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Stochastic force dynamics of the model microswimmer Chlamydomonas reinhardtii: Active
forces and energetics
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We study the stochastic force dynamics of a model microswimmer (Chlamydomonas reinhardtii), using a
combined experimental, theoretical, and numerical approach. While swimming dynamics have been extensively
studied using hydrodynamic approaches, which infer forces from the viscous flow field, we directly measure
the stochastic forces generated by the microswimmer using an optical trap via the photon momentum method.
We analyze the force dynamics by modeling the microswimmer as a self-propelled particle, à la active matter,
and analyze its energetics using methods from stochastic thermodynamics. We find complex oscillatory force
dynamics and power dissipation on the order of 106 kBT/s (∼fW).
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I. INTRODUCTION

Swimming at the microscopic scale has long attracted
the interest of biologists, physicists, and applied mathemati-
cians [1,2]. The self-propulsion of microorganisms through
viscous fluids at low Reynolds number is an essential as-
pect of life [3–7]. At the most basic level, this involves a
swimmer physically interacting with its environment to create
directed motion. A widely studied model microswimmer is
the Chlamydomonas reinhardtii, which is a unicellular biflag-
ellate alga that uses a breaststroke motion to pull itself through
its environment [8,9]. Chlamydomonas have been studied ex-
tensively by biologists [10–12] long before physicists became
interested [13].

To understand the swimming dynamics of the Chlamy-
domonas, hydrodynamic approaches have been used exten-
sively to understand the flow fields around the swimmer and
infer the forces generated by them [5]. A collection of im-
pactful experimental and theoretical studies have uncovered
complex swimming dynamics [14,15], flagellar waveforms
[16,17], enhanced diffusion [18,19], synchronization [20–24],
and fluctuations [23,25]. Studies typically analyze the swim-
mer motion and the surrounding fluid velocity field to infer
forces using Stokeslet models [3,26–28]. However, direct in-
vestigation of the force dynamics has been more elusive.

Here we present a study of direct measurement of the
stochastic forces generated by a Chlamydomonas and in-
terpret the dynamics via modeling and simulations of a
self-propelled particle. Optical trapping to manipulate and
study microswimmers is not new [29–32], however, in situ
force calibration is typically challenging [33–36]. Here direct
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force measurement is possible due to recent advances in opti-
cal trap calibration, known as the photon momentum method
[37,38], that measures force via changes in photon momentum
of the trapping beam and does not require a priori knowl-
edge of the object shape, refractive index, a synthetic handle,
or external calibration as used traditionally for quantitative
force measurement [39–43]. This approach allows study of
the stochasticity of forces given the high resolution in force
and sampling rate (sub-pN and 50 kHz, respectively). This
approach is particularly interesting for studies of stochastic
thermodynamics where fluctuations are important because it
allows direct access to force without assuming an underlying
model (e.g., a linear spring), does not require averaging, and is
not limited by the precision of image acquisition or correlation
techniques [38,44,45]. Since the photon momentum method
does not rely on trap linearity it allows large force fluctua-
tions in the nonlinear range to be captured, unlike traditional
techniques for calibration such as equipartition, Stokes drag,
or active-passive approaches [46]. By treating the swimmer
as an “active particle” we quantify its nonequilibrium ac-
tivity using tools from stochastic thermodynamics [44,47–
49]. We find that Chlamydomonas exhibit complex oscillatory
force dynamics with magnitude of tens of pNs, and rotational
dynamics of 1–2 Hz, that can be characterized using a self-
propelled particle model. Measurements and theory suggest
the power dissipated by single swimmers to be on the order of
106 kBT/s (∼fW).

II. THEORETICAL MODEL AND EXPERIMENTAL
METHODS

A. Equation of motion

We model the stochastic motion and active force dy-
namics of the optically trapped Chlamydomonas (in the
two-dimensional horizontal plane) with the overdamped
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Langevin equation [50,51]. That is, the position r(t ) ∈ R2 of
the Chlamydomonas (or active particle) is governed by

γ ṙ + κr = γ u +
√

2Dγ η, (1)

which balances the deterministic frictional and optical trap
forces with the random active and thermal forces. In (1), κ

is the optical trap stiffness, γ is the friction coefficient of the
Stokes’ drag, and D is the thermal diffusion coefficient of the
zero-mean, δ-correlated Gaussian white noise process η. Also,
u is the intrinsic self-propulsion velocity of the active particle
that can take on many forms depending on the underlying
model of the active particle such as active Brownian particle
(ABP) or active Ornstein-Uhlenbeck particle (AOUP) [50,52].
In our analytic approach we use the AOUP model as discussed
in the Appendix. From this equation of motion we derive
analytic quantities such as the force spectrum (see Appendix)
and perform numerical simulations of particle trajectories.

