 18. Covariance distributions for simulated tracks undergo-
ing fBm, with heterogeneous noise determined from a Gaussian
distribution of widths for each track. The width of the noise distri-
bution is determined using homogeneity = σ

σ2

σ 2 = 0.20. Covariances
S0 (a), S1 (b), S2 (c), and S3 (d) for particle tracks of 19 (light gray),
39 (medium gray), and 79 (dark gray) steps are represented as his-
tograms. Red lines correspond to the theoretical distributions. Black
dashed lines correspond to the best fit of a skew normal distribution
to the simulated distributions. With increasing number of time steps,
the distribution narrows.
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FIG. 19. Dependence of the covariance matrix estimates on the
track length for simulated particles undergoing fractional Brown-
ian motion, with noise determined from a Gaussian distribution of
widths for each track. The width of the noise distribution G1 is
determined using homogeneity = σ

σ2

σ 2 = 0.20. (a) The mean of the
covariances S0 (red circle), S1 (blue square), S2 (green triangle),
and S3 (orange upside-down triangle) vs inverse track length. Max
y value corresponds to 1.59 in units of the mean-square step size
(6.3 × 10−3 μm2). (b) Variance of the covariance vs inverse track
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FIG. 20. Offsets between theoretical and fitted variances of sim-
ulated data with inhomogeneous localization noise for S0 (red circle)
and S1 (blue square), versus heterogeneity of the localization used
to determine the Gaussian noise distribution. Dashed lines repre-
sent a guide to the eye for each Sn offset. The horizontal red and
blue solid lines are the S0 and S1 offsets for gene locus mmf1,
respectively.

the S1 offset. The lines derived from experiment intersect the
simulated curves at comparable values of the heterogeneity,
namely, σ

σ2

σ 2 = 0.21 for �0 and σ
σ2

σ 2 = 0.16 for �1. In view of
the simplicity of our model, we regard this small discrepancy
as satisfactory. Distributions alternative to Gaussians yielded
similar results.

IV. CONCLUSION

We have developed and applied a simple method to de-
termine whether a population of finite-length single-particle
tracks exhibits a single mode of diffusion. First, we derived
theoretical equations that describe the distribution of displace-
ment covariance matrix elements for a particle in an arbitrary,
but well-defined, diffusive state. For both 1D and 2D, we de-
termined the probability distribution of the covariance matrix
elements, Sn, given the covariance matrix, and then calculated
the first three moments of Sn, namely, the mean (trivially equal
to �n), variance, and third central moment. To test these theo-
retical results, we first simulated tracks undergoing simple 2D
diffusion, uncovering excellent agreement between theoretical

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
size of S0 (red circle), S1 (blue square), S2 (green triangle), and S3

(orange upside-down triangle). The theory is calculated by Eq. (18).
Dotted lines represent a linear fit plus a constant to the data points.
Max y-value corresponds to 0.20 in units of the mean-square step
size (6.3 × 10−3 μm4). (c) Variance of the covariance vs inverse
bin size of S0 + 2S1 (diamond). Theory (solid line) is calculated

using Tr(�(C0+2C1 ))2

4 . Max y value corresponds to 0.15 in units of
the mean-square step size (6.3 × 10−3 μm4). (d) The third central
moment of the covariance �0 (circle), �1 (square), �2 (triangle), and
�3 (upside-down triangle) vs inverse track length. Theory (lines) is
calculated by Eq. (19). Max y value corresponds to 0.06 in units of
the mean-square step size (6.3 × 10−3 μm6).
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and simulated covariance matrix element distributions. We
further showed that least-mean-squares fits of a skew normal
function to the simulated distributions were able to accurately
capture the shape of the simulated distributions. Best-fit pa-
rameters from skew normal fits, carried out for different track
lengths also matched well to the theoretical expressions for
the variance and third central moment versus track length. In
addition to simulated tracks, we also followed this procedure
for experimental data, first for an optically trapped bead in
water and then an optically trapped bead in a viscoelastic
high polymer solution. In these cases also, we found that the
experimental covariance distributions are well described by
the theoretical covariance distributions, using the measured
mean covariances as the sole input. In these cases too, skew
normal best fits yielded parameters that well described the
mean, variance, and third central moment of the experimental
covariance distributions versus inverse track length. These
collected results give us confidence that the theory, presented
in Sec. II, is correct.

