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Coherence resonance in neuronal populations: Mean-field versus network model
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The counterintuitive phenomenon of coherence resonance describes a nonmonotonic behavior of the regularity
of noise-induced oscillations in the excitable regime, leading to an optimal response in terms of regularity of the
excited oscillations for an intermediate noise intensity. We study this phenomenon in populations of FitzHugh-
Nagumo (FHN) neurons with different coupling architectures. For networks of FHN systems in an excitable
regime, coherence resonance has been previously analyzed numerically. Here we focus on an analytical approach
studying the mean-field limits of the globally and locally coupled populations. The mean-field limit refers to an
averaged behavior of a complex network as the number of elements goes to infinity. We apply the mean-field
approach to the globally coupled FHN network. Further, we derive a mean-field limit approximating the locally
coupled FHN network with low noise intensities. We study the effects of the coupling strength and noise intensity
on coherence resonance for both the network and the mean-field models. We compare the results of the mean-
field and network frameworks and find good agreement in the globally coupled case, where the correspondence
between the two approaches is sufficiently good to capture the emergence of coherence resonance, as well as of
anticoherence resonance.
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I. INTRODUCTION

All real-world processes are affected by random fluctu-
ations that are intrinsically produced by the system itself
and/or introduced by the extrinsic mechanisms to the system.
The fluctuations are modeled mathematically as noise [1–3].
In neural networks, noise occurs naturally, for example, due to
random synaptic input from other neurons, spontaneous neu-
ral activity, or random opening and closing of ionic channels
resulting in so-called intrinsic brain noise [4–6]. Investigation
of noise impact in the brain, and in nonlinear dynamical net-
works in general, is a challenging problem. Noise can give
rise to peculiar dynamic behavior, e.g., stochastic bifurcations
[2,7,8] or stochastic synchronization [9,10]. It can even in-
duce partial synchronization patterns such as chimera states
[11–15]. Intriguingly, random fluctuations do not always have
a destructive impact deteriorating the regularity of a deter-
ministic system. Instead they can play a constructive role and
lead to an increase of coherence for increasing noise intensi-
ties. The most prominent examples are stochastic resonance
[16–29] that is observed for periodically driven bistable sys-
tems and coherence resonance that takes place in autonomous
systems, i.e., under purely noise excitation without any peri-
odic driving signal [7,30–43].
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The counterintuitive phenomenon of coherence resonance
was originally detected for an excitable FitzHugh-Nagumo
(FHN) neuron [31]. It describes a nonmonotonic behavior of
the regularity of noise-induced oscillations in the excitable
regime, leading to an optimal response in terms of regularity
of the excited oscillations for an intermediate noise inten-
sity. Since the discovery of coherence resonance, it has been
investigated theoretically and experimentally in various sys-
tems and networks [11,13,38,43–50]. It has been shown that
coherence resonance can be observed not only in excitable
[31,51] but also in nonexcitable systems [7,8,10,40–42]. De-
pending on the nature of the external noisy inputs, different
mechanisms for coherence resonance have been observed,
like the double coherence resonance, occurring for an opti-
mal combination of noise variance and correlation of inputs
stimulating a single FHN neuron [52,53]. On the other hand,
in complex networks of FHN units, the existence of coherence
resonance has been reported for one-layer [50] and two-layer
[54] networks. Further topologies include local, nonlocal,
global coupling, and lattice networks as well as more complex
structures such as random or small-world networks [50,55–
59].

Interestingly, large ensembles of neurons in the brain
demonstrate a rich variety of coherent dynamics at the macro-
scopic scale which results from random perturbations [60].
Therefore, understanding coherence resonance is important
for the study of brain and neural networks. Coherence is
significant for communication between brain regions [61] and,
as recently suggested in Ref. [62], the improvement of neural
communication can be reached via coherence resonance. In
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more detail, the brain adjusts its internal noise to maximize
the coherence. Furthermore, information processing and its
encoding for transmission to different areas of the brain re-
quire a coherent activity of neuronal populations. In particular,
information processing in the brain can be represented as a
nonstationary spatiotemporal process of activity propagation
[63,64]. In this view, brain activity during task conditions si-
multaneously evolves in a hierarchy of characteristic network
activations. For instance, information processing in sensori-
motor coordination [65] and auditory, visual, and linguistic
tasks [66] show robust propagation through well-tuned ac-
tivation chains of characteristic subnetworks. Especially in
the sensory cortex, many neurons locally sensitive to similar
stimulus features give a similar response to a given input
stimulus (see, for example, Refs. [67–69] for neurophysiolog-
ical studies, and also Refs. [70–73] for some models using
the local tuning feature of neurons). This suggests that the
activity of such neurons can be measured and studied at a
macroscopic scale, which provides reliable data due to the
averaging effects diminishing the independent chaotic random
behaviors of single neurons observed at a microscopic scale.

The growing interest in the phenomenon of coherence
resonance for neural networks is confirmed by a num-
ber of works [50,55–58,74,75], including very recent ones
[54,59,62]. While the majority of these investigations is based
on numerical simulations or on experimental data, much less
attention is paid to the analytical treatment of coherence res-
onance in complex networks. Although analytical treatment
has been provided for single systems (e.g., for the FHN sys-
tem in Ref. [76], for the generalized van der Pol oscillator
in Ref. [10], and for the leaky integrate-and-fire neuron in
Ref. [77]), it remains a demanding problem for networks.
Here we address this challenging question by developing a
mean-field framework for analyzing coherence resonance in
neural populations. Using a paradigmatic model of FHN neu-
rons, we study the phenomenon of coherence resonance both
at the network level (i.e., where we model each neuron in the
population as a perturbed coupled FHN system) and in the
mean-field limit (known also as thermodynamic limit), which
is the asymptotic limit of a state variable quantity representing
the averaged network behavior in the infinite size limit.

