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The time-dependent Ginzburg-Landau (or Allen-Cahn) equation and the Swift-Hohenberg equation, both
added with a stochastic term, are proposed to describe cloud pattern formation and cloud regime phase transitions
of shallow convective clouds organized in mesoscale systems. The starting point is the Hottovy-Stechmann linear
spatiotemporal stochastic model for tropical precipitation, used to describe the dynamics of water vapor and
tropical convection. By taking into account that shallow stratiform clouds are close to a self-organized criticality
and that water vapor content is the order parameter, it is observed that sources must have nonlinear terms in the
equation to include the dynamical feedback due to precipitation and evaporation. The nonlinear terms are derived
by using the known mean field of the Ising model, as the Hottovy-Stechmann linear model presents the same
probability distribution. The inclusion of this nonlinearity leads to a kind of time-dependent Ginzburg-Landau
stochastic equation, originally used to describe superconductivity phases. By performing numerical simulations,
pattern formation is observed. These patterns are better compared with real satellite observations than the pure
linear model. This is done by comparing the spatial Fourier transform of real and numerical cloud fields.
However, for highly ordered cellular convective phases, considered as a form of Rayleigh-Bénard convection
in moist atmospheric air, the Ginzburg-Landau model does not allow us to reproduce such patterns. Therefore,
a change in the form of the small-scale flux convergence term in the equation for moist atmospheric air is
proposed. This allows us to derive a Swift-Hohenberg equation. In the case of closed cellular and roll convection,
the resulting patterns are much more organized than the ones obtained from the Ginzburg-Landau equation and
better reproduce satellite observations as, for example, horizontal convective fields.
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I. INTRODUCTION

Convective clouds are well known to be crucial compo-
nents of weather and climate, being a key process not only
in the transport of heat, moisture, momentum, and dynamical
quantities in the atmosphere but also by strongly affecting
solar and long-wave radiation budgets from local to global
scales [1,2]. Historically, most research involving convective
clouds has focused on deep rather than shallow clouds. How-
ever, shallow convective clouds have significant impacts on
the mesoscale as well as for large-scale atmospheric dynamics
[3].

The study of shallow clouds is worthy for at least two rea-
sons: First, they cool our planet reflecting a significant portion
of the incoming solar radiation back to space contributing
only marginally to the greenhouse effect, and, second, shallow
clouds cover large fractions of our planet’s subtropical oceans
[2,4]. Even changes in the order of 1% in cloud cover or
other properties may significantly affect the overall radiation
balance [5]. As a consequence, cloud feedback influences
significantly the response of the climate system to global
warming [1,6].

Shallow clouds exhibit spatial organization over a wide
range of scales [2,7]. Compared to spatially homogeneous
low clouds, these modes of organization could be significant
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for the radiative effect of convective organization. They pre-
sumably affect the interaction of convection with atmospheric
humidity and thus cloudiness plays a role in climate variability
[8]. Cloud systems formed by shallow convection have hor-
izontal dimensions ranging from several to 100 or 200 km.
They are often characterized as mesoscale patterns [9] and are
largely ignored in actual climate models [4].

Therefore, mesoscale systems need to be considered in
climate-model parametrizations of the physical processes that
affect the shallow cloud radiative response to climate pertur-
bations [10]. At the same time, this is one of the challenges
in climate sciences as contemporary climate models cannot
resolve the length scales where it occurs [2]. Even the driving
mechanisms responsible for these patterns are not completely
well understood [11].

Stratocumulus clouds (Sc) are relevant examples of
mesoscale organization of shallow convection on stratiform
cloudiness. They have been studied in recent years due to
their impact on the amount of sunlight reflected back to space
[1,12]. Covering approximately one-fifth of Earth’s surface
in the annual mean, Sc are the dominant cloud type by area
covered. Thus, there are few regions of the planet where these
clouds are not climatologically important [13]. Sc are charac-
terized by honeycomb-like patterns of stratiform cloudiness,
arranged in either “open” or “closed” cells controlled by
processes from the micrometer to the kilometer scale which
interact in and above the scale O (10–100 km) of large-scale
models [14].
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FIG. 1. The four distinctive phases of shallow cloud organiza-
tion: closed-cell stratocumulus, pockets of open-cell stratocumulus,
open-cell stratocumulus, and shallow cumulus viewed from satellite
in panels (a) to (d), generated by the HS model [Eq. (3)] with
the parameters proposed in Ref. [17] in panels (e) to (h) and by
the nonlinear idealized model [Eq. (11)] in panels (i) to (l). See
Appendix A for the parameter values. The data of the real fields were
taken from the Moderate Resolution Imaging Spectroradiometer
(MODIS) data and from the Geostationary Satellite Server (GOES)
data from NOAA.

The organization of Sc into cellular or roll convection
could be considered in first approximation as a form of
Rayleigh-Bénard convection in the atmospheric boundary
layer [15]. However, this mechanism does not completely
explain the multiscale turbulent character of the mesoscale
cloud convection (MCC) seen in observations, whereby other
theories have been proposed to explain the driving of these
patterns [16]. For Sc, in addition to the temperature difference
between the lower boundary (the sea or land surface) and
the upper boundary (a subsidence inversion), there are extra
factors and processes whose interaction results in an enhance-
ment or damping of the atmospheric convective circulation
[14].

Many of those processes are key in Sc and MCC clouds:
short-wave heating and long-wave cooling at cloud top,
turbulence and entrainment, precipitation, latent heating,
evaporative cooling and surface fluxes of energy as well as
microphysical processes closely related with droplets concen-
tration, aerosol effect and their influence in drizzle formation
[13]. It is important to note the different processes involved
in each regime. While open cells [Fig. 1(c)] appear as a
consequence of descending motion and sinks of clear air at
centers with ascending and cloudy air at their borders, closed
cells [Fig. 1(a)] are formed in presence of upward motion and
cloudy air in their centers and descending air at their inter-
faces. Heating from below is the key responsible process in
open-cell convection when there is a large difference between
sea surface temperature and air temperature; instead of that,
radiative cooling of cloud tops is the key responsible process
for closed-cell convection [13,14,18].

The transition from closed to open cellular convection is
interesting from the system dynamics as well as from the

perspective of radiative forcing of the climate but is not clearly
understood yet. Many theoretical and numerical models have
been proposed. Two of the most investigated mechanisms
are (1) cloud-aerosol-precipitation interactions [19] and (2)
advection over warmer water [20–22]. The first approach can
be thought of as microphysically driven and the second one
as large-scale meteorologically driven. This last mechanism
has been studied in recent years using satellite data, proposing
a relationship between column-integrated water and precipi-
tation rate as a self-organized criticality (SOC) [23] system.
According to this, a critical value of water vapor (the tun-
ing parameter) determines a nonequilibrium continuous phase
transition to a regime of strong atmospheric convection with
the emergence of precipitation (the order parameter) [24].