Finally, we analyzed the covariance distributions of the
mmf1 gene locus in S. pombe. Here, the analysis revealed
that the experimental S0 and S1 distributions are significantly
wider than predicted on the basis of the mean covariance
matrix elements, initially suggesting the presence of more
than one diffusive state. However, the fact that the discrep-
ancy is confined only to S0 and S1 led us to consider the
hypothesis that the discrepancy originates with locus-to-locus
heterogeneity in the static localization noise. To test this idea,
we simulated fBm tracks with static localization noise of
varying degrees of heterogeneity. Analyses of these tracks
recreated a similar disparity between the theoretical and mea-
sured variance of S0 and S1 versus inverse track length. We
explored varying the degree of the heterogeneity in the context
of simulations in an attempt to more closely recapitulate the
discrepancy seen in the gene locus data. While the hetero-
geneous noise we added largely accounts for the offsets we
saw between the measured and theoretical variances of the
covariance, it did not fully account for this behavior. Further
investigation is needed to completely understand the factors
that contribute to this discrepancy. In summary, we found
that, for a single mode of diffusion, covariance distributions
can be accurately predicted using the presented theory and
mean covariances. Comparison of the predicted distributions
with the experimentally measured ones enabled us to answer
whether particles display a single or multiple diffusive states.
Hence, this method is a simple yet powerful tool to deter-
mine whether a biological system exhibits a single diffusive
state.
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APPENDIX A: CALCULATION OF THE CENTRAL
MOMENTS GENERALIZED TO k-DIMENSIONAL SPACE

The probability distribution of Sn in k-dimensional space is

P(Sn|�) =
∫ ∞
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dω

2π

1∣∣I + i
k ω�Cn

∣∣k/2 eiωSn . (A1)
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It follows that
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Using Eqs. (A6), (A7), and (A8), we obtain the first central moment
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2
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the second central moment
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and the third central moment
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= 1

8
(Tr�Cn)3 + 3

4k
Tr(�Cn)Tr(�Cn)2 + 1

k2
Tr(�Cn)3 − 3

Tr(�Cn)

2

Tr(�Cn)2

2k
−

[
Tr(�Cn)

2

]3

= 1

k2
Tr(�Cn)3. (A11)

The skewness (third standardized moment) μ̃3 is

μ̃3 = μ3

σ 3
Sn

= Tr(�Cn)3

k2
[Tr(�Cn )2

2k

] 3
2

. (A12)

APPENDIX B

Because all tridiagonal Toeplitz matrices possess the same eigenvectors, the matrices, �, C1, I + i
2ω�C0, I + i

2ω�C1, and

I + i
8�t ω(�C0 + 2�C1), are all diagonalized by the same orthogonal transformation, given by [U] jk =

√
2
N sin π jk

N+1 . For � and
C1, the eigenvalues are

�k = �0 + 2�1 cos
kπ

N + 1
(B1)

and

λ1k = 2

N − 1
cos

kπ

N + 1
, (B2)

respectively, where k = 1, 2,.. N . It follows that

p(S0|�) =
∫ ∞

−∞

dω

2π

eiωS0∏N
k=1 1 + iω

(
�0 + 2�1 cos kπ

N+1

)
1
N

, (B3)

p(S1|�) =
∫ ∞

−∞

dω

2π

eiωS1∏N
k=1 1 + iω

(
�0 + 2�1 cos kπ

N+1

)
1

N−1 cos kπ
N+1

, (B4)

and

P(D|�) =
∫ ∞

−∞

dω

2π

eiωD∏N
k=1

[
1 + iω

4�t

(
�0 + 2�1 cos kπ

N+1

)(
1
N + 2 cos kπ

N+1

N−1

)] , (B5)

which is the 2D version of Eq. (A11) of Ref. [27].

APPENDIX C: MSD AND COVARIANCE MATRIX
ELEMENTS FOR A PARTICLE IN A HARMONIC

POTENTIAL

The usual approach for analyzing optical tweezers data is
to calculate the power spectrum of the displacement fluctua-
tions away from the potential minimum, which is equivalent to
consideration of the mean-square displacement (MSD) versus
time. To determine what new information can be gleaned by
considering the covariance matrix elements of optical tweez-
ers data, in this section, we calculate both the MSD and the
covariance matrix elements for a particle in a viscous fluid,
subject to a harmonic potential. Some of these results can be
found in Ref. [40].