Our main contributions are at both theoretical and numer-
ical levels. At the theoretical level, we attempt to provide
a mathematical understanding of the results obtained from
numerical simulations of locally and globally coupled neu-
ral networks presented in Ref. [50]. Classical mean-field
approach requires a network where the coupling is dense
within. In other words, the coupling must be scalable with
the total number of neurons in the network. Network topolo-
gies with one-dimensional coupling, like chains and rings,
express coherence patterns such as chimera states [78] and
coherence resonance [50]. One may ask if the intricate mecha-
nisms of coherence patterns in networks with aforementioned
coupling can be grasped via a mean-field approach. In gen-
eral, the classical mean-field approach is not applicable to
one-dimensional coupling where the coupling remains local
and not dense in the network. Nevertheless, it is possible
to use an approximate definition of the mean-field system
and take advantage of coupling symmetries. In certain cases,
this will allow us to provide a first approximation of the

mean-field limit of a locally coupled network, which coincides
with the network framework for small noise intensities and
low excitability threshold. For the globally coupled case, we
employ the mean-field description provided in Refs. [79,80]
for a generic family of stochastic differential equations of
the stochastic FHN type and we decline the model in two
versions, which differ from the number of employed noise
terms: a single additive noise term in the differential equa-
tion for the recovery variable or two different noise terms,
one for each variable equation. The latter mean-field model,
which represents an extended version of the former, has been
designed to take into account both the noise effect arising
from the small random changes occurring in the coupling
media and the noise effect experienced due to the random
switching of the ionic channels when arranging the passive
flow of the ionic current through the pores between neurons:
this flow, together with the charge carriers, has a stochastic
nature [81–83]. In similar frameworks, it has been considered
either the intrinsic noise modeling the channel gate random
switching or the external noise modeling the small random
changes observed in the coupling current. Inclusion of both
noise sources simultaneously has been restricted to the the-
ory of stochastic differential equations [84,85] only. Here we
provide an attempt to study the coherent behavior induced by
combined effects of two noise sources in a globally coupled
framework, both at network and at mean-field level.

At the numerical level, we investigate the emergence
of anticoherence resonance in the globally coupled frame-
work, which results in different outcomes depending on the
investigated model. When one single noise term is present, an-
ticoherence resonance does not emerge in the system, while,
when two noise terms are present, anticoherence resonance
emerges for large noise intensity and it is characterized by an
alteration of the dynamics, which is now guided by the noise.

The paper is organized as follows. In Sec. II, we provide the
network settings for each topological architecture. Afterward,
we explain the associated mean-field frameworks in Sec. III.
In Sec. IV, we explain the experimental setting and present our
simulation results where we compare the coherence resonance
results obtained from the mean-field systems and network
framework to find out to which level they provide the same
outcome, i.e., we identify the limitations of the mean-field
approach. Finally, we give the conclusions in Sec. V.

II. NETWORK EQUATION

Several dynamical models have been proposed to study
both single neuron and coupled neuronal population be-
haviors, such as the Hodgkin-Huxley model [86], or other
conductance-based models, like the Morris-Lecar model [87].
Conductance-based models are the simplest possible biophys-
ical representation of an excitable cell, such as a neuron,
in which its protein molecule ion channels are represented
by conductances and its lipid bilayer by a capacitor. How-
ever, other types of models have been developed that predict
the dynamics of the membrane output voltage as a function
of electrical stimulation at the input stage, like Hindmarsh
and Rose [88], integrate-and-fire [89–91], or the Galves-
Löcherbach model [92]. At the mean-field level, heuristic
firing rate models are commonly used, like the Wilson-Cowan
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excitatory-inhibitory neural mass model [93,94] and its
stochastically modified versions [95]. Only recently have
neural mass models been developed that are not derived
heuristically but that reproduce exactly the dynamics of ex-
citatory and inhibitory networks of spiking neurons for any
degree of synchronization [96–99]. In particular, these neu-
ral masses reproduce the macroscopic dynamics of quadratic
integrate-and-fire neurons, which are normal forms for the
saddle node on a limit cycle bifurcation (SNIC) [100] and
describe, in general, the dynamics of class I neurons (i.e.,
neurons with a continuous gain function), to which belong the
Hindmarsh-Rose model and the Morris-Lecar model under
some circumstances. In the present paper, we are particularly
interested in the celebrated FHN model [101,102], which rep-
resents a reduced version of the Hodgkin-Huxley model. It
still captures closely the dynamical behaviors produced by the
Hodgkin-Huxley model and has the advantage of facilitating
efficient large-scale simulation of groups of neurons.

Network equations describe the dynamics of each neuron
belonging to the network at a microscopic level. The classical
deterministic FHN equations describing the evolution of a
single neuron belonging to a coupled population read as

ε
dui(t )

dt
= f (ui(t ), vi(t )) + σ

2P

i+P∑
j=i−P

[u j (t ) − ui(t )]

= ui(t )−ui(t )3

3
−vi(t )+ σ

2P

i+P∑
j=i−P

[u j (t ) − ui(t )],

dvi(t )

dt
= ga(ui(t )) = ui(t ) + a, (1)

where σ is a positive constant denoting the coupling strength.
ui and vi represent the activator (membrane potential) and
inhibitor (recovery) variables of the ith neuron, respectively
(i = 1, . . . , N , where N is the population size). ε > 0 is re-
sponsible for the timescale separation of fast activator and
slow inhibitor, being a small parameter. Here, we fix ε = 0.01.
Parameter a determines the nature of the equilibrium points
and thus the excitability threshold of the isolated, uncoupled
neuron. In particular, the parameter a serves as a threshold
in our model and determines whether the single neuron is
in the excitable |a| > 1 or in the oscillatory |a| < 1 regime.
The single neuron undergoes a Hopf bifurcation when a = 1.
Finally P denotes, for the ith neuron, the number of its nearest
neighbors in each direction of the ring. Thus, it determines the
topology of the population: if P = 1, we have local coupling,
if P = (N − 1)/2 (we assume N is odd), we have global
coupling and, finally, if 1 < P < (N − 1)/2, we have nonlocal
coupling.

We assign a stochastic behavior to the system by adding
a Gaussian white noise term dWi(t ) to the recovery variable
equation of each neuron, as described in Refs. [50,54]. The
noise term dWi(t ) is built, for each neuron i, from an indepen-
dent Wiener process. More precisely,

E[dWi(t )]=0, E[dWi(t )dWj (t
′)]=δ((i− j)(t −t ′)),∀i, j,

(2)

with E and δ denoting expectation value and Dirac delta func-
tion, respectively. For the sake of simplicity, we drop showing

the time dependency explicitly from now on, as long as the
otherwise is required. The stochastic FHN equations read as
follows:

εdui(t ) = f (ui(t ), vi(t ))dt + σ

2P

i+P∑
j=i−P

[u j (t ) − ui(t )]dt,

dvi(t ) =ga(ui(t ))dt +
√

2D dWi(t ), i = 1, . . . , N,

(3)

where D denotes the level of noise intensity. Gaussian white
noise is intended to represent triggering perturbations that al-
ters the state of the system. Here we focus on the dynamics of
neuronal populations in their excitable regime. In this regime,
a sufficiently strong perturbation triggers the whole popu-
lation to produce spikes before the population comes back
to its steady state. If the perturbation is not strong enough,
the population relaxes back to its unique stable steady state
without producing a spike. In particular, we are interested in
the state of the network characterized by the best temporal
regularity of the noise-induced spiking dynamics achieved for
an intermediate optimal noise intensity, i.e., when the network
undergoes coherence resonance. In Sec. IV, when comparing
the network dynamics emergent in the network with the mean-
field prediction, in the globally coupled regime, we will also
integrate a second set of equations that differ from Eqs. (3)
by adding a second noise term

√
2εD̄ dW̄i(t ) in the first differ-

ential equation, where D̄ denotes the level of noise intensity
and dW̄i(t ) represents, as before, a Gaussian noise source.
The reason for this will become clear when introducing the
extended version of the mean-field limit associated to the
globally coupled FHN system [see Eqs. (9) in Sec. III].