Based on these ideas, Hottovy and Stechmann proposed a
linear stochastic equation to describe cloud phase transitions
[25]. In this paper, we propose to modify such model by
including a feedback mechanism for sources and sinks like
precipitation or evaporation. This leads to a time-dependent
stochastic Ginzburg-Landau equation and if convection is
included, to a time-dependent stochastic Swift-Hohenberg
equation. Such equations describe the formation and transition
of stratocumulus cloud regimes: open cells, closed cells, and
pockets of open cells [26] [Fig. 1(b)], as well as an unrobust
phase [Fig. 1(d)] observed in shallow clouds. This mechanism
for organized mesoscale convection simulates the transition
to strong convection as a result of an increase in precipitation
rate as a function of the column water vapor (CWV), in partic-
ular, for stratiform rain systems as Sc clouds [27]. By means
of Fourier transforms, we compare the obtained patterns with
several real cloud fields obtaining a good agreement.

In fact, the idea of developing a Ginzburg-Landau-type
equation for cloud patterns is not completely new. In 2013,
Craig and Mack proposed a Cahn-Hilliard equation to build
a coarsening model for self-organization of tropical convec-
tion [28]. Their model started with the Allen-Cahn equation,
which generalizes the Ginzburg-Landau equation to more
general functionals [29]. As in our work, they used a simi-
lar order parameter, the tropospheric humidity, and a budget
equation with feedback. They found a phase transition when
the Landau-type functional has two minima, rather than one,
leading to a bistable system with two equilibrium values of
humidity [28]. Beyond the not so important differences in the
type of Landau functional, the main departure from our work
is that here we include stochastic terms in the equations. Thus,
noise is considered in the time evolution, while in the work by
Craig and Mack the noise is only used to produce an initial
state [28]. As in other systems, noise has important effects in
the pattern formation phase diagram [30,31].

The structure of this paper is the following, in Sec. II we
detail the linear model while in Secs. III and IV the nonlinear
models are introduced. Finally, the conclusions are given in
Sec. V.

II. THE HOTTOVY AND STECHMANN LINEAR
STOCHASTIC MODEL FOR MESOSCALE

SHALLOW PATTERNS

In this section, we explain the basic details of the Hottovy
and Stechmann (HS) model [25], based on an idealization of
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water vapor dynamics as a stochastic diffusion process. In
this model, several effects of the physical processes involved
in cellular convection are included: evaporation, turbulent
advection-diffusion of water vapor and precipitation.

The HS model [25] was proposed as a model for the dy-
namics of the cloudy boundary layer following the idealized
simplification of models of phase transitions in other contexts.
The model starts by considering the evolution of the total
moisture content q = q(r, t ) (water vapor plus condensed
water, i.e., liquid and ice) in each planetary boundary layer
column at a horizontal spatial location (x, y), normalized and
shifted so that q = 0 represents the saturation level [17]. Spa-
tiotemporal changes, given by the convective derivative of q,
must be equal to the contribution of all sources and sinks such
as precipitation or evaporation,

Dq

Dt
= ∂q

∂t
+ v · ∇q = S, (1)

where v is the velocity. We next decompose q as q = q̄ + q′,
where q̄ is a large-scale average component and q′ is a small
fluctuation part, and in a similar way we decompose v =
v̄ + v′. Using Eq. (1), we obtain an equation for the large
component [17],

∂ q̄

∂t
= S̄ − ∇ · (q̄v̄) − ∇ · (q′v′), (2)

where it was used that q̄′ = 0 and v′
x = v′

y = 0. Next the
small-scale flux convergence term ∇ · (q′v′) is approximated
by a Laplacian b∇2q, used to represent eddy diffusion and
mixing due to turbulence. The parameter b is an effective dif-
fusion constant. The nonlinear turbulent effects contained in
∇(q̄v̄) are taken into account by additional turbulent damping
[32] −q/τ0 and stochastic forcing, DẆ [33]. The term q/τ0

represents a relaxation, where the parameter τ0 is obtained
through a careful analysis of the column-integrated water and
precipitation rate [17]. The term DẆ represents a stochastic
forcing, and is used as the simplest model for the turbulent
fluctuations and others physical processes with a random com-
ponent, such as the entrainment. Finally, the source term S̄
represents the net water sources and sinks, including precip-
itation and evaporation of water from the ocean surface. It
is considered to contribute with a constant and deterministic
forcing F0, and a partial stochastic contribution, taken already
into account in the constant D.

Finally, the temporal evolution is given by the following
equation [17]:

∂q

∂t
= b∇2q − 1

τ0
q + F0 + DẆ , (3)

where here, and to avoid overburden the notation, q represents
the average part q. In what follows, the same convention will
be used.

It has been shown that this model can be translated into
a spinlike Hamiltonian system that presents phase transitions
[25] once q discretized using a function that takes the val-
ues 0 or 1 depending on the sign of q. Typical cloud fields
obtained through numerical simulations using this equation
are shown in Fig. 1. Therein, we include real images from
satellite to provide a comparison. Although the model is able
to reproduce the overall aspect of the fields and the phase tran-

FIG. 2. Fourier transform of the closed-cell phase. Panels in the
left column show the cellular pattern taken from (a) satellite pho-
tograph, (d) Hottovy and Stechmann model, (g) Ginzburg-Landau
stochastic model and (j) Swift-Hohenberg stochastic model. In the
central and right columns, we present the Fourier spectra of each
pattern in the I/I0-ky plane and the orthogonal plane, respectively. We
can identity in panels (b) and (c) and (k)–(l) a dominant frequency
with radial symmetry indicated by red arrows, corresponding to a
characteristic length of ≈14 km. The maximal spatial frequencies
in panels (e), (h), and (k) are determined by the resolution of the
grid used in the simulation given in the units of kx (see text). See
Appendix A for the parameter values. The simulations were done for
t = 1000 h. The data of the real fields were taken from the MODIS
data and the GOES data from NOAA.

sitions between them, it is also clear that there is much more
organization in real cloud patterns for closed phases. To ac-
count for this, we have calculated the spatial Fourier transform
of real closed-cell patterns taken from satellite photographs as
well as from the outcome of HS model, as seen in Fig. 2.

