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A series of recent publications, within the framework of network science, have focused on the coexistence of
mixed attractive and repulsive (excitatory and inhibitory) interactions among the units within the same system,
motivated by the analogies with spin glasses as well as to neural networks, or ecological systems. However, most
of these investigations have been restricted to single layer networks, requiring further analysis of the complex
dynamics and particular equilibrium states that emerge in multilayer configurations. This article investigates the
synchronization properties of dynamical systems connected through multiplex architectures in the presence of
attractive intralayer and repulsive interlayer connections. This setting enables the emergence of antisynchroniza-
tion, i.e., intralayer synchronization coexisting with antiphase dynamics between coupled systems of different
layers. We demonstrate the existence of a transition from interlayer antisynchronization to antiphase synchrony
in any connected bipartite multiplex architecture when the repulsive coupling is introduced through any spanning
tree of a single layer. We identify, analytically, the required graph topologies for interlayer antisynchronization
and its interplay with intralayer and antiphase synchronization. Next, we analytically derive the invariance
of intralayer synchronization manifold and calculate the attractor size of each oscillator exhibiting interlayer
antisynchronization together with intralayer synchronization. The necessary conditions for the existence of
interlayer antisynchronization along with intralayer synchronization are given and numerically validated by
considering Stuart-Landau oscillators. Finally, we also analytically derive the local stability condition of the
interlayer antisynchronization state using the master stability function approach.
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I. INTRODUCTION

The analysis of multilayer networks [1–6] is one of the
most prosperous research lines in the last decade of network
science, having more appropriate description of real-life sys-
tems than isolated networks. There are several relevant and
unexpected characteristics displayed in multilayer networks,
which cannot be generalized to single layer networks. Mul-
tilayer networks have enormous applications in a plethora
of different contexts, including congestion of traffic [7,8],
evolutionary game dynamics [9,10], extreme events [11,12],
epidemic spreading processes [13–15], percolation [16,17], to
name but a few. Mathematically, a multilayer network is de-
fined as a pair M = (G ,C ), where G = ∪M

α=1Gα is a family
of graphs Gα = (Yα, Eα ), each one representing the layer α

and C = {Eαβ ⊆ Yα × Yβ, α �= β, α, β ∈ {1, 2, . . . , M}} is
the set of interlinks between nodes of different layers Gα and
Gβ , with α �= β. The elements of each Eα are called intralayer
links of Gα . If each layer has the same set of nodes and a
node is only interconnected to its counterpart replica node
in the rest of the layers, i.e., Y1 = Y2 = · · · = YM = Y and
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Eαβ = {(y, y) : y ∈ Y } for every 1 � α �= β � M, then this
particular type of network is known as multiplex network [5].

The increasing availability of numerical data and the
development of new techniques to characterize networks en-
couraged a relatively large body of researches to study the
collective behavior of multilayer networks. Among all of
them, synchronization [18–21] is the collective dynamical
process that has captured the most attention, probably due to
its prevalence in a diversity of real systems.

Several types of synchronization have been studied in the
multilayer network formulation, such as breathing synchro-
nization [22], chimera states [23–25], solitary states [26],
explosive synchronization [27–29], intralayer synchroniza-
tion [30–32], interlayer synchronization [33–35], relay syn-
chronization [36], cluster synchronization [37], and many
more. However, antiphase synchronous states in multilayer
networks have not gained their well deserved attention.

Antiphase synchronization has been observed in many real
situations such as sleep [38], resting state [39], or attentional
tasks [40,41]. It is also essential in spontaneous corticocortical
communication dynamics, as reported in Refs. [42,43]. From
the perspective of dynamical systems, time delay and mod-
ularity have been demonstrated to induce antiphase patterns
due to noise-driven transitions between different synchro-
nization clusters [44]. Recently, antiphase collective synchro-
nization was observed in two weakly coupled groups of
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electrochemical oscillators [45]. More recently, antiphase syn-
chronous states have been observed in limit cycle oscillators,
when two types of interactions, viz., attractive and repulsive
coupling, coexist in a network [46]. Under this framework,
a universal rule based on the collective behavior of the
dynamical states was proposed for attractive-repulsively cou-
pled limit cycle oscillators to identify the bipartiteness of
a network [46]. Coexisting attractive-repulsive interactions
may lead to several collective nontrivial phenomena [47–56]
ranging from extreme events [57,58], solitary states [59], to
chimera states [60,61], and many more.

In this paper, we explore the emergence of antiphase
states in multiplex networks under the accumulated effect of
attractive-repulsive interactions. Initially, the interlayer con-
nections are solely repulsively coupled, while the rest of the
intralayer connections are attractive. This setup allows the
appearance of antisynchronization, consisting on the combi-
nation of intralayer synchronization (of systems within the
same layer) with antiphase synchronization of oscillators of
different layers. We use the master stability function ap-
proach to prove the existence of such a synchronization by
adequately adjusting the interlayer and intralayer coupling
functions. To validate these claims, we carry our numerical
simulations of multiplex networks containing Stuart-Landau
(SL) oscillator [62]. Furthermore, we obtain an analytical
expression that relates the amplitude of SL oscillators at the
synchronous state with the interlayer coupling strength. This
relation agrees excellently with our numerical experiments for
repulsive interlayer coupling strength. Apart from the iden-
tification of such mixed state (interlayer antisynchronization
and intralayer complete synchronization), we also establish,
with theoretical and numerical simulations, that if intralayer
synchronization is possible in a multiplex network, then an
interlayer antisynchronous state is always possible in that
network under suitable choices of the dynamical system and
the coupling functions.

Finally, we made suitable modifications of the attractive-
repulsive links such that antiphase states within immediate
neighbors appear in the network. When a spanning tree of
any layer is replaced by repulsive links of adequate strength,
we observe a transition from a mixed state to antiphase syn-
chronization of adjacent node. Furthermore, if the multiplex
network is bipartite, repulsive links added into the spanning
tree enable antiphase states of the whole network. This phe-
nomenon is analyzed theoretically with the help of graph
theory. The nontrivial occurrence of antiphase synchroniza-
tion in bipartite multiplex networks, by introducing repulsive
couplings through a spanning tree of any layer, allows us to
propose a controlling scheme. A series of numerical results in
different multiplex networks show the practical applications
of our analytical results.

The article is organized as follows: Section II summarizes
the mathematical model of the proposed multiplex networks.
Here, we include definitions of different synchronized states
that will accompany the rest of our discussion. The analyti-
cal condition for interlayer antisynchronization accompanying
intralayer synchronization and antiphase synchronization is
represented thoroughly in Sec. III. The required network
architecture for interlayer antisynchronization together with
intralayer synchronization and antiphase synchronization is

derived. Section IV is devoted to numerical results on different
multiplex networks. The functional relation between the SL
oscillator’s amplitude and interlayer coupling strength is also
calculated. Lastly, Sec. V provides a discussion of our find-
ings. In the Appendix, we analytically derived the conditions
for the stability of interlayer antisynchronization and carried
out numerical simulations to validate them.

