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Multistage onset of epidemics in heterogeneous networks
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We develop a theory for the susceptible-infected-susceptible (SIS) epidemic model on networks that incorpo-
rate both network structure and dynamic correlations. This theory can account for the multistage onset of the
epidemic phase in scale-free networks. This phenomenon is characterized by multiple peaks in the susceptibility
as a function of the infection rate. It can be explained by that, even under the global epidemic threshold, a hub
can sustain the epidemics for an extended period. Moreover, our approach improves theoretical calculations of
prevalence close to the threshold in heterogeneous networks and also can predict the average risk of infection for
neighbors of nodes with different degree and state on uncorrelated static networks.
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I. INTRODUCTION

One can describe many systems in nature and society as
a networked infrastructure for some spreading phenomena
[1,2]. Disease, information, economic shocks, rumors, and
opinions all spread over networks. Such situations are often
described by models of epidemic spreading, even when the
spreading is not concerning a disease. One of the canonical
epidemic models is the susceptible-infected-susceptible (SIS)
model. Figuratively, it describes an infection that leaves the
individuals susceptible upon recovery. However, authors have
used it for many other purposes—perhaps most prominently,
it is the stochastic counterpart of Verhulst’s logistic growth
model of populations [3]. Understanding the SIS model is thus
of broad scientific importance.

In this paper, we assume the SIS model is confined to a net-
work of N nodes [4]. We denote the number of infected nodes
by I , and susceptible by S = N − I . Transmissions happen
between network neighbors at a rate r. Simultaneously, in-
fected nodes become resusceptible at a rate g. Such dynamics
exhibit a phase transition in which there is a critical infection
rate (called epidemic threshold) that separates a disease-free
(absorbing) state from an active stationary state (where a frac-
tion of the population is infected). Theoretical research about
this model focuses on predicting average prevalence (average
number of infected nodes in the active state), calculating epi-
demic threshold, and times to extinction (time to get to an
absorbing state in low infection rates) [3–9].

Assuming that edges are placed independently at random
according to some degree distribution (so small probability
of short cycles) one can derive the prevalence analytically by
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a so-called heterogeneous mean-field theory (HMF) [10,11].
The epidemic threshold (in terms of the effective infection rate
λ = r/g) in such a situation is λHMF

c = 〈k〉/〈k2〉 where 〈k〉 and
〈k2〉 are the first and second moment of the degree distribution,
respectively. Going beyond degrees, one can take the actual
connectivity of the network into account through its adjacency
matrix. A first step to capturing network structure effects is
to apply a quenched mean-field theory (QMF) [12,13]. That
gives the thresholds λQMF

c = 1/� [12], where � is the largest
eigenvalue of the adjacency matrix. However, also QMF fails
to reproduce simulated results (see Appendix A), partly be-
cause it neglects dynamic correlations (for example, that the
neighbor of an infected node has a higher chance of being
infected than the average node).

Recently, there have been many attempts to take dynamic
correlations into account in analytical theories. These include
the pair approximation [14,15], three-point approximation
[16], effective degree approach (ED) [17–19], dynamic cor-
relation (DC) [20], and heterogeneous pair-approximation
(PHMF) [21]. In particular, DC, which combines HMF
and ED’s advantages, could give accurate and straightfor-
ward analytical solutions to predict epidemic prevalence on
the degree-uncorrelated static networks. However, these ap-
proaches only reveal the role of dynamic correlation and
correctly predict the prevalence only when the infection rate
is far above the epidemic threshold.

To obtain a theory that holds close to the threshold, one
needs to build master equations that account for the net-
work structure and dynamic correlations. This is the premise
for the pair quenched mean-field (PQMF) approach [22]
and epidemic link equations [23]. We know that any master
equation-based approach (including PQMF) uses time itera-
tion to accumulate the effects of long-distance correlations
to obtain epidemic prevalence. That is to say, PQMF is a
phenomenological theory, from which, however, we cannot
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figure out explicitly how the network structure and the dy-
namic correlation are coupled. The answer of the question is
just implicitly included in the set of master equations.

Besides the failures to predict the prevalence, a peculiar
phenomenon often occurs in quasistationary state simulations
on finite networks [24]. There are commonly two or more
peaks in the susceptibility curves χ = N (〈ρ2〉 − 〈ρ〉2)/〈ρ〉
appear for scale-free networks with γ > 3. (χ measures fluc-
tuations in the density of infected nodes and is commonly used
to determine the critical infection rate in finite networks. ρ is
the fraction of infected nodes.)