In Figs. 2(b) and 2(c) we can identify one spatial fre-
quency (wave vector) that reveals the existence of a particular
structure. This is very clear in Fig. 2(c), in which a ringlike
structure is observed. Nevertheless, in Figs. 2(e) and 2(f),
we see that the Fourier transform of the outcomes obtained
from the HS model does not show any characteristic dominant
structure. This is expected as the HS is a linear model which
does not couple modes [25].

Notice that in the case of the satellite photographs, we
adjust the contrast and exposure of the original image—shown
in Fig. 2(a)—before converting the grayscale image into a
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binary image. This is done to define the cells with more details
and precision.

Also, observe that in Figs. 2(e)–2(f), Figs. 2(h)–2(i), and
Figs. 2(k)–2(j) there is a lower cut-off of the spectrum when
compared with Figs. 2(b) and 2(c) and Figs. 2(k)–2(l). This
is due to the resolution of the grid used. Although one can
increase the cut-off frequency by growing the number of
points in the simulation mesh, it turns out that the phases
and parameters of the HS model depend on the mesh. On
the other hand, decreasing the resolution of the real cloud
fields leads to a lower-quality Fourier image. A trade-off is
thus needed to keep the original parameters of the HS model
and the best resolution of the real cloud fields. To solve this
conundrum, here we adopted the policy of using absolute units
in reciprocal space. These units are determined by the length
(L = 500) in km of the real space field and the resolution
of the photograph (Npixels × Npixels = 500 × 500), resulting in
the cut-off frequency kx = ±πNpixels/L = ±π (km−1). For
the simulation, the mesh has N × N points resulting in a
cut-off frequency kx = ±πN/L = ±π (N/500) (km−1). In all
the Fourier transforms, the intensity I is scaled by the maximal
intensity I0.

III. NONLINEAR MODEL: TIME-DEPENDENT
GINZBURG-LANDAU STOCHASTIC EQUATION

One of the most important points in the work of Craig and
Mack and HS is the recognition of q as an order parameter
[25,28]. In general, pattern formation is governed by order
parameters whose spatiotemporal behavior is determined by
nonlinear partial differential equations [34]. This suggests that
the extra features seen in real cloud patterns are due to nonlin-
ear effects. Following this idea, here we consider the cellular
convective pattern described by a state vector p(r, t ) which in
this case corresponds to the cloud cover. Its evolution equation
takes the general form of a partial differential equation [34]:

∂ p(r, t )

∂t
= N[∇, p(r, t )], (4)

where N denotes a nonlinear function. The behavior of
the state vector p(r, t ) of the pattern forming system can be
represented as a functional of one or several order parameters,
denoted by �(r, t ) that often can be directly related to a
physical observable [34],

p(r, t ) = Q[�(r, t )],

where Q is a functional of �(r, t ). In order to recover the
linear equation proposed by HS, in our model we identify
�(r, t ) = q(r, t ), i.e., the CWV in each column of the lattice.
Thus, instead of solving the determining equations for the
state vector p(r, t ), the spatiotemporal evolution is in general
determined by an equation for the order parameter field [34].
The most simple case is the following:

∂q

∂t
= L(�)q + N[q]. (5)

Here L(�) is a linear operator and N[q, t )] the nonlinear
functional that is approximated by a polynomial expansion of
q in its low-order derivatives.

Therefore, by comparing with Eq. (3) we can identify the
operator L(�) with τ−1

0 + b∇2, while D and F0 are parameters
that determine the strength of the random and deterministic
forcing generated by internal forcing due to small-scale cloud
processes and large-scale external forcing, respectively. The
transition of cloud area fraction (Ca) from a regime of closed
cellular convection to a regime of pockets of open cells is
determined by both parameters [7].

Let us start with the simple model given by Eq. (5) to
indicate how nonlinear terms arise. We start by pointing out
that several observational data and numerical studies have
documented the crucial relationship between precipitation
and water vapor for precipitation prediction in the context
of convective parametrizations. Peters and Neelin [21,24]
showed that there is a critical value qc of the CWV where the
mean precipitation 〈P(q)〉 increases rapidly as an approximate
power law, i.e., 〈P(q)〉 ∼ (q − qc)β , for q > qc. As β < 1, the
precipitation variance has a strong peak at the critical value qc

and then diminishes [35–37].
It has been argued that the mechanism presents a tendency

to self-maintain at criticality instead of being simply con-
trolled by an external parameter [21,24]. In fact, SOC has been
proposed to describe macroscopic critical phenomena such as
organized structures associated with atmospheric convection
[38].

This organization mechanism is supported by observations
which exhibit that, even when the system hardly exceeds qc,
the CWV tends to decay more slowly than an exponential rate
toward the higher values, reflecting the tendency toward SOC
[14,24]. The same studies show a scale invariance suggest-
ing a scaling law for atmospheric convection. Moreover, the
invariance under spatial averaging suggests the applicability
of the renormalization group, also supported by the SOC
approach [14,24].

In the original HS model, the relaxation time τ−1
0 and the

forcing F0 were adjusted in such a way that different assumed
models of the precipitation ratio fitted the results of Peters and
Neelin for the precipitation conditional probability. If ri, j is
the precipitation ratio for a cell with integer coordinates (i, j)
in a square mesh, then there are two precipitation models, the
first model is the Betts-Miller-like rain rate model [32],

ri, j = |F0|σi, j, (6)

the other was provided by HS [17],

ri, j = [|F0| + qi, j/τ0]σi, j, (7)

where σi, j = 1 if q > 0 and σi, j = 0 otherwise. Notice that
σi, j is analogous to a spin variable. Its role is to signal when-
ever q is above the precipitation threshold q = 0. Then is
possible to have rain.

While the conditional probability for precipitation can be
obtained from the distribution function of q, the linear model
does not provide a feedback threshold due to precipitation in
the source term S̄. In other words, the precipitation can be
calculated a posteriori once the model is solved, but it does
not enter into the calculation. We require S to depend on q.