II. MATHEMATICAL MODEL OF MULTIPLEX
NETWORKS AND DEFINITION OF DIFFERENT

EMERGENT SYNCHRONIZED STATES

Initially, we consider a bilayer (i.e., two layers) mul-
tiplex network, which is the simplest multilayer network.
Each of the two undirected connected layers is composed
of N nodes, which are d-dimensional identical dynamical
systems. The dynamical states of the two layers are repre-
sented by the vectors X1 = {x1,1, x1,2, . . . , x1,N } and X2 =
{x2,1, x2,2, . . . , x2,N }, where xα,i ∈ Rd for all α = 1, 2 and i =
1, 2, . . . , N . For this bilayer multiplex network, the intralayer
adjacency matrix of the αth layer is represented by A [α], with
α = 1, 2. Furthermore, layers are connected through a set of
N interlayer links, connecting nodes x1,i and x2,i. We call the
ith nodes of each layer as the replicas of node i. The evolution
of the state xα,i of ith node in the layer α is given by

ẋ1,i = f (x1,i ) + ε

N∑
j=1

A [1]
i j G[x1, j, x1,i] + ηH[x2,i, x1,i],

ẋ2,i = f (x2,i ) + ε

N∑
j=1

A [2]
i j G[x2, j, x2,i] + ηH[x1,i, x2,i]. (1)

The dynamics of each individual oscillator is governed by
the vector field f : Rd → Rd , which is continuously differen-
tiable with respect to its argument. Here, H : Rd × Rd → Rd

represents the coupling vectorial function between the layers
and G : Rd × Rd → Rd is the coupling vectorial function
within the layers. The parameter ε is the intralayer coupling
strength which controls the interaction between the nodes in
each layer. The interlayer coupling strength η accounts for the
bidirectional coupling between the layers.

The multiplex network (1) is said to be in intralayer syn-
chronization, if the dynamical units evolve synchronously
within each layer. Mathematically, for the first layer, and
for every δ1 > 0, there exists x1(t ) ∈ Rd such that ||x1,i(t ) −
x1(t )|| < δ1 as t → ∞ for all i = 1, 2, . . . , N . Similarly, for
the second layer, and for every δ2 > 0, there exists x2(t ) ∈
Rd such that ||x2,i(t ) − x2(t )|| < δ2 as t → ∞ for all i =
1, 2, . . . , N . Here, (x1(t ), x2(t )) is called intralayer synchro-
nization manifold.

On the other hand, interlayer antisynchronization state
refers to the situation where each pair of replica nodes have
exactly the same amplitude with phase difference of π . Thus,
the trajectories x1,i(t ) and x2,i(t ) satisfy the relation x1,i(t ) +
x2,i(t ) = 0, ∀ i = 1, 2, . . . , N .

Also note that antiphase synchronization refers to the sce-
nario where the phase difference among two adjacent vertices
is π . To measure the existence of antiphase synchronized state
in the multiplex network, we propose the use of the index
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TABLE I. Physical interpretation of measures for evaluating phase and synchronization dynamics.

Numerical values of measures Dynamical states

FReplica = 0 Interlayer antiphase synchronization
FReplica = 2 Interlayer in-phase synchronization
FLayerα = 2 Intralayer in-phase synchronization of αth layer
FLayerα = 0 Antiphase synchronization of αth layer
F = 0 Antiphase synchronization of the multiplex network
F = 2 In-phase synchronization of the multiplex network
x1,i(t ) + x2,i(t ) = 0, ∀ i = 1, 2, . . . , N Interlayer antisynchronization
xα,i(t ) → xα (t )(α = 1, 2), ∀ i = 1, 2, . . . , N Intralayer synchronization

F = 〈 1
L

∑
i< j Ai j[1 + cos (θi − θ j )]〉t

, where θ is the intrinsic
phase of each oscillator [46]. Here, Ai j are the elements of the
adjacency matrix of the multiplex network given by

A =
(

A [1] I
I A [2]

)
, (2)

I is the identity matrix of order N . L is the total number
of links defined by L = 1

2

∑N
i=1

∑N
j=1 Ai j . Clearly, antiphase

synchronization can be uniquely determined by F = 0.
To measure the layerwise antiphase synchronization, we

define

FLayerα =
〈

1

Lα

∑
i< j

A [α]
i j [1 + cos (θα,i − θα, j )]

〉
t

. (3)

Here, Lα = 1
2

∑N
i=1

∑N
j=1 A [α]

i j is the total number of links of
the adjacency matrix A [α] of the αth layer, and 〈·〉t stands for
time average. When FLayerα = 0, then the αth layer oscillates
in antiphase synchrony state.

The interlayer antiphase synchronized state is defined
as a state where the instantaneous phase difference be-
tween each replica of node i is π , i.e., |θ1,i(t ) − θ2,i(t )| =
π ∀ i = 1, 2, . . . , N . Here, θα,i(t ) is the intrinsic phase
of the state xα,i(t ) situated at the ith node of αth layer
for α = 1, 2. However, the phase of the nodes within a
layer may or may not be correlated. To characterize this
state for bilayer multiplex network, we introduce FReplica =
〈 1

N

∑N
i=1[1 + cos (θ1,i − θ2,i )]〉t

. Note that we divide by N
as their are N interlinks contributing to FReplica in a bilayer
multiplex network. In this way, FReplica lies between 0 and
2, with FReplica = 0 implying |θ1,i(t ) − θ2,i(t )| = π for all i =
1, 2, . . . , N , i.e., interlayer antiphase synchronization state.

When phases of all nodes are equal, the system is said to be
in the in-phase synchrony state. As per our proposed measure,
F = 2 reflects in-phase synchronization and FLayerα = 2 sig-
nifies in-phase synchrony of the αth layer. When FLayerα = 2
holds for all α layers, we call this state intralayer in-phase
synchronization.

We summarize all measures evaluating these emerging dy-
namical states in Table I. The different states of the multiplex
network occur when the individual oscillators are appro-
priately coupled through intralayer and interlayer coupling
functions. In Sec. III, we focus on understanding theoretically
the role of network structure and coupling functions to per-
ceive these types of emergent dynamical states.

III. ANALYTICAL RESULTS

A. Necessary condition for intralayer synchronization

Now, we derive the necessary condition for the intralayer
synchronization state for the multiplex network (1). Suppose,
intralayer synchronization occurs in all layers. Then, all tra-
jectories x1,i(t ) of the first layer converge to x1(t ) at some time
t = t1. Similarly, all trajectories x2,i(t ) of the second layer
converge to x2(t ) at some time t = t2. Let t0 = max{t1, t2}.
Then, for t � t0, the rate of changes of all state variables in
all respective layers should be identical. Thus, for any two
arbitrary distinct generic nodes k and l in layer 1, we have
ẋ1,k = ẋ1,l . This yields, from Eq. (1),

N∑
j=1

(
A [1]

k j − A [1]
l j

)
G[x1, x1] = 0. (4)

A similar analysis from Eq. (1) for layer 2 immediately
implies

N∑
j=1

(
A [2]

k j − A [2]
l j

)
G[x2, x2] = 0. (5)

Therefore, to maintain the identical rate of change of all the
state variables in each individual layer, we must have, for α =
1, 2,

N∑
j=1

A [α]
k j =

N∑
j=1

A [α]
l j , or G[x1, x1] = 0,

or G[x2, x2] = 0. (6)

Now,
∑N

j=1 A [α]
k j = ∑N

j=1 A [α]
l j implies that the in-degree

of each node in αth layer is equal. Importantly, all networks
considered in our analysis are undirected (i.e., links are bidi-
rectional). Thus, in-degree is here just the degree of the node
and, hence, the condition implies each node in αth layer has
the same number of neighbors. Therefore, the network con-
sidered in each layer is regular.

On the other hand, G[x1, x1] = 0 and G[x2, x2] = 0 to-
gether imply the intralayer coupling function G should vanish
after achieving the intralayer synchronization state. Thus, for
the multiplex network, the intralayer synchronization is pos-
sible, if either each of the undirected intralayer network is a
regular graph or the intralayer coupling function G vanishes
after achieving the intralayer synchronization state.
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B. Necessary condition for interlayer antisynchronization
together with intralayer synchronization

Next, we derive the necessary condition for interlayer an-
tisynchronization state along with intralayer synchronization.
First, we assume that G[x1, x1] = 0 and G[x2, x2] = 0 hold
for our chosen intralayer coupling function G, which is one
of the necessary condition (6) for intralayer synchronization.
So, when the intralayer synchronization occurs, then Eqs. (1)
reduce to

ẋ1 = f (x1)+ ηH[x2, x1], ẋ2 = f (x2)+ ηH[x1, x2]. (7)

Further, when interlayer antisynchronization occurs, the
trajectories given by Eq. (7) approach to the interlayer anti-
synchronization manifold M = {(x1, x2) : x1(t ) = −x2(t ) =
x0(t )} as time t goes to infinity. The general form of Eq. (7)
reduces to

ẋ0 = f (x0)+ ηH[−x0, x0], −ẋ0 = f (−x0)+ ηH[x0,−x0].
(8)

These equations are consistent and compatible if and only
if f (x) = − f (−x) and H[−x, x] = −H[x,−x]. Thus, the
function f (x) is an odd function of x and the intercoupling
function H (x) is also an odd function of x, which are the
necessary conditions for interlayer antisynchronization along
with intralayer synchronization. Hence, the interlayer antisyn-
chronization along with intralayer synchronization is possible
if the function f (x) and the intercoupling function H (x) are
odd functions of x.