This is at odds with χ ’s unique peak of in other types of
interaction networks [25], including random regular networks,
Erdős-Rényi networks, and scale-free networks with γ < 3.
The authors of Ref. [25,26] speculated that the peak at small
infection rate corresponds to the prediction by the QMF for-
mula, and the peak at large infection rate corresponds to the
k-cores collectively becoming active [26]. (Active meaning
that they can sustain the infection within themselves.) How-
ever, Mata and Ferreira showed the possibility of three or more
susceptibility peaks [27]. The authors of Ref. [27,28] argued
that the multiple peaks are associated with the large gaps in
the degree distribution among the nodes of highest degrees.

In addition to the threshold on the simulations, there has
been a lot of theoretical work devoted to the understanding of
epidemic threshold [29–36] and the critical behavior around
it [37,38]. Specifically, the authors of Ref. [29,30] rigorously
proved that the epidemic threshold vanishes on random net-
works with power-law degree distributions. Goltsev et al.
showed that the disease is mainly localized on a finite number
of individuals when the effective infection rate λ is slightly
larger than the threshold λQMF

c on highly heterogeneous net-
works [32]. Mata and Ferreira proposed the PQMF to predict
the first localized peak of the susceptibility curves [22]. And
Castellano et al. gave an analytic solution [36] for the global
threshold and showed that the threshold vanishes more slowly
than predicted by the QMF theory. However, there is still no
effective way to predict other localized peak.

In this paper, we develop a theory to analyze the coupling
effect between the network structure and dynamic correlations
directly, which works for the whole range of infection rate,
leading to either population-wide outbreaks or small localized
outbreaks on scale-free networks. Our theory can predict a
more accurate prevalence both for population-wide outbreaks
and localized spreading, and can predict the first and other
localized peaks of the susceptibility curves.

II. MODEL

A. Uncorrelated configuration model

These scale-free static networks in this paper can be gen-
erated using an algorithm proposed by Catanzaro et al. [39],
which is called the uncorrelated configuration model. For each
node we first assign it a degree ki according to the prescribed
degree distribution, whose value is restricted to the range of
[kmin,

√
N], where kmin is the minimum degree of the node

in the network and N is the network size. And then we cre-
ate a set of ki stubs that represent each of these edges with
only a single tail connected to a node. If there is an uneven

number of stubs, then a random individual is given an extra
stub. Finally, we construct the network by connecting pairs
of these stubs chosen uniformly at random to make complete
edges respecting the preassigned degrees. Self connections or
duplicate edges between nodes are not allowed in the gen-
eration process. We note that the are several subtleties when
implementing the configurations by random stub-matching
[40], and the method we use might introduce a small bias. This
might explain some of the discrepancies between analytical
and numerical results but should not invalidate the approach.

B. SIS simulation procedure on static networks

The SIS dynamic process in static networks can be sim-
ulated as follows [25,41]: First, we build a list ν for infected
nodes and calculate the total transition rate ω = ∑

i∈I (g + rki )
at the initial state, where ki is the degree of node i. The list ν

and the total transition rate ω are constantly updated in one
simulation, and the time is incremented by dt = 1/ω(t ). And
then, there are two possible events happening at time t + dt :
(1) With probability gI/ω, an infected node i is chosen with
equal probability from ν and recovered; (2) with probability∑

i∈I (rki)/ω, an infected node i is chosen from ν at random
and accepted with probability ki/kmax, which is repeated until
one choice is accepted. Finally, a neighbor of i is chosen
randomly. If the neighbor is infected, then nothing happens;
otherwise, it becomes infected. We iterate the whole process
longer than it typically takes for the system to reach the steady
state.

C. The procedure of quasistationary simulation

The simulations in this paper were performed using the
quasistationary (QS) method [25], in which every time the
system tries to visit the absorbing state it jumps to one of
the prestored active configurations. These prestored active
configurations are updated constantly, i.e., a prestored config-
uration is chosen randomly and replaced by the present active
configuration with a probability prdt . After a relaxation time
tr , the QS probability P(n) that the system has n infected
individuals is computed during an averaging time ta. From
the distribution P(n), the moments of the activity distribution
can be computed as 〈ρk〉 = ∑

n(n/N )kP(n). And then, the
epidemic threshold can be obtained by the maximum value of
the susceptibility χ , whose value is defined as χ = N〈ρ2〉 −
〈ρ〉2)/〈ρ〉. In this paper, the number of active configurations
is set as 100, pr = 0.02, ta = 3tr , and tr depends on N and λ.

III. THEORY AND RESULTS

A. Population-wide outbreaks

We denote pk and qk , respectively, as the probabilities of
reaching an arbitrary infected individual by following a ran-
domly chosen edge from a susceptible and infected individual
of degree k [20]. To calculate the pk and qk on scale-free
networks, our analysis takes five steps.