Therefore, to improve the model one needs to include the
fact that once the threshold for precipitation is reached, indi-
cated by the spin variable σi, j , the source term will change. In
fact, σi, j can be used to derive an equivalent Ising Hamiltonian
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for the cloud field [17]. Now comes the question, what is
the most simple and natural choice for the feedback term?
Following the Ising analogy, we can replace the spins σi, j by
the known Ising mean field, σ ≈ [1 + tanh(q/T )]/2 with T a
constant. Notice how the field is shifted to have σi, j ≈ σ = 0
for q → −∞ and σ = 1 for q → ∞. This results on two
possible average precipitation rates r depending on the used
model,

r ≈ 1 + tanh(q/T )

2
|F0| (8)

or

r ≈ 1 + tanh(q/T )

2

[
|F0| + q

τ0

]
. (9)

As we are interested in the region around the threshold, i.e.,
near the lineal model, we can expand the hyperbolic tangent
to obtain, using Eq. (8),

r ≈
[

1 + q

T
− 1

3

( q

T

)3
+ 2

15

( q

T

)5
+ . . .

] |F0|
2

. (10)

Thus, we generated a nonlinear term able to model dynami-
cally a precipitation threshold. Although in principle we can
just modify the sources term in Eq. (3) by using S̄ → S̄ − r̄,
it will be unwise not to recognize that sources must also
depend dynamically on q, as for example, the conditional
probability of having an increased q grows once precipitation
occurs [39,40]. Thus, we left open the possibility of having
an interplay between sources and sinks by the replacement
S̄ → F0 + DẆ − r̄ + s̄ where s̄ is an average dynamic source.
The most simple model is to assume s̄ ≈ f r̄, where f controls
the relative weight between sources, like evaporation, and
precipitation. The parameter f allows an interplay between
two kinds of nonlinear regimes, one dominated by sinks the
other by sources.

Finally, we include, up to third order, the sources and sinks
terms in Eq. (3) to obtain the following nonlinear model built
from Eq. (8) Betts-Miller-like rain rate precipitation model,

∂q

∂t
= b∇2q + Eq − Kq3

+ DẆ + F,

(11)

where the constants are given by

E = 1

τs
− 1

τ0
, K = 1

3τsT 2
, F =

(
f + 1

2

)
|F0| (12)

with

1

τs
=

(
f − 1

2

) |F0|
T

. (13)

The model given by Eq. (11) takes the same form of the cel-
ebrated time-dependent Ginzburg-Landau equation [41,42],
now added with stochastic noise [43]. It is important to re-
mark that Eq. (11) is also known as the stochastic Allen-Chan
equation, as the order parameter is real, while in the Ginzburg-
Landau equation it can be complex. Such equation coincides
with the idea that most classical models for phase transitions
are inherently nonlinear [44] and at the same time, satisfies
one of the conditions of SOC: nonlinear interaction, normally

in the form of thresholds [45]. In Eq. (11), the threshold tran-
sition parameter T and the ratio f control the time parameter
τs. This is a new characteristic time that competes with the
damping time τ0.

Also, we can use the alternative SH precipitation model
given by Eq. (9). To terms of order q3, we obtain a general
model that contains the Ginzburg-Landau as a particular case,

∂q

∂t
= b∇2q + q

τs
+ Gq2 − Kq3

+ DẆ + F,

(14)

where G defined as

G = f − 1

2T τ0
. (15)

The main difference between Eqs. (11) and (14) is the
quadratic term, which vanishes in the Betts-Miller-like rain
rate model, resulting in the Ginzburg-Landau equation. As
is well known, the quadratic term in the Ginzburg-Landau
equation does not appear due to symmetry considerations.
Here we will only study the Ginzburg-Landau equation, as the
resulting pattern obtained from the second model were very
different from real fields.

Figures 1(i)–1(l) shows the outcomes of the first model
found solving numerically Eq. 11. Further details of the simu-
lations are explained in the Appendices A and B, including
several limiting cases studied to validate the software. In
Fig. 2 we present the pattern and spectrum for the closed-
cell phase. It is worthwhile mentioning that the spectra in
Figs. 2(h)–2(i) were obtained from temporal and initial con-
dition averages up to t ≈ 1000 h. Although for the stationary
regimen of the Ginzburg-Landau (or Allen-Cahn) equation we
reproduced the well-known behavior of a bell-shaped Fourier
transform, for times t < 100 h and in some patterns we ob-
served more structure in the nonlinear model when compared
with the pure linear one (see next section and Appendix B).
Observe that this is the most interesting regimen for real cloud
patterns as typically they stay up to four days.

As was done previously with the linear model, in the
following section we further compare the outcomes of our
nonlinear model with the original clouds formations using
Fourier spectrum and the closed-cell convection as reference.

A. Phase transitions diagrams

The model outputs in Figs. 1(e)–1(h) present the four
phases of cloud organization shown in observational data from
Figs. 1(a)– 1(d), respectively. It is possible to see the transition
from closed-cells to pockets of open cells (POCs). These four
cloud regimes correspond to four distinct parameter regimes
of Eq. (11) where F and D are the tuning parameters which
determine the phase transition.

Figure 3 presents the phase diagram for different patterns,
obtained from the stochastic Ginzburg-Landau equation, in
cases where they are qualitatively different as a function of
the control parameters D and F . The control parameter values
are similar to those found in the HS model, obtained through
a careful tuning of the model with real data [25]. The only
difference here is the constants E and K , which adjust the
Fourier amplitude and position of the extra peaks. However,
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FIG. 3. Representative patterns obtained as a function of the
control parameters D and F for the stochastic Ginzburg-Landau
equation. For all the plots, we set E = 1 h−1 and K = 1 mm2 h−1.
Notice that D and F have values in the same range of found by the
original HS model from observational data [17]. These patterns were
found at an intermediate relaxed regimen t ≈ 1000 h and thus for
F ≈ 0 metastable banded patterns are seen.

as explained in Appendix A, these constants do not change
for the different patterns, instead were fixed at E = 1 h−1 and
K = 1 mm2 h−1.

It is important to remark in Fig. 3 that for F ≈ 0, a banded
pattern is seen. This is a typical intermediate transient state.
It persist up to t = 1000 h. As F departs from F = 0, re-
laxation is faster and no structure is observed. Therefore, the
spectrum in Fig. 2(h) does not present much structure. Its
Fourier spectrum is a bell-shaped curve centered at k = 0,
expected for such limiting cases. Other resulting patterns may
have structure as in closed cells fields, but this only happens
in the time regimen t < 1000 h, and eventually, the structure
disappears.

As seen in Figs. 2(b) and 2(c), real patterns reveal the
presence of a dominant frequency. This kind of spectrum is
radially symmetric, implying that the corresponding structure
is glasslike, as it has short-range order which is not preserved
at long scales.