A. Macroscopic indicators of coherence resonance

Coherence resonance characterizes the emergence of rel-
atively coherent noise-induced oscillations occurring for an
optimal noise intensity. It was initially found in a single FHN
system in the excitable regime and later detected for neural
networks. There exist several different measures for quanti-
fying coherence resonance, such as the normalized standard
deviation of the interspike interval (ISI), the correlation time,
and the signal-to-noise-ratio [30,31,41]. Since in the present
paper we deal with a neural model showing spiking behavior,
it is convenient to use the standard deviation of the ISI, defined
as

RISI =
√〈

t2
ISI

〉 − 〈tISI〉2

〈tISI〉 , (4)

where tISI is the time between two subsequent spikes and
〈· · · 〉 indicates the average over the time series. As the FHN
system does not have a hard threshold, we identify artificially
a spike as emitted in the network whenever a unit crosses the
value u = 0 from below. That way, we ignore all subthreshold
oscillations. A system undergoing coherence resonance will
show a pronounced minimum in the value of RISI [31]. The
definition (4) is limited to characterizing coherence resonance
for a single FHN oscillator. For a network of oscillators, co-
herence resonance can be measured by redefining R as follows
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FIG. 1. Space-time plots for optimal D values (i.e., R takes minimum values) for different network topology and a values: (a) a locally
coupled network with a = 1.05 and D = 0.001, (b) a locally coupled network with a = 1.3 and D = 0.08, (c) a globally coupled network with
a = 1.05 and D = 0.0008, (d) a globally coupled network with a = 1.3 and D = 0.0158. Time series of one selected neuron in a locally (e)
and globally (f) coupled network for a = 1.05 (blue) and a = 1.3 (red). Other parameters: N = 100, ε = 0.01, σ = 0.1.

[50]:

R =
√〈

t2
ISI

〉 − 〈tISI〉2

〈tISI〉 , (5)

where the overbar indicates the additional average over nodes.
To illustrate the dynamics of the system in the regime of

coherence resonance, we provide here space-time plots and
time series for a locally and globally coupled network in the
stochastic regime (see Fig. 1). In more detail, we show the
dynamical behavior emerging for different threshold param-
eter values (a = 1.05 and a = 1.3) for the locally coupled
[Figs. 1(a) and 1(b)] and the globally coupled [Figs. 1(c) and
1(d)] cases. In the locally coupled case we observe, for the
lower threshold value (a = 1.05), coherent response among
all network elements that spike regularly and nearly at the
same time (panel a), resulting in a very low value of R =
0.056. The case of higher threshold a = 1.3 shows a more
irregular response, while still having a rather small value of
R = 0.518 [Fig. 1(b)]. When the threshold is increased, it
is harder for the system to overcome it. A similar scenario
emerges when passing from local to global coupling. For the
lower threshold value, the coherent response of the network
is clearly observable. In this case, the FHN neurons spike
in a highly synchronized way [see the straight yellow lines
in Fig. 1(c)] due to the fact that each element receives the
input from the entire network being connected with all the oth-
ers. The simultaneous interaction among all neurons enhance
them to overcome the threshold all at once. At the contrary,
in the locally coupled case, each neuron pulls only its imme-
diate neighbors over the threshold, which explains why the

excitation needs some time to travel over the ring. Similarly
to what shown in Fig. 1(b), the case of higher threshold value
gives a more irregular picture even in the globally coupled
configuration [Fig. 1(d)]. The same conclusions can be drawn
looking at the time series of single units. In particular, in
Fig. 1(e), the time series of one selected neuron in the locally
coupled network for a = 1.05 (blue curve) and a = 1.3 (red
curve) are shown, while Fig. 1(f) illustrates the time series of
the same element in the globally coupled case for a = 1.05
(blue curve) and a = 1.3 (red curve). The higher temporal
regularity for the lower threshold parameter a can be clearly
seen for both coupling topologies.

III. MEAN-FIELD POPULATION EQUATIONS

A. Globally coupled equations

In the globally coupled mean-field framework, we have
P = N/2 as N → ∞. We assume that the coupling strength is
the same and constant for all neurons in a single population.
To avoid using negative indices in Eqs. (3) we change the
indexing of the coupling term according to

N+1∑
j=1

[ui − u j], (6)

without losing the generality.
We emphasize that the noise terms in Eqs. (3) are assumed

to be independent and identically distributed for each neuron
and also for each state variable. This allows us to describe, in
the thermodynamic limit, each state variable of a neuron as a
continuous set of random variables, each one corresponding
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to an instant of time. In other words, each state variable can
be thought of as a stochastic process representing the values
of the state variable changing randomly in time. As such, the
state variables ui and vi of the ith neuron (for any i = 1 . . . , N)
evolve in accordance with their associated probability distri-
butions, which converge in the thermodynamic limit, to the
ones of the mean-field state variables u and v characterized by

lim
N→∞

max
i=1,...,N

E[sup
s�t

(ui(s) − u(s))]2] = 0,

lim
N→∞

max
i=1,...,N

E[sup
s�t

(vi(s) − v(s))]2] = 0. (7)

As shown in Refs. [79,80], the state variables u and v comprise
the solution to the following mean-field system:

εdu = f (u, v)dt + σ (E[u] − u)dt,
(8)

dv = ga(u)dt +
√

2D dW,

where dW denotes Gaussian white noise with the properties
given in Eqs. (2) and D defines the noise intensity level.
Here σ represents the coupling constant, as introduced in the
network Eqs. (3). This mean-field equation was derived in
Refs. [79,80] from a network of FHN neurons of the same
type as Eqs. (3), based on two steps: (i) the first step shows
that a unique solution to Eqs. (8) exists for a finite time, under
the assumption that the terms f and ga are locally sufficiently
regular (locally Lipschitz); and (ii) the second step shows that
for each neuron in the network, the probability distributions of
the processes ui and vi converge toward the probability distri-
butions of the mean-field state variables u and v, respectively.