First, we choose a node i whose degree is k, which is the
only known condition. And then, we divide the whole scale-
free network into two subnetworks. One is a star subnetwork
(denoted star) where the center node is node i. The other is the
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FIG. 1. Schematic illustration of one state cycle of the center
node on a star subnetwork with a nonzero fraction of permanently
infected leaf nodes.

scale-free network minus the star subnetwork (denoted minus-
star). Note that we do not ignore triangles. For any triangle
[i j j′] where the nodes j and j′ are the neighbors of i, the edges
[i j] and [i j′] belong to the former subnetwork, and the edge
[ j j′] belongs to the latter subnetwork.

Second, from the star, we can get the probability A that any
node j (a neighbor of i) is infectious. However, the calculation
of this probability currently does not consider the node j’s
neighbors except node i.

Third, for a large k, node i has many neighbors. For a small
k, there are many nodes with degree k on a scale-free network.
That is, there are many nodes j regardless of k. For the minus-
star, we can, by mean-field theory, get the average probability
B(k′) that any node j′′ with degree k′ is infectious. We can get
the joint probability C that the node j′′ links the node i and the
node j′′ is infected.

Fourth, we do not need to calculate these exact results A
and C, because they will affect each other on the whole scale-
free network. Here, we assume approximately C converges
to x. And then, we preset that a fraction x of the nodes are
infected nodes all the time (they are fixed in the infection
state) on a star network where the degree of its center node
is k.

Fifth, pk can be calculated on the star network with per-
manently infected nodes (that we mentioned in Step 4), but
it still contains an unknown x. We solve the x by using the
other global relation, i.e., Eq. (13). As a result, the probability
pk (or qk) can be divided into two parts: one from the nearest-
neighbor network structure of the chosen node itself; the other
representing the dynamic correlation coming from the whole
network except the chosen node. The latter can be approxi-
mated as a fixed value on uncorrelated networks. Suppose all
neighbors of one center node are identical, we consider a star
subnetwork with a fraction x of permanently infected nodes
to calculate the probabilities pk and qk , where k is the degree
of the star. Note that x represents a joint probability, which
cannot be replaced by the prevalence ρ of scale-free networks.

In Fig. 1, we show a schematic illustration of one state
cycle of the center node. We denote the number of infected
leaf nodes at time t by I (t ). To make it easier for the reader to
understand our model, we summarize our ideas with simple
words before the formula derivation begins: First, we derive
the relationship between I (t ) and the joint probability x on a
star subnetwork with nonzero permanently infected leaf nodes

at any given time [see Eqs. (1)–(3)]; second, according to
the definition of pk (i.e., the relationship between I (t ) and
pk), we can estimate the relationship between pk and x [see
Eqs. (4)–(11)]; third, we solve pk and x by introducing another
global law, Eq. (14).

Since both I (0) and I (τ1) have peaked distributions (see
Appendix B), we use their expected values as approximations.
From Fig. 1, we assume that the center node is infected at time
0, and there are n infected leaf nodes, i.e., I (0) = n. After a
time interval τ1, the center node is cured but the number of
infected leaf nodes rises to m [so I (τ1) = m]. Then, I (t ) in the
recovery process is determined by

I (t ) = I (0) +
∫ t

0
[k − I (t ′)]rdt ′ −

∫ t

0
[I (t ′) − xk]gdt ′, (1)

where the second and third terms on the right hand side are
the number of newly infected, and recovered, leaf nodes in
the time interval [0, t], respectively. After a time τ2, the center
node becomes reinfected, and the number of infected leaf
nodes reduces to I (τ1 + τ2) = n. I (t ) in the infection process
is

I (t ) = I (τ1) −
∫ t

τ1

g[I (t ′) − xk]dt ′, (2)

where the second term on the right-hand side is the number of
newly recovery leaf nodes for times in [τ1, τ1 + t]. Combining
Eqs. (1) and (2) gives

I (t ) =
{ kr+xkg−e−(g+r)t [kr+xkg−(g+r)n]

g+r , 0 � t � τ1,

xk + (m − xk)e−g(t−τ1 ), τ1 � t � τ2.
(3)