In Fig. 4 we present the Fourier spectrum for a nonrelaxed
pattern for F = 0 and t = 1000 h. In Fig. 4(b), we present a
zoom near k = 0, and which reveals two characteristic peaks.
These peaks are not seen for a fully relaxed pattern of the
stochastic Ginzburg-Landau or Cahn-Allen equation, which
consists of a bell-shaped curve centered at k = 0. Such peaks

FIG. 4. (a) Pattern formed by Fourier inverting the spectrum for
the parameter values F = 0 and D = 5, as shown in Fig. 3. (b) A
close up of the normalized spectrum in panel (a). The dominant
frequency peaks are indicated by red arrows. (c) Pattern formed by
inverting the central part of the spectrum shown inside the red frame
in panel (b). (d) Pattern formed by inverting the external part of the
spectrum shown inside green frames in panel (b).

are only observed under nonperiodic boundary conditions or
during transients. Notice that relaxation in the Allen-Cahn
equation goes as a square root of the time and thus gets slower
[46]. This is a typical result for systems with a double-well po-
tential structure as there are two kinds of timescale dynamics
[47,48].

Further verification of the transient nature of the peaks in
Fig. 4 can be obtained by a reconstruction of the pattern by
filtering out spatial frequencies higher than the main central
peaks. The filtered spectrum can be used to reconstruct a
pattern by an inverse Fourier transform, as seen in Fig. 4(c).
Clearly, the peaks are due to the underlying transient banded
state.

This metastable pattern lies in a special parameter region
where noise and the nonlinear functional power are of the
same order. In noise sustained patterns as in adaptive control
algorithms, this region turns out to be the most interesting
as it contains a lot more “structural” information [31]. As all
benchmarks were reproduced for the limiting cases, including
changes in the boundary conditions (see Appendix B), this
means that the system is trapped in a deep metastable state.

In fact, numerically such mestastable patterns appear for
E + F > 0 and its reason is easy to understand. The most
simple stability analysis is obtained by linearization of the
average field q = 〈q〉 in Eq. (11),

∂〈q〉
∂t

= b∇2〈q〉 + E〈q〉 + F. (16)
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Considering a field, 〈q〉 = δq exp(ik · r + λt ) results in the
condition,

λ = −bk2 + (E + F ). (17)

The average field is stable whenever the real part of λ is such
that Re(λ) = E + F < 0.

Therefore, for t < 100, the spatial structure for F ≈ 0
corresponds to metastable states. As real cloud patterns
are in this time regime, we can conclude that a possible
outcome is that organization in the cloud pattern is due
to a system trapped in a deep-basin metastable state. To
understand this, we mention a clear analogy with glasses
and crystals. Glasses are disordered solids in the obser-
vation timescale as they are not fully relaxed [49,50].
The low-free energy state corresponds to a crystal [51,52].
Yet we consider glasses and crystals as different physical
entities.

Finally, it is worthwhile to mention that is well estab-
lished numerically and mathematically that if the mesh size
in the Ginzburg-Landau or Allen-Cahn equation simulation
is shrunk, the numerical solutions would converge to a
zero distribution with no pattern formation in the continuum
limit [30,53]. In fact, the two-dimensional white noise-driven
Allen-Cahn equation does not lead to the recovery of a physi-
cally meaningful limit [53]. A way to interpret the simulations
of such equation is to view them as numerical approximations
of equations driven by a noise field having a finite correlation
length [30]. Here we used the mesh proposed by HS which
has carefully tuned to reproduce meaningful physical results
[17]. However, we verified that the mesh only has a small
effect in the peak position for transient states, as the mesh is
associated with much higher values of k and not at the center
of the spectrum.

In the following subsection we further explore the pattern
phase diagram of the system.

To further understand the changes between one and another
phase, we use a phase diagram of cloud regimes using statis-
tics moments as shown in Figs. 5 and 6. In the first diagram,
the mean cloud area fraction (〈Ca〉) is calculated as a function
of D and F , i.e., 〈σ 〉 = 〈σ (F, D)〉 = ∑

i, j σi, j in the stationary
state and by fixing τ0 and b. Moreover, the plot in Fig. 6
provides the standard deviation, which is a measure of the
statistical sensitivity.

In Fig. 5 is notorious the phase diagram regions belonging
to each regime: the closed-cell regime corresponds to F > 0
and the open-cell regime corresponds to F < 0, as indicated
by the mean Ca, since while the average value cloud area
of open cells is 1, the mean of the closed ones is 0. On the
other hand, the POCs could be seen in the middle of both
regimes as their transition in the region around F = 0 with
intermediate values of the mean Ca between 0 and 1. All these
cellular regimens are associated with intermediate values of
D. The shallow cumulus regime [Fig. 1(d)] appears for D > 8
mm h−1/2 at all F values.

It is intuitive to understand why for small D, the Ca attains
its mean unordered value: in this case, the value 〈Ca〉 = 1
should be reached for positive F , and 〈Ca〉 = 0 for negative
F . However, higher values of E and K affect this picture (see
below).

FIG. 5. Phase diagram of shallow cloud regimes for the
Ginzburg-Landau nonlinear stochastic model given by Eq. (11). The
plot shows the mean cloud area fraction (〈Ca〉) as a function of
variability, D, and the net source-sink parameter F . The transition
from open to close cells is clearly seen as a transition from high to
low values of the 〈Ca〉. However, this picture changes by increasing
E and K , resulting in two limiting cases (see Appendix C).

Furthermore, to have a measure of the climate response or
climate uncertainty, in Fig. 6 we present the standard devia-
tion of the cloud area fraction (Sd (Ca)). The open and closed
cellular regimes are associated with low values of the Sd (Ca).
The POCs and shallow phases are associated with high values
of the Sd (Ca), indicating how small changes in F or D lead
to very large changes in 〈Ca〉. It also shows how the Sd (Ca)
increases drastically out of the regions where it presents the
closed or open cellular patterns.

Finally, it’s important to mention the effect of the E and
K parameters on the phase diagram showed in Fig. 5. After
a systematic tuning, we developed a phase transition with
respect to these parameters, i.e., the change of the E and
K values result in different phase spaces. Even when it is
possible to recover the four regimes of interest, the F and D

FIG. 6. Plot of the cloud area fraction standard deviation (Sd (Ca))
as a function of the variability, D, and net source-sink, F , for the
Ginzburg-Landau stochastic model given by Eq. (11). The open and
closed cellular regimes are associated with low values of the Sd (Ca).
The POCs and shallow phases are associated with high values of the
Sd (Ca).
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FIG. 7. Fourier transform of the horizontal convective rolls. Pan-
els in the left column show the horizontal convection pattern taken
from (a) satellite photograph and (d) the Swift-Hohenberg model
given by Eq. (21). In the central and right columns, are presented
the Fourier spectra in the I/I0-ky plane and the orthogonal plane,
respectively. We can identity in panels (b) and (c) and then (e) and (f)
a dominant frequency with axial symmetry indicated by red arrows.
Notice that in panels (a) and (d), the blue circles indicate bifurcations
observed in the real and simulated patterns. See Appendix A for
the parameter values. The data of the real fields was taken from the
MODIS data, and the GOES data from NOAA.

pairs able to form each phase vary considerably; we discuss an
example in Appendix C. On the other hand, fixing F and D at
the values used for the cellular regimes, we conclude that even
when these phases could be formed, the dominant amplitudes
in their Fourier spectra change for the effect of the E and
K parameters. Understanding the physical interpretation of
all these parameters and their full effect on cloud formation
requires further study.