While the mean-field framework shown in Eqs. (8) corre-
sponds to the classical mean-field limit of the globally coupled
networks of FHN oscillators of the type given in Refs. [50,54],
we consider in the following an extended version of the mean-
field limit associated to the globally coupled FHN system. In
Refs. [79,80], it was shown that the same results and proper-
ties as in Eqs. (8) hold also for the extended version, which is
adapted from Refs. [79,80], as follows:

ε du = f (u, v)dt + σ (E[u] − u)dt +
√

2εD̄ dW̄ ,
(9)

dv = ga(u)dt +
√

2D dW,

where dW̄ , dW are the noise terms generated independently
from a Gaussian distribution with zero mean and unit vari-
ance. We denote the noise intensity levels as D̄, D. To
guarantee that dW̄ does not dominate dW , neither the whole
system behavior, we impose D̄ to be of the same order as D.
Moreover, we add the scaling term

√
ε, thus keeping the noise

small.1As for Eqs. (8), the presence of σ (E[u] − u)dt requires
studying the state variable u, whose solution depends on its
own expectation value.

The choice of this extended model is motivated by the
presence of the global coupling term: The noise effects aris-
ing from the coupling can be modeled by introducing an

1The scaling with
√

ε is required since u and v evolve with different
time constants reflected in ε: the scaling term tunes the noise term
dW̄ in accordance with this difference while compensating the unit
inconsistency arising from the diffusive character of the noise.

additional white noise term (dW̄ ) in Eqs. (8), as shown in
Eqs. (9). More specifically, the additional noise on the first
line of Eqs. (9) models the stochastic nature of the gap
junction media, which creates small random changes in the
coupling current, while the noise term in the second line
models the stochastic nature of the ionic channels, i.e., the
random switching of channel gates arranging the ionic current
[81–83]. Finally, we remark that, when comparing the results
obtained from the simulation of Eqs. (9) with those obtained
from the network, the corresponding network equations are
described, for consistency, by Eqs. (3) with an additional noise

term,
√

2εD̄ dW̄i(t ), in the first equation, where D̄ denotes the
level of noise intensity for the Gaussian white noise dW̄i(t ).

The mean-field limit models the population behavior by
employing a single FHN system once the number of the neu-
rons in the population is sufficiently high, whereas, for the
network equations, we need a separate FHN equations system
for each neuron in the population. In other words, the net-
work equations require a high-dimensional dynamical system
while the mean-field limit requires only a two-dimensional
dynamical system, being a good representative of the averaged
dynamics of the population and making analytical treatment
of the system feasible. However, studying the statistics of such
a system is not trivial since the right-hand side requires the
expectation of the solution of the equation. Yet, it is possi-
ble to use a semianalytical approach, where we obtain the
first-moment statistics of u from numerical simulations of the
network equations given by Eqs. (3), as shown in Ref. [79].
Practically, the expectation value of u will be introduced nu-
merically in the differential Eqs. (9), by obtaining the statistics
of the state variables from the network simulations. In this
way, it will be possible to investigate the interplay of coupling
and noise to determine the emergence of coherence resonance
and to provide an analytical framework for the numerical
results.

Finally, we note that, although the notation for the mean-
field state variables are denoted in the same way, by u and
v, for both globally and locally coupled settings, the corre-
sponding definitions are different and, in the rest of the paper,
it should be tacitly understood from the coupling type.

B. Locally coupled equations

In the locally coupled topology, P = 1 and the network
equations for the ith neuron can be written as

εdui = f (ui, vi )dt + σ

2
(ui−1 + ui+1 − 2ui )dt,

dvi = ga(ui )dt +
√

2D dWi, i = 1, . . . , N. (10)

We assume to have periodic boundary conditions: the ith
neuron is coupled to the (i − 1)th and (i + 1)th neurons for
all i ∈ {1, 2, . . . , N}, while it holds that

uN+K = uK for all K ∈ {−N,−N + 1, . . . , N − 1, N}.
(11)
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The average dynamics of a locally coupled system in the
thermodynamic limit can be found by considering that

ε

N

N∑
i=1

dui = 1

N

N∑
i=1

f (ui, vi )dt + σ

2N

N∑
i=1

(ui−1+ui+1−2ui )dt,

1

N

N∑
i=1

dvi = 1

N

N∑
i=1

ga(ui )dt + 1

N

N∑
i=1

√
2D dWi, (12)

where the term proportional to the coupling constant σ on
the right-hand side of the first equation vanishes for N → ∞.
Moreover, we define in the following

u := 1

N

N∑
i=1

ui, v := 1

N

N∑
i=1

vi, (13)

and

1

N

N∑
i=1

dWi = dW, (14)

where dW is a Gaussian white noise as a result of the central
limit theorem. We emphasize that the definitions of mean-field
variables in (13) are different from the globally coupled case.
A different definition is required since the classical mean-field
formalism is not applicable here, where the coupling is not
dense, i.e., not scalable to 1/N .

It is not straightforward to write the average dynamics
directly from Eqs. (12) (neither the exact mean-field limit)
due to the nonlinearity of f . To handle the nonlinearity, we
approximate the state variables ui as random variables dis-
tributed according to a Gaussian distribution, as described in
Ref. [103] (see also Refs. [104–107] for details regarding the
use of Gaussian random variables in such approximations).
This approximation assumes that the excitable system is suf-
ficiently close to the equilibrium point and the noise intensity
D is small. We employ the law of large numbers (see, for
example, Ref. [108]), more precisely

1

N

N∑
i=1

ui = E[ui] as N → ∞, (15)

and write the mean-field limit from the average dynamics
given in Eqs. (12). Since we approximate ui as a Gaussian
random variable with expectation value u and variance ρ2, we
have

E[ui] = 1√
2πρ2

∫ ∞

−∞
ui e

−(ui−u)2

2ρ2 dui = u,

E
[
u3

i

] = 1√
2πρ2

∫ ∞

−∞
u3

i e
−(ui−u)2

2ρ2 dui = u3 + 3ρ2u. (16)

By implementing Eqs. (14)–(16) in Eqs. (12) we find, in the
limit N → ∞, that

εdu = f (u, v)dt − ρ2u dt, dv = ga(u) +
√

2D dW, (17)

and more explicitly

εdu =
(

(1 − ρ2)u − u3

3
− v

)
dt,

dv = (u + a)dt +
√

2D dW. (18)

The fact that the coupling term vanishes in Eqs. (12) indicates
that there is no effect of the coupling at the mean-field level.
Moreover, since we do not have any information about ρ a
priori in the mean-field framework, we obtain the ρ values
from the numerical network simulations and introduce them at
each time sample when we perform the numerical integration
of Eqs. (18).