C. Necessary and sufficient condition for antiphase
synchronization

Now, we turn our attention to the network structure, de-
scribed by the adjacency matrix A , and its relation with
the antiphase synchronization state. If the system possesses
antiphase synchronization, then |θi − θ j | = π , if Ai j = 1.
Physically, this implies the phase differences between two
adjacent nodes are π . This definition allows us to apply an
isometric translation of origin in the (r, θ ) plane without
changing the directions of the axes, so that we can partition
the entire set of vertices of the graph G associated with the
adjacency matrix A into two disjoint sets U and V . Without
any loss of generality, we can assign those nodes into the set
U , which has phase 0 under the isometric translation and those
nodes into the set V , which has the translated phase π . Thus,
the entire graph G has exactly two phases. Let us consider
a bijection φ from the set of distinct phases X = {0, π} to
Y = {a set of distinct colors}, such that for each unique phase
of X , we assign a unique color from Y . Then, as G has
exactly two distinct phases, thus the graph G requires two
different colors for its proper coloring, and no less. Thus, G is
2-chromatic. Since, every 2-chromatic graph is bipartite and
every bipartite graph is 2-chromatic [63], hence, G must be
bipartite in nature.

The above argument trivially shows that if G is a bipar-
tite graph, then the antiphase synchronous solution is always
possible for a suitable choice of other parameters. If G is not a
bipartite graph, then G is not 2-chromatic. Also, the connected
graph G is not 1-chromatic, as a 1-chromatic graph represents
a graph consisting of only isolated vertices. So, the graph

G is at least 3-chromatic. Again, by considering the inverse
mapping φ−1, we easily obtain at least three distinct phases
of G, which is against the antiphase synchronous manifold.
Hence, we can conclude that antiphase synchronization is
possible if and only if the connected graph G associated with
an adjacency matrix A that is bipartite in nature.

D. Obtaining antiphase synchronization using a spanning tree

Now, we discuss why antiphase synchronization is possible
for a connected graph with appropriate parameters, if the
adequate coupling strength is considered through the branches
of a spanning tree. Let G be a connected graph with N � 2
nodes. Then, ∃ at least a spanning tree T of G. Note that every
tree with two or more vertices is 2-chromatic. So, we can
properly color T with two colors. Now, considering the same
bijection φ−1 from Y = {a set of distinct colors} to the set of
distinct phases X = {0, π}, such that for each unique color
from Y , we assign a unique phase of X . Since antiphase
synchronization is possible, so G must be bipartite in nature as
per our previous discussion. Therefore, G contains no circuits
of odd length. Now, we add the chords to T one by one.
Clearly, the end vertices of every chord being replaced with
different phase in T . Thus, G has two distinct phases with no
adjacent vertices having the same phase. Therefore, adjusting
the coupling of the spanning tree, antiphase synchronization
is possible depending on the other suitable ingredients like
the structure of the network, the vector field of the system
evolution, and the vectorial function within the layers and
between the layers.

E. Required graph architecture for interlayer
antisynchronization along with intralayer synchronization

When intralayer synchronization occurs, then Eqs. (7)
hold, which do not contain the adjacency matrices A [1] and
A [2]. As demonstrated above, intralayer synchronization re-
quires that either each of the undirected intralayer network is
a regular graph or the intralayer coupling function G vanishes
after achieving the intralayer synchronization state. Thus,
when the intralayer synchrony occurs, each layer follows
a single trajectory. Hence, each layer can be described by
the single trajectory of any single node of that layer. The
intralayer synchronization occurs in each layer simultane-
ously [64]. Under these circumstances, the analysis of the
entire multiplex is transformed into the analysis of a chain
of two nodes, where each node exhibits a trajectory repre-
senting the corresponding layer. As per our earlier discussion,
for antiphase synchronization, a bipartite graph is needed.
Since, a chain of two nodes is always 2-chromatic and thus,
bipartite, hence under suitable choices of other parameters and
dynamical systems, interlayer antisynchronization along with
intralayer synchronization is possible for any connected graph
in multiplex network, if intralayer synchronization is possible
in that multiplex network.

F. Required graph architecture for antiphase synchronization in
multiplex network

We already know that antiphase synchronization is possible
if and only if the graph G associated with the adjacency matrix

032310-4



ANTIPHASE SYNCHRONIZATION IN MULTIPLEX … PHYSICAL REVIEW E 103, 032310 (2021)

A is bipartite. Hence, antiphase synchronization is possible
in a connected bilayer multiplex network, if and only if the
multiplex network is bipartite in nature. Thus, the set of nodes
W of the connected graph G is partitioned into two disjoint
sets U and V , such that U ∩ V = ∅. Since G is bipartite,
then any proper subset of W is at most 2-chromatic. Thus,
the set of vertices of layer 1 associated with A [1] is at most
2-chromatic and can be decomposed to U1 and V1 such that
U1 ∩ V1 = ∅ and W1 = U1 ∪ V1 ⊂ U ∪ V = W . Similarly, the
layer 2 is decomposed into U2 and V2 such that U2 ∩ V2 = ∅
and W2 = U2 ∪ V2 ⊂ U ∪ V = W . Note that U1, U2, V1, and
V2 are nonempty. If any of these sets is empty, then that layer
of N � 2 vertices would contain isolated nodes, which would
be a contradiction to the connectedness of the layers of the
graph G. Hence, the graphs in both the connected layers are
bipartite.

If the connected multiplex network is a bipartite graph,
then the connected layers are also bipartite in nature. But, the
converse may not be true. Even if all layers are bipartite in
nature, it is not guaranteed that the whole multiplex network
is a bipartite graph.

IV. NUMERICAL RESULTS

In this section, we use Stuart-Landau (SL) oscillators
to show some examples of our analytical results in mul-
tiplex networks of different structures. Also, the intralayer
and interlayer coupling functions are adopted as G(xi, x j ) =
H (xi, x j ) = [x j − xi, y j − yi]Tr , where Tr denotes the trans-
pose of a vector. All the simulations are done using the
fifth-order Runge-Kutta-Fehlberg method with a fixed time
step h = 0.01. The measures FLayer1, FLayer2, FReplica, and F
are averaged over 0.5 × 105 steps after the initial transients
of 1.5 × 105 steps. The dynamics of the ith SL oscillator is
represented by

f (xi ) =
([

1 − (
xi

2 + yi
2
)]

xi − ωiyi[
1 − (

xi
2 + yi

2
)]

yi + ωixi

)
, (9)

where xi ∈ R2 and ω = ωi = 3 is the (identical) intrinsic fre-
quency of each node. Here, the intrinsic instantaneous phase is
calculated by θi = tan−1( yi

xi
). In the latter parts, the upper and

lower layers are denoted as layer 1 and layer 2, respectively.