IV. STOCHASTIC SWIFT-HOHENBERG MODEL

In spite that the stochastic nonlinear models already show
certain organization, Figs. 1(a) and 7(a) reveal that some real
cloud fields still can be much more organized and in fact
are in a different physical limit. They reveal hexagonal cells
mimicking patterns arising from Rayleigh-Bénard convection.
Indeed they are considered as a form of Rayleigh-Bénard
convection in moist atmospheric air [22,54]. For such special
cloud fields, we need to depart from some assumptions of the
original HS model as after an exhaustive exploration of the
parameters phase diagrams, there is no way to generate such
highly ordered patterns. The dominant turbulent diffusion
term prevents them to form. Returning to the budget equation
(2), we see two possibilities. Either the source term or the
small-scale flux convergence terms induce the selection of
certain wavelengths. As clouds move, the pattern can persist
in time, thus the source term is improbable to produce such
behavior and we can keep our heuristically derived terms. The
next natural step is to consider changes in the small-scale flux
convergence term, i.e., in the operator L(�). The idea behind
such change is the following. Suppose a pattern in which a
wave-mode kc is selected in an otherwise isotropic system.
Let q̃ = q̃(k, t ) be the Fourier transform of q(r, t ) in the space

domain. The leading-order dynamics must be of the following
form:

∂ q̃

∂t
= (α|k|2 − β|k|4 + . . . )q̃, (18)

where α > 0 and β > 0, as we require small-wavelength
modes to decay, i.e., q̃(k, t ) → 0 for k → ∞. In terms of the
constants, the selected wave mode is given by kc = √

α/2β.
Transforming to real space, we are lead to the following gen-
eral equation:

∂q

∂t
= −α∇2q − β(∇2)2q. (19)

We can take β = 1 as scale. Therefore α = 2k2
c and we com-

plete squares in Eq. (19),

∂q

∂t
= [

k4
c − (

k2
c + ∇2

)2]
q. (20)

This procedure to find the operator works for many types
of pattern-forming systems [55,56], but was first formally
deduced from the Navier-Stokes equations in the Boussinesq
approximation to study the effects of thermal fluctuations on
a fluid near the Rayleigh-Bénard instability [57]. By consid-
ering the expansion of N[q] in Eq. (14) and collecting the
linear terms in q using a constant ε = k4

c + 1/τs, we obtain
the following stochastic equation:

∂q

∂t
= [

ε − (
k2

c + ∇2
)2]

q + Gq2 − Kq3 + F + DẆ , (21)

which is the stochastic Swift-Hohenberg equation. The solu-
tions of Eq. (21) are still in the process of being investigated
[58] although studies of the Swift-Hohenberg equation in the
presence of noise started decades ago [59].

Equation (21) can be solved numerically through implicit
finite differences and a successive over-relaxation (SOR)
method as proposed by Pérez-Moreno et al. [60]. In Fig. 2(j)
and Fig. 7(d) we show the formation of two particular pat-
terns that arise in the Rayleigh-Bénard convection, hexagons
and rolls. Further details of the simulations are explained in
Appendix A. Both patterns have been identified as ways of
organization in Sc clouds and their formation depends on the
parameter G that controls the strength of the quadratic non-
linearity. In Figs. 2(a) and 2(j) and in Figs. 7(a) and 7(d) we
compare satellite photographs with simulations of hexagons
and rolls, respectively; we can see clear similarities with
the satellite patterns. To confirm the similarities, the Fourier
spectrums of the real and simulated cloud formations were
performed.

In Figs. 2(b) and 2(c) and Figs. 2(k)–2(l), the hexagonal
pattern spectrum reveals the presence of a dominant frequency
for a cut along a certain direction. In Fig. 2 we can identify a
principal frequency and other harmonics of lower amplitude.
This coincides with the spectrum of a cellular pattern with
defects and not highly ordered as a result of the forcing added
in Eq. (21), which generates different sizes of cells without
a particular tessellation. On the other hand, in Figs. 7(b)
and 7(c) and Figs. 7(e) and 7(f) we show the presence of a
dominant frequency with axial symmetry that corresponds to
a pattern formed by parallel rolls in real space. In both kinds
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of convection, the simulations recover the structures formed
in real cloud fields.

V. CONCLUSIONS

Following the work of Hottovy and Stechmann, we pro-
posed a nonlinear differential equation for an order parameter
field given by the column water vapor q(r, t ) to describe the
transitions of various pattern formations in mesoscale shallow
clouds systems. One of the main modifications introduced to
the original linear model is the possibility of a feedback due to
sources. In particular, we used two precipitation rate models,
one leading to a time-dependent stochastic Ginzburg-Landau
equation while the other adds a quadratic term to this equation.
The first model produces some realistic cloud fields and even
glasslike patterns, i.e., with short-range order which is not
preserved at long scales.

However, this model is not able to reproduce the highly
ordered fields present in Rayleigh-Bénard convection in moist
atmospheric air featuring rolls and hexagonal waves. There-
fore, in the spirit of perturbation theory, we introduced a
change in the small-scale flux convergence term, resulting
in a stochastic Swift-Hohenberg equation, proposed here as
a simple model for cloud fields. The numerical simulations
confirmed the presence of closed-cellular and horizontal con-
vection phases.

The success of both models can be appreciated by observ-
ing the real patterns in Fig. 1. Therein, we identified that the
three patterns corresponding to MCC are not in a perfectly
hexagonal arrangement (highly ordered) nor are they arranged
in complete randomness (highly disordered). The distributions
of cumulus, both in closed and open-cells, appear in some
arrangement between these two extremes.