Our starting point is the theoretical result for the displace-
ment correlation function:

〈x(t )x(s)〉 = kBT

κ
e−|t−s|/τ , (C1)

where κ is the trap stiffness, τ is the characteristic time of
the trap, kB is Boltzmann’s constant, and T is the absolute

temperature. Thus, for times t0 and tn, separated by a time
n�t , we have

〈x(tn)x(t0)〉 = 〈xnx0〉 = kBT

κ
e−(tn−t0 )/τ = kBT

κ
e−n�t/τ . (C2)

It follows that the MSD, Mn, after n time steps, each of �t , is

Mn = 〈(xn − x0)2〉 = 〈
x2

n

〉 + 〈
x2

0

〉 − 2〈xnx0〉

= 2kBT

κ
(1 − e−n�t/τ ), (C3)

while the covariance matrix elements are

�0 = M0 = 〈(x1 − x0)2〉 = 〈
x2

1

〉 + 〈
x2

0

〉 − 2〈x1x0〉

= 2kBT

κ
(1 − e−�t/τ ), (C4)

�1 = 〈(x2 − x1)(x1 − x0)〉 = 〈x2x1〉 − 〈
x2

1

〉 + 〈x1x0〉 − 〈x2x0〉

= −kBT

κ
(1 − e−�t/τ )2, (C5)
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and

�n = 〈(xn+1 − xn)(x1 − x0)〉 = 〈xn+1x1〉 − 〈xnx1〉 + 〈xnx0〉
− 〈xn+1x0〉

= −kBT

κ
e−(n−1)�t/τ (1 − e−�t/τ )2. (C6)

However, data acquisition actually occurs for a time pe-
riod �tE , while the spacing between successive acquisitions
is �t . Thus, rather than measuring an instantaneous particle
position, in general, experiments measure a motion-blurred
position, averaged over the duration of data acquisition, i.e.,
acquisition period n measures

1

�tE

∫ �tE

0
dt x(n�t + t ), (C7)

where x(n�t + t ) is the particle position at time n�t + t . To
incorporate motion blur into our calculations of the MSD and

the covariance matrix elements, we must replace 〈x2
0〉, etc.,

in Eqs. (C3) through (C6) by the appropriate time-averaged
quantities. Using〈
x2

0

〉 = 1

�tE 2

∫ �tE

0
dt

∫ �tE

0
ds e−|t−s|/τ

= 2

�tE 2

∫ �tE

0
dt

∫ t

0
ds e−(t−s)/τ = 2(e−�tE /τ − 1 + �tE

τ
)

�tE 2/τ 2

(C8)

and

〈xmx0〉 = 1

�tE 2

∫ �tE

0
dt

∫ �tE

0
ds e−(tm+t−t0−s)/τ

= 2(cosh �tE/τ − 1)

�tE 2/τ 2
e−(tm−t0 )/τ (C9)

and incorporating static localization noise, the motion-blurred MSD becomes

Mn = 4kBT

κ

(
e−�tE /τ − 1 + �tE

τ

�tE 2/τ 2
− cosh �tE/τ − 1

�tE 2/τ 2
e−n�t/τ

)
+ 2σ 2. (C10)

Similarly, the covariance matrix elements become

�0 = 4kBT

κ

(
e−�tE /τ − 1 + �tE

τ

�tE 2/τ 2
− cosh �tE/τ − 1

�tE 2/τ 2
e−�t/τ

)
+ 2σ 2, (C11)

�1 = −2kBT

κ

(
e−�tE /τ − 1 + �tE

τ

�tE 2/τ 2
+ cosh �tE/τ − 1

�tE 2/τ 2
e−�t/τ (−2 + e−�t/τ )