B. Numerical simulations

To simulate individual trajectories we discretize (1) using
the Euler-Maruyama method [53,54] over uniform time steps
of size �t , which produces the iterative procedure

ri = ri−1 − κ

γ
ri−1�t + ui−1�t +

√
2D�t Zi−1, (2)

for i = 1, 2, . . . . The subscripts indicate the time step of the
corresponding quantities, and Zi is a normally distributed
multivariate random variable that has zero mean and co-
variance equal to the identity matrix; see Appendix for the
derivation of Eq. (2).

The forces due to friction, the trapping potential, active
processes, and thermal fluctuations at each time step are then
defined by

Ffric,i = −γ
�ri

�t
,

Ftrap,i = −κri,

Fact,i = γ ui,

Fth,i =
√

2D

�t
Zi,

and induce the respective work increments

�Wfric,i = Ffric,i ◦ �ri,

�Wtrap,i = Ftrap,i ◦ �ri,

�Wact,i = Fact,i ◦ �ri,

�Wth,i = Fth,i ◦ �ri,

where the symbol ◦ denotes the dot product with Stratonovich
convention [55], e.g., F(t ′) = [F(ti ) + F(ti−1)]/2. In this dis-
crete setting the forces and their induced work increments are
mathematically well defined; however, as the time step �t →
0+, the frictional and thermal quantities diverge. Experimen-
tally, only the optical trap and frictional terms are directly
accessible, which limits our ability to make direct quantitative
comparisons for continuous time. We circumvent this issue by
making calculations and comparisons with discrete quantities
for a time step �t defined by the precision of the experiments.

C. Sample preparation and optical tweezer measurements

Chlamydomonas reinhardtii were purchased from Carolina
Scientific (item no. 152030) and used within 48 h of arrival.
A 20-μl droplet of stock solution containing Chlamydomonas
was sandwiched in a sample chamber made from a glass slide
and a coverslip (Fisher Scientific) with Dow Corning vacuum
grease used as a spacer. A Nikon TE2000 with a 60×/1.2 NA
water-immersion objective and Hamamatsu ORCA-Flash4.0
V2 was used for microscopy. The optical tweezer system
(Impetux Optics S.L.) includes the optical trap, piezo stage
positioning, and force detection. The 60× objective focuses
the near-infrared fiber laser (1064 nm, IPG-YLR-10, IPG
Photonics) to create the optical trap. Force detection and laser
tracking interferometry is done using the photon momen-
tum method (PMM) [37,56] implemented with a 1.4 NA oil
immersion condenser and a position sensitive sensor that is
digitized at 50 kHz. For the PMM method force calibration
to be accurate it is critical to use a condensing objective
with higher numerical aperture than the trapping objective
and to minimize scatter of light through the sample [37,57].
All control of experimental hardware and data acquisition was
done using Labview (National Instruments).

D. Data analysis

All data analysis of experiments and simulations was com-
pleted in MATLAB. To calculate the force spectrum, the
power spectrum of a finite force signal, F(t ) sampled at
50 kHz, was estimated using Welch’s method [58] with a
Hamming window. This approach was used for both exper-
imental data and numerically simulated data. Fitting of the
force spectrum to our analytic model was done using nonlin-
ear least squares [59]. For calculations of work fluctuations
in the time domain, data were downsampled by a factor of
10 to reduce high-frequency noise, for a resulting sampling
frequency of 5 kHz.

III. RESULTS AND DISCUSSION

A. Characterizing force dynamics

Most studies of Chlamydomonas reinhardtii swimming
measure the position or velocity of the swimmer itself or the
fluid field surrounding it [6,15,16,60]. These studies provide
a wealth of information, particularly on swimming dynamics
[14,61,62], flagellar waveforms [17,63], and synchronization
[20,64,65]. We take an alternative approach where we directly
measure the force generated by the swimmer as applied to
the optical trap. This is possible due to a recently developed
force calibration technique, called the PMM [37,38], that does
not require a priori knowledge of the trapped particle or
the surrounding fluid bath. One might expect that inferred
forces from fluid mechanics approaches [5,6] and direct mea-
surement of the force generated by a swimmer would be
compatible, since they should be related by Newton’s third
law. Our direct measurements of force confirm this hypothesis
as we describe in this section.