Both proposed nonlinear models are closer to this domi-
nant structure than the linear one, while the Swift-Hohenberg
equation allows the formation of clearly organized patterns for
two characteristic convective regimes. Finally, we presented
a phase diagram for the cloud patterns, using as basic pa-
rameters those found by HS by fitting the data, as well as
additional nonlinear parameters we identified by comparing
with the spatial Fourier, transforms of the patterns.
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APPENDIX A: PATTERN PARAMETERS

1. The Stechmann and Hottovy linear stochastic model
for mesoscale shallow patterns

In Figs. 1(a)–1(d), the outcomes of Eq. (3) were nu-
merically solved using implicit finite differences with the
same parameter values proposed by Hottovy and Stechmann
[17,25]. A two-dimensional discrete spatial grid in a domain
of L by L, where L = 500 km divided in a N by N lattice
with N = 100 and lattice spacing of �x = �y = 5 km; this
was chosen to be roughly the smallest width of individual
cells of tropical deep convection. The boundary and initial
conditions were considered periodic and random, respectively.
It was defined qi, j (t ) as the integrated CWV and Wi, j (t ) as
independent white noise, denoted formally as the derivative
of a Wiener process [17,25], in the (i, j)th column of the
atmosphere for i, j = 1, . . . , N .

The parameters b and τ0 conserves the values b = 25
km2 h−1 and τ0 = 100 h, as proposed by HS [17,25]. In each
phase of Fig. 1, the parameter values used were [Fig. 1(a)]
D = 1.55 mm h−1/2, F = 0.12 mm day−1; [Fig. 1(b)] D =
1.94 mm h−1/2, F = 0.048) mm day−1; [Figs. 1(c)] D = 1.55
mm h−1/2, F = −0.12 mm day−1; and [Fig. 1(d)] D = 11.62
mm h−1/2, F = −0.72 mm day−1.

2. Nonlinear model: Time-dependent Ginzburg-Landau
stochastic equation

In Figs. 1(i)–1(j), the outcomes of Eq. (11) were obtained
using the same domain and discretization as well as initial
and boundary conditions of the linear model simulations. The
parameters b and τ0 conserves the same values proposed by
Hottovy and Stechmann [17,25], while different values of F
and D, in the same range used by them (F0 ∼ ±1 mm day−1

and D ∼ 10 mm h−1/2), were explored to find the regimens
observed in Figs. 1(i)–1(l). The dynamics of the nonlinear
terms in Eq. (11) was determined by the parameters E and
K whose values, after an exploration of different orders of
magnitude, were fixed in E = 1 h−1 and K = 1 mm2 h−1.
The increase of both parameters is associated with a major
percolation in the boundaries around open or closed clusters
to the same F and D values.

In particular, the parameter values used in Fig. 1 for
Eq. (11) were [Fig. 1(i)] D = 6 mm h−1/2, F = 1 mm day−1;
[Fig. 1(j)] D = 9 mm h−1/2, F = 0.2 mm day−1; [Fig. 1(k)]
D = 6 mm h−1/2, F = −1 mm day−1; and [Fig. 1(l)] D =
10.25 mm hr−1/2, F = −0.4 mm day−1.

3. Stochastic Swift-Hohenberg model

In Fig. 2(g) and Fig. 7(c) we show the formation of two par-
ticular patterns that arise in the Rayleigh-Bénard convection,
hexagons and rolls. Eq. (21) was solved numerically through
implicit finite differences and a SOR method as proposed by
Pérez-Moreno et al. [60].

For such simulations, the numerical method used a two-
dimensional discrete spatial grid in a domain of L by L, where
L = 500 km was divided in a N by N lattice with N = 200
and lattice spacing of �x = �y = 2.5 km. In this case, this
discretization was chosen to approximate the cell diameter
of the real ones. The boundary and initial conditions were
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FIG. 8. Fourier transform code proof. (a) Circle with radio r = 20 pixels in a 200 × 200 square lattice, the corresponding two-dimensional
Fourier transform is shown in (b) the I/I0-ky plane and (c) the orthogonal plane. Panels (d), (b), and (e) are equivalent to (a), (b), and (c) to a
circle with radio r = 50 pixels in a 200 × 200 square lattice.

considered again as periodic and random. In the SOR method,
it was used as the iteration step k = 15 and as the relaxation
factor w = 1.3.

To form each pattern, the parameters were fixed as follows:
in Fig. 2(g) ε = 0.1, kc = 1.3 km−1, g = 1, D = 0.15 mm
km h−1/2, F = 0.1 mm day−1 and in Fig. 7(c) ε = 0.3, kc =
1.2 m−1, g = 0, D = 0.3 mm km h−1/2, F = 0.25 mm day−1.

APPENDIX B: FOURIER TRANSFORM ANALYSIS

To investigate the validity and accuracy of the main text
results, in this section we present first, in subsection 1, the
Fourier Transform software testing and second, in subsections
2, 3, and 4 an examination of the numerical method used
to solve the Eq. (11) varying time averages, mesh grid, and
boundary conditions. Note that, in subsections 2, 3, and 4,
the spectra present only a section of the amplitude domains
in order to make it easier to identify the wave numbers that
appear as a reminiscence of the characteristic metastables
states of the Ginzburg-Landau patterns formed when F ≈ 0.

1. Fourier transform benchmarks

First, we tested the Fourier spectrum software using known
examples to reproduce the expected results. Among the tar-
gets, the most simple one is two circular apertures with
different diameters, as shown in Figs. 8(a) and 8(d). In the
middle and right columns, the respective Fourier spectrum of
each aperture is shown in Figs. 8(b) and 8(e) the I/I0-ky plane
and in Figs. 8(c) and 8(f) the orthogonal plane. The analysis
is in perfect agreement with the expected analytical results.

2. Time-averaged Fourier transform

We next investigate the persistence of the dominant wave
numbers that appear in the Ginzburg-Landau Fourier spec-
tra for times t ≈ 100 h. For this purpose, we computed the
time-averaged Fourier spectra of the four distinctive cloud
phases generated by the Ginzburg-Landau stochastic model
(see Fig. 9) once the patterns reach a stationary state.

The corresponding two-dimensional Fourier transform of
each phase was averaged over 20 independent simulations in
the total period [150, 350] h at time intervals of tn = 10n + Ti

for n an integer. The initial time, Ti = 150 h, corresponds to
the common minimum time in which the four phases reach the
stability according to the 〈q(r, t )〉 value.