)
− σ 2, (C12)

and

�n = −2kBT

κ

cosh �tE/τ − 1

�tE 2/τ 2
e−(n−1)�t/τ (1 − e−�t/τ )2,

(C13)

for n > 1.
In the limit that �t � τ and �tE � τ , using kBT

κτ
= D,

where D is the particle’s diffusion coefficient, Eqs. (C11),
(C12), and (C13) reproduce the corresponding results for

free diffusion with motion blur and static localization noise
[Eqs. (20) and (21)], as expected. Generally, power-spectrum-
based analyses of optical tweezers data ignore any possible
motion blur [41]. Comparison between Eqs. (C3) and (C10)
suggests that in the case of exponential time-dependence
motion blur changes the interpretation of the fluctuation am-
plitude without changing the shape of the MSD or PSD.
However, this circumstance is special to the case of exponen-
tial relaxations and does not hold in general [37]. (See also,
for example, Sec. III B 2)

APPENDIX D: MSD AND COVARIANCE MATRIX ELEMENTS FOR FRACTIONAL BROWNIAN MOTION (1D)

In the case of fractional Brownian motion (fBm), our starting point is theoretical mean-square displacement from time t1 to
time t2 [31], namely,

〈[x(t2) − x(t1)]2〉 = 2D|t2 − t1|α, (D1)

where α is the exponent characterizing the fBm, and where we refer to D as the diffusion coefficient, although its dimensions
are m2s−α . Incorporating motion blur and static localization noise, the MSD becomes

Mn = 2D

�t2
E

∫ �tE

0
dt

∫ �tE

0
ds[|n�t + t − s|α − |t − s|α] + 2σ 2

= 2D(�t )2+α
[(

n − �tE
�t

)2+α − 2n2+α + (
n + �tE

�t

)2+α]
(1 + α)(2 + α)�t2

E

− 4D�tα
E

(1 + α)(2 + α)
+ 2σ 2, (D2)
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which reproduces the result given in Ref. [25].
The calculation for the fBm covariance terms can be performed as follows:

�n =
∫ �tE

0
ds

∫ �tE

0
dt{x[(n + 1)�t + t] − x(n�t + t )][x(�t + s) − x(s)}

=
∫ �tE

0
ds

∫ �tE

0
dt{x[(n + 1)�t + t]x(�t + s) − x[(n + 1)�t + t]x(s) − x(n�t + t )x(�t + s) + x(n�t + t )x(s)}

=
∫ �tE

0
ds

∫ �tE

0
dt{2x(n�t + t )x(s) − x[(n + 1)�t + t]x(s) − x(n�t + t )x(�t + s)}. (D3)

Condense to form 〈[x(t2) − x(t1)]2〉 = 2D|t2 − t1|α , from Eq. (D1),

�n =
∫ �tE

0
ds

∫ �tE

0
dt

(
1

2
{x[(n + 1)�t + t] − x(s)}2 + 1

2
{x[(n − 1)�t + t] − x(s)}2 − [x(n�t + t ) − x(s)]2

)
. (D4)

Plug in 2D|t2 − t1|α ,

�n = D

�t2
E

∫ �tE

0
ds

∫ �tE

0
dt[|n�t + �t + t − s|α + |n�t − �t + t − s|α − 2|n�t + t − s|α]. (D5)

Now break Eq. (D5) into three integrals and calculate each one. Starting with the left-most integral,∫ �tE

0
ds

∫ �tE

0
dt |n�t + �t + t − s|α =

∫ �tE

0
ds

∫ �tE

0
dt[n�t + �t + t − s]α. (D6)

Absolute value can be ignored since n�t + �t + t − s > 0. The result is

−2(n�t + �t )α+2

(α + 1)(α + 2)
+ (n�t + �t − �tE )α+2

(α + 1)(α + 2)
+ (n�t + �t + �tE )α+2

(α + 1)(α + 2)
. (D7)

Next we have the middle integral, ∫ �tE

0
ds

∫ �tE

0
dt |n�t − �t + t − s|α. (D8)

To evaluate this integral, we must take the cases when n = 1 and n > 1 into account. For n = 1, the integrand becomes
|t − s|α ∫ �tE

0
ds

∫ �tE

0
dt |t − s|α = 2(�tE )α+2

(α + 1)(α + 2)
. (D9)

For n > 1, n�t − �t + t − s > 0, so we can do the integral normally,∫ �tE

0
ds

∫ �tE

0
dt[n�t − �t + t − s]α = −2(n�t − �t )α+2

(α + 1)(α + 2)
+ (n�t − �t − �tE )α+2

(α + 1)(α + 2)
+ (n�t − �t + �tE )α+2

(α + 1)(α + 2)
. (D10)