We define P(τ1) as the probability density of the duration
τ1 in the recovery process. Since the total recovery rate is
gτ1 during the time interval [0, τ1], the center node’s recov-
ery probability can be calculated as 1 − e−gτ1 in this interval
[42]. Then, we obtain P(τ1) = ge−gτ1 , by the definition of
cumulative distributions. We define P(τ2) as the probabil-
ity density of the duration τ2 in the infection process. We
can calculate the infection probability of the center node as
1 − exp−rI (t )dt in a time interval [t, t + dt]. The cumulative
infection probability of time interval [τ1, τ1 + τ2] can be cal-
culated as 1 − ∏τ1+τ2

t=τ1
exp−rI (t )dt . Combining this with Eq. (3),

we can obtain the probability density P(τ2),

P(τ2) = r[xk + (m − xk)e−gτ2 ]

× exp

{
−r

[
xkτ2 + m − xk

g
(1 − e−gτ2 )

]}
. (4)

Moreover, combining Eqs. (3) and (4), we can further find the
following relation:∫

P(τ2)dτ2

∫ τ1+τ2

τ1

I (t ′)rdt ′ = 1. (5)

Equation (5) applies to any star subnetwork with nonzero per-
manently infected leaf nodes, which implies that the disease
in Fig. 1 will never become extinct.

Next, we average both sides of Eq. (2) by τ2 and set t =
τ1 + τ2. Considering Eq. (5), the expected decrease of I (t ) is
g/r − xkg〈τ2〉 in the infection process. Thus, we have

n = m −
(g

r
− xkg〈τ2〉

)
, (6)
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where 〈τ2〉 = ∫
τ2P(τ2)dτ2 is the average duration of infec-

tion. Combining Eqs. (3) with (6) gives the number of infected
leaf nodes at time t = τ1,

m = kr + xkg

g + r
− g

r

g

g + r
+ xkg〈τ2〉 g

g + r
. (7)

Finally, according to the definition of pk and qk ,

pk =
∫ [ ∫ τ1+τ2

τ1
I (t )dt

]
P(τ2)dτ2∫

kτ2P(τ2)dτ2
, (8a)

qk =
∫ [ ∫ τ1

0 I (t )dt
]
P(τ1)dτ1∫

kτ1P(τ1)dτ1
, (8b)

we can get

pk = x + kr − xkr − g2/r + xkg2〈τ2〉
g(g + r)k

〈1 − e−gτ2〉
〈τ2〉 , (9a)

qk = r + xg

g + r
− g

k(g + r)

(g

r
− xkg〈τ2〉

)
, (9b)

where 〈1 − e−gτ2〉 = ∫
(1 − e−gτ2 )P(τ2)dτ2. Here, we are able

to rewrite pk to a simpler formula 1/(rk〈τ2〉) by using the
Eq. (5), but this formula is sensitive to the upper limit of the
integral, where the upper limit is set as τ2 = 50 in this paper.

Moreover, we can obtain the following inequality between
pk and qk by combining Eqs. (7) and (9),

qk − pk =
(m

k
− x

)(
1 − 1

g

〈1 − e−gτ2〉
〈τ2〉

)
> 0. (10)

Reference [20] also presents this relation, but without a
derivation from an underlying theory.

As we are modeling a stochastic process, there might be
no infected leaf nodes other than the permanently infected
ones. This situation becomes typical for small k or small
λ, which means that I (t ) < xk. When this situation occurs,
Eq. (6) becomes inaccurate because of the average loss of I (t )
might not be g/r − xkg〈τ2〉. We can circumvent this problem
by using the lower boundary I (0) = xk for small k or small
λ. In particular, by replacing the Eqs. (6) and (7) with n = xk,
we obtain new estimates for pk and qk :

pk = x + r(1 − x)

g(2g + r)

〈1 − e−gτ2〉
〈τ2〉 , x > 0, (11a)

qk = 1 − 2g(1 − x)

2g + r
, x > 0. (11b)

Here, Eq. (11) is not appropriate when x = 0, because of the
high chance of extinction.

Now, let us turn to the SIS dynamics on scale-free net-
works. When a scale-free network is in its epidemic state, we
assume, for theoretical purposes, that there is a fixed fraction
x > 0 of infected nodes. As long as the epidemic process is in
its quasistationary [3] state, the total recovery rate of Ik must
be equal to the total infection rate of Sk [10]. That means

gIk = rkpk (Nk − Ik ), (12)

where Nk = Sk + Ik and Sk (Ik) is the number of susceptible
(infected) individuals with degree k. In the framework of DC
[20], we still require that the expected variations in the total

recovery rate and total infection rate are equal in the steady
state: ∑

jk

Sk, j jr − Ik, jg

ω
[r(k − j) − g] = 0, (13)

where ω = ∑
k

∑
j (Sk, j jr + Ik, jg) is the total rate and Sk, j

(Ik, j) is the number of susceptible (infected) nodes which
have j infected nodes among the total k neighbors. Following
Ref. [20], this reduces to∑

k

rkpkNk

g + rkpk

[
(k − 1)(pk − 1) + g

r

]
= 0. (14)