We conclude that these characteristic wave numbers are
persistent for intermediate times t ≈ 100 h, although may
vanish at long times t ≈ 1000 h, as can be verified in the phase
diagrams that appear in the main text. As the dynamics of
the Cahn-Allen slows down as a square root of the time, the

FIG. 9. The corresponding time-averaged Fourier transforms for
the four distinctive phases of shallow cloud organization generated
by the Ginzburg-Landau stochastic model [Eq. (11)] with the same
order and parameters used in Figs. 10(e)–10(h). The Fourier trans-
forms were averaged over 20 independent simulations (from t = 100
to t = 300 each 10 time steps).
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FIG. 10. Fourier transforms for the four distinctive phases of
shallow cloud organization at the time regimen t ≈ 100 h: closed-cell
stratocumulus, pockets of open-cell stratocumulus, open-cell stra-
tocumulus, and shallow cumulus generated by the HS model [Eq. (3)]
with the parameters proposed in Ref. [17] in panels (a) to (d) and
by the Ginzburg-Landau model [Eq. (11)] in panels (e) to (h). See
Appendix A for the parameter values.

characteristic wave numbers correspond to metastable states
with a long decay time. We recognize that this is possibly
equivalent to metastability presented in the two-dimensional
Ising model under the effects of an external magnetic field.

3. Comparison between Hottovy-Stechmann
and Ginzburg-Landau Fourier spectra

Once we had evidence of the Fourier spectra validity used
in the analysis of the patterns, we investigate the role of
nonlinear terms of the Ginzburg-Landau model in the emer-
gence of patterns for certain couples of F and D parameter
values. Figure 10 shows the Fourier transform correspond-
ing to the four cloud phases of interest generated by the
Hottovy-Stechmann model, in Figs. 1(a)–1(d), and by the
Ginzburg-Landau model, in Figs. 1(e)–1(h), all taken in the
time regimen t ≈ 100 h.

The Fourier transforms in the top row show no dominant
wave numbers over the rest, which is consistent with the lack
of organization in the Hottovy-Stechmann patterns. However,
the bottom row presents, as the Fig. 9 does, characteristic
wave numbers that give the first clue of a more homogeneous
distribution and so, more organization in the patterns formed
by the Ginzburg-Landau model. Also, the fact that these
dominant wave numbers appear only in the cellular phases
allows to complement the phase diagrams in the main text to
understand the effect of the tuning parameters, F and D, in the
formation and transition of cloud phases.

4. Characterizing the effect of boundary conditions and mesh
grid on Ginzburg-Landau Fourier spectra

Most of the numerical studies which have been found dis-
ordered spatiotemporal regimes formed by nonlinear partial
differential equations have been done considering periodic
boundary conditions, with the idea that in the limit of very
large systems, the boundary conditions would not influence
the system dynamics. However, for the description of real
systems, it is necessary a systematic study of boundary con-

FIG. 11. Fourier transforms of the closed-cell phase at the in-
termediate time regimen t ≈ 100 h. Panels in the left column show
the closed cellular pattern taken from Ginzburg-Landau stochastic
model [Eq. (11)] using (a) periodic boundary conditions, (c) Dirichlet
boundary conditions, and (e) Neumann boundary conditions. In the
right column, we present the corresponding Fourier spectrum of each
pattern.

ditions to consider their possible effects in the formation of
more realistic patterns.

For this reason, once we prove the validity of the Fourier
transform program as well as the numerical solution of
Ginzburg-Landau model, in this section we will focus on the
behavior of the stochastic Ginzburg-Landau equation on dif-
ferent mesh refinement and with different types of boundary
conditions.

First, through the comparison of periodic, Neumann and
Dirichlet boundary conditions (see Fig. 11) we summarize the
behavior observed numerically on the closed-cellular regimen
formed in a two-dimensional rectangular domain under the
same parameters detailed in Appendix A.

Applying null Dirichlet (q = 0), and Neumann ( ∂q
∂n = 0)

boundary conditions, in the left column of Fig. 11 we show
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FIG. 12. Fourier transform of the closed-cell phase at the time
regimen t ≈ 100 h. Panels in the left column show the closed cellular
pattern taken from Ginzburg-Landau stochastic model [Eq. (11)]
solved in a square discrete domain of L by L, with L = 500 km,
divided in a N × N lattice with (a) N = 100, (b) N = 200 and
N = 300. In the right column, we present the corresponding Fourier
spectrum of each pattern. The maximal spatial frequencies in panels
(b), (d), and (e) are determined by the resolution of the grid used in
the simulation given in the units of kx .

the patterns formed under each kind of condition. In the right
column, we can see their respective Fourier spectra. For the
three cases, the spectra reveal similarities between them. In
the left panels, it is possible to appreciate such behavior qual-
itatively. However, for the Dirichlet and Neumann cases, near
to the walls, we can see open regions in contradistinction to
the periodic case.

On the other hand, to investigate the effects of the mesh
refinement on pattern formation, we simulate our system with
the same initial and periodic boundary conditions specified in
Appendix A over a square domain with side L = 500 km. In
Fig. 12 we present the results for different mesh refinements
�(x) = L/N where N is the number of lateral divisions in
[Fig. 12(a)], N = 100, [Fig. 12(c)] N = 200, and [Fig. 12(e)]
N = 300 cells. By observation of the left column is clear that
�(x) affects the Ca; particularly, in Fig. 12(e), this is visible
with the apparition of open regions and the decrease of the

FIG. 13. Phase diagram of shallow cloud regimes for the
Ginzburg-Landau stochastic model given by Eq. (11). The plot shows
the mean cloud area fraction (〈Ca〉) as a function of D and F fixing
the parameters E = 8.5 h−1 and K = 6.5 mm2 h−1.

closed area percolation, compared with Figs. 12(a) and 12(c).
Such effect has been reported previously by HS and that’s why
one need to tune �(x) with observational data.

APPENDIX C: GINZBURG-LANDAU PHASE DIAGRAMS

The study of the Ginzburg-Landau time-dependent equa-
tion requires considering the effects of the linear and nonlinear
parameters in the phase formation and transition. Represented
in the main text as E and K , the polynomial terms in Eq. (11)
were explored systematically by identifying two limits: (1)
when E and K tend to 0 with results close to the Hottovy
and Stechmann outputs and, (2) when E and K increase. In
the phase diagram, this produces the formation of symmetry
with respect to an intermediate D value, as shown in Figs. 13
and 14.

FIG. 14. Plot of the cloud area fraction standard deviation
(Sd (Ca)) as a function of the D and F , for the Ginzburg-
Landau stochastic model given by Eq. (11), fixing the parameters
E = 8.5 h−1 and K = 6.5 mm2 h−1.
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