The mean-field variables are here approximated as random
variables distributed according to a Gaussian distribution and
they represent the mean value of the network variables. There-
fore, in the locally coupled case, we propose a mean-field
model which represents an approximation of the averaged
network. Indeed, the proposed mean-field model (18) for the
locally coupled framework will prove successful only in a sub-
set of the whole parameter set. At the contrary, in the globally
coupled framework, the approach proposed in Refs. [79,80]
does not require any approximation and provides a precise
description of the mean-field variables. In particular, it pro-
vides a set of mean-field variables with the same probability
distribution as the network variables calculated in the infinite
size limit. Therefore, the mean-field variables share the same
statistics (e.g., mean value, standard deviation of the ISIs)
as the network in the limit of infinite numbers of neurons,
although they are not necessarily equal to the average of the
network variables.

C. Nonlocally coupled equations

Finally, we consider the intermediate nonlocally coupled
case with 1 < P < N

2 . It is convenient to distinguish between
two cases that represent two classes of systems [109]: sparse
(or strongly diluted) networks, where P 
 N , and specifically
P is independent of N as N → ∞; massive networks, where
P is proportional to the network size N . In our ring topology,
these cases can be translated in the following limits:

lim
N→∞

P

N
= 0 and lim

N→∞
P

N
= C, (19)

where C is a constant value and C � 1/2 for the definition
of ring topology. In the first case (P 
 N), if we fix P to be
a constant connectivity, we can write the following averaged
network equations for N → ∞:

ε

N

N∑
i=1

dui = 1

N

N∑
i=1

f (ui, vi )dt + 1

N

N∑
i=1

σ

2P

× (ui−P + · · · + ui+P − 2(P + 1)ui )dt,

1

N

N∑
i=1

dvi = 1

N

N∑
i=1

ga(ui )dt + 1

N

N∑
i=1

√
2D dWi, (20)

which turns out to be the same as the locally coupled system
given in Eqs. (18). In the second case (P ∝ N), we may write
P as a function of N , i.e. P = P(N ), such that the same limit
holds for P and N , when N → ∞. This means that, starting
from the mean-field system presented for the globally coupled
case in Eqs. (8), it should be possible to straightforwardly
derive a set of equations for the particular case P = P(N ), as
long as the coupling constant σ is rescaled in accordance with
the limit value comparable to C.

032308-6



COHERENCE RESONANCE IN NEURONAL POPULATIONS: … PHYSICAL REVIEW E 103, 032308 (2021)

FIG. 2. Normalized standard deviation of the interspike interval R for a globally coupled network with noise terms in both system variable
equations and its mean-field system: (a) for fixed coupling strength σ = 0.1 and varying noise intensity D; (b) for fixed noise intensity
(D = 0.001 for a = 1.05 and D = 0.012 for a = 1.3) and varying coupling strength σ . In both panels, light red diamonds identify the network
while dark red downward triangles identify the mean-field results for a = 1.05; dark blue squares identify the network while light blue upward
triangle identify the mean-field simulations for a = 1.3. The results are obtained by integrating over 10 000 time units and then averaging over
time, oscillators, and realizations (five simulations for each σ ). The x axis has logarithmic scaling. Other parameters: N = 100, ε = 0.01.

We conclude that nonlocally coupled topology cannot be
treated as a separate one, since its dynamics can be attributable
to the one emergent in either sparse or massive networks.
This case confirms what already found in the literature: (i)
for massive networks, i.e., when the connectivity scales with
N , the network behaves like a globally coupled system with a
rescaled coupling constant to account for the different fraction
of active links [110]; and (ii) for sparse networks, charac-
terized by constant connectivity, not increasing with N , the
thermodynamic limit shows a completely different behavior,
typical of locally coupled topology [111].

IV. SIMULATION RESULTS

A. Globally coupled framework

Here we study the role of noise intensity D and coupling
strength σ in inducing coherence resonance in a network
of globally coupled FHN oscillators. In particular, for the
mean-field model we initially simulate the system given by
Eqs. (9), by employing the classical Euler-Maruyama numer-
ical scheme, as detailed in Appendix A. We measure R in two
different parameter settings: First, we increase D, keeping all
parameters fixed and, second, we increase σ , keeping all the
other parameters fixed. The results are shown in Fig. 2 for
different excitability threshold values. Note that the x axis is
logarithmic in both cases.

Coherence resonance is visible both for a = 1.05 and for
a = 1.3 [Fig. 2(a)], where a minimum in R emerges; the
location of the minimum depends on the excitability threshold
value and it occurs for different noise intensities D in the two
cases. It is worth noticing here that, if the system is closer to
the Hopf bifurcation point, i.e., for a = 1.05, it requires lower
noise intensity for coherence resonance to occur. On the other
hand, if the system is further away from the Hopf bifurcation
point, i.e., for a = 1.3, the system requires higher noise inten-
sity. An interesting observation is that for both a = 1.05 and
a = 1.3, the R(D)-curve has both minimum and maximum

[Fig. 2(a)]. The occurrence of the maximum is associated
with the phenomenon of anticoherence resonance investigated
in Refs. [112–114]. Here we show that the anticoherence is
captured by the mean-field analysis.

To study the effects of coupling strength on the above
observed coherence resonance, we measure R as σ is varied,
for fixed D, in two different parameter settings: First, for a =
1.05 where we fix D = 0.001 and, second, for a = 1.3 with
D = 0.012 [Fig. 2(b)]. We observe for the case a = 1.05 that
coherence resonance is enhanced for a certain range of cou-
pling strength (when 0.05 � σ < 0.25). Several other works
have also shown that coherence resonance can be enhanced
by choosing appropriate coupling strengths [44,49,56]. Here
we demonstrate that this feature can be captured well in the
mean-field framework. For the higher value of excitability
threshold, i.e., a = 1.3, the same can be observed. As can be
seen in Fig. 2(b), the network behavior is captured well in the
mean-field framework.

The emergence of anticoherence resonance is due to the
increasing role played by the noise, which destroys the refrac-
tory time proper of each neuron, thus allowing for infinitely
small ISIs. This can be seen by plotting the probability dis-
tribution p(tISI) of the time between two successive spikes
tISI, for increasing noise intensity (see Figs. 3 and 4 for
a = 1.05 and a = 1.3, respectively). In particular, Fig. 3 re-
ports the probability distributions for D = 0.001 [Fig. 3(a)],
D = 0.03981 [Fig. 3(b)], D = 1.58489 [Fig. 3(c)] and D =
3.16228 [Fig. 3(d)], thus characterizing four different states
of the curve shown in Fig. 2(a), including the minimum and
the maximum of the curve. At the minimum (D = 0.001),
the probability distribution is very peaked: the spike emis-
sion is coherent and all neurons spike with almost the same
time interval. For increasing noise intensity (D = 0.03981),
the distribution becomes wider and longer times are possible
between successive spikes. Finally, at the maximum (D =
1.58489) and for wider noise intensities, noise guides the dy-
namics and destroys the coherence: The presence of infinitely
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FIG. 3. Probability distribution p(tISI ) of the measured interspike
intervals tISI in a globally coupled network with a = 1.05 and with
noise terms in both system variable equations for noise intensity
(a) D = 0.001, (b) D = 0.03981, (c) D = 1.58489, (d) D = 3.16228.

small ISIs is the signature of a fluctuation-driven dynamics,
where neurons overcome the threshold very often due to the
high noise intensity.