For a given pair of r and g on a scale-free network, numeri-
cal calculation is divided into two major steps. First, we get pk

for a preset x by using Eqs. (4)–(11). Then, combining pk with
the Eq. (14), we confirm whether the preset x is a solution. In
particular, we are able to calculate the probability pk in the
steady state as follows: (i) Give any x′ ∈ (0, 1], the values
of m and n are calculated by Eqs. (4)–(7); (ii) the values of
various pk are calculated by Eq. (9) or Eq. (11); (iii) plugging
the set of pk into Eq. (14), and the value x is the solution when
Eq. (14) is valid; (iv) inserting the x into Eq. (9) and Eq. (11)
to solve pk .

In Fig. 2, we plot pk as a function of degree for several in-
fection rates r for the SIS model on a scale-free network with
γ = 4.5, N = 107, and kmax = 314. As r increases, the kmax-
star subnetwork (the star subnetwork of the largest-degree
node) will become active before the other large-degree star
networks. As r increases, more star subnetworks will become
active until the system reaches the global epidemic threshold
(x → 0). We show that our theoretical method captures pk’s
properties beyond the global threshold in Figs. 2(c)–2(e) and
near it in Fig. 2(b). It only fails for the smallest infection rates;
see Fig. 2(a).

For sufficiently low infection rates, the epidemic is local-
ized around one or a few high-degree star subnetworks in
Fig. 2(a). Our theoretical method only captures two points,
which implies that these two stars may be approximately
continuously activated. By the actual SIS dynamics, the epi-
demics at any star network would go extinct after a average
lifetime T (k, r, g) [33,36]. So, there are many long intervals
on star subnetworks between deaths and reactivations, which
leads to pk → 0. Meanwhile, the mean-field treatment in
Eqs. (1)–(3) is no longer appropriate in localized spreading.
These contrast with when r is larger, and many star subnet-
works are active. Then the infected nodes are, as assumed
by mean-field theory, more evenly distributed across the net-
work. This explanation also implies HMF, PHMF, and DC are
not suitable for localized spreading. They mistakenly give a
finite threshold on scale-free networks with γ > 3, but their
threshold expressions are still valuable on networks with no
localized spreading, such as random regular networks, Erdős-
Rényi networks, and scale-free networks with γ < 3.

Finally, combining these pk with Eq. (12), we can obtain
the more accurate prevalence ρ in population-wide outbreaks
(x > 0), that is,

ρ = 1

N

∑
k

Ik =
∑

k

λkpkP(k)

1 + λkpk
, (15)
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FIG. 2. pk as a function of degree k on a scale-free network.
These panels show simulations on one realization of uncorrelated
configuration model with minimum degree 3, γ = 4.5, and N = 107.
Parameters: g = 1, (a) r = 0.22; (b) r = 0.25; (c) r = 0.28; (d) r =
0.3; (e) r = 0.8, the relaxation time tr = 106 in panels (a–d) and
tr = 5 × 103 in (e). The shaded areas in panels (a–d) indicate the
position where Eq. (11) is valid.

where λ = r/g is the effective infection rate and P(k) is the
degree distribution of the network. In Fig. 3, we show nu-
merical and approximate results of the SIS dynamics on a
scale-free network with N = 107 and γ = 4.5 and 3.5. We
find that our theoretical approach’s estimations of prevalence
match those from stochastic simulations well on scale-free
networks and are much better than the results predicted by the
heterogeneous mean-field theory and the dynamic correlation
method [10,20]. Here, we only compare HMF and DC in
Fig. 3 because they do not require the iterations of a large body
of equations with respect to time (where PQMF, PHMF, ED
does) to obtain the epidemic prevalence, which is the same
as our theory. In Fig. 3(e), we show the ratio between the
epidemic prevalence ρ and the joint probability x as a function
of infection rate r. Clearly, x fails to approximate ρ for low
enough r.

B. Localized spreading

The successive activation of star subnetworks with increas-
ing r is a natural explanation for the multipeak phenomenon
of the susceptibility χ observed in the literature [27,38]. If
this scenario is correct, then the separation of the hubs should
affect the location of the peaks. Comparing with the double
random regular network of Ref. [27] which is formed by
two random regular networks connected by a single edge,
we consider a network consisting of two stars where the two
center nodes are separated by l edges in Fig. 4(a).