The characteristic force dynamics of a Chlamydomonas
in an optical trap is shown in Fig. 1, where only a short
snippet (0.2 s) is shown for visibility purposes. By di-
rect force measurement it is evident the swimmer exhibits
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FIG. 1. Representative force dynamics of a single swimming Chlamydomonas. (a) Force trajectory plot. Upper right inset shows represen-
tative image of trapped swimmer. Lower left inset depicts cartoon of swimmer in harmonic trapping potential. [(b) and (c)] Force components
as a function of time. [(d) and (e)] Histograms of forces measured in (b) and (c). The black dataset in each panel shows the force dynamics of
a passive particle for comparison to thermal fluctuations.

oscillatory force dynamics in both x and y directions due to
its breast stroke motion [Figs. 1(a)–1(c)]. Looking at a short
portion of the trajectory, the first interesting feature is the
forward and backward asymmetry of the forces, most evident
in Fig. 1(b) in the first 0.1 s, where the swimmer is dominantly
aligned in the x direction and the forward (positive) beating
force is larger than the backward (negative) force. This is
supported by the corresponding force histogram [Fig. 1(d)]
where there is a positive peak of ∼30 pN and a negative peak
of ∼−15 pN. For comparison to fluids approaches, if one
assumes simple Stokes friction (F = γ v), then the force mea-
sured predicts forward and backward swimming velocities of
∼400/200 μm/s, which is in close agreement with reported
values [17,60,61].

The second interesting feature to note is the observed
force trajectory is not simply a forward and backward motion
through the center of the trap but rather a complex oscilla-
tion that drifts around the origin over time. Note that since
the optical trap applies no torque, the swimmer is free to
rotate. We observe a wide variety of rotational patterns as
shown in a gallery of force trajectories in Fig. 2. Similar
dynamics are observed for all swimmers, meaning a general
rotation is always present, but we note the finer features of
the force trajectory show great complexity. Focusing on the
average rotation of the forward and backward swimming axis,
a spectrogram analysis reveals an angular velocity, 〈ω/2π〉,
as labeled in Fig. 2. This angular velocity extracted from
the force trajectories is consistent with the Chlamydomonas’
well-documented spinning motion of ∼1–2 Hz from motion-
tracking studies [9,11,62,66].

Overall, the force dynamics in terms of peak values,
oscillations, and rotation are in agreement with swimming
dynamics from previous fluids studies [9]. This shows that

the optical trap (with PMM calibration) is a viable technique
to study the force dynamics of a microswimmer. Further,
direct force measurement provides several advantages—e.g.,
model independent force information (at sub-pN resolution)
and high-temporal resolution (50 kHz) which make this ap-
proach ideal for studying the stochasticity of microswimmer
generated forces. For instance, the probability distribution of
forces reveals much about the underlying processes occur-
ring. A thermally fluctuating particle exhibits Gaussian force
fluctuations characteristic of thermal noise as shown in black
in Fig. 3. The force fluctuations of the Chlamydomonas are
non-Gaussian and have a much wider variance due to the
active nonthermal forces generated by the beating dynamics
of the swimmer [Fig. 3 (red)]. The stark contrast between a
passive Brownian particle and a microscopic swimmer shown
in Fig. 3 is due to consumption or dissipation of nonthermal
energy by the swimmer, which drives it far from equilibrium.

In the remainder of this paper, we study the stochastic force
dynamics of Chlamydomonas in an effort to disentangle the
active forces generated by the swimmer itself and the thermal
forces coming from the fluid bath. We treat the swimmer as an
“active particle” that uses internal sources of energy to gener-
ate self-propulsion [67]. In addition, the swimmer experiences
forces from thermal fluctuations, friction, and the harmonic
trapping potential as outlined in the modeling section above.
Our goal is to quantitatively characterize the activity of the
swimmer and explore its energetics.

B. The force spectrum and characterizing activity

We use the force spectrum, a recently developed approach
[36,49,68–70], to quantify the nonequilibrium force dynamics
of the swimmer as an active particle. The force spectrum is the
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FIG. 2. Gallery of force dynamics of an optically trapped Chlamydomonas. A wide array of patterns in the force trajectories are observed,
and six representative examples are shown here [(a)–(f)]. The overall rotational motion, 〈ω/2π〉, is compatible with previous studies [9].

power spectral density of the stochastic forces measured by
the optical trap. In experiments, we access the force spectra by
estimating the power spectral density using Fourier transform
methods [58]. In the theoretical model, we calculate the force
spectra [Eq. (3), derivation in Appendix] analytically from the

FIG. 3. Probability distribution of forces measured by the optical
trap for a Chlamydomonas (red) and a thermally fluctuating particle
(black). This distribution is calculated from n = 24 experiments.

equation of motion,

Sf f (ω) =
(

2κ2D − 2τκ2v2
0

μ2τ 2 − 1

)
1

μ2 + ω2

+ 2τκ2v2
0

(μ2τ 2 − 1)

1

τ−2 + ω2
, (3)

where ω is frequency in rad/s, μ = κ/γ , τ is the persistence
time of the active force, D is the thermal diffusion coefficient,
and v0 is the characteristic strength of the active velocity. The
majority of parameters in Eq. (3) are determined by our phys-
ical system and the trapped object including: the trap stiffness
(κ), the friction coefficient (γ ), and the thermal diffusion
coefficient (D). Thus, Eq. (3) has only two free parameters
that describe the active process: v0, which quantifies the am-
plitude, and τ , which quantifies the timescale. In relation to
the Eq. (1), v0 is the the average active speed from the AOUP
model.