FIG. 4. Probability distributions p(tISI ) of the measured inter-
spike intervals tISI in a globally coupled network with a = 1.3 and
with noise terms in both system variable equations for noise intensity
(a) D = 0.01259, which corresponds to the minimum of the curve
shown in Fig. 2(a); (b) D = 0.15849; (c) D = 1.58489 corresponding
to the maximum in Fig. 2(a); (d) D = 3.16228.

Similar conclusions can be drawn from Fig. 4, which de-
scribes four different states of the curve previously reported
in Fig. 2(a), corresponding to D = 0.01259 [Fig. 2(a)], D =
0.15849 [Fig. 2(b)], D = 1.5849 [Fig. 2(c)] and D = 3.16228
[Fig. 2(d)]. Since the system requires higher noise intensity
to achieve coherence resonance at a = 1.3, the level of co-
herence is lower with respect to the previous case and the
probability distribution at the minimum (D = 0.01259) is less
peaked than the corresponding case shown in Fig. 3(a). For
higher noise intensities [Figs. 2(b)–2(d)], it is possible to
register tISI values that are smaller than the refractory time due
to the presence of strong fluctuations that guide the network
dynamics, thus triggering the anticoherence phenomenon.

The shown results are stable with respect to the integration
scheme and do not depend on the chosen network size. More
details are given in Appendix A for the stability of the mean-
field solution with respect to the integration scheme, while
the impact of network size on the results is further discussed
in Appendix B. In the following, we consider the globally
coupled mean-field system with only one noise term, as given
in Eqs. (8), which is the exact mean-field limit in the globally
coupled case of Eqs. (3). As previously done for the extended
mean-field model, we study the role of noise intensity D
and coupling strength σ in inducing coherence resonance and
compare the results obtained from the mean-field and network
simulations.

Figure 5 shows the results for a = 1.05 and a = 1.3, re-
spectively. In both cases, coherence resonance is visible and
a minimum in R emerges [Fig. 5(a)]. As for the extended
mean-field model, the location of the minimum depends on
the excitability threshold value and it occurs for higher noise
intensities D when a higher excitability threshold is chosen.
Moreover, we observe that R values obtained from the mean-
field framework and the direct network simulation overlap
almost completely for the whole considered range of noise
values. To study the effects of coupling strength on the ob-
served coherence resonance, we have measured R as σ is
varied for fixed D [Fig. 5(d)]: For both excitability threshold
values, coherence resonance can be obtained by choosing
appropriate coupling strengths. Also for this numerical exper-
iment we see good agreement between the network and the
mean-field system.

Finally, we observe a different behavior, in terms of anti-
coherence resonance, for the cases shown in Figs. 5(a) with
respect to the cases shown in Fig. 2(a): Differently from the
extended model, in the latter case we do not observe the pres-
ence of a relative maximum for high noise intensity values.
A maximum appears in the mean-field system, for very small
values of noise intensity, similarly to what was reported in
Ref. [112], where anticoherence resonance has been shown to
appear for a single stochastic FHN neuron, due to the mixing
of two different timescales: When adding additive noise of
small intensity, the neuron responds in what appears to be
trains consisting of a few number of enchained pulses. While
the pulses belonging to a single spike train are separated by
a small deterministic timescale separation, the time interval
between two consecutive pulses is longer and unpredictable.
However, the same conjecture cannot be extended to our glob-
ally coupled network of FHN neurons since we observe, in
the network system, a purely Poissonian statistics, with the
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FIG. 5. Normalized standard deviation of the interspike interval R for a globally coupled network with single noise term as given in Eqs. (3)
and its mean-field system (a) for fixed coupling strength σ = 0.1 and varying noise intensity D. (b) For fixed noise intensity (D = 0.00079 for
a = 1.05 and D = 0.05012 for a = 1.3) and varying coupling strength σ . In both panels, light red diamonds identify the network while dark
red downward triangles identify the mean-field results for a = 1.05; dark blue squares identify the network while light blue upward triangles
identify the mean-field simulations for a = 1.3. The results are obtained by integrating over 10 000 time units and then averaging over time,
oscillators, and realizations (for five simulations each). The x axis has logarithmic scaling. Other parameters: N = 100, ε = 0.01.

Poisson limit R = 1 reached from the above. Therefore, we
conclude that the maximum in the mean-field system is rather
an artificial effect due to the poor prediction of the model in
the Poissonian regime.

B. Locally coupled framework

In the following, we show the results obtained from the
investigation of the mean-field system in the locally coupled
regime [Eqs. (18)], which has been simulated by applying the
discrete scheme given in Eqs. (A3) and reported in Appendix
A. These results are compared with the simulations of the
network system [Eqs. (3)] with the equivalent topological
structure. Similarly to what was shown in the globally coupled
framework, we perform two different numerical experiments.
In the first one, we keep the coupling strength parameter σ

fixed and vary the noise intensity level for two different ex-
citability threshold values (i.e., a = 1.05 and a = 1.3). In the
second experiment, we keep the noise intensity fixed and vary
the coupling strength σ . The first set of experiments shows
the relation between the mean-field approximation and the
small noise requirement of the approximation. In the second
set of experiments, we see the effect of the distance of the
excitable system from the equilibrium point on the mean-field
approximation.

The dependence on the noise intensity of the normalized
standard deviation R of the ISIs is shown in Fig. 6 for a = 1.05
and a = 1.3. While the parameters ε = 0.01, σ = 0.1 have
been kept fixed, the noise intensity level D has been varied
over logarithmically sampled values between 0.0001 and 10
for both values of a, on the left panel. It can be seen that
R depends nonmonotonically on D and a minimum of this
quantity is observable for small noise intensity, thus indicating
coherence resonance. We remark that in the case of a = 1.05,
for the mean-field system, the coherence of oscillations grows
(R decreases) as we increase the noise intensity D toward the
value 6.30957 × 10−4, where it reaches its highest level, as
shown in Fig. 6(a) in terms of dark red downward triangles.