To deal with localized spreading, we use the local condition
(separated distance l) instead of those global conditions in
Eqs. (12) and (14). For l = 1, the x of k2-star approximately
equal to 1/k2 which is a finite value when the infection rate
is slightly larger than the threshold of k1-star. According to
the Eq. (5), k2-star is also active when k1-star is active, which
means that there is just one peak. When we set x = 0 in
Eqs. (6) and (7), the threshold of k1-star can be easily pre-
dicted as an isolated star network, that is

λc1 (k) = 1 + √
1 + 8k

2k
. (16)

In Fig. 4(b), we can see that the Eq. (16) captures the first peak
very well.

For l � 2, the x of k2-star is (r/g)l−2 pk1/k2 which is very
small and vanish for large l . After setting x = 0, the Eq. (5)
can be rewritten as∫

P(τ2)dτ2

∫ τ1+τ2

τ1

I (t ′)rdt ′ = 1 − exp− rm
g

(
1 + rm

g

)
,

(17)

where P(τ2) = rm exp−gτ2 exp− rm
g (1−e−gτ2 ). Equation (17)

means that the isolated star network will die with a probability
Y = (1 + rm

g ) exp− rm
g . And then, its average lifetime T (k, r, g)

can be calculated as

T (k, r, g) = [〈τ1〉 + 〈τ2(k)〉]
∑

n

nY (1 − Y )n−1

= 1 + g〈τ2(k)〉
g + rm(k)

exp
rm(k)

g , (18)

where 〈τ1〉 = 1/g and m(k) = (kr2 − g2)/[r(g + r)]. In
Fig. 5, we can see that the Eq. (18) is a more accurate predic-
tion of average lifetime on k-star network than that given from
Refs. [33,36]. Note that T (k, r, g) depends on the individual
values of r and g, not the ratio r/g.

We denote η(k) as the probability that any leaf node is in
the infected state on an active k-star network, that is

η(k) = qk〈τ1〉 + pk〈τ2(k)〉
〈τ1〉 + 〈τ2(k)〉 . (19)

The upper boundary of Eq. (19) is η(k) < r/(g + r) by using
the Eq. (10). And then, we can calculate the probability of
k2-star being active per unit time on the two star network in
Fig. 4(a),

f (k1, k2, r, g) = η(k1)

[
r

(
r

g

)l−2]
T (k2, r, g). (20)
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FIG. 3. (a–d) The prevalence ρ and (e) the ratio ρ/x as a function of infection rate r on uncorrelated static scale-free networks. Parameters
are g = 1, minimum degree 3, N = 107; γ = 4.5 (a) and (c); γ = 3.5 (b) and (d). Panels (c) and (d) are blow-ups of the boxed regions of
panels (a) and (b), respectively. Simulation results are averaged over 20 independent runs. The values of panel (e) are from our theoretical
results in panels (a) and (b).

Note that the recovery process of the leaf nodes of k1-star has
been considered by η(k1). The f (k1, k2, r, g) � 1 means that
k2-star subnetwork can continuously be active. Combining
f (k1, k2, r, g) = 1 and 〈τ1〉 � 〈τ2〉 with Eqs. (18)–(20), we
can predict the activation point of k2-star subnetwork (the
lower peak of χ ) as follows:

λl−1
c2

m(k1)

k1[1 + λc2 m(k2)]
expλc2 m(k2 ) = 1. (21)

In Fig. 4(b), we can see that the activation point of the k2-
star subnetwork strongly depends on the distance l between
the center nodes, and the Eq. (21) captures them very well.
As l decreases, the lower peak moves toward small r until
extinction (l = 1), which all can be predicted quantitatively
by the localized analysis of our theory.

Finally, based on the localized analysis above, we can
predict the localized prevalence as follows:

ρ = 1

N

∑
�

{I (k) F (k) H[λ − λc1 (k)]}, (22)

where � contains all star subnetworks, I (k) = 〈τ1〉
〈τ1〉+〈τ2(k)〉 +

kη(k) is the average number of infected individuals when the
k-star subnetwork is active, the F (k)H[λ − λc1 (k)] represents
the activation probability of the k-star subnetwork. The F (k)
is a ramp function whose value is min{ f (kmax, k, r, g), 1} and
the H[λ − λc1 (k)] is a Heaviside step function whose value is
zero for negative argument and one for positive argument. In
Fig. 4(c), we can see that the estimations in Eq. (22) match
those from stochastic simulations quite well.