A. Functional relation between η and the amplitude of SL
oscillators for interlayer antisynchronization along with

intralayer synchronization

First, we consider a set of SL oscillators placed at each
node of a multiplex network. Due to our specific choices of
G and H , the dynamical evolution of the kth SL oscillator in
terms of zα,k ∈ C in layer α (= 1, 2) can be written as

ż1,k = (1 − |z1,k|2)z1,k + iωz1,k + ε

N∑
j=1

A [1]
k j (z1, j − z1,k )

+ η(z2,k − z1,k ),

ż2,k = (1 − |z2,k|2)z2,k + iωz2,k + ε

N∑
j=1

A [2]
k j (z2, j − z2,k )

+ η(z1,k − z2,k ). (10)

Let us transform this set of differential equations into polar
coordinates using the transformation zα,k = rα,keiθα,k , α = 1, 2
and k = 1, 2, . . . , N . Under this transformation, the phase
equations are given by

θ̇1,k = ω + ε

N∑
j=1

A [1]
k j

r1, j

r1,k
sin (θ1, j − θ1,k )

+ η
r2,k

r1,k
sin (θ2,k − θ1,k ),

θ̇2,k = ω + ε

N∑
j=1

A [2]
k j

r2, j

r2,k
sin (θ2, j − θ2,k )

+ η
r1,k

r2,k
sin (θ1,k − θ2,k ). (11)

Now, when intralayer phase synchronization occurs, we have
θ1,1 = θ1,2 = · · · = θ1,N and θ2,1 = θ2,2 = · · · = θ2,N . There-
fore, Eq. (11), in terms of two generic nodes j and l , reduces
to

d (θ1, j − θ1,l )

dt
= η

(
r2, j

r1, j
− r2,l

r1,l

)
sin (θ2, j − θ1, j ),

d (θ2, j − θ2,l )

dt
= η

(
r1, j

r2, j
− r1,l

r2,l

)
sin (θ1, j − θ2, j ). (12)

Equation (12) confirms the existence of global synchronous
solution θ1,1 = θ1,2 = · · · = θ1,N = θ2,1 = θ2,2 = · · · = θ2,N

of the multiplex.
Next, we derive the functional relation between the inter-

layer coupling strength η and the amplitude of the oscillators
rα,k satisfying interlayer antisynchronization state as well as
intralayer synchronization. Equations describing the evolution
of the amplitude are

ṙ1,k = (1 − r1,k
2)r1,k + ε

N∑
j=1

A [1]
k j (r1, j cos (θ1, j − θ1,k )− r1,k )

+ η(r2,k cos (θ2,k − θ1,k )− r1,k ),

ṙ2,k = (1 − r2,k
2)r2,k + ε

N∑
j=1

A [2]
k j (r2, j cos (θ2, j − θ2,k )− r2,k )

+ η(r1,k cos (θ1,k − θ2,k ) − r2,k ). (13)

The complete intralayer synchronization manifolds for each
of the two layers yield r1, j = r1 and r2, j = r2 for all j =
1, 2, . . . , N along with θ1,1 = θ1,2 = · · · = θ1,N and θ2,1 =
θ2,2 = · · · = θ2,N . So, on the intralayer synchronization man-
ifold, Eq. (13) reduces to

ṙ1 = (1 − r1
2)r1 + η(r2 cos (θ2,k − θ1,k ) − r1),

ṙ2 = (1 − r2
2)r2 + η(r1 cos (θ1,k − θ2,k ) − r2). (14)

For intralayer synchronization together with interlayer an-
tisynchronous solution, we have that r1 = r2 with |θ1,k −
θ2,k| = π , for all k = 1, 2, . . . , N . Hence, Eq. (14) can be
transformed into

ṙ1 = (1 − r1
2)r1 − 2ηr1. (15)
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The first-order nonlinear ordinary differential equation (15)
leads to

(r1)2 = 1 − 2η

1 − e2(2η−1)(t+c1 )
, (16)

where c1 is a constant depending on the initial conditions.
Note that Eq. (16) is undefined for η = 1

2 . So, the functional
relation between r1 and η is

r1 =
{ √

1−2η√
1−e2(2η−1)(t+c1 ) , η < 1

2√
2η−1√

e2(2η−1)(t+c1 )−1
, η > 1

2 .

Equation (15) possesses two stationary points r1 = 0 and
r1 = √

1 − 2η. We will not consider the stationary point r1 =
0 since in Eq. (11) we have assumed r1,k �= 0 and r2,k �= 0.
Also, physically r1 = 0 signifies the amplitude death state in
both layers, which is a contradiction to the desired assumption
of the interlayer antisynchronization in both layers. The other
stationary point r1 = √

1 − 2η is stable for η < 0.5.

B. Illustration through bipartite networks

1. Interlayer antisynchronization accompanying intralayer
synchronization

A schematic picture of the considered multiplex network
is given in Fig. 1(a). For simplicity, we consider the same
bipartite network (a four-node ring) in both layers. Initially,
all the interlinks (red dashed lines) are repulsive (negative),
whereas all the intralinks are positive (attractive). Under this
setup, for an intralayer coupling strength ε = 0.007, all the
four trajectories of a single layer converge to a single attractor.
Both layers exhibit intralayer synchronization [see Figs. 1(c)
and 1(d)]. However, when the interlinks are repulsive (cou-
pling strength η = −0.1), antisynchronization between both
layers arises [see Fig. 1(b)]. Note that, in this particular exam-
ple, networks within each layer are identical.

To show a more general example, we now consider layers
of different structure. Specifically, we construct a bilayer bi-
partite multiplex in which layer 1 consists a ring of six nodes
and layer 2 has an open chain of six nodes (Fig. 2).

All nodes in both layers are attractively coupled with ε =
0.01. Only the six interlinks are negatively coupled with cou-
pling strength η < 0. With suitable values of η, replica nodes
maintain interlayer antisynchronization state. In Fig. 2(c),
time series show, for ε = 0.01 and η = −3.0, that all trajec-
tories within the same layer collapse into a single attractor,
which proves the emergence of intralayer synchronization.
At the same time, replica nodes exhibit interlayer antisyn-
chronization. To better understand phase relations inside the
multiplex network, we calculated FLayer1, FLayer2, FReplica, and
F as a function of η ∈ [−1.1, 1.0] with fixed ε = 0.01. As
we can see in Fig. 2(b), FLayer1 and FLayer2 are exactly 2 even
for negative η. This fact indicates the existence of intralayer
(in-phase) synchronization at both layers under this particular
arrangement of negative links. However, FReplica goes to 0
with suitable repulsive coupling strength η and remains at 0
for η < 0. FReplica = 0 implies interlayer antiphase synchro-
nization as well as the onset of interlayer antisynchronization.
The nonzero values of FLayer1 and FLayer2 restrict, in turn, F to

FIG. 1. Intralayer synchronization and interlayer antisynchro-
nization. Two bipartite graphs are multiplexed through repulsive (i.e.,
negative) coupling. In (a), black solid lines correspond to positive
intralinks and red dashed lines represent negative interlinks. Such
an arrangement allows intralayer synchrony and interlayer antisyn-
chrony regimes for suitable choices of positive and negative coupling
strengths. In (b), (c), and (d), we plot the trajectories of standard
Stuart-Landau oscillators, with ω = 3.0, which are placed at each of
the nodes of (a). For all plots, ε = 0.007 and η = −0.1. In (b), we
can observe how trajectories of nodes belonging to layer 1 (x1,i) are
antisynchronized with respect to nodes in layer 2 (x2,i). At the same
time, nodes in layer 1 and layer 2 are synchronized, as shown in
(c) and (d), respectively.

a nonzero value, which reflects the absence antiphase states
within adjacent nodes in the entire network.