In Fig. 4 we plot the average force spectra of a swimmer
(red) and a passive particle (black). The passive particle is
the same size and shape as the swimmer, and thus provides
an equilibrium fluctuation baseline (as verified using a dead
swimmer). In both cases, a typical Lorentzian-like shape is
evident with a low frequency plateau and a high frequency
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FIG. 4. The average total force spectrum of an actively swim-
ming Chlamydomonas (red) and the thermal force spectrum (black).
Asterisks (∗) indicate local peaks in the force spectrum at approx-
imately 1.5, 25, and 50 Hz. Blue solid line and green dashed line
are theoretical fits to the analytic model [Eq. (3)]. Inset shows an
example of a single measurement that also exhibits local peaks.

scaling of f −2 expected for thermal fluctuations. This suggests
that for f > 103 Hz that fluctuations are dominantly thermal.
However, below 103 Hz the two force spectra diverge, clearly
showing that the swimmer (red) exhibits force fluctuations
greater than a passive particle (black). The separation between
these two force spectra are due to the active forces from
the swimmer. Additionally, the average force spectra of the
swimmer exhibits several local peaks, which when averaged
over 24 Chlamydomonas occur at roughly 1.5, 25, and 50 Hz
marked by (∗) in Fig. 4. These local peaks are not captured by
our simple analytic model but are explored later via simula-
tions.

To characterize the measured force fluctuations, we fit
Eq. (3) to each individual force spectra to obtain the two
parameters that quantify activity, v0 and τ , which character-
ize the amplitude of activity and its timescale, respectively.
The extracted parameters for x and y direction are shown
in Fig. 5 for all experiments. On average, we find the ac-
tive speed is 〈|v0|〉 = 38 μm/s and the active timescale
is 〈τ 〉 = 39 ms. These extracted parameters are within the

FIG. 5. Fitting parameters from the analytic model. v0 represents
the amplitude of the active process and τ the persistence time. Sym-
bols indicate x direction (×) and y direction (•).

FIG. 6. The average active energy spectrum quantifies the non-
thermal energetic fluctuations of the microswimmer. Integrating this
spectrum provides an estimate of the energy dissipation rate, 〈J〉, via
the Harada-Sasa equality [47] (shaded region indicates SEM).

expected range for freely swimming Chlamydomonas [18] but
biased toward the lower end, likely because our swimmer is
trapped. Nonetheless the agreement is quite striking, given
the two experimental methods have little in common, where
the fluids approach tracks the position of a free swimmer and
our approach measures the force generated by an optically
trapped swimmer and fits an analytic model. It is interesting
to note that the extracted τ does not correspond with the
timescale of passive rotational diffusion as it does for active
colloids that are well described by AOUP or ABP models
[50]. This suggests τ is a unique property of the swimmer
and is likely related to the flagellar beating and its asymmetry
[14,62], which would cause decorrelation of the active forces
due to rotation. Interestingly, tuning the rotational diffusion
independently of thermal fluctuations could allow optimiza-
tion of swimming trajectories [71].

To isolate the nonequilibrium activity we calculate the
average active energy spectrum, Eact = 〈|F̃tot|2〉/〈|F̃th|2〉 − 1,
where 〈|F̃tot|2〉 is the total force spectrum of the swimmer and
〈|F̃th|2〉 is the spectrum of thermal forces, and a˜ indicates the
frequency domain [49,72]. The active energy spectrum quan-
tifies the energetic fluctuations due to nonthermal processes
and thus characterizes the energy injected into the system by
the swimmer (Fig. 6). Integrating the active energy spectrum
provides an estimate for the energy dissipation rate, 〈J〉, due
to active processes [47,49]. Averaged over all swimmers and
all time, we find 〈J〉 = 3.4 × 104 kBT/s (∼0.1 fW). Our av-
erage energy dissipation rate is significantly lower than the
average power dissipated during a Chlamydomonas beat cycle
(∼4 fW) as measured from viscous dissipation [61]. This
could be due to our very different approaches—measuring
force fluctuations vs. fluid velocity field—or could be due
to other experimental differences. We offer two factors that
may contribute to our measured lower average dissipation: (1)
We average over all microswimmers, which includes lower
activity samples that may bias the average toward lower dis-
sipation, and (2) we average over all time, which includes
periods of high, low, and no swimming activity. To further
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FIG. 7. Work fluctuations (left column) and accumulated work (right column) for trajectories shown in the force gallery (Fig. 2). Individual
microswimmers [(a)–(f)] exhibit significant variation in their dynamics as shown by their time-series dynamics. This is particularly evident in
Wfr where the power dissipated in the observed interval varies by a factor of 4 from ∼2 fW [(d) purple] to ∼8 fW [(e) green].