Then it starts decaying as we increase D further. The coher-
ence indicator R shows, for the network system, a pattern
similar to the one obtained in the mean-field framework until
the noise values are close to and smaller than 10−3, as shown
in Fig. 6 in terms of light red diamonds. As we increase the
noise intensity D toward values higher than 6.30957 × 10−4,
the coherence of the oscillations starts decreasing and the
mean-field curve does not overlap with the one obtained from
the network equations any longer. This is due to the fact
that we approximate the state variables u and v via Gaussian
random processes for small noise intensity values to derive the
mean-field system and this approximation does not hold for
high noise intensity values (i.e., D > 6.30957 × 10−4). On the
right panel, we keep the level of noise intensity fixed and vary
the coupling strength. We observe that the mean-field model
overlaps with the network in the coherence resonance region,
while there is no overlap outside that region.

In the case of a = 1.3, the excitable system is further away
from the border between excitable and oscillatory regimes in
comparison to the case of a = 1.05. This results in a rather
incoherent spiking of neurons and the Gaussian approxima-
tion is not valid, thus affecting the mean-field predictions, as
can be seen in Fig. 6(a). On the right panel, where the cou-
pling strength is varied while keeping the noise intensity level
fixed, we observe that the mean-field model and the network
coincides for high coupling strength values only. In the rest,
although they follow the same pattern (almost constant) for
small coupling strength values, they do not overlap.

To assess the quality of our assumption about Gaussian
distributed variables, we compare the values of the activa-
tor variables ui at each time step with the surrogate values
obtained from a Gaussian distribution characterized, at each
time, by the same mean and variance. We calculate the Pear-
son correlation coefficient (PCC) for all times and take the
median of the resulting data set. Fig. 7(a) shows the me-
dian of the PCC for all noise values, when a = 1.05. For
low noise values, we stay sufficiently close to 1 for most
of the times, indicating a good justification for the Gaussian
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FIG. 6. Normalized standard deviations of the interspike interval R for a locally coupled network and the mean-field system: (a) for fixed
coupling strength σ = 0.1 and varying noise intensity D; (b) for fixed noise intensity (D = 0.0005 for a = 1.05 and D = 0.051 for a = 1.3)
and varying coupling strength σ . In both panels, light red diamonds identify the network while dark red downward triangles identify the
mean-field results for a = 1.05; dark blue squares identify the network while light blue upward triangles identify the mean-field simulations
for a = 1.3.The results are obtained by integrating over 10 000 time units and then averaging over time, oscillators, and realizations (for five
simulations each). The x axis has logarithmic scaling. Other parameters: N = 100, ε = 0.01, �t = 0.001, T = M�t = 10 000.

assumption. As we are getting closer to 10−3, however, the
median decreases significantly, which corroborates our claim
that, for higher noise values, the assumption breaks down and
with it, the mean-field framework. Further, we demonstrate
that, for higher noise values, the distribution of the units is
never well approximated with a Gaussian. Comparing the
quantile-quantile plots for the cases D = 0.00063 Fig. 7(b)
and D = 1.000 [Fig. 7(c), it clearly results that only the lower
noise value approaches the Gaussian assumption sufficiently.
The red line indicates a perfect correlation. The quantile-

quantile plots are calculated at the times when PCC reaches
its maximum value.

To summarize, in both cases a = 1.05 and a = 1.3, the
mean-field is able to reproduce R patterns, close to the ones
of the network, only when the network spikes coherently and
the Gaussian assumption about the variables distribution is
valid. This happens in a smaller region of the parameter set
in comparison to the globally coupled case. In this regime, the
variance is low and it is possible to observe a regular spike
activity in the mean-field system. For small coupling strength

FIG. 7. (a) The median of the PCC for varying noise intensity D. Higher values indicate a better justification for the Gaussian assumption.
(b) Quantile-quantile-plot for the best match between a Gaussian distribution and the actual values for D = 0.00063 and (c) D = 1.00. Other
parameters: a = 1.05, σ = 0.1, N = 100, ε = 0.01, �t = 0.001, T = M�t = 10 000.
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values, while there are always some neurons in the network
which spike occasionally, it is not possible to observe spike
emissions in the mean-field system due to the high variance
values at each time instant: due to the high variance, the mean-
field system drags u to negative values as soon as u exceeds 0,
thus impeding the spike emission. This is at the origin of the
different behaviors observable at a = 1.05 for small coupling
strength values [see Fig. 6(b)]. At a = 1.3, the network is fur-
ther away from the equilibrium point, therefore less neurons
spike at small coupling strength values, with respect to the
previous case. It results in lower variance values that explain
the better agreement with the mean-field system Eqs. (18),
since a comparable amount of spikes can be registered in
both systems [see Fig. 6(b)]. In Appendix C, we compare
the dynamics of a single FHN unit to the dynamics emergent
in the locally coupled network for both a cases. It turns out
that the mean-field model approximates well the network for
low noise intensities, while higher noise intensities cause the
network to have similar statistical characteristics as a single
unit.

V. CONCLUSION

In this paper, we have developed a mean-field framework
that allows analytical treatment of coherence resonance in
complex networks of FHNs. In particular, we have compared
the obtained results with the direct numerical simulation of
the network equations for the locally and globally coupled
networks.

For the globally coupled case, we demonstrate good agree-
ment. Moreover, all the nuances of coherence resonance,
such as sensitivity to excitability threshold and the coupling
strength, are captured by the mean-field framework. On the
other hand, for the locally coupled case, we have disagree-
ment for intermediate to large noise values, due to the fact
that we approximate the state variables via Gaussian random
processes for small noise intensity values. Moreover, in the
case of a = 1.3, the system is further away from the transition
between the excitable and oscillatory regimes compared to
the a = 1.05 case, thus resulting in rather incoherent spiking.
When the system is further from the border between the ex-
citable and oscillatory regimes, the mean-field framework is
less effective in reproducing the network dynamics, while, in
general, in the locally coupled case, it works well only for
small noise values.

The better agreement for the globally coupled case com-
pared to the locally coupled case can be explained by the
fact that the two mean-field models are different for the two
cases. The locally coupled case needs the variances ρ2 of
u at each time step. Since the excitation travels through the
network (compare Fig. 6), the variances become quite large
when spikes occur, making it harder, if not impossible, to
capture the full dynamics in a mean-field model. The globally
coupled case simply takes the mean of all oscillators. As all
oscillators have the same coupling term, they also show the
same spiking behavior. This high similarity in the behavior
leads to a very small variance in u (and v), meaning that
the mean-field captures the entire behavior. Further, the better
agreement for the globally coupled case compared to the local
topology can be explained by the push-pull effect generated

by the all-to-all interaction among the neurons. This allows
neurons to spike coherently, while in the locally coupled ar-
chitecture, due to the absence of such push-pull effect, highly
varied spiking patterns emerge for each neuron in the net-
work. This affects the mean-field model via the ρ term, thus
preventing the mean-field from giving reasonable insights in
the network dynamics [see Eqs. (18)]. More importantly, the
system in the locally coupled topology cannot be described in
terms of a mean-field framework for higher noise intensities,
since the noise dominates the dynamics and the coupling
does not come into play. For high noise intensity, the good
agreement between the dynamics of a single FHN unit and
the locally coupled network shown in Appendix C proves that
the neurons behave independently, guided by the noise. This
definitively explains the lack of effectiveness of the mean-field
model for intermediate to large noise values.