To calculate the value of F theoretically [46], let the phase
of each oscillator in one layer be 0 and the other layer’s
oscillators have a phase π . Using the proposed measure F ,
the value of FLayerα will be exactly 2 for all intralinks since
all phases in the same layer are identical (i.e., either 0 or
π ). But, all the interlinks are contributed exactly FReplica = 0
for interlayer antiphase synchronization state. Thus, all the
11 intralinks are contributing with 11 × 2 = 22 and, thus,
F = 22

17 ≈ 1.29 since the denominator 17 is the total number
of links of the multiplex network. This theoretical value of
F perfectly fits with our numerical calculation as shown in
Fig. 2(b). Nodes are colored in Fig. 2(a) according to the final
phase of each oscillator. As both the layers exhibit intralayer
synchronization, all nodes of a particular layer can be colored
with a single color. Note that the oscillators situated on the top
of replica nodes maintain a phase difference of π . Thus, the
two layers can be colored with two distinct colors only.

What happens if we have multiplex networks of larger
size? We now construct a bipartite multiplex network of
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FIG. 2. Multiplex network composed of two layers with different structures. In (a), structure of the two layers. Layer 1 (upper layer) has
a ring configuration, while Layer 2 (lower layer) is an open chain. Solid lines correspond to (intralayer) positive links and dashed lines to
(interlayer) negative links. We place a Stuart-Landau oscillator at each node. In (b), we show the dependence of FLayer1, FLayer2, FReplica, and F
as a function of the coupling strength η of the interlayer links. We can observe the transition of FReplica and F when η becomes negative. In
(c), example of interlayer antisynchronization with intralayer synchronization, for η = −3.0. We plot the dynamics of all nodes x1,i (magenta
lines), x2,i (green lines), and x1,i + x2,i (red lines) as a function of time t after an initial transient. Note that lines of nodes of the same layer
overlap. The amplitude of the oscillators follows the analytical expression r1 = √

1 − 2η.

size 200, with two connected Erdős-Rényi random net-
works [65,66] of 100 nodes in each layer. The average degree
of each layer is close to 5. The intralayer coupling strength
between nodes of layers is fixed to ε = 0.01. When the in-
terlinks are only negative (i.e., η < 0) of suitable strength,
then FReplica = 0 implying interlayer antiphase synchroniza-
tion. Figure 3(a) shows the variation of F , FLayer1, FLayer2,
and FReplica with respect to η. In this case, both layers ex-
hibit intralayer (in-phase) synchronization, as indicated by
FLayer1 = 2 and FLayer2 = 2. In fact, they are in intralayer
synchronization and the oscillators on the top of replica nodes
exhibits interlayer antisynchronization [see Fig. 3(b)]. To cal-
culate value of F for η < 0, the phase of each oscillator
of layer 1 is set to 0 and phases of layer-2 oscillators are
set to π , without loss of any generality. Then, the defini-
tion of F leads to F = 478×2

578 ≈ 1.65. Here, the numerator
reflects the value of the 478 intralinks and the denomina-
tor indicates the total number of links (578) of the whole
multiplex. This theoretical value fits with the numerically
calculated value of F , which is shown in Fig. 3(a). Note
that this repulsive configuration cannot lead to antiphase
synchronization between all pairs of adjacent nodes in the
network (i.e., F = 0). In the next section, we will show how
to achieve antiphase synchronization in a bipartite multiplex
networks.

In Fig. 4, we plot the amplitude of the oscillators r1 with re-
spect to η varied from 0 to −20 with step size �η = −0.1. For
the numerical simulation, r1 is accumulated for 10 indepen-
dent numerical realizations averaged over a long time interval
after sufficient initial transient. Numerical results fit perfectly
with our analytical solution r1 = √

1 − 2η for η � 0. This
relation ensures the attractor expansion of SL oscillators given
in Eq. (9) during interlayer antisynchronous solution together
with the intralayer synchronization for η < 0. We have shown
later using master stability function that interlayer antisyn-
chronization is possible beyond a negative η. We ignore here
the impact of positive η as the main motivation of our work

related to antisynchronization (antiphase synchronization) in
the multiplex network.

Finally, note that our derived analytical relation r1 =√
1 − 2η is independent of N . In Fig. 4, we plot the relation

for the multiplex network consisting of 8 nodes given in
Fig. 1, we obtain exactly the same results for the multiplex
of 200 nodes used in Fig. 3. We can observe how the radial
distance r1 is monotonically increasing with respect to the
interlayer coupling strength η < 0. As the trajectories in each
layer maintain intralayer synchronization, we plot the radial
distance r1 of a single trajectory only.

2. Antiphase synchronization in adjacent nodes

Now, we investigate how to establish antiphase synchrony
in the whole multiplex network. Specifically, we are interested
in determining how many repulsive links are sufficient to
achieve antiphase synchronization. To gain such antiphase
states between adjacent nodes, we uncover that we have to
replace interlinks as well as the links of a spanning tree of any
one of the connected layer by repulsive strength η < 0. It is
always possible to find a spanning tree of any one of the layer
since every connected graph possesses at least one spanning
tree. For the multiplex network given in Fig. 1(a), we choose
layer 2 without any loss of generality. Thus, the original model
given in Eq. (1) changes to

ẋ1,i = f (x1,i ) + ε

N∑
j=1

A [1]
i j G[x1, j, x1,i] + ηH[x2,i, x1,i],

ẋ2,i = f (x2,i ) + ε

N∑
j=1

D [2]
i j G[x2, j, x2,i]

+ η

N∑
j=1

E [2]
i j G[x2, j, x2,i] + ηH[x1,i, x2,i]. (17)
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FIG. 3. Dynamics of a multiplex network composed of 200
nodes. In this example, the two layers contain distinct bipartite
graphs of 100 nodes with an average degree of 5. The intralayer
coupling strengths are set to ε = 0.01 and the N = 100 interlinks
have a strength of η. In (a), η is varying uniformly from 1.0 to −5.0
with step of �η = −0.1. We can see that FLayer1 = FLayer2 = 2 reveals
the existence of intralayer in-phase synchronization. At the same
time, we observe how as η becomes ≈ −0.1, interlayer antiphase
synchronization arises, as indicated by FReplica = 0. In (b), we plot
the dynamics of all oscillators, separated by layers: x1,i (magenta
lines), x2,i (green lines), and x1,i + x2,i (red lines). The fact that
x1,i + x2,i = 0 proves the existence of interlayer antisynchronization.
In this realization, η = −3.0 and ε = 0.01.

Here, the intralayer adjacency matrix A [2]
i j = D [2]

i j + E [2]
i j

of layer 2 is decomposed into two parts D [2]
i j and E [2]

i j . Through

one subgraph D [2]
i j , positive coupling strength ε is considered

and the complementary subgraph E [2]
i j contains negative cou-

plings (η < 0) between the oscillators. Along with this, the
interlinks are also considered to have a negative weight η,
as in earlier sections. The particular structure of the layer 2
in Fig. 1(a) is a four-node ring, which has exactly

(4
3

) = 4
distinct spanning trees. A spanning tree consisting on links
1 − 2, 2 − 3, and 3 − 4 [red dashed links in Fig. 5(a)] is
considered. Along the branches of this spanning tree, the
coupling strength is set to η = −0.1 (same as the interlayer
coupling), keeping the intralayer coupling as ε = 0.007. For

FIG. 4. Relation between η and r1 of Stuart-Landau oscillators.
In the numerical simulations, η is varied between [−20, 0] with a
fixed uniform step of �η = −0.1. The numerical curve fits perfectly
with our analytical findings. Here, we have used the multiplex net-
work shown in Fig. 1 with ε = 0.01. The same results (not shown
here) are obtained for the multiplex network of 200 nodes shown in
Fig. 3.

these repulsive edges, nodes show neighborwise antiphase
synchrony, as we can see in Figs. 5(b)–5(g). Thus, just by in-
troducing the suitable repulsive strength to the intralinks of the
spanning tree of a unique layer (layer 2 in this example), we
can establish antiphase synchronization in the whole network,
if the multiplex network is bipartite.