investigate (1) and (2) we analyze the force dynamics of in-
dividual Chlamydomonas in the time domain in the following
section.

C. Trajectory-level fluctuations

Direct force measurement with an optical trap provides
high-resolution trajectories to analyze fluctuations. We char-
acterize the energetic fluctuations of the swimmers shown in
the force gallery (Fig. 2) by calculating work fluctuations.
Two types of work fluctuations are accessible in our experi-
ments: (1) work done by the optical trap and (2) work done
by friction. To access these we assume the optical trap has a
linear force-displacement relationship and that the swimmer
experiences low-Reynolds Stokes friction. This assumption
allows us to calculate the incremental work done by the optical
trap as �WOT = FOT ◦ �r, where FOT is the force measured
by the optical trap, �r is the incremental displacement, and ◦
indicates Stratonovich convention. Similarly, we can calculate
the incremental work done by friction as �Wfr = Ffr ◦ �r,
where Ffr = −γ ṙ is the friction force.

The incremental work fluctuations are plotted in Fig. 7
(left) where the labels (a)–(f) correspond to the trajectories
shown in the force gallery (Fig. 2). Two important features
to note in the incremental work fluctuations are: sample-to-
sample variation is quite high (e.g., small fluctuations for
trajectory (d) and large fluctuations for (e)); and fluctuations
in time also vary even within a sample (e.g., trajectory (f) ex-
hibits small fluctuations initially that increase in amplitude as
time advances). This suggests that averaging over (1) samples
and/or (2) time will hide variations in dissipation.

The corresponding accumulated work along each trajec-
tory is shown in Fig. 7 (right) from numerical integration of
the work increments. Here we observe that the work done
by the optical trap, WOT fluctuates positive or negative as

expected and also varies significantly between trajectories.
We note the net work done by the optical trap on average
is zero, since the trapping potential does not vary in time.
Perhaps more interesting because it is directly comparable to
fluid mechanics studies [18,61] is the work done by friction,
Wfr, which is a fluctuating negative quantity that accumulates
over time. At the trajectory level it is clear Wfr also varies
between swimmers and over time. Quantifying the activity of
the individual swimmers from the average slope of the Wfr

curves in Fig. 7 (right) shows a range of power dissipation,
where the least active swimmer [Fig. 7(d)] dissipates 0.5 ×
106 kBT/s (∼2 fW) and the most active [Fig. 7(e)] dissipates
1.9 × 106 kBT/s (∼8 fW), during the observation window.
The average over all swimmers [Figs. 7(a)–7(f)] estimates the
average power dissipation from viscous forces to be 〈|Pact|〉 =
1.2 × 106kBT/s (∼5 fW). This average value is very close
to the average power dissipated by a Chlamydomonas from
viscous dissipation, ∼4 fW [61]. If we calculate the instanta-
neous power dissipated by friction, then we see peak values
of ∼10–15 fW, which is again in striking agreement with the
value of ∼15 fW measured by viscous dissipation [61].

Overall, this agreement between the optical trap and fluid
mechanics approach is quite striking. In both cases we as-
sume that the mechanical energy generated by the swimmer
is dissipated by friction into the viscous fluid; however, our
calculation methods are very different. The fluids studies cal-
culate the power transferred from a Chlamydomonas to the
viscous fluid from the velocity field gradient, P = ∫

2μ(� :
�)h dA, where μ is the fluid viscosity, h the fluid height, and
� = 1

2 [∇v + (∇v)T ] is the rate of strain tensor, v is the veloc-
ity field, and dA is the differential area element. This method
inherently involves regularization (smoothing) of the velocity
field in space and time from the particle image velocimetry
[45,61]. In our study, we calculate the instantaneous power
dissipated by friction from the basic definition of power, P =
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TABLE I. Parameters for simulation