Last, the third part of the integral can be done without the absolute value, since n�t > �tE ,

−2
∫ �tE

0
ds

∫ �tE

0
dt[(n�t + t − s)α] = 4(n�t )α+2

(α + 1)(α + 2)
− 2(n�t − �tE )α+2

(α + 1)(α + 2)
− 2(n�t + �tE )α+2

(α + 1)(α + 2)
. (D11)

Thus, the covariance terms are

�0 = 2D(�t )2+α
[(

1 − �tE
�t

)2+α − 2 + (
1 + �tE

�t

)2+α]
(1 + α)(2 + α)�t2

E

− 4D�tα
E

(1 + α)(2 + α)
, (D12)

�1 = D

�t2
E

[ −2(2�t )α+2

(α + 1)(α + 2)
+ (2�t − �tE )α+2

(α + 1)(α + 2)
+ (2�t + �tE )α+2

(α + 1)(α + 2)
+ 2(�tE )α+2

(α + 1)(α + 2)

+ 4(�t )α+2

(α + 1)(α + 2)
− 2(�t − �tE )α+2

(α + 1)(α + 2)
− 2(�t + �tE )α+2

(α + 1)(α + 2)

]
, (D13)
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FIG. 21. Covariance distributions for simulated fBm tracks with
uniform localization noise, D = 0.0055 μm2 s−1, σ 2 = 0.0032 μm2,
and �t = �tE = 0.058s. Covariances S0 (a), S1 (b), S2 (c), and S3

(d) for particle tracks of 19 (light gray), 39 (medium gray), and 79
(dark gray) steps are represented as histograms. Red lines correspond
to the theoretical distributions. Black dashed lines correspond to the
best fit of a skew normal distribution to the simulated distributions.
With increasing number of time steps, the distribution narrows.
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FIG. 22. Dependence of the covariance matrix estimates on the
track length for simulated fBm tracks with uniform localization
noise. (a) The mean of the covariances S0 (red circle), S1 (blue
square), S2 (green triangle), and S3 (orange upside-down triangle) vs
inverse track length. Theory (straight lines) is calculated by Eq. (17).
(b) Variance of the covariance vs inverse track size of S0 (red circle),
S1 (blue square), S2 (green triangle), and S3 (orange upside-down
triangle). The theory is calculated by Eq. (18). (c) Variance of the
covariance vs inverse bin size of S0 + 2S1 (diamond). Theory (solid

line) is calculated using Tr(�(C0+2C1 ))2

4 . (d) The third central moment
of the covariance �0 (circle), �1 (square), �2 (triangle), and �3

(upside-down triangle) vs inverse track length. Theory (lines) is
calculated by Eq. (19).
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�n = D

�t2
E

[−2(n�t + �t )α+2

(α + 1)(α + 2)
+ (n�t + �t − �tE )α+2

(α + 1)(α + 2)
+ (n�t + �t + �tE )α+2

(α + 1)(α + 2)

− 2(n�t − �t )α+2

(α + 1)(α + 2)
+ (n�t − �t − �tE )α+2

(α + 1)(α + 2)
+ (n�t − �t + �tE )α+2

(α + 1)(α + 2)

+ 4(n�t )α+2

(α + 1)(α + 2)
− 2(n�t − �tE )α+2

(α + 1)(α + 2)
− 2(n�t + �tE )α+2

(α + 1)(α + 2)

]
, (D14)

for n = 2, 3, 4, ....

In the limit that �tE = 0,

�0 = 2D(�t )α, (D15)

�1 = D[(2�t )α − 2(�t )α], (D16)

�n = D[(n�t + �t )α + (n�t − �t )α − 2(n�t )α], (D17)

for n = 2, 3, 4, ....

In the limit that α = 1,

�0 = 2D�t − 2D�tE
3

, (D18)

�1 = D�tE
3

, (D19)

�n = 0, (D20)

for n � 2.

APPENDIX E: ADDITIONAL FIGURES

Figures 21 and 22 show simulations of fractional Brownian motion with uniform localization noise. In this case, theory and
data agree well.
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