In this way, we choose a spanning tree of the layer 2
belonging to the multiplex network shown in Fig. 2(a). Next,
the coupling strength of all links of this spanning tree is
replaced by a negative value η (instead of ε > 0). A schematic
presentation is given in Fig. 6(a). Under this arrangement, we
set ε = 0.01 and modify the value of η from 1.0 to −1.1,
with a fixed step of −0.01. For these parameters, we calculate
FLayer1, FLayer2, FReplica, and F , whose values are shown in
Figure 6(b). We can observe that at η ≈ −0.1, F diminishes to
0, together with FLayer1, FLayer2, FReplica. Thus, the spanning
tree of a single layer is sufficient to produce antiphase syn-
chrony in the whole multiplex network. We color the nodes
of Fig. 6(a) according to their final phases. A minimum of
two colors is required to produce a proper coloring of the
multiplex network since each adjacent oscillator displays a
phase difference of π .

We can see that the number of repulsive links LRepulsive

in the whole multiplex in such arrangement is LRepulsive =
11, where the spanning tree of layer 2 has 5 links and
there are 6 repulsive interlinks. Now, we inspect numeri-
cally whether we need exactly 11 repulsive links to attain
antiphase synchronization of the whole multiplex, or if it
would be possible with a lower number of repulsive links.
Figure 6(c) shows the role of LRepulsive on the measures
FLayer1, FLayer2, FReplica, and F . When LRepulsive = 6, i.e., only
interlinks are negatively coupled, then only FReplica = 0 with
FLayer1, FLayer2 and F having values greater than 0. This result
is consistent with the Figs. 2(b) and 2(c). Now, the number
of repulsive links is increased by introducing the repulsive
strength η = −3.0 through the links of the spanning tree.
Figure 6(c) shows that increments of LRepulsive decrease the

032310-8



ANTIPHASE SYNCHRONIZATION IN MULTIPLEX … PHYSICAL REVIEW E 103, 032310 (2021)

FIG. 5. Introducing additional (N − 1) repulsive links through a spanning tree. In (a), for the multiplex network of Fig. 1, we select a
spanning tree in layer 2. Together with the interlinks, the intralayer links of the spanning tree are set to have a coupling strength of η < 0.
All negative links are indicated by dashed lines. The other intralinks of layer 1 are positively coupled with coupling strength ε > 0 and the
remaining links of layer 2 are also coupled with ε > 0. In this way, positive links are plotted in black solid lines. In (b)–(g), we show some
examples of antiphase synchronization. All nodes of all layers exhibit neighborwise antiphase synchrony. For these numerical simulations,
ε = 0.007 and η = −0.1.

values of F, FLayer1, FLayer2, which become all zero only when
LRepulsive = 11, i.e., until all the links of the spanning tree are
negative. These results agree with the theoretical results of
Sec. III D.

Next, we repeat the same procedure with the multiplex
network of 200 nodes described in Fig. 3. Again, we find
a spanning tree of layer 2 and replace the coupling strength

of the links of the spanning tree by η < 0 instead of ε >

0. For a suitable choice of η, the system achieves an-
tiphase synchronization, as revealed by F = 0, FLayer1 = 0,
and FLayer2 = 0 [see Fig. 7(a)]. In Fig. 7(b), we show the
effect the number of repulsive links, LRepulsive on the measures
FLayer1, FLayer2, FReplica, and F . Initially, N = 100 interlinks
are coupled through η = −3.0. Then, one by one, links of

FIG. 6. Selecting a repulsive spanning tree when layers have different structures. In (a), we select a spanning tree in layer 2 and set their
couplings to be η < 0, just as the coupling strength of the interlinks. Red dashed lines are negative links and black links are positive links. Here,
η = −0.1 and ε is fixed at 0.01 just like Fig. 2(a). All nodes are colored according to their phases. In (b), we show the effect of the negative
coupling: η is varied, with step of �η = −0.01, from 1.0 to −1.1. Note that for η < 0, the whole network exhibits antiphase synchronization as
indicated by F = 0. Layerwise antiphase and interlayer antiphase synchronization are both indicated by FLayer1 = 0, FLayer2 = 0, and FReplica =
0. In (c), we show the effect of increasing the number of repulsive links LRepulsive in the spanning tree. Initially, only interlinks are repulsive,
i.e., LRepulsive = N = 6. At this point, FReplica = 0, FLayer1 = FLayer2 = 2. These values imply interlayer antiphase synchronization along with
layerwise in-phase synchrony. Increasing LRepulsive up to (2N − 1) = 11, by introducing the negative links through the spanning tree of layer 2,
we achieve antiphase synchronization as indicated by F = 0. In these numerical simulations, η = −3.0 and ε = 0.01.
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FIG. 7. Repulsive spanning tree in a multiplex network of 200
nodes. We identify a spanning tree in layer 2 of the multiplex network
of Fig. 3 (containing 100 nodes per layer). Links in the spanning tree
are set to have a coupling strength of η, while the coupling of the
rest of the intralayer links is ε = 0.01. In (a), we can observe how
the negative links of the spanning tree help to reach antiphase syn-
chronization (F = 0) in the whole multiplex network. At a suitable
choice of η < 0, FLayer1, FLayer2, and F all collapse into 0. In (b), we
investigate the effect of the number of repulsive links LRepulsive in the
spanning tree. Initially, only the 100 interlinks are negative. Then,
additional (N − 1) = 99 repulsive links are introduced through the
spanning tree of layer 2. For the numerical simulations, η = −3.0
and ε = 0.01.

the spanning tree of layer 2 are set to have a coupling
strength η = −3.0 instead of ε > 0. As a consequence, the
gradual decrement of FLayer1, FLayer2, and F to zero shows
the emergence of antiphase synchronization for the whole
multiplex.

Until now, all results referred only to bilayer multiplex
networks. To show that this methodology can be applied to
multiplex networks with more layers, we consider a bipar-
tite multiplex network with three different connected layers
in the chain form. In the next example, each layer contains
three different bipartite Erdős-Rényi random graphs [65,66]
of 100 nodes. The average degree of the multiplex network

FIG. 8. Negative spanning tree in a bipartite multiplex network
with three layers, each one having N = 100 nodes. In this case, the
multiplex network is composed of three layers. A spanning tree of
layer 2 is chosen and the (N − 1) = 99 links of the spanning tree
together with the 2 × N = 200 interlinks are set to have a coupling
strength η, which is varied from 1.0 to −5.0 with a step of �η =
−0.1. The three layers have the identical intracoupling strength ε =
0.01. For positive η, the system has in-phase synchrony, indicated
by F = 2, FLayer1 = 2, FLayer2 = 2, FLayer3 = 2, and FReplica = 2. As
η becomes negative with sufficient strength, FReplica diminishes to
0 and, then, interlayer antiphase synchronization arises. For more
negative values of η, F along with FLayer1, FLayer2, FLayer3, and FReplica

collapse to 0 implying antiphase synchronization.

is (≈) 7. Figure 8 shows how FLayer1, FLayer2, FLayer3, FReplica,
and F depend on the value of η. The definition of FReplica

is slightly modified by adding the information of interlinks
between layer 2 and layer 3, i.e.,

FReplica =
〈

1

2N

N∑
i=1

[2 + cos (θ1,i − θ2,i ) + cos (θ3,i − θ2,i )]

〉
t

.

(18)

We divide by 2N as there are 2N interlinks contributing in this
measure.