Parameter Symbol Value

Time step �t 2.0 × 10−4 s
Friction coefficient γ 6.6 × 10−8 kg/s
Trap stiffness κ 10−6 N/m
Thermal diffusion coefficient D 6.3 × 10−14 m2/s
Rotational diffusion coefficient DR 25.6 rad2/s
Active velocity amplitude V 350 × 10−6m/s
Active velocity mean v0 38 × 10−6m/s
Frequency one f1 25 Hz
Frequency two f2 50 Hz

Ffr ◦ ṙ, where Ffr = γ ṙ, and ṙ is the instantaneous velocity of
the swimmer calculated from the displacement (�r) and time
(�t) via back focal plane interferometry. In both approaches,
low-Reynolds Stokes friction is assumed. The force measure-
ment approach provides several benefits: Increased resolution
not limited by image acquisition, model-independent force
fluctuations, access to thermal fluctuations, and comparison
to stochastic particle models widely used in active matter and
stochastic thermodynamics. From this analysis of force tra-
jectories we observe two things when considering individual
trajectories in the time domain: (1) For a Chlamydomonas,
measurement of the fluid velocity field surrounding the swim-
mer and direct measurement of the net force fluctuations of
an active swimmer lead to similar estimates of the power-
dissipation due to swimming; (2) there is significant variation

in the work fluctuations in time as well as between different
swimmers.

D. Numerical simulations of an oscillating swimmer

One glaring deficiency of the analytic model is the inability
to capture the local peaks in the force spectrum (Fig. 4). This
is not surprising since the paradigmatic self-propelled parti-
cle models (AOUP and ABP) exhibit exponentially decaying
active force correlations [50], with no oscillations. However, a
microswimmer, such as a Chlamydomonas, cyclically beats its
flagella to swim and thus the active forces generated must be
more complex. In an effort to explore this behavior we modify
the ABP model [52] to include an oscillating force and use nu-
merical simulations to analyze the resulting force dynamics.
We refer to this model for an active force as the active beating
swimmer (ABS) model of a self-propelled particle. Similar
models have been developed and explored in the absence of a
trapping potential [73].

To investigate the ABS model we compute trajectories
using Eq. (2) for the discrete self-propulsion velocity

ui = v0

[
1 +

N∑
k=1

λk cos(2π fkti )

]
, (4)

where v0 = (v0 cos θi, v0 sin θi ) is a characteristic velocity
with mean speed v0 and a stochastic angle of orientation θi

diffusing from θ0 = 0 with a rotational diffusion coefficient
DR; λk determines the amplitude of the velocity of term k; fk

is the frequency; and N indicates the number of oscillatory

FIG. 8. Simulations of the ABS model. Adding force oscillations to the equation of motion recapitulates the main features of our
experimental measurements. This includes: (a) complex force trajectories oscillating around the trap center, (b) force oscillations in time,
(c) local peaks in the force spectrum, (d) fluctuating work increments, (e) comparable dissipation by friction, and (f) local peaks in the
dissipation spectrum.
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terms applied. In our case, we choose to represent the ABS
model as

ui = v0[1 + λ cos(2π f1ti ) + λ cos(2π f2ti )], (5)

and extract v0, λ, and fk from experiments. We extract
〈|v0|〉 = 38 μm/s from fitting Eq. 3 (Fig. 5), f1 = 25 Hz
and f2 = 50 Hz correspond to frequency peaks in Fig. 6,
and both oscillations have the same amplitude of V = v0λ =
350 μm/s as estimated from the range of forces measured
(V ∼ |F|/γ ) and is consistent with velocities measured pre-
viously [9,17,61]. The rotational diffusion coefficient is DR =
1/τ , for a persistence time τ extracted from experimental data
(Fig. 5). Equation (5) is placed into Eq. (2), and the numerical
trajectory is simulated over 200 s with the input parameters
shown in Table I.

The simple ABS model is able to recapitulate the main
features of our experiments, including not only the local peaks
in the force spectrum and active energy, but also the trajectory-
level dynamics of forces and energetics. Subsequent cal-
culations of the energy dissipation rate from simulated
trajectories also agree with experimental values (∼5 fW).
Interestingly, in addition to agreeing with experimental results
on average, the trajectory-level dynamics for the ABS simu-
lations also mimic the measurements. This is first evident in
the force trajectories showing complex oscillatory dynamics
[Figs. 8(a) and 8(b)], and further in the fluctuations in work
shown in Figs. 8(d) and 8(e). These discrete work fluctuations
were computed for �t = 2.0 × 10−4 s for direct compari-
son to experiments with the same time resolution (shown in
Fig. 7); however, it is important to note that moving to smaller
time steps may not be rigorously valid since some of the
limiting quantities diverge as �t → 0+. Together, these sim-
ulations suggest that simple modifications of self-propelled
particle models (e.g., adding oscillatory forces) can be used
to quantitatively describe the average and trajectory-level dy-
namics of microswimmers as observed via experiments.

IV. CONCLUSION

We have experimentally measured the stochastic force dy-
namics generated by a Chlamydomonas microswimmer in an
optical trap using the photon momentum method. We find
that its swimming motion generates complex oscillatory force
dynamics including rotational motion. Using self-propelled
particle models we characterize the nonequilibrium activ-
ity of microswimmers on average, and use trajectory-level
analysis to quantify the energetics of single microswimmers
with time. Overall, using our optical trap measurements and
a particle-based Langevin approach we find that Chlamy-
domonas exhibit an average power dissipation of 〈|Pact|〉 =
1.2 × 106kBT/s (∼5 fW), which is in striking agreement with
previous fluid mechanics approaches. The force measurement
approach, an alternative to well-established fluid approaches,
is well suited to characterize the stochasticity and fluctua-
tions of microswimmer dynamics and reveals complex force
patterns not previously accessible. This approach provides
direct access to model-independent force fluctuations, high
resolution sampling, and data compatible with particle-based
models for investigations of stochastic thermodynamics.
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APPENDIX A: DERIVING THE FINITE DIFFERENCE
EQUATION

To simulate individual stochastic trajectories from the
equation of motion in (1), the velocity is isolated and then
integrated over a time interval [ti−1, ti] of size �t . The
result is

r(ti ) − r(ti−1) =
∫ ti

ti−1

(
− κ

γ
r + u +

√
2Dη

)
dt .

which on formally applying the mean value yields

ri − ri−1 = − κ

γ
ri∗�t + ui∗�t +

√
2Dηi∗�t, (A1)

for a time ti∗ ∈ [ti−1, ti]. In (A1), the subscript notation in-
dicates the evaluation point of corresponding quantity, e.g.,
ri∗ ≡ r(ti∗ ). Since Eq. (A1) does not include a stochastic vari-
able multiplying a stochastic increment, the evaluation point
within the time interval is of little consequence [55]. The left
end point is chosen for convenience and consistency, allowing
us to write the particle’s discrete trajectory as

ri = ri−1 − κ

γ
ri−1�t + ui−1�t +

√
2D �Bi, (A2)

where �Bi = ηi−1�t is an increment of the Wiener process.
We note that

�Bi ∼ N (0,�t ) ∼
√

�t N (0, 1),

where N (0, 1) denotes a normal distribution with a mean of
zero and a variance of unity. We therefore have reason to
rewrite �Bi as

�Bi =
√

�t Zi−1,

where Zi is a normally distributed random variable that sat-
isfies 〈Zα,i〉 = 0 and 〈Zα,iZβ, j〉 = δαβδi j . The reason for such
manipulation is to lower the computational cost. We are left
with

ri = ri−1 − κ

γ
ri−1�t + ui−1�t +

√
2D�t Zi−1. (A3)

APPENDIX B: CALCULATING THE POWER
SPECTRAL DENSITY

The components x(t ) and y(t ) of r(t ) solving (1) satisfy
equivalent stochastic differential equations. So without loss of
generality, consider the x process, which is exactly given by

x(t ) = x0e−μt +
∫ t

0
eμ(z−t )u(z)dz

+
√

2D
∫ t

0
eμ(z−t )η(z)dz. (B1)
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where μ = κ/γ and η is a standard Guassian white noise
process.

Assuming the mutual independence of the random vari-
ables x0, u and η(t ), the positional autocorrelation

E [x(t )x(s)] = e−μ(t+s)E
[
x2

0

]
+

∫ t

0

∫ s

0
eμ(z−t+ζ−s)E [u(z)u(ζ )]dζdz

+ 2D
∫ t

0

∫ s

0
eμ(z−t+ζ−s)δ(z − ζ )dζdz,

where we have used that E [η(t )] = E [u(t )] = 0 and that
E [η(z)η(ζ )] = δ(z − ζ ).

With the assumption t � s, the integral

∫ t

0

∫ s

0
eμ(z−t+ζ−s)δ(z − ζ )dζdz

=
∫ s

0

∫ s

0
eμ(z−t+ζ−s)δ(z − ζ )dζdz

=
∫ s

0
eμ(2z−t−s)dz = (e2μs − 1)e−μ(s+t )

2μ

Alternately, if s > t , then a similar calculation shows the inte-
gral is equal to the same expression but with t and s switched.

Hence the positional autocorrelation is

E [x(t )x(s)] = e−μ(t+s)

(
E

[
x2

0

] − D − De2μ min{s,t}

μ

)

+
∫ t

0

∫ s

0
eμ(z−t+ζ−s)E [u(z)u(ζ )]dζdz,

for all t � 0 and s � 0.

APPENDIX C: ACTIVE ORNSTEIN-UHLENBECK
PARTICLES

Active Ornstein-Uhlenbeck particles have an internal
stochastic velocity u specified by the stochastic differential
equation

u̇ + τ−1u =
√

2Aτ−1χ (t ), (C1)

for a Gaussian white noise process χ (t ), persistence time τ ,
and active diffusion coefficient A. Observe that this equation is
in the exact same form as (1) but with u ≡ 0, γ = 1, κ = τ−1

and D = Aτ−2. Hence, by the previous work, the autocorrela-
tion of self-propulsive velocity u(t ) is

E [u(t )u(s)] = e−(t+s)/τ

(
E

[
u2

0

] − A − Ae2 min{s,t}/τ

τ

)
,

where u0 is the initial velocity of the process that has no
directional bias, i.e., E [u0] = 0. Setting E [u2

0] = A/τ reduces
the previous formula to

E [u(s)u(t )] = A

τ
e−|t−s|/τ , (C2)

making the process u stationary in the wide sense.

From expression (C2), the double integral∫ t

0

∫ s

0
eμ(z−t+ζ−s)E [u(z)u(ζ )]dζdz = Ae−μ(t+s)

τ

∫ t

0

∫ s

0
eμ(z+ζ )e−|z−ζ |/τ dζdz.

For simplicity, assume that s � t � 0. Then s � z, and the interior integral with respect to ζ can be split into two integrals over
[0, z] and [z, s]. Specifically,∫ t

0

∫ s

0
eμ(z+ζ )e−|z−ζ |/τ dζdz =

∫ t

0
e(μ−1/τ )z

[∫ z

0
e(μ+1/τ )ζ dζ

]
dz +

∫ t

0
e(μ+1/τ )z

[∫ s

z
e(μ−1/τ )ζ dζ

]
dz

= 1 − e2μt

μτ (μ2 − 1/τ 2)
+ eμ(s+t )−(s−t )/τ

μ2 − 1/τ 2
+ 1 − e(μ−1/τ )s − e(μ−1/τ )t

μ2 − 1/τ 2
.

If we remove the constraint that s � t � 0, then∫ t

0

∫ s

0
eμ(z+ζ )e−|z−ζ |/τ dζdz = 1 − e2μ min{t,s}

μτ (μ2 − 1/τ 2)
+ eμ(s+t )−|s−t |/τ

μ2 − 1/τ 2
+ 1 − e(μ−1/τ )s − e(μ−1/τ )t

μ2 − 1/τ 2

for all t � 0 and s � 0, and∫ t

0

∫ s

0
eμ(z−t+ζ−s)E [u(z)u(ζ )]dζdz = A

τ

e−μ(t+s) − e−μ|s−t |

μτ (μ2 − 1/τ 2)
+ A

τ

e−|s−t |/τ

μ2 − 1/τ 2
+ A

τ

e−μ(t+s) − e−(μt+s/τ ) − e−(μs+t/τ )

μ2 − 1/τ 2
.

Positional autocorrelation and power spectral density

After letting E [x2
0] = 0, the previous formula specifies that the autocorrelation of the position

E [x(t )x(s)] =
[

D

μ
− A

μτ 2(μ2 − 1/τ 2)

]
e−μ|s−t | +

[
A(μ + 1/τ )

μτ (μ2 − 1/τ 2)
− D

μ

]
e−μ(t+s) + A

τ

e−|s−t |/τ − e−(μt+s/τ ) − e−(μs+t/τ )

μ2 − 1/τ 2
.
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From the definition of the power spectral density of the position x(t ), namely

Sxx(ω) = lim
T →∞

1

T

∫ T

0

∫ T

0
E [x(t )x(s)]eiω(t−s)ds dt,

we can directly integrate the autocorrelation to show

Sxx(ω) =
(

2D − 2Aτ−2

μ2 − τ−2

)
1

μ2 + ω2
+ 2Aτ−2

μ2 − τ−2

1

τ−2 + ω2
.

Since the force of the trap in the x direction is f (x) = −κx, then its power spectral density Sf f (ω) = κ2Sxx(ω), i.e.,

Sf f (ω) =
(

2κ2D − 2Aκ2τ−2

μ2 − τ−2

)
1

μ2 + ω2
+ 2Aκ2τ−2

μ2 − τ−2

1

τ−2 + ω2
.

Finally, defining v0 as characteristic strength of the active velocity via the formula A = τv2
0 produces the equation given in (3)

for the power spectral density of the optical trap force.
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