Finally, in the globally coupled system we have found, for
the extended model Eqs. (9), anticoherence resonance, which
takes place for high noise intensity values. For the extended
model, anticoherence is originated from noise-induced activa-
tion processes: the noise is so strong that guides neurons over
the threshold continuously, thus inducing firing emissions at
infinitely small tISI values. On the contrary, for the original
mean-field model Eqs. (8), the anticoherence phenomenon
cannot be observed—neither at low nor high intensity values.

Interesting future research directions on the topic would be
to extend the mean-field framework to a multilayer topology,
where the emergence and control of coherence resonance have
been recently found [54,115] and to introduce additional bio-
logical features in the model, like chemical synapses, that play
functional roles in information processing, similarly to what
was shown in Ref. [116] for self-induced stochastic resonance.
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APPENDIX A: INTEGRATION SCHEME

In the globally coupled framework, we simulate the system
given by Eqs. (9) by employing the classical Euler-Maruyama
numerical scheme. The discretized equations read as

û(tk+1) − û(tk ) = �t

ε
{ f (û, v̂) + σ (E[û(tk )] − û(tk ))}

+
√

2D̄

ε
d ˆ̄W,

v̂(tk+1) − v̂(tk ) = (û(tk ) + a)�t +
√

2D dŴ (tk ), (A1)

where theˆdenotes the discretized variables in time, �t is the
time step, and tk is the kth sample of time. More precisely,
tk = k�t with k = 0, 1, . . . , M, where the initial and final
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time instants of the evolution are t0 = 0 and tM = T = M�t ,
respectively.

In the Euler-Maruyama scheme, the noise terms are dis-
cretized as

d ˜̄W (tk ) =
√

�t μ̄(tk ), dW̃ (tk ) =
√

�t μ(tk ), (A2)

where μ̄(tk ) and μ(tk ) are random numbers generated inde-
pendently from the standard normal distribution at each time
instant tk .

In the locally coupled framework, we simulate the system
given by Eqs. (18). We employ the classical Euler-Maruyama
numerical scheme where we use the following explicit dis-
cretized equations:

û(tk+1) − û(tk ) = �t

ε

{
(1 − ρ̂2(tk ))û(tk ) − û3(tk )

3
− v̂(tk )

}
,

v̂(tk+1) − v̂(tk ) = (û(tk ) + a)�t +
√

2D dŴ (tk ), (A3)

where the notation and the parameters are the same as in
Eqs. (A1). To perform the numerical integration, the value
of E[û] (respectively, ρ̂2) is needed at each time instant tk
for the globally (locally) coupled setting. We find the values
of E[û] (respectively, ρ̂2), at each time step, by integrat-
ing the network Eqs. (3), with initial conditions generated
from a Gaussian distribution and by implementing the Euler-
Maruyama method. In particular, we have performed L = 5
simulations of globally (locally) coupled networks, where the
initial conditions are randomly generated in each simulation.
This provides L different sets of E[û] (respectively, ρ̂2) values
for each time instant. Finally, the E[û] (respectively, ρ̂2) val-
ues to be introduced in the associated mean-field framework,
given by Eqs. (A1) [Eqs. (A3)], are determined as the average
over L of the values calculated for each time instant.

Finally, we investigate the influence of the time-step size
used for the integration of the globally coupled mean-field
Eqs. (9). It is important to use a small time step (�t = 0.001)

FIG. 8. Normalized standard deviation of the interspike interval
R for a globally coupled network (red circles) with N = 100 nodes
and with noise terms in both state variable equations and the same
of the corresponding mean-field system simulated with different
time steps: �t = 0.001 (dark blue triangles), �t = 0.002 (light blue
squares), and �t = 0.004 (orange stars) for fixed coupling strength
σ = 0.1 and varying noise intensity D. The results are obtained by
integrating over 5000 time units and then averaging over time and
oscillators. The x axis has logarithmic scaling. Other parameters:
a = 1.05, ε = 0.01.

FIG. 9. Normalized standard deviations of the interspike interval
R for a globally coupled network (red circles) with noise terms in
both system variable equations. Cases with N = 50 (red circles) and
N = 500 nodes (orange diamonds) are compared to the mean-field
system (blue triangles) where coupling strength σ is fixed to 0.1 and
noise intensity D is varied. The results are obtained by integrating
over 5000 time units and then averaging over time and oscillators.
The x axis has logarithmic scaling. Other parameters: a = 1.05,
ε = 0.01.

to achieve good agreement of mean-field results with those
obtained from numerical simulation of the network equations
(see Fig. 8). Using a larger time step leads to the disagreement
of the results for strong noise.

APPENDIX B: DEPENDENCE ON THE NETWORK SIZE

Here we analyze the impact of network size on our results.
In more detail, we compare R(D) curves obtained for the
globally coupled case from the direct numerical simulation of
the network equations for N = 50 and N = 500 with the curve
resulting from the mean-field framework. In particular, for the
mean-field model we simulate the system given by Eqs. (9)
and, analogously, for the network equations, we integrate
Eqs. (3) with noise terms in both system variable equations.

FIG. 10. Comparison between the dynamics emergent in a lo-
cally coupled network with the dynamics of a single FHN unit for
varying noise intensities D. Both the lower a = 1.05 and higher
a = 1.3 threshold values are shown. The lower value results in an
enhanced coherence in the network (red diamonds) compared to the
single unit (light green circles), whereas for higher noise intensities
the noise dominates the dynamics, which results in a good match.
Other parameters: N = 100, σ = 0.1, ε = 0.01, �t = 0.001, T =
M�t = 10 000.
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It turns out that the system size does not have impact here and
all three curves agree well (see Fig. 9).

APPENDIX C: COMPARISON TO THE SINGLE
UNIT DYNAMICS

Here we compare the dynamics emergent in a locally cou-
pled network to the one of a single FHN unit. As can be seen in
Fig. 10, the R value deviates significantly for low noise inten-
sities. Moreover, the minimum is much more pronounced for

the network case due to the interplay between the individual
random processes and the coupling in the network. The prob-
ability of a single neuron crossing the threshold is related to
the network size, thus, if a single neuron is disturbed enough,
it will eventually cause a spike chain over the locally coupled
network which ultimately results in a higher coherency. For
higher noise intensities, however, the noise dominates the
dynamics and therefore the coupling does not come into play.
This explains the good agreement between the single unit and
the network.
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