Without loss of generality, we choose a particular spanning
tree of layer 2 and the (N − 1) = 99 links of belonging to
spanning tree together with the 2N = 200 interlinks are set to
have a coupling strength η < 0. The intracoupling strengths
are fixed at ε = 0.01. Just by controlling a subgraph (i.e., the
spanning tree) of layer 2, we are able to achieve antiphase
synchronization of the whole multiplex network. Negative
values of η make go to FReplica = 0 and induce a reduction
of the values of F, FLayer1, FLayer2, and FLayer3, becoming all
zero when η is decreased enough. This implies the appear-
ance of interlayer antiphase synchronization just like the case
of bilayer multiplex networks. Actually, the (N − 1) + 2N =
(3N − 1) links coupled via η < 0 form a spanning tree for the
whole three-layer bipartite multiplex network.
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FIG. 9. Antisynchronization in nonbipartite multiplex networks. In (a), we show an example of a nonbipartite multilayer network. Layer 1
contains a ring of six nodes and layer 2 is a bipartite regular network of average degree 3. Despite both layers contain bipartite networks, the
multiplex network is not bipartite since it contains odd cycles. The colors of the vertices represent the phases of the oscillators. Interlinks have
a negative coupling strength η = −0.1, while intralinks are set to ε = 0.01. In (b), dependence of the phase measures on η. FLayer1 = 2 and
FLayer2 = 2 indicate the existence of intralayer in-phase synchronization. When FReplica = 0 (when η < 0) interlayer antiphase synchronization
is achieved. However, intralayer in-phase synchrony hinders the decrement of F to zero. In these simulations, the interlinks are coupled with
η while the intralayer coupling strength is ε = 0.01.

C. Result for small nonbipartite multiplex network

We discussed in Sec. III F that if a multiplex network is
bipartite, then the connected networks of each layer must be
bipartite. However, the converse may not be true. To prove
this argument, we consider the multiplex network of 12 nodes
shown in Fig. 9(a). Here, layer 1 consists of a ring of six
nodes and layer 2 consists of a bipartite regular graph of
degree 3. So, clearly the two intralayer networks are bipartite,
but the multiplex network is not bipartite due to existence
of odd cycles. One such odd cycle is formed by including
nodes 4 and 5 of layer 1 and nodes 2, 4, and 5 of layer
2. As per our theoretical discussion in Sec. III E and for
our chosen coupling functions, interlayer antisynchronization
along with intralayer synchronization is still possible in this
multiplex network. In Fig. 9(b), we show the variation of F ,
FLayer1, FLayer2, and FReplica with respect to η (with ε = 0.01),
when only the interlinks have a coupling strength η. We can
observe how, for a suitable strength of η < 0, FReplica = 0 indi-
cates the existence of the interlayer antiphase synchronization.
FLayer1 = 2 = FLayer2 indicates the in-phase synchrony of both
layers. The nonzero values of FLayer1 and FLayer2 restrict the
decrement of F to zero. Again, applying the definition of F ,
we find F = 2×15

21 ≈ 1.43, where the number of links of the
whole multiplex network is 21 and the number of intralinks
is 15. This theoretical value of F agrees with the numerical
findings shown Fig. 9(b).

In Fig. 10, we plot the dynamics of x1,i, x2,i, and x1,i +
x2,i with respect to time t . The interlinks are repulsive
with a coupling strength of η = −3.0, while the intralayer
coupling strength is set to ε = 0.01. Since our proposed
measures do not contain any information about the am-

plitude of the variables, Fig. 10 shows the existence of
interlayer antisynchronization since x1,i + x2,i = 0. Also, in-
tralayer synchronization arises since all trajectories within
a layer converge to a single one. Furthermore, note that
amplitudes of the SL oscillators maintain the analytically ex-
pression found in Sec. IV A (r1 = √

1 − 2η).
Next, the links of a spanning tree of layer 2 are set to

have a coupling strength of η < 0 [see Fig. 11(a)]. We plot
in Fig. 11(b) the values of F , FLayer1, FLayer2, and FReplica for
η ∈ [−1.1, 1]. In this case, FLayer2 decreases to zero indicating
antiphase synchrony between neighbors of layer 2, but F lies
between (0, 2). Actually, both layers contain bipartite graphs
and, thus, it is possible to define two-colorable graphs as
shown by the colors of the nodes in Fig. 11(a). However,

FIG. 10. Intralayer synchronization and interlayer antisynchro-
nization for the multiplex network of Fig. 9. Here, ε = 0.01 (intralink
coupling) and η = −3.0 (interlink coupling). The amplitude of the
oscillators still maintains the analytical rule r1 = √

1 − 2η.
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FIG. 11. Using a negative spanning tree in a nonbipartite multilayer network. In (a), we identify a spanning tree in layer 2 of the multiplex
network of Fig. 9 and set its links to a coupling strength of η = −0.1. These negative links help to attain antiphase synchronization in layer 2,
however, the odd cycles in the multiplex hinder antiphase synchrony. The color of each node indicates the phase of the oscillator. In (b), we
analyze the evolution of the phase metrics as a function of the coupling η (of the interlinks and the links of the spanning tree), for the network
shown in (a). FLayer2 = 0 indicates the existence of antiphase synchronization in layer 2, but the odd cycles of the multiplex network do not
allow the reduction of F to zero. In fact, layer 1 has two distinct phases, but FLayer1 �= 0. However, we still can achieve interlayer antiphase
synchronization, as indicated by FReplica = 0.

interlinks create odd cycles and, hence, the multiplex network
is a nonbipartite graph. This fact prevents F diminishing to
zero. This result is consistent with our analytical findings
indicating that antiphase synchronization is only possible if
and only if the underlying network is bipartite in nature. Nodes
of layer 2 separate into two disjoint groups U2 = {1, 2, 3}
(shown in olive green) and V2 = {4, 5, 6} (shown in black).
Layer 2 is in antiphase synchronization since FLayer2 = 0, and
FReplica = 0 implies interlayer antiphase synchronization. As a
consequence, the graph coloring for layer 1 is U1 = {1, 2, 3}
(black) and V1 = {4, 5, 6} (olive green). Without any loss of
generality, we assign phase 0 to the set U2 and phase π of the
set V2. Thus, FReplica = 0 implies that phases of the set U1 are
π and the phases of set V1 are 0. Using the formula for FLayer1,
one can find, analytically, that FLayer1 = 8

6 , which fits with the
value of FLayer1 obtained numerically [see Fig. 11(b)].

V. CONCLUSION

We investigated the synchronization of multiplex networks
of identical oscillators with positive and negative links. Most
of the earlier existing investigations on multilayer networks
have been concentrated only on positive coupling, which
helps to the emergence of in-phase synchronization. On the
other hand, negative coupling, analogous to antiferromagnetic
interaction, disturbs the in-phase synchronization manifold
and drives the oscillator out of phase. The coexistence of
both types of interactions affects the collective dynamics of
the system and displays rich dynamical phenomenon. In this
study, we showed that adequately tuning the positive cou-
pling between oscillators, it is possible to reach intralayer
synchronization of multiplex networks. However, when the
strength of the interlinks (between layers) becomes negative,

interlayer antisynchronization can be achieved, where both
layers oscillate with exactly the same amplitude but a phase
difference of π . The invariance of intralayer synchroniza-
tion manifold is guaranteed when the undirected networks
contained in each layer are regular, or when the intralayer
coupling function disappears at the intralayer synchronization
manifold. We analytically derived the necessary condition for
the existence of interlayer antisynchronization together with
intralayer synchronization. When Stuart-Landau oscillators
are implemented in the multiplex network, the conversion
from Cartesian coordinates to polar coordinates allows us
to analytically calculate the radius of each oscillator, which
agrees with our numerical simulations for negative interlayer
coupling strength.

We also investigated an efficient way of achieving an-
tiphase synchronization in multiplex networks. Instead of
introducing repulsive links through the whole multiplex net-
work, we select any spanning tree of one of the connected
layers of the multiplex. Introducing negative couplings in
the links of the spanning tree, antiphase synchronization can
be obtained without perturbing the rest of the network. The
existence of at least one spanning tree in a connected network
guarantees the occurrence of antiphase patterns in bipartite
multiplex networks when the coupling strengths are ade-
quately adjusted. Our analytical findings were also tested with
numerical simulations of different multiplex networks. The
use of spanning trees is simple and cost effective compared
to the introduction of negative links in the whole population.
Furthermore, this controlling scheme may have some potential
applications, particularly in those cases where it is demanding
to choose few links out of a large number.