C. Epidemic thresholds

Since epidemic thresholds are defined only in the N → ∞
limit, the peaks of χ from our quasistationary simulations are,
technically speaking, not true thresholds [λc1 (kmax) < λ <

λ
global
c ]. For uncorrelated static scale-free networks λc1 (kmax)

is related to λ
global
c [36] via

λ
global
c

λc1 (kmax)
∼ ln(kmax)k−1/2

max√
2k−1/2

max

∼ ln (kminN1/(γ−1))√
2

, (23)

where we have used the natural degree cutoff [43], kcut/kmin ∼
N1/(γ−1) as an estimate of kmax. Equation (23) means that
λc1 (kmax) decreases faster than λ

global
c with increasing N ,

which leaves a finite range of λ where epidemic localization
can emerge so that the outbreak survives in the kmax-star
subnetwork, but not in the rest of the network. We also note
that is γ > 3, hubs will be separated in large networks since
the probability that nodes of degrees k1 and k2 are connected
is proportional to k1k2/N〈k〉 which goes zero with N .

For networks with more homogeneous degree distribu-
tions, such as random regular networks and Erdős-Rényi
networks, the largest degree is not large enough to ensure
λc1 (kmax) < λDC

c , where λDC
c = 〈k〉/(〈k2〉 − 〈k〉) is the epi-

demic threshold predicted by DC or PHMF [20,21]. Thus, a
kmax-star subnetwork would not become active until λ exceeds
the true threshold. Similarly, for the scale-free network with
2 < γ < 2.5, we also have the relations of λQMF

c < λc1 (kmax)
and λDC

c < λc1 (kmax) (see Appendix C). Thus, also for these
networks, we expect one susceptibility peak, not because the
largest degree is too small, but because the largest-degree
nodes are connected.

Note that the discussion of the scale-free network with 2 <

γ < 2.5 mentioned above is from the uncorrelated configu-
ration model. For a degree-degree disassortative correlations
network, low degree nodes act as bridges linking the hubs, i.e.,
the situation similar to Fig. 4(a) can easily arise. Interestingly,
we may see the multipeak phenomenon on the degree-degree
disassortative correlations of the scale-free network with 2 <

γ < 2.5.
We return the epidemic threshold prediction on a scale-free

network with γ > 3, and summarize the results in Fig. 6.
First, we can predict the global peak by using the Eq. (14)
with the global coupling x → 0, and show that our results are

032313-6



MULTISTAGE ONSET OF EPIDEMICS IN … PHYSICAL REVIEW E 103, 032313 (2021)

FIG. 4. Panel (a) illustrates a network consisting of two star subnetworks a distance l apart. Dashed lines show the paths between hubs.
Panels (b) and (c) show the susceptibility χ and prevalence ρ as a function of the effective infection rate λ for the network in panel (a). The
parameters are k1 = 1000 and k2 = 300. Simulations on one realization with the relaxation time tr = 106.

less than the prediction of [36] where the latter tends to zero
in the thermodynamic limit. Second, we can predict the first
localized peak by using the Eq. (16) and k = kmax. Note that
they almost coincide between our results (black dashes) and
the prediction of PQMF (red lines). Third, we can predict the
second localized peak by using the Eq. (21) whose parame-
ters are set as k1 = kmax, k2 ∼ kmax, and l = 〈li〉. Compared
with l , the value of k2 has less influence on f (k1, k2, r, g) in
Eq. (20), which is why we use an approximation k2 ∼ kmax

in here. The li is the distance between a star subnetwork with
center node i and the kmax-star subnetwork. We average the
li of nodes whose degree is greater than k′, where k′ satisfy∑kmax

k=k′ kP(k)N ∼ 0.001N . This value of 0.001N is selected to
ensure that the number of continuously activated subnetworks
is sufficient to generate fluctuations of prevalence, but not
reach the global spreading. Although the prediction we gave
has many rough approximations, it is able to roughly hold the
position of the second localized peak in Fig. 6.

Finally, we would like to point out that the nodes with a
small degree still cannot be continuously active in Fig. 2(b),

FIG. 5. The average lifetime T as a function of the λ on a k-star
network. The degree of the center node is k = 300. Simulation results
are averaged over 5 × 104 independent runs.

though its infection rate is higher than the second peak of
Fig. 6(a).

IV. CONCLUSIONS

In conclusion, we have proposed a high-accuracy theoret-
ical approach for analyzing the SIS model on networks that
takes both network structure and dynamic correlations into ac-
count. Our approach works from population-wide outbreaks,
over localized, to threshold. For population-wide outbreaks,
we predict the average risk of infection for neighbors of nodes
with degree k in Fig. 2 and predict more accurate prevalence
in Fig. 3. For localized spreading, we give a high-accuracy