Finally, our findings may be helpful in order to un-
derstand the emergent different dynamical phenomena in
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those complex systems that combine excitatory and inhibitory
couplings. For example, a natural instance may be neuro-
science since the brain has all requisites existing in our
model. First, brain functioning relies on the existence of
combined excitatory and inhibitory neurons [67,68]. Sec-
ond, antiphase synchronization has been reported in cortical
neuronal networks [43]. Third, multilayer brain networks
have been suggested to be behind healthy and impaired
brain functioning, being one of the most promising tools to
understand the complex topological behavior of brain dynam-
ics [69,70]. Beyond neuroscience, our results could be of
interest to investigate the dynamical consequences of mixed
attractive-repulsive interaction in biological systems, ecologi-
cal systems, and social systems.
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APPENDIX: STABILITY OF INTERLAYER
ANTISYNCHRONIZATION STATE

We investigate the stability of the interlayer antisynchro-
nization in multiplex network which is defined by two types of
connections: (i) diffusive intralayer connections in each layer
and (ii) repulsive interlayer connections between layers. The
evolution of the oscillators contained in a bilayer network can
be written as

ẋ1,i = f (x1,i ) − ε

N∑
j=1

Li jGx1, j + ηH[x2,i − x1,i],

ẋ2,i = f (x2,i ) − ε

N∑
j=1

Li jGx2, j + ηH[x1,i − x2,i], (A1)

where i (i = 1, 2, . . . , N ) is the oscillator index. As our ob-
jective here is to study the interlayer antisynchronization, we
consider the vector field f to be identical for each node. Here,
H ∈ Md (R) and G ∈ Md (R) are, respectively, the interlayer
and intralayer inner coupling matrices. We assume that f
is continuously differentiable with respect to its argument.
Here, ε is the intralayer coupling strength which controls the
interaction between the nodes in each layer. The interlayer
coupling strength η determines how the interaction will be
conveyed between the layers. When η is positive, then the in-
terlayer coupling is attractive, for which the multiplex network
exhibits intralayer and interlayer synchronization [31,35].
However, when η is negative, the interlayer coupling is re-
pulsive.

In the αth layer (α = 1, 2), the intralayer network config-
uration is encoded by the N × N adjacency matrix B which

describes the interconnections between individual oscillators
for that layer. Here, Bi j = 1 if the ith and the jth nodes
of layer α are connected, and zero otherwise. Let, L be
the corresponding zero-row sum Laplacian matrix, defined as
Li j = −Bi j if i �= j and Lii = ∑N

j=1 Bi j .
Interlayer antisynchronization is an emerging phenomenon

of a multiplex network in which nodes of one layer evolve
antisynchronously with its replica nodes of the different lay-
ers, irrespective of whether the nodes in the same layer are in
any synchrony or not. Mathematically, network (A1) is said
to achieve the interlayer antisynchronization state if for all
i = 1, 2, . . . , N , ‖x1,i(t ) + x2,i(t )‖ → 0 as t → ∞. Then, we
can define the corresponding interlayer antisynchronization
error as

E = lim
t1→∞

1

t1

∫ t+t1

t

N∑
j=1

‖x1,i(τ ) + x2,i(τ )‖
N

dτ. (A2)

E necessarily becomes zero when interlayer antisynchroniza-
tion arises, and remains nonzero otherwise.

Then, the interlayer antisynchronization subspace can
be defined as S = {(x1,1(t ), x1,2(t ), . . . , x1,N (t )) ⊂ RdN :
x1,i(t ) + x2,i(t ) = 0 for all i = 1, 2, . . . , N and t ∈ R+}. If

this subspace is stable with respect to perturbations in its
transverse subspace, then the interlayer antisynchronization
state could be achieved at the multiplex network. We now
derive the analytical stability condition for the interlayer
antisynchronization state in a generic multiplex network (A1)
using the master stability function (MSF) approach [71].

For multiplex networks, the MSF has been extended by
considering the static [72] and time-varying [31,35] network
architectures, allowing to identify the analytical conditions for
intralayer and interlayer synchronization.

When interlayer antisynchronization is achieved, we have
that

ẋ1,i = f (x1,i ) + ε

N∑
j=1

Bi jG[x1, j − x1,i] − 2ηHx1,i,

ẋ2,i = −ẋ1,i, (A3)

for i = 1, 2, . . . , N . Considering small perturbations δzi(t ) of
the ith node of layer 2, its state can be written as x2,i(t ) =
−x1,i(t ) + δzi(t ). Then, linearizing this layer around the in-
terlayer antisynchronization state x1,i(t ), we obtain the error
associated to the dynamics transverse to the interlayer anti-
synchronization manifold as

δżi = ẋ1,i + ẋ2,i

= f (x1,i ) + ε

N∑
j=1

Bi jG[δz j − δzi] + f (−x1,i + δzi )

= J f (x1,i )δzi − ε

N∑
j=1

Li jGδz j, (A4)

for all i = 1, 2, . . . , N . Here, J f (x1,i ) = ∂ f (x)
∂x |x=x1,i

, and x1,i

is the dynamics of the interlayer antisynchronization state
which satisfies Eq. (A3). Since all these error components
are linearly independent, all the state variables of the master
stability equation [Eq. (A4)] evolve transverse to the interlayer
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antisynchronization subspace. Therefore, the Lyapunov expo-
nents of the above Eq. (A4) are all transverse to S .

Under this framework, we investigate the local stability
of the interlayer antisynchronization state of a multiplex net-
work of SL oscillators. We will verify the transition point
from desynchronization to interlayer antisynchronization state
through the maximum transverse Lyapunov exponent. For
such multiplex network, the transverse error equation can be
written as

δẋi = (
1 − 3x2

i − y2
i

)
δxi − (2xiyi + ω)δyi − ε

N∑
j=1

Li jδx j,

δẏi = (−2xiyi + ω)δxi + (
1 − x2

i − 3y2
i

)
δyi − ε

N∑
j=1

Li jδy j .

(A5)

Here, (xi, yi ), i = 1, 2, . . . , N , is the state variable of the
interlayer antisynchronization manifold which dominates the
evolution equation

ẋi = (
1 − x2

i − y2
i

)
xi − ωyi − ε

N∑
j=1

Li jx j − 2ηxi,

ẏi = (
1 − x2

i − y2
i

)
yi + ωxi − ε

N∑
j=1

Li jy j − 2ηyi. (A6)

We compute the 2N Lyapunov exponents by solving
the linearized Eq. (A5) along with the equation of motion
[Eq. (A6)] of the interlayer antisynchronization state. Among
them, the maximum Lyapunov exponent �max as a function of
ε and η gives the necessary condition for the local stability of
this state. We will achieve interlayer antisynchronization by
adjusting these two parameters (ε and η) so that �max is less
than zero.

FIG. 12. Stability of the interlayer antisynchronization mani-
fold. Synchronization error E (blue line) and the largest Lyapunov
exponent �max (red line) of the error transverse to the interlayer
antisynchronization manifold as a function of the interlayer coupling
strength η. The multiplex network architecture is shown in Fig. 1(a),
with each node containing a SL oscillator with ε = 0.01 and
ω = 3.0.

In Fig. 12, the blue curve represents the variation of the
interlayer antisynchronization error E as a function of the in-
terlayer coupling strength η. Here, the frequency of the
SL oscillators is set to ω = 3.0 and the intralayer coupling
strength is fixed at ε = 0.01. For the numerical simulations we
have chosen t = 2000 and t1 = 1000 [see Eq. (A2)]. Starting
with a nonzero value, E decreases and eventually drops down
to zero for η = −0.0013, indicating the emergence of inter-
layer antisynchronization for the chosen the values of ε and
ω. At the same time, the red curve represents the variation of
�max with respect to η. We can observe how �max descends
to zero at the point where E becomes zero, indicating that
our analytical local stability condition agrees well with the
numerical simulations.
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