FIG. 6. The susceptibility χ as a function of the effective infec-
tion rate λ on single realizations of a scale-free network. Parameters:
minimum degree 3; (a) γ = 4.5, N = 107, kmax = 314, and 〈l〉 =
6.841; (b) γ = 3.5, N = 3 × 107, kmax = 3611, and 〈l〉 = 2.789. The
network of (a) is the same as that in Fig. 2. To get smooth simulation
curves, the relaxation time tr are varied from 105 to 109 depending
on N and λ. We show several analytical estimates of the transition
point.
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FIG. 7. The epidemic prevalence ρ in the SIS process is plotted
as a function of the effective infection rate on annealed and static
scale-free networks. Parameters: N = 105, minimum degree 3 and
γ = 4.5. Lines are from Eq. (A1), while the points are simulation
results.

prediction for the multiple peaks and localized prevalence
on the two star network. For epidemic threshold, we predict
the multiple localizd peaks and global threshold on scale-free
networks. Below the global threshold, hubs can keep the epi-
demics alive for an extended period of time. This phenomenon
is known from medical epidemiology as well [44], and the
explanation for why some diseases be endemic even though
they are under the threshold.
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APPENDIX A

The quenched mean-field theory is an individual-based
mean-field theory. It takes into account the network struc-
ture fully but ignores the dynamic correlation. We denote the
infected probability of an individual i by Ii, and the QMF
dynamic equations can be given by

dIi

dt
= −gIi + rSi

∑
j

I jAi j, (A1)

where Ai j is the adjacency matrix with value Ai j = 1 if indi-
viduals i and j are connected, and zero otherwise. Here, we
can obtain the epidemic prevalence ρ by iterating the large set
of Eq. (A1) to the stable state, which is limited by the large
network size. From Fig. 7, we can see that the ρ obtained from
QMF agrees well with the simulation results from annealed
networks instead of those from static networks.

APPENDIX B

The P(m) is denoted as the probability distribution function
of the number of infected leaf nodes m when the central node

FIG. 8. Epidemic spreading on a star network with one perma-
nently infected leaf node. The probabilities P(m) and P(n) is plotted
as a function of the number of infected leaf nodes when the center
node is cured and is infected. Parameters: r = 0.2, g = 1, network
size N = 1000.

is cured, while the P(n) is denoted as the probability distri-
bution function of the number of infected leaf nodes n when
the central node is infected. In Fig. 8, we record 107 samples
continuously for the two variables m and n after a relaxation
time t = 1000 on the star network with one permanently in-
fected leaf node. From Fig. 8, we can see that the P(m) and
P(n) are both peak distributions. For the sake of simplicity, we
use these averages 〈m〉 = ∑

m mP(m) and 〈n〉 = ∑
n nP(n) as

approximate to replace the P(m) and P(n). In the main body,
〈m〉 and 〈n〉 are writen as m and n, respectively.

APPENDIX C

For random regular networks, the epidemic threshold
gives λc = 1/(k0 − 1) which can be found by using pair
approximation, dynamic correlation, or heterogeneous pair-
approximation. And then, we can calculate

λc1 (kmax)

λc
∼ (k0 − 1)

√
2

k0
> 1 (C1)

for all degrees k0 > 2.
For Erdős-Rényi networks, the epidemic threshold is 1/〈k〉

which can be found by using dynamic correlation or hetero-
geneous pair-approximation. And then, we can calculate

λc1 (kmax)

λc
∼ 〈k〉

√
2

kmax
. (C2)

Combining 〈k〉√2/kmax > 1 with degree distribution P(k) =
〈k〉k

k! exp−〈k〉 and the cutoff condition of homogeneous net-
works P(kmax)N = 1, we can obtain the condition

N < exp〈k〉 (2〈k〉2)!

〈k〉2〈k〉2 , (C3)

which satisfies the relation λc < λc1 (kmax). For example, for
the ER networks with 〈k〉 = 4 and 6, respectively, the pop-
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ulation size N < 7 × 1017 and N < 2 × 1050 can satisfy the
relation λc < λc1 (kmax).

For a large size scale-free networks with 2 < γ < 2.5,
we can easily obtain the relations of k−γ+2

min � k−γ+2
max and

k−γ+3
max � k−γ+3

min � k−γ+2
min when kmax � kmin. And then, we

can calculate

λDC
c = 〈k〉

〈k2〉 − 〈k〉 ∼ kγ−3
max < k−0.5

max . (C4)

Similarly, we can also calculate

λQMF
c = 1

�
∼ 〈k〉

〈k2〉 ∼ kγ−3
max < k−0.5

max , (C5)

where � is the largest eigenvalue of the adjacency matrix.
Combining with the relation λc1 (kmax) ∼ √

2k−0.5
max , we can

obtain the relations λDC
c < λc1 (kmax) and λQMF

c < λc1 (kmax) on
the SF network with 2 < γ < 2